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On the Eulerian Numbers M, = max A (n, k)

1<k=n

LEoNcE LESIEUR AND JEAN-Loulis NicoLas

1. INTRODUCTION AND SUMMARY

The eulerian numbers A(n, k) have been the subject of many studies since Euler’s
time to the present [3,7, 14]. They can be defined and computed for every k and n,
1<k <n, by means of the triangular recurrence relation

An+1,k)=(n—k+2An, k—1) + kA(n, k) 1)

with the starting conditions A(n, 1) = A(n, n) = 1. These numbers satisfy the symmetr-
ical relation

Aln, k)=A(n,n—k+1). )

We give below the table of [5], for n <12.

k
o & N

no1 2 3 4 5 6

11

2 1 1

301 4 1

4 1 11 11 1

5 1 26 66 26 1

6 1 57 302 302 57 1
7 1 120 1191 2416 1191 120

8 1 247 4293 15619 15619 4293
9 1 502 14608 88234 156190 88234
10 1 1013 47840 455192 1310354 1310354
11 1 2036 152637 2203488 9738114 15724248
12 1 4083 478271 10187685 66318474 162512286

On each line n, n =2p — 1, the A(n, k)’s increase from 1 for k£ =1 to the maximum
M,,_,=A(2p—1,p) for k=p, whereas for n=2p, the A(n, k)’s increase from
1(k =1) to the maximum M,, = A(2p, p) = A(2p, p + 1). The maximum on the line »
is therefore equal to:

M, = max nA(n, k) =A<n, [g] + 1). 3)

k=1,2,._.,

The A(n, k)’s have a well-known expression, [3, t. 2, p. 85],

A= 5 (" ey @
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so that

+1
M= 3 ()=t M= S (T i
Ossj=p O=sj=p
Now, it happens that we meet those same numbers in a very different form in a
question with an algebraic origint related to the theory of modules [4], that is to say:

n+1—j

sw=3 (") S o ©)
g=max(0,{n/2]+2—j)

The table of values of s(72), given in Appendix 1, shows that s(n) = M,,. This remark
led us to study the new properties of eulerian number M, = max,_; _,A(n, k) in a
more systematic manner. Note that M, is a ‘peak’ on the line n=2p —1, and a
‘plateau’ on the line n =2p.

In Section 2.1 we begin by proving the equality M, =s(n) (Theorem 1). Then we
recall some immediate properties of the M,’s resulting from known properties of the
A(n, k)’s (Theorem 2). Next we prove in Section 3.1 that the sequences M,,/(2p)! and
M,,_./(2p — 1)! are decreasing, and this is more difficult. In order to obtain that result
we have proved the following inequality which compares A(n, £k —1) and A(n, k) on
the line n:

n—k \r%+2
—NDN<|{—— = — =
An, k—1) <n = 2) A(n, k), n=2k—-1, k=2,

and we apply this inequaltiy near the maximum. However, it is true for all
k <(n +1)/2 (Theorem 3). The above inequality also allows the study of the variation
of A(n, k)/n! on the fixed column k. A(n, k)/n! increases from 1/k!'(n=k) to a
maximum of M, /(2k—1)! (n =2k —1) and decreases afterwards towards zero
(Theorem 4).

Up to this point, the methods are chiefly combinatorial. In Section 3 we obtain an
asymptotic expansion of M,,_,/(2k —1)! using analytical methods. Some authors have
given approximate expressions of A(n, k)/n!, [1, 2, 13], mainly by means of probabil-
istic methods. Let us mention, for instance, Sirdzdinov’s formula [13], which reduces
forn=2p—1, k=p tot

M,,_ 3 3 1
— =\ = (1 ——) + 0(—5).
2p - 1! P 40p p?
The remainder here is not precise enough for the questions we are looking at, such as
the decreasing property of M,,_,/(2p —1)!. We propose a deeper analysis using
Cauchy’s integral formula and the Laplace method to calculate the coefficients of the

generating functions. After several technical and useful explanations given in Section 3.2,
we arrive at the following inequalities:

[ 3
Vp=3, Maypr_ 32 (1 — —) (Section 3.3, Lemma 1)
(2p -1 7p 40p

/ 1
Vp=1, Moy 3 (1 3 —3—2) (Section 3.4, Lemma 1)
2p -1} np 40p 4480p

+ For other recent applications of eulerian numbers to algebra, see also J.-L. Loday [9] (Section 3.3,

Lemma 1).
+ We are very grateful to Mrs V. Glaymann for translating this paper from Russian.
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They allow us to prove the following theorem which gives the best possible inequalities
between the maxima eulerian numbers M,;:

TueoREM 3 (Section 3.5). (i) The sequence M,,_,/(2p — 1)! is decreasing.
(ii) The sequence M,,/(2p)! is decreasing.
{iii) For all p =1, we have:
M2p +5 M2p < M2p+3
@ +5)! Cp) (2p+3)!

2. COMBINATORIAL RESULTS

2.1. Equality between the expression s(n) and the eulerian number M,,

The numbers M,, and s(n) have been defined by formulas (3) and (5) of Section 1.
Now we will prove their equality.

THEOREM 1. We have s(n) = M,,.

