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1. Introduction

Let Sn be the symmetric group of n letters. Landau considered the function
g(n) defined as the maximal order of an element of Sn; Landau observed that
(cf. [9])

g(n) = max lcm(m1, . . . ,mk) (1)

where the maximum is taken on all the partitions n = m1 +m2 + · · ·+mk

of n and proved that, when n tends to infinity

log g(n) ∼
√
n logn. (2)

More precise asymptotic estimates have been given in [11, 22, 25]. In [25] and
[11] one also can find asymptotic estimates for the number of prime factors of
g(n). In [8] and [3], the largest prime factor P+(g(n)) of g(n) is investigated.
In [10] and [12], effective upper and lower bounds of g(n) are given. In [17], it
is proved that limn→∞ g(n+1)/g(n) = 1. An algorithm able to calculate g(n)
up to 1015 is given in [2] (see also [26]). The sequence of distinct values of
g(n) is entry A002809 of [24]. A nice survey paper was written by W. Miller
in 1987 (cf. [13]).

My very first mathematical paper [15] was about Landau’s function, and
the main result was that g(n), which is obviously non decreasing, is constant
on arbitrarily long intervals (cf. also [16]). I first met A. Schinzel in Paris in
May 1967. He told me that he was interested in my results, but that P. Erdős
would be more interested than himself. Then I wrote my first letter to Paul
with a copy of my work. I received an answer dated of June 12 1967 saying “I
sometimes thought about g(n) but my results were very much less complete
than yours”. Afterwards, I met my advisor, the late Professor Pisot, who, in
view of this letter, told me that my work was good for a thesis.

The main idea of my work about g(n) was to use the tools introduced
by S. Ramanujan to study highly composite numbers (cf. [19, 20]). P. Erdős
was very well aware of this paper of Ramanujan (cf. [1, 4–6]) as well as of
the symmetric group and the order of its elements, (cf. [7]) and I think that
he enjoyed the connection between these two areas of mathematics. Anyway,
since these first letters, we had many occasions to discuss Landau’s function.
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Let us define n1 = 1, n2 = 2, n3 = 3, n4 = 4, n5 = 5, n6 = 7, etc. . . . