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1. Introduction

For n > 1, the Eulerian number A(n, k) can be defined as the number of
permutations of n letters with & runs up (cf. [3], t.II, p.82, and [4], p.34).
It is easy to see that they verify the triangular relation

Aln,B)=kAln—- Lk} +(n—k+1)An—-1,k—1) (1}
and the starting values: |
A(n,1) = A(ln,n) = 1. ' (2)

(1) and (2) characterize Eulerian numbers, and can be used to compute
A(n,k) for n > 1 and i £ k£ < n. Moreover, if we set

A(n,k)y=10 forn>1 and k<0 or k>n+1, (3)

it is easy to see that A(n, k) still verifies (1) for alln > 2 and & €Z.
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Ini view of the generating function, it is good to define A(0, k). In order

to satisfy (1) for n = 1, we must set A(0, k) =0 for k < 0 and k& > 2, and

A{0,0) + A(0,1) = 1
Knuth (cf. [4], p.35) sets
A(0,0) =0 and A0, 1) =1
while Carlitz et al. (cf. '[2]) and Comtet: (cf; -[3].) set: l-
A(0,0) =1 and A(0,1) =0. |

We shall choose
A(0,0) = A(0,1) = 172,

and then, the generating function will be: (cf. [4])

Znﬁk 1_;_ (z—-1)z +
2 X Amb = () e

nZ0 05k%n
- Fulerian numbers also verify the symmetric relation:

Aln, k)= Aln,n —k+ 1).

(4)

(5)

(6)

The aim of this paper is to prove the foIlowmg 1ntegral representation

of Eulerian numbers:

Theorem 1. Forn >0, and k € Z, we have

Aln, k) = @ /m (#)MI cos((n + 1 — 2k)£)dt.

)

In’a first step, the proof of Theorem 1 will be given.. In fact the proof
follows the proof of Lemma 2 of §II of [5], where (7) was proved in the
particular case n = 2p - 1, k = p. It is also possible to define A(n, k) by

(7). Then, classical formulas (1), (2), (6) can be easily deduced.

In §3, formula (7) will be extended to all k real and an interpretation

of function & -+ A(n, k) will be given in terms of Fourier analysis. -
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In [5] the maximum
M, = max A(n, k)
k .
was extensively studied. In §4 another proof of some resuits g

M, is given or suggested using Theorem 1, and the differen
Mo, and Masy1 s explained.

f {5] concerning
t hehaviours of

In §5, by applying the Laplace method to the right hand side of (7}, we
give another proof of Sirazdinov expansion, and we explicitly give one more

term.

Finally, an other integral representatxon of A{n,k) is given, specially

simple when n = 2k — 1 or n = 2k.
I am pleased to thank very much L. Lesieur for several id
discussicns, . Cohen who pointed out to me the integrals

o0
sin™ 2
f dz,
0 z™

L. Comtet for giving me the reference [1], V. Glaymann fq
lating the papers [6} and [7] from Russian, and my grand-da
dra Seidel, I was baby-sitting when I proved Theorem 1.

2. Proof of Theorem 1.

Let us define the Eulérian,polynomia];

=3 AN

eas and fruitful

r kindly trans-
ughter Alexan-

k=0
The generating function is: (cf. [2])
1 — A AN =

— = 9

I—Ae’- Z G—Drnl ©)
with Aq(A) defined by (4) and (8).

Further we have forn > 2, and A€ C, A #£0, 1
(A—Dntin! % (log [\ + iarg A + 2igm)nH! (10)
a .
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with -7 < arg ) < 7.

In fact, (10) is lemma III of [5].

. It is easily obtained b
Integration. Next we have from Y complex

(8) by Cauchy’s formula
) .
Aln, k)= ﬂf An(AJATF gy

c

wherfe C denotes the circle of center 0 and radius 1. Fach term of the infinite
sum 1s integrable along C, normally for the family, when |A] = 1 so. that we
can transpose the signs { and 3. Hence

Aln, k) _ 1 (A — 1yt y-E=1 gy
c ((arg A + 2gm))=+1-

n! EEZ

gcZ
Next we put X = exp(2it), ~m/2 <t < 1/2, so that

Aln,k) 1 /”/2 (€% — 1)n+i gmaitk
= - dt
n! Ll S (2i(t + gmr))~+1
1 f%+‘1" (g%in — 1)t gm2iuk g,
T qeZ %‘HJ-W (Qiu)n+1
1 f*7 rsingynt+t |

Taking the real! part of the integral yields (7).

A second proof of Theorem 1. will now be given. For all n > 0, and
ke Z, let us df.aﬁne A(n, k) by (7). Let us observe first that the symmetric
relation (6) is immediate. We shall prove (1), (2), (4), so that A(n, k) will
thus coincide with Eulerian numbers. :

From the Fresnel integral -
[ty 2
0 t T

A(0,0) = A(0,1) =1/2 and A0, k) =0for k+#0,1.

it is easy to deduce that

an

Now, for n > 2, integrating by parts the right hand side of (7} and

setting ‘
u = (sint)™*! cos((n + 1 — 2k)¢)

dv=¢""1dt (12)

PR
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yields (1) for all k € Z after some trigonometric calculation.

Finally by (11) and (1), it is easy to see that
A(l,l) =1 and A(1,k}=0 for <0
and by induction on n, to prove by (1} that
A(n,1)=1 and A(n,k)=0 for k<0

which, with (6}, yields (2). =

3. Interpolation of Eulerian Numbers

Let n > 0 be an integer and z a real number. We set

! o i n+1
A(n,z) = -2}’1- (5™ cos(n+1 - 20))ta (13)
0

t

For n = 0, the right hand side of {13) can be calculated from the Fresnel
integral, and this gives

A(0,z}) =0 for =<0 and z>1
=1/2 for z=0 and £=1
=1 for t<z<L '

It can be seen from (13) that for n > 1, A(n,z} is of class|C"™ 1.

It will be convenient to introduce the function f such that for all z,
fz) = A0, 2).

As usual, the convolution f; % fo of two real functions is defined by
oo

Hi(t)falz — t)at,

-0

fixfolz) =

and the Fourier transform is

.
FO@ = | fepe .

oo
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It is easy to see that

— ! =iyt 2 . -
9(3/)—-7:(f)(y)=/0 e dt = asm(g-)e Wiz

We now define the sequence faby i = fand f, = Jo1 * f. Pr
- . " .
the classical properties of convolution, we know that f, ., is piec«—"ﬁ.vv(i);rl
e

polygomial, and that f..)(z) vanishes for 2 < 0 and z > n + 1 Th
Fourier transform of f..1 is gny1: : B - ' °

i1 (W) = Ffur1 M) = (%gg_zz)nﬂe_i(nu)y/z

b

and by the inversion formula

fn+1(a:):—1um +mg (y)e*® dy = 17+ rsintyntl _ o
o ) @ty = g [ (SE) e g

Hence,

1
fri1(z) = mA(n, z). (14)

Fr . .
zn(; (14), and the properties of f,,,, it follows that A(n,z) vanishes for
# < 0and z > n+ 1, and is piecewise polynomial.
F‘urtherrflore, as it has been pointed out to me by L. Lesieur, it.is
possible to give an explicit form of these polynomials: ,

gerPosition. Let 0 S k < n be two integers. The restriction of Aln, ) to
e interval [k, k+1) is a polynomial P, ,, of degree n which can be wx,'it;ten:

. _ (1
P = 3 17 ("o a5)
_ 055k 7
Prq‘of.‘ Firs§ we give a .triangular recurrence relation for A(n,z):
Aln+1,2) = (n— 2+ 2)A(n, 5 ~ 1) + 2A(n, z). (16)

It is obtained from (13) b; in ion b i
Y an integration by part similar to (12
prove (15) by induction on n. We have: (12)- Then we

Pa(z)=1

Pl’g(.’ﬂ):ﬂ’;; P1,1($)“—;;$;2($—1)=2—$.
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Further, assuming that (15) holds for n-and all & < n,.we
that:

P‘n+1,k (-'B) = (n —x+ 2)Pn,k"1 ('T; - 1) + xPﬂ,k (“L.

' verifies (15). This is easily done by using the usual properties oﬂ the binomial
i coefficients, '

From a probabilistic point of view, f can be interprefed

of probability of a random real variable X taking the value

519

have to show

as the density
1 with equal

probability in the interval [0,1]. So fr4: is the density of probability of a
random variable ¥ which is the sum of (n+1) independent random variables

equal to X.

Such a point of view has already been given by Sackov (cf. for instance

{6], formula (3.4) p-44).

4. Estimations of the maxima

Theorem 2. For all integer n, let us set:

My = mfa'xfn(-"n) = faln/2).

Then the sequence m., is not increasing.
Proof. From (14) and (13), it follows
1 2 [~ (sint)”
=-——A(n—1,n/2)=— —
TS IHe (5 )

Then, from the definition of f. and the properties of the
is easy to see by induction that f,(z) is increasing for 0 <
decreasing for n/2 <.z < n. Mereover

o= [

- My

50 that
My S Mp-1-

In [5], it was proved that g, is a decreasing sequence. Fr
value of ma, given by (17), this is quite obvious, since | sin(

s () f(c ~ t)dt = / : o ()t < s

dt. (17

convolution, it
z < n/2 and

(18)

om the integral
)/t < 1.
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It was also proved in [15] that

A(2p,p) 2 f“’ sint\ P+
= e 4 —_ o5t d
Hap1 (2p)! xJ, : cos (19)
is decreasing in p, and that for all p,
Maprs < fapsy < Mapyy. (20

To prove that Haopy1 18 decreasing with its integral representation (19), we

may observe that
, 2 [njz (Sil’lt) 2p-+1
Hay = = — costdt
Pl T A ;

is obviously decreasing, and that Hopyy and ., are very close. This can
be put in form, but calculations are a bit technical.

Similaxly, to get (20), we observe that for ¢ small encugh, we have from
Mac Laurin’s formula:

" s
(ﬂ?—)4 < cost < (-S%E) . (21)

It can be proved that (21) holds for 0 < ¢ < 1, and, as above, the proof of
(20) can be completed with some technical estimations,

The lag between indices of # and m in (20) can be explained: let us
define for all n,

My = max f,(z)
ETYA
50 that, if n is even,
i
M = My = mA(n - 1,?’?;/2)
but if n is odd, n = 2p 4+ 1, then Hn <My, and g, is given by (19).
Similarly, from (14) and (18), it follows
A(n, 2) = nlfpy, (z) = n!/ Ju(B)dt = n[ Aln — 1,¢)dt.
=1 -1

Since we know that A{n~-1,z) is increasing for z < n/2 and decreasing for
T > n/2, we deduce that

for z < n/2, A(n,z) SnAn~1,1)
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and for

r>2nf2+1 A(n,z) > nA(n - 1,z).

Therefore, for z fixed the sequence A(n,z)/n! is unimodal |that is to say
increasing for n < ng and decreasing for n > ng.

For z < n/2, using (1) we obtain

-
An-Lz-1)< n_—+1—xA(n_ 1,z)

but this inequality is weaker than Theorem 3 of [3].

5. Sirazdinov’s asymptotic expansion

Theorem 3. Let = be 2 fixed real number, and n an integer. Let us define

= [sint\" n
I(n,x) =/ﬂ (—tm) cos (xt\/;) dt. |
When n goes to infinity, we have the following asymptotic expansion

. ‘ 8
0 g-=tr2 1- ml—(z‘* —62° +3) + l(ffi— (22)
Hr,z) =4 e Yom 72 \ 800

11
07 o 67 , 27 , 13 +O((logn) )
“200° TE60” " amo” 1120)) ey

Remark. When k = 2L 4 g, /2L, then, from(7),

An, ) = 2 I(n -+ 1,0)

and the two first terms of (22) coincide with the asymptotic exp ansion given
by Sirazdinov (cf. [7]).

Lemma 1. Let us set

= 2
-v /2, 2k
Uzk($)=/ e v cos vz du.
- 0
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We have )
(e) = {3 exp(2*/2) (23)
-and ‘
Ui (2) = (~1)* o (o). (21)

d2k

Proof. If we set

2 -
Wax () =/ e U2y gy,
, 0

we have )
Uzk ($) = Re(WZk (.’E)),
and T
2% a2k
ng(w) = (—'7») T WO(E)

Moreover Wy(z) is half of the Fourier transform of the function v. —
exp(—v?/2), which can be found in the tables. m

Proof of Theorem 3. It will follow the Laplace method. The case z =0
has been treated in [5]. The derivative of log sint is cotg ¢, and so, for |¢| < ,
we have:

27 By, | 2k _

10 Tt = e e e e 25
s 6 180 2835 o% (283! (25)
where By, are positive Bernoulli numberé.
From (25) it follows that for [ <@
gin ¢ 2
log 228 < L 26
<% (26)
holds. Now,
+-e n " . 2 +o3
_]_ (%nt) cos (mt\/g) dt < f + f
e ' o 2
: t? R
gf exp (_n__) dt-i—/ T 7dt
s 6 2 |
log®n 1 -B
< - =0
<2Zexp ( 6 + 121 (n™7)

wliere B is a positive number as large as we want.

+Hence,

}Fir

exp (n log (Si?t)) cos (ﬁt\/g)dt +0(n" ")

t2
exp ( 6

/D
-/
-/

+O(n"B)
= J{n,z)+ O((k)gﬂ)g

ni/?

“F
:ﬂ

f"

) +0(nF)

with
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o tz # i (logn)®
e"p( 6+ﬁ+2835)+0( na ))eo

523

¢t 8 n -B
+ 750 - 2835 +0(t })) €oS (mt\/;) dft + O(n ‘ )

7]
=

( t\g)dt

J(n,z) /E‘%exp( n(tz + ¢ + £ )) cos (mt n)dt
n,x) = —Al e b - )dt.
o 6 180 ' 2835 V3

By setting u = /2, we get

3 73 u?  ut %8
T z) = ;fo 2 (=~ 5~ 50~ 105)
U

3
= \/;j‘; exp ( - ?) fexp(—v) cos{uz)du,

with

= 200 " 10502
When n goes to infinity, we have for 0 < u < ’—‘3?5—”,

. ,u‘l .- uﬁ' 8

cos(uxz )du

=

exp(—v) =

T 20m 1052 T 800m2

e ro(t
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and hence
3 u? ut ub u8
J \ = — ( g (1 —_
(m,2) \/;fo P73 ) 0n  i05nz T 800n2) cos(uz)dy

+0 (hgnﬁl)

T2

\/g/; exp ( - t—;i) (1 - %in - i(]us—(;z + %) cos{uz)du
foo 2 11

ro( [, (- £)a s oty

Now, by a classical estimation (cf., for instance [5], T 2.3), the first error
term is included in the second, and, with the notation of Lemma. 1

ey = (0 - G2 (%2 el s o

and, by Lemma 1, the proof of Theorem 3 is completed. =

6. Another Integral Representation

=}

£

J
!

 where Qax(2) Is a monic polynomial of degree d in z, satisfy

i

Integrating by parts with

It has been known for a long time (cf., for instance [1], t.T, p.203), that

oo

for 2 <m < n, and n even,
n! 2t dy

/; B (m - 1)! 0 HlSrSn[Z (zz +4T2) )

A similer relation exists also when 7 is odd. The proof of (27) follows from

sin™
dz

— @)

mim = ﬁfo e 2™ dy, (28)
from the Laplace transform of sin™ z:
- —XT oM nl
-/; e sin® zdx = 3H1sr5n/2 (zz +4’J"2) ! (29)

and from Fubini’s theorem. ‘

The same method shows that the integral (7) can be expressed as the
integral between 0 and infinity of a rational function. Unfortunately the
numerator of this fraction does not look simple.

i Proof. Let us set
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Theorem 4. Forn> 2, and 0 < k < (n+1)/2, we have

2"t Qn—2k+1,k (z)dz
0 H15r5n+1—k (22 +4r?)

o

Aln, ) = %(n+ 1)1

Qox (z)=1; Quk (z) =2z;

and .