ProoF. Case n=2p.
2p +2 PE
sen=3 (7 ey TS g
] g=max(0,p+2—j)
Let us transpose both sums:
2p+1 2p+1—q 2 + 2
sep=3 a7 S cy(T)
g=1 j=max(0,p+2—q)

Replacing the binomial coefficient (¥;%) by (2”+1)+(2”+1) we obtain for the
coefficient C, of g*:

= l)p[<2p ) 1) " (2p2; 1)] Covz = _(2;—+11)

C2=(_1)p+1[<2p+1)+<2p+1)] Cp+3=+<2p+1>

p—1 2p—1 p—2
= (7 5)+ G )] ea=-(35)
Gra= ()14 (7 1) Copir = (—1Y
Hence,
s(2p) = (- 1)P(p+1) r(= 1)p+1(2p )22p+( 1)p+2<?j21)3zp
el (e (2

o+ (2p + 1)2"].
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But we have for every x (see Lemma 1 further on):
2p+1 2p +1
xzp—( pl )(x+1)2"+< P2 )(x+2)2"——---+(—1)(x+2p+1)2"=0.

Putting x = 0, we see that the term between brackets in the expression of s(2p) is zero.
Therefore, what remains, because of formula (4) of Section 1, is:

e, ) (e cor (e

“+(p+ 1)21’

= > (- 1)’( >(p —j)¥ =A@p, p)=A(@2p, p +1).

O=j=p
We know that this is max;<,<,, A(2p, k)y=M,,.
Case n =2p — 1. The calculations are similar. We find:
s@p-n= 5 (1/(T)p =iy = 40P ~1,p) = My
=<J=p

The following lemma completes the proof of Theorem 1.

LeEMMA 1. The polynomial:

fx)=x*— (;’)(x 1)+ (;)(x F 2 = (—1) (x4 n)
is zero for all integers k and n, 0<k <n.
Proor. For every polynomial PeR[X], we define the difference operator
A: R[X]— R[X] by:
AP(X)=P(X) — P(X + 1) = A, P(X).
and, when j =2, A;P(X) = A(A;_,P(X)). We can easily prove by induction that:

AP(X)=P(X)- ({)P(X 1+ <£)P(X F2) = (—1YPX +)),

and, if degP=j, deg A;P =deg P —j. Taking P(X)=X*, the polynomial f in the
lemma is f(X) = A,P(X). Then A, P(X) has degree 0, and, if n >k, A,P(X)=0. O

2.2. First Properties of M, and M, /n!

These properties result from known properties of the eulerian numbers A(n, k).

THEOREM 2. We have:
OH(r-D=<sM,<nl,n=12,...;
(11) M2p+1 (2P + 2)M2p) 1! 2! Sl
(i) My, <(2p)V/2, p=1,2,.

(V) My, 1 <(0.55) X (2p+ 1D, p=2,3,...;
(v) M,/n! ~V6/[7(n +1)] when n— +, and therefore lim,_, .. M, /n! =
Proor. (i) follows from the equality ¥.3_, A(n, k) =n! and the definition M, =

max; <x<, A(n, k) which implies:

n!snM,<n-(n").
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(i) is a consequence of the triangular recurrence relation A(n +1, k)=(n—k +
2)A(n, k —1) + kA(n, k), where n =2p, k =p + 1. It gives:

A@2p+1,p+1)=(p+1AQp, p) + (p + DAQp, p +1) = (2p +2)A(2p, p),
because A(2p, p) = A(2p, p + 1) by the symmetrical relation (2) of Section 1. Thus we
have M,, .1 = (2p + 2)M,,.

(iii) In the line 2p there is a symmetry with respect to the middle. The sum of the
first p terms is therefore (2p)!/2 and it is greater than the pth term M,,.
(iv) From (ii) and (iii) we have:

M2p+1 _ (2p +2)M2p <2p +2 % 1

Cp+1)! p+1)@2p) 2p+1°2

The function p—(2p +2)/(2p +1)=1+1/(2p +1) is decreasing. Therefore, when
p > 19 (n>39), we have:

P2 0 13 and 2T 103%0.5<0.55.

2p+1 39 2p +1)!
However, we see in the table of Appendix 1 that the property M,,,,/(2p + 1)! <0.55 is
also true for all values of p from 2 to 19. Thus (iv) holds. When p =2 (n =5) we have
the equality M5, .,/(2p +1)! =0.55. The only exceptional values of p are p =0(r =1)
and p =1 (rn=3).

(v) The probability distribution associated with the line » is given by A(n, k)/n!. The
mean is m = (n + 1)/2 and the variance is v = 0*=(n + 1)/12 (see [5, p. 51]). When
n— +, these authors prove, by means of the central limit theorem of the probability
theory, that this distribution is equivalent to the normal Gaussian distribution

1

—(x—m)¥20?
€
oVan

M

and that the maximum M, /n! is equivalent to

1 1 [6
oV2r Ver/12)n+1) Vam+1)

(see also [1,2,13]). Consequently, M,/n! tends to 0 when n— +o, and this is
illustrated in the table of Appendix 1. On the other hand, the series M,/n! is
divergent, as could already be seen before with (ii): M, /n!>1/n. O

2.3. The Sequences M,,/(2p)! and M,,.,/(2p + 1)! are decreasing
Let us consider the inequality:
M2p+2 M2p . (1)
@p+2)! (2p)!
We have (cf. Section 2, Theorem 2(ii)):

M,,=A(2p,p)=A(2p,p +1), My, 1 =AQ2p+1,p+1)=(2p +2)M,,.
Let us apply the triangular recurrence relation to:
My, ,=AQ2p+2,p+1)=(p+2)A2p+1,p)+(p+1DAQ2p+1,p+1),
AQp +1,p)=(p +2)AQp, p — 1) + pA(2p, p).
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We obtain:
M= (p+2)’AQp, p — 1) +[p(p +2) + 2(p + 1’IM;,,
My, _ My, [p(p +2)+2(p +1)° (p+2? AQ@p,p- 1)]
2p+2)! 2p)'L 2p+1)(2p +2) Cp+1D)(2p+2) AQp, p)
Hence the inequality (1) is equivalent to [ ] <1, or:
LAt D)@+ ) -p(p+2)—2p +1)*
(p+27°

The numerator of the fraction is equal to p>. This proves the following property:

A(2p,p—-1) (2p, p).

PropErTY 1. The inequality (1) is equivalent to:

2

p
(p+2)°

A2p,p—1)< A(2p, p). (2)

Now we are going to prove (2) as being a consequence of a more general inequality,
as follows.

TueorREM 3. We have, forall n=2k -1, k=2:

n—k

L) A ®

Aln, k-1 < (
and this inequality implies that sequences M,,/(2p)! and M, .,/(2p + 1)! are decreasing.

Setting n =2p, k=p in (3) gives the inequality (2) of Property 1. This proves that
the sequence M,,/(2p)! is decreasing.
The decreasing property of M,,.,/(2p + 1)! follows immediately because:

M2p+1 _ (2p + 2)M2p _ 2p +2 sz
2p+1) 2+ 2p+1(2p)

and the right member is the product of two positive decreasing functions.

ReEMARK. When n=2p +1, k=p + 1, inequaltiy (3) gives:
p
AQp +1)< AQp+1,p+1). 4
@p )erZ (2p+1p+1 (4)

But we can see, as we saw in Property 1, that the decreasing property of
M,,.1/(2p + 1)! is equivalent to:

+1\2
AQp+1,p)< <h> AQp+1,p+1). &)

We observe that (4) = (5) because
2
Lo (B )
p+2 \p+2

So the decreasing property of M,,/(2p)! ensures that of M,,.,/(2p +1)!, but the
converse is not true.
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ProOF OF THEOREM 3. Letusputk=p+1, n=2p + h, p =1, h=1. Inequality (3)
reads:

+h—-1
A(n,p)<<p

h
S + = + =1 h=1. 3)’
p+h+1) A(n,p+1), n=2p+h, p=l, 3)

We shall prove it by induction on p (the columns) and, for each column p, by induction
on k (the lines).

p=1
n_2 n—2

An, 1)< <—> A(n, 2), n=3.
n
Let us take the exact values (formula (4) of Section 1):
An,1)=1,  A(n,2)=2"—(n+1).
The inequality is:

n n—2 2 n—2
<o — =) <2r- _
(n—2> (n+1) or <1+n—2) 2"—(n+1)

But,ifn=4, n—-2=22, 1+2/(n-2)<1+1=2. So, it is enough that:
2"2<2" - (n+1) or 3-2"?%>n+1.

But 2" ?=(1+1)"?>1+n—2=n—-1, and we have 3(n —1)>n+1 when n>2.
This is the case since we have assumed n>=4. The inequality is also true when
n=3(1<3x4).

Induction from column p to column p + 1. Replacing p by p + 1 in (3)', we have to
prove:

A( +1)<(—‘H—h)hA( +2 =2(p+1)+h 3y
mp ) <( 2 amp+d,  n=2p s ©

for all A =1, knowing that (3)' is true.
We do this by induction on A.

h=1.

A(n,p+1)<Z%A(n,p+2), n=2p+3.

;)et us apply the triangular recurrence relation to compute (by Theorem 2(ii) of Section
ACp+3,p+1)=(p+3)A2p+2,p)+(p+1DAQRp +2,p+1)
ACp+3,p+2)=2p+4HAQ2p +2,p+1).

So we have to prove:

(p+3)A2p+2,p)+(p+1)(p+3)AQ2p +2,p +1)
<(p+1)(2p+4)AQ2p+2,p+1)
or
(p+3PA@2p +2,p)<[2(p + D)(p +2) = (p + 1)(p + 3)]A2p +2, p + 1):
that is to say,

(p+3VAQp +2,p)<(p+1)’AQ2p+2,p+1)
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and therefore
AQ2p +2 )<<p—+—1)2A(2 12, p+1
p+2,p 53 p+2,p+1).

This results from (3)" when h = 2.
Induction from h to h +1. Replacing A by h +1 in (3)", we have to prove:

+h+ 1"
An+1,p+ 1)< (p ) An+1,p+2) 3)”

pt+h+3

assuming (3)” for fixed & and (3)" for every h.