(d+£)Qu (2) = 2(d+2k+1)Qu- 1441 (2)—(k+1)(" +4(d+E)

J{n, k) = J(n, k)(2) = [: e *® sin™* zeos{(n + 1 — 2k)g)dz.

w=sin"" zcos((n+1-2k)z) dv=eTda
in a similar way like (12) gives
2 k) = (n+1—K)J(n—1,k—1)+kJ(n—1,
The symmetric relation
J(n, k) = J(n,n — k+1)
also holds. We first prove:

(n+ 1)'Qn-2kr1s (2)
z]hicrenpr-g (22 +41%)

where ( is defined by (31) and {32).

The proof of {36} is by induction on d = n — 2k + 1, for al
for d=0, n =2k —1, and from (29}, since n + 1 is even

J(n, k) =

Jn,k)y=J(2k-1,k) = / e ** sin"*! (z)dx
¢}
{n+ 1

325

(30)

ng
(31)

Qa- 2,k+1 (Z) .
(32)

(33)

(34)

(35)

(36)

| k& > 0. First,

(37)

- zHlSrE(n+1)/2 (2% +4r2)
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Further, for d = 1, it follows from (34) and (35) that

J(n, k) = J(2k, k) = %z F2k+ 1,k +1). (38)
' If we substitute £ + 1 to & in (37), (38) yields
|
T(n, k) = J(2k, k) = — (2k +2) (39)

2k+22[f,c 0py, (22 +42)7

- So, by (31), (37) and {39) prove (36) for d = 0 and d = 1. Now, we
suppose that (36) holds for n — 2k +1 < d — 1. From (34) we deduce

(d+k) T (d+2k 1, k) = 2J(d+2k, b+ 1) — (h+1)J(d+2k— 1,k +1) . (40)

But the above right hand side can be expressed by (36) under the induction
hypothesis, yielding

2(d + 2k + 1)!Qu- 1,41 (d+ 2k)!Qu-2.411
#flis cape (2% +477) 2] Lisrcapn-1 (2% +4%)
_ (d + 2k)H(2(d + 2k + 1)Qq- Lt — (k4 1)(32 +4(d + k)z)Qd“‘z,k-f-l )
z]l1< e qpr (22 +4r%)

—(k+1)

which completes the proof of (36).
To prove (30), we first deduce from (7) and (28)

Aln, k) = (41

2 oG o

-f / e " 2™ (sint)™*! cos((n + 1 — 2k)t)dzdt.
mJo Jo

By Fubini’s theorem, (41} gives

Aln, k) = % fo T I )2z

which, with (36) yields (30).

From (31) and (32), it follows by induction that Qs is monic, and
of degree d. It follows in the same way that the coefficients of Q(d, k) are
polynomials in k with integral coefficients divided by (k+2}(k+3)...(k+d).
From the first values:

Qo = 2" — 4k + 1){k+2)
Qae = 2° — 4(3k% + 12k + 11)
Qae = 2* — 4(6k% + 30k + 35) + 16(k + 1)(k + 2)(k + 3)(k + 4)
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it can be seen that there is a simplification, and that the cog
belong to Z[k]. This fact has been checked up to d = 20, b
algebra system MAPLE. ‘

As a possible hint, we may observe that substituting co
tials to trigonometric functions in (33): gives:
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flicients of (2,
y the eomputer

mplex exponen-

1 ntl n+1l -1
I(n,k) = W—WZ( 1)’( )(Z_%(th‘nkﬁ
=

It is possible to prove by induction that the coeflicient
of Qd,k is
—dd—1) s .
(12K +12(d + 1)k + (d+ 1)(3d + 2
and the constant coefficient of Q2 is

(12 (b +1)(k+2)..
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