The triangular recurrence relation allows us to go back to the preceding lines and
columns.

In effect we have:

An+1L,p+1D)=(p+h+3)A(n,p)+(p+ DA(n, p +1),
An+1,p+2)=(p+h+2)AMn,p+1) +(p +2)A(n, p +2).
Then, (3)” reads:
(p+h+3)A(n,p)+(p+1A[n, p+1)

<p+h+1

h+1
+h+
prh 3> [(p 2)A(n, p+1)+(p +2)A(n, p +2)].
But n=2p +h +2, and we can apply (3)' with &' =h + 2:

+h+1\"*2
p__) A(n, p +1).

A <
( p) (p +h+3
In order to verify (3)” it is enough to have:
[(p+h+1)*2—(p+h+2)(p+h+ 1) +(p+1)(p+h+3)""A(n, p +1)
<(p+2p+h+1)"AMn, p +2):
that is,

[(p+D(p+h+3)* —(p+h+1)"*A(r, p+1)
<(p+2)(p+h+1)"""A(n, p +2).
Now we can apply (3)” to A(n, p + 1), so that it will be enough to verify:
(p+h)Y[(p+DP+h+)N* ' —(p+h+ )" <(p+2)(p+h+1Y"(p+h+2)

or
(p+D(p+h)(p+h+3)<(p+h+1Y* " [(p+2)(p+h+2)+(p+h)]
Now we have only to check this inequality for all integers p=1, A=1. It will be

proved true, because of the following lemma.

LEmMa 1.  Let x, y be real positive numbers. Then: _
P+ DE+y)V@x+y +3)y<@+y + )y +2)(x +y +2)"+ (x +y)'].

The details of the proof are given in [10]. It requires an intensive use of the variation
of certain real functions, with some help from computer algebra. Elementary proofs of
this lemma can be found in [15]. O
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2.4. Other Applications of the Inequality

A(n,k—1)<<

n—k
n—k+2

n—2k+2

A(n, k),

n=2k-1,

k=2,

387

€)

In addition to the decreasing property of M,,/(2p)! and M,,,,/(2p + 1)!, this inequality
allows us to prove some supplementary properties of the table of the values of
A(n, k)/n! below.

K1 2 3 4 5 6 7 8
" |
1] 1
2 | os 0.5
3 | 0.16667 0.66667 | 0.16667 ]
4 | 004167 | 045833 | 0.45833 | 0.04167
s | 000833 | 021667 | 0.55 0.21667 | 0.00833
6 | 000139 | 007917 | 041944 | 041944 | 007917 | 0.00139
7 | 000020 | 002381 | 023631 | 047937 | 023631 | 0.02381 | 0.00020
8 | 000002 | 000613 | 0.10647 | 0.38738 | 038738 | 0.10647 | 0.00613 | 0.00002 |
9 |028x10°5| 0.00138 | 0.04026 | 0.24315 | 043042 | 0.24315 | 0.04026 | 0.00138
10 [028x1075| 0.00028 | 0.01318 | 0.12544 | 036110 | 036110 | 012544 | 0.01318
11 025x107| 000005 | 0.00382 | 005520 | 02439 | 0.39393 | 0.2439% | 0.05520 |
12 [021x107® | 0.85x10°5 | 0.00100 | 0.02127 | 0.13845 | 033927 | 033927 | 0.13845 |

Let us study the variation of the function A(n, k)/n! of n for fixed k; that is, in the
column k.

THEOREM 4. A(n, k)/n! increases from 1/k! to A2k + 1, k)/(2k — 1)! in the interval
[k, 2k — 1] and decreases afterwards from A2k — 1, k)/(2k —1)! to 0 in the interval
[2k -1, +oo.

Proor. (1)

n | k 2k -1 +oo
An, k) | 1 -
k)| 1 ACk-1.80
nl 2k + 1)1
k<n<2k—1>30K) _Aw+1 k)

n!

(n+1)!

Let us apply the triangular recurrence relation. Then we have to prove:

or

(n+ DA(n, k) <(n—k +2)A(n, k —1) + kA(n, k)

(n—k+ 1A, k)<(n—k+2)A(n, k—1).
But we have (n—k+1)<(n—k+2) and A(n, k)<A(n,k—1) in the interval
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concerned, because

A(n, ky=A(n, k'), kK'=n+1-k, A(n, k—1)=A(n, k' +1),
and we know that A(n, k')<A(n, k' +1) if n=2k’, which is the case here since
n=z2k'rteadsn=2(n+1-k)orn=<2k-2.

A(n, k) >A(n +1, k)
n! (n+1)!

) n=2%k-1>

This time we shall verify that:
n—k+1
n—k+2

We have A(n, k) > A(n, k — 1), but this is not sufficient. We need inequality (3). It is
enough to prove:

A(n, k) >A(n, k—1).

_ k + 1 _ k n—2k+2
Z—k+2 (n ik+2> or (n—k+1)(n—k+2)""*" > (n—k)y k2
and this is obvious. O

Moreover, lim,_,,.A(n, k)/n!=0 for fixed k. This is a well known fact; for
instance, with expression (4) of Section 1 for A(n, k). We even know more; the series
u, = A(n, k)/n! is convergent: u, ~k"/n!.

A Few WORDS ABOUT THE SERIES u, = A(n, k)/n!. Let us recall the calculation of
the sum S,. The generating vertical function

= An, k
Sty =2 Al F) 7 )f"
n=k n:
can be obtained by means of the double series expansion (3, t. 1, p. 64]:

" 1—u
I+ > A1) 11 = 1w +uee™ + - +ukee ™™ 4. ).
1sk=n n!l —ue

Taking the coefficients of u* in both members, we have

NG —j)t(k _ ]);— 1—1

S=_2 (1Y F (j + (e =),
so that
=)= 3 (e ED T

O=j=k—1 ]

the first term (j = 0) being e*.

ExAMPLES.
k=1 Si=e—1 =1.71828..
k=2 S, =e’>—2e =1.95249..
3
k=3 S;=e*—-3e’+=e =1.99579..

2
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4

k=4 S4=e4—4e3+4ez—3—e =12.00003..
53 5.2% 5

k=5 SS_C —5e* +7e —?e +Z—!e =2.00005..
644 63, 62, 6

k=6 Sﬁ—e —6e° +— o Te +Te —g!'e = 2.00000..
75 74, 13, 72“2 Te

k=17 S7=e —Teb+— o ?c +—4—'e ——5'— +— 1.99999..

We see that the sums S, very quickly reach the neighbourhood of 2; but they are never
equal to 2 since e is a transcendent number. Nevertheless:

ProrosiTion 1 [8, p. 42, formula (29)]. When k— +o, S tends to the limit S =2.
A weaker form of inequality (3) is

n—

k
-DN<——— k =2k — =2.
Aln, k—1) 5k T 4A(n, ), n=2k-1, k=2 3)..

Proor. In inequality (3) we have:
n— k n—2k+2 1 1
A = < .
(n—k+2) 1+42/(n=k)"#*2 14+2(n—-2k+2)/(n—-k)

(3),, is simpler than (3), but not strong enough to prove the inequality (2) of property 1
in Section 2.3, which is the decreasing property of M,,/(2p)!.

Going back to the series u, = A(k, n)/n!, we have, with (3),,,

un+1< k + (n—k+2)(n—-k)
u, n+1 (m+1)(Bn-5k+4)

If n— +o, the right member has the limit 1 and, once more, this proves the

convergence of the series. O
3. AsymproTic EXPANSION OF M,,_;/(2p —1)! AND CONSEQUENCES

3.1. Series expansion and first bounds

The eulerian polynomial
AW =2 Aln, kYA
k=1

can be defined with the expansion of the analytical function z—1/(1 —4e™%), 1€ C,
A# 1

1S Al 7
1—Ae—z_,§0 (A=1)"'ht

LemMa 1. For every n =2, we have:

A (d)

n 1
(A-1)"'n! qu (log |A| +iarg A + 2igm)"*!

with —t <arg A<u.
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A

argA+(2g+ 1)

24w 2gqm

argA-Q2g+1yx

FIGURE 1.

Proor. Compute the integral f[(1—Ae ?)z""']7'dz along the sides of the rec-
tangle (see Figure 1)
x = t2qm, y=argi+(2q +m.

Apply the theorem of residues and make g tend to +. O

LemMma 2. We have:

My, _AQp-1,p)_2 j"’z (S-,_m>zp eSS +”/2< sin ¢ )2,, @
Cp-1)! @p-1)! = t T t+qn

2 [ /sint\*
=-— [ <§H1£) dL
mh \ ¢

Proor. Cauchy’s formula gives the coefficient A(2p — 1, p) of 47 in the polynomial
142p-1(l):

0 g=1-—m/2

1 .
ACp -1, p) =5 | Ay,

where C denotes the circle with centre O and radius 1. Then we apply Lemma 1. Each
term of the infinite sum is integrable along C, normally for the family when [A| =1, so
that we can transpose the signs | and Y. Hence:

My, 1 (A —1)%A7P71dA
2p -1 2in 5y Jc (iarg A +2igm)™

Next we put A= e, —m/2<t< /2. It remains to be seen that, if ¢ =0, the function
sin t/t is even, and that the terms g and —q give an equal contribution. a

COROLLARY 3. Let us write J, = {57 (sint/t)? dt. Then:

2 - MZp—l < 2 - (2)217-

il P <
a7 Q2p-1! =n 7T
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Proor. The lower bound is an immediate consequence of Lemma 2. Next we have:
2 (* [sin\7 2 (" 1 2\ 2\
—f (—) dt$—f 7P dr= (—) < (—) .
Tlip\ ¢ T Jn 2p—-1\m T

We could have found a better upper bound, but this one is enough for our
purpose. [l

3.2. Some Preliminary Inequalities

3.2.1. Let a and b be two real positive numbers. Then the function x —x%e ™ is a

decreasing one if x = a/b.
3.2.2. Let p be a natural integer. Then:
+oo 5 2 1
KZP:] x¥e "2 dx —\[(1 3:-5---(2p-1)= (zf’p)l
0
3.2.3. When x >0, we have:

+ 1
J- e—z2/2 dr<-= e—x2/2_
. X

3.2.4. When x =0, we have:
2 3 x2

X
lex+ o X v+ 2.
276 ¢ 1Ty

3.2.5. If 0sx <1, we have:

-=1-3)(-3)

3.2.6. If 0=<x =<1, we have:
x
(1+3)
2

Proor. 3.2.1 follows immediately by derivation. One easily obtains 3.2.2 and 3.2.3
using integration by parts. 3.2.4 results from the MacLaurin’s formula.

3.2.5 is true for x =1; if 0 <x <1 the third derivative of the function x— V1 —x is
negative, and by the MacLaurin’s formula we have:

1 252
1+x)i= (1 + —)
(1+x) 100

x x° x*
o1 Ew1-2)-5)
(1=x) 278 2\ 78
As for 3.2.6, we notice that the fourth derivative of the function x— (1 +x)_% is
positive if x =0 and hence
x
1+x)” 2>1—5+3x — fex’

: 1
and, if x <3,

) x> x* S5kt x° 1 5
l+x) =14+ 22X X (22
( )( x) 8 8 32 Hs(l 2 16)
2
=1+ 2=14+—x2
128" 100" =
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3.2.7. For every ¢ € [0, m/2] we have:

S AR sint_ £ ¢ s
zlog—=2—F-—————————ct
6 180 2835 t 6 180 2835 37800

with ¢ = 1/364500.

Proor. The derivative of logsint is cotgt, the expansion of which in Laurent’s
series is known:

Tt <,

where the B,, are the positive Bernouilli’s numbers. The left inequality follows
immediately. Next we define c(¢) by:

Thus we have, if 0=t <,
22kB2k
= 2k—10,
=2 *aryt
c(¢) is an increasing function of ¢; and

1
364500

c<§)=2.705- 10 6<

3.3. The Inequality

M,,_, 3 ( 3 )
2ol (1),
2p —1)! p 40p

Now we are able to obtain a precise upper bound for M,, ;/(2p — 1)!. According to
Corollary 3 of Section 3.1, we can find it with an upper bound of J,,, where:

72 rsin £\P /2 sin ¢
1, =J' (T) dt = L exp(p log —t—) dr.

0

Upper Bounp or J,. By 3.2.7, we have:

TT/2 2 4 6
pt* pt* pt
I < f (————— )dt
=) P\T6 180 2835

B \/E B " . u®
“NpY VT 20p T 1052
we have

x2Vplid 2 3 (+= 2
J, = \/g J' exp(—u?— v) du < \/;_; f exp(—%) exp(—v) du.
0 0

By 3.2.4, we have:

+oo
J, < f exp
8 10 12

u
2
u u? u® u u u
- \/; fo exP( N 7)(1 T 20p 1057 800p7 ' 2100p° 22050p4> du

By putting
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Hence, applying 3.2.2,

K\F(K Ki Ko . Ky Ko | Ku>
P> Np\"° " 20p  105p2 T 800p2 " 2100p° " 22050p%)"

This inequality is valid for every p =1. When p =100 we have

3x 3 1713 9 33
VB3 )
2p 20p p°\1120 2000 7x10

(3.71: 3 010
J, < ( - —>, = 100. 1

This inequality will give an upper bound for M,,/(2p — 1)! according to the following
lemma.

and hence

LemMma 1. For every p =3, we have:
Gr—11 (- 1)' V mp \" 40p/

Proor. By Corollary 3 of Section 3.1, and the upper bound of J, given by (1) we
have, for p =50,

M,,_, 3 3 0.10 2\%*
e300
2p —1)! p 40p p T
_‘/i(l_i)_ { 30 10_ ( I ”2)}
zp 40p a b4 p SXp\ TP o8 4
If p=50, {} is, because of 3.2.1, greater than its value for p =50, which is positive.

This proves the lemma for p = 50. The computing of A(2p — 1, p)/(2p — 1)! for p <50
using a computer completes the proof. O

3.4. The Inequality

M,,_, /3 ( 3 13 >
— L >\ — 1l -—).
2p -1 ap 40p 4480p*
Applying 3.2.7 with ¢ = 1/364500, we obtain:

/2 t f t6 t8
J,= j exp(—IJ——P——L—p—-—cpt‘(’)dt.
0

We put:

t \/Eu u4+ u’ + 3u” + u”
= —u, v=— ,
p 20p 105p*  1400p> = 1500p*

3 n:/Z\/gﬁ uz
J,= j exp(—;) exp(—v) du
+oe u2
j exp —_— exp( v)du— \[—f exp(———) du
x/2Vp/3 2
*= v 6 p
_ 1 — —_ - —
\[f eXp ( "+2 6>d” pexP( 24)

then



394 L. Lesieur and J.-L. Nicolas

using 3.2.4 and 3.2.3. The calculation of the above integral can be made with the help
of 3.2.2 and MarLE. It gives:

m( 31 131 27 1 1831 6190471

—_ ___.____+_

2 ( 20p 1120p>  3200p° 280p* 224000 p°
20115953 1 932679891 1 217411623 1 186700048821 1
392000 p® 3136000 p” 140000 p° 22400000 p°

_ 1845296739 1 16263470223 1122277202047 1 )
64000 p'° 160000 p' 400000 p'?

T 12 . T 2 . 12 )
=\/Z2api= —((Z a,-p") +p_32a,-1003_’> for p =100
21’=0 2 j=0 j=3

because all the coefficients a,, . . ., a,, are negative. Thus we obtain, for p = 100,

J = /3_Jr<1_i_ 13 +0.0015)_£ ( n_ﬁ;)
" N2p\' "20p 1120027 p° ) mp P\ T 24
3 3 13 ; 3r 6pt p
== 1—————)+ —5{0.0015 = (——)}
2p < 20p 112007/ P 2 7 TP\

But, with 3.2.1, { } is, for p =100, less than its value for p =100, which is positive.

Then we have, for p =100,
3n 3 13
2\ (1= 3 ) M
2p 20p 1120p

We shall deduce from this inequality a lower bound for M,,_/(2p — 1)!.

LemMa 2. We have, for every p =1,

M,,_, _A(ZP—l,p)> i(l_i_ 13 )
-1 2p-1) 7p '

40p 4480p>

Proor. When p = 50, this lemma is a direct consequence of Corollary 3 of Section
3.1, and the inequality (1) above. If 1<p <49, it could be verified using a computer.
O

In order to understand the meaning of the bounds given by Lemma 1 of Section 3.3
and Lemma 2 of Section 3.4, let us recall the asymptotic expression of A(n, k)/n!
given by SiraZzdinov’s formula [13]:

s 4 _ 2 s 1
A k) _ [ 6 an x'-67+3 \[g e 0 4)
n! a(n+1) 20(n +1)2 T n

where 1<k <n and

_ n—-2k+1

YT+ 12

If n=2p—1, k=p, we have x =0 and the formula reduces to:

(21;421_11)! zAgﬁ - 1,)!;;) B \/% ( —&) ' 0(1%)'
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Our Lemma 1 of Section 3.3 and Lemma 2 of Section 3.4 therefore give information
on the remainder R, = O(1/ p?) in this formula, that is:

13 /3 <R <0
~ 4480p>

This precision is necessary in order to obtain the comparison properties between the
numbers M, /n!, which was the main object of this work.

3.5. Comparison Properties Between the Numbers f(n) =M, /n!

Let us denote f(n) = M,/n! = max,<;<, A(n, k)/n!. By Theorem 2(ii) of Section 2.2,
we have M,, .= (2p +2)M,,. Hence:

TueoreM 1. f(2p)=[Q2p +1)/(2p +2)If2p + 1) <f(2p +1).

This result permits the comparison of f(n), n even, with f(r), n odd. The following
inequalities will permit the comparison of the f(n) between themselves when » is odd.
THEOREM 2. We have, for all p =1,

2p <f(2p+1)<2p+1
2p+1 f@p-1) 2p+2

Proor. (a) [f(2p + D]/[f(2p —1]<(2p +1)/(2p +2). We first verify this ine-
quality when p=1 and p=2. Let us now assume p =3. It is convenient to set
k=p+1and x =1/k. Thus we have k=4 and x <3

By Lemma 1 of Section 3.3, we may write:

3 3
f(2p+1)<\/%<1—ﬁx) (1)

and, by Lemma 2 of Section 3.4,

3 3 13
ﬂh%”)>VC;;:;O_4wk—n'4mmk—DJ'

But, when k =4, we have:

L 1<1+1+1(1+1+i+ ))— (1 4 2)
-1 kU et it e R

and

kitk—1)<%<V2,

4 13
f(2p—1)>\/7(1—x) 1——x(1 x+3x> 2240x2]. )

From these inequalities (1), (2) and from 3.2.5, we deduce that:

so that

f(2p+1)<(1_§> <1‘%"><1‘%2>
f@p-1) 2 <1ﬂgx_£x2_x_3>
40 2240 10
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But we have { } <1 if 0<<xx <99/245=0.404 - - -. Finally we obtain:
f(2p+l)< x 2p+1

f(2p—1) 2 2p+2°
(b) 2p/(2p + 1) <[f(2p + D}/[f(2p — 1)]. By Lemma 2 of Section 3.4, we have:

3 3 13
f@Cp+1)> \/;,(pim (1 T 40(p+1) 4480(p + 1)2)
3 Y3 13
SEE

Using 3.2.6 we have, when p =2:

(g 0= {1 ) (- - )

The quantity between { } is:

3 13 2 6 26
TV 3+ 2 3 4
A0p 4480p> ' 100p> 4000p>  448000p

ST WS -
- 40p p*\100 4000 4480 448000
1

40p

By Lemma 1 of Section 3.3, this result proves part (b) of Theorem 2 when p =2. The
theorem is also valid for p = 1. O

We are now able to state the following theorem showing the comparison relations
between the different numbers M, /n! = f(n).

THEOREM 3. (i) The sequence f(2p + 1) is decreasing.
(ii) The sequence f(2p) is decreasing.
(i) We have, for every p =1,

fp+5)<f(2p)<f(2p +3).

Proor. (i) and (ii) have already been proved in Theorem 3 of Section 2.3, but we
shall prove them again here as consequences of the analytical results of Section 3 of
this paper.

(i) This is obvious from Theorem 2(a).

(ii) Using Theorem 1 and Theorem 2(a), we may write:

2p+1 2p +3
1) =5 @r D), fCp+2) =30+,

f@p) _@p+1)@2p+HfCp+1) (Cp+1)(Cp+4(Cp+4)
f@r+2) @2p+2)2p+3)f2p+3) (2p+2)(2p +3)(2p +3)
=4p3+18p2+24p +8>
4p® +16p*>+21p +9

for every p = 1.
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(ii)
fap) =222 e+ 1)< S e+
e +Y)
Hence, f(2p) <f(2p + 3) for every p =1. What remains now is the study of:
F@p+5)<f @ +3) g <f0p+ 1) s 2
— F2p) (2p +2)(2p +3)(2p +5)

2p+1)2p +4)(@p +6)
The last coefficient c is equal to:
4p® +20p* + 36p + 15
T2+ 3p+ 12

We have ¢ <1 if 2p>—2p —3>0 or 2p(p — 1) >3, which is true when p =2. The case
p = 1is also true. O

Let us remark that (ii) could easily be proved as a consequence of (i) and (iii), but
the given proof for (i) and (ii) only needs part 2(a) of Theorem 2, while (iii) also uses
part 2(b) of this theorem.

RemArRk 1. By using the Laplace method, it can be shown that J, has an
asymptotic expansion of any order k:

37 [ &
J=\/~< WD "+ 0O "‘”1),
P 2p Zoa p (p )

and MAPLE gives a9 =1, a, = —3/20, a, = —13/1120, a5 =27/3200, a, = 52791/3942400,
etc. B. Salvy (cf. [12]) has proved:

7 (2k + 1) 2 (k + 1/2)
““Valog¥(—cos ay) + 7]

where a; =4.4934 . - - is a root of tan x = x, and

(sin(2k ) + O(1/k)),

0,=1arc tan( ) =-0.5592- - -.

log(—cos a;)
It would then be impossible to improve the results of Lemma 1 of Section 3.3 and
Lemma 2 of Section 3.4 with similar but longer computing.

RemARK 2. We can easily prove, as we did in Property 1 of Section 2.3, that the
recent Theorem 2 of Section 3.5 is equivalent to:

plp—1)
(p+1y

This last bound is better than the one obtained from inequality (3) of Section 2.3:

p2p®—1)
AQp—-1,p)<A(2p—1,p—-1)<—F——2 A(2p — 1, p).
(Z2p-1,p)<A@p-1,p-1) 2(p + 1) (2p—-1,p)

p—-1
AQp—1,p - 1)<t— - .
2r—-1,p-1) p+1A(2p 1, p)
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But inequality (3) of Section 2.3 has the advantage of providing an upper bound for
A(n, k —1)/A(n, k) that is valid for every k such that n =2k — 1, k=2. It would also
be interesting to find such a lower bound, including the one resulting from the case

n

1

10.

11.
12.
13.

14.
15.

=2p — 1, k =p. This problem is currently open.
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APPENDIX 1

n s(n) s(n)/n!

1 1 1.0000
2 1 .50000
3 4 .66667
4 11 .45833
5 66 .55000
6 302 .41944
7 2416 .47937
8 15619 .38738
9 156190 .43042
10 1310354 .36110
11 15724248 .39393
12 162512286 .33927
13 2275172004 .36537
14 27971176092 .32085
15 447538817472 .34224
16 6382798925475 .30506
17 114890380658550 .32301
18 1865385657780650 .29136
19 37307713155613000 .30669
20 679562217794156938 ,27932
21 14950368791471452636 .29262
22 301958232385734088196 ,26865
23 7246997577257618116704 .28033
24 160755658074834738495566 .25910
25 4179647109945703200884716 .26946
26 101019988341178648636047412 .25049
27 2828559673553002161809327536 .25977
28 73990373947612503295166622044 .24268
29 2219711218428375098854998661320 .25105
30 62481596875767023932367207962680 .23555
31 1999411100024544765835750654805760 .24315
32 60261990727996752483262854173443875 .22902
33 2048907684751889584430937041897091750 .23596
34 65835846167447988443323906979298454170 .22300
35 2370090462028127583959660651254744350120 .22937
36 B80879977062516354460442890520154715103250 .21742
37 3073439128375621469496829839765879173923500 .22330
38 111009720815037710423740263008973631965904500 .21225
39 4440388832601508416949610520358945278636180000 .21769
40 169238B447880147569395192525660609383274639835610 .20742
41 7108014810966197914598086077745594097534873095620 .21248
42 285090468862200438356418365594138405888960374563420 .20291
43 12543980629936819287662408086142089859114256480790480 .20763
44 528147173325184215023781757578506036590710931288450020 .19868
45 24294769972958473891093960848611277683172702839268700920 .20310
46 1071383436266089365034069030820446336325215649859423413640 .19470
47 514264049407722895216353134793B1424143610351193252323854720 .19885
48 2370520507059560311291333595101302393901665190651705237350030 .19096
49 118526025352978015564566679755065119695083259532585261867501500 .19485
50 5700123907773416224716099708737159306764363732140229880240069124 .18742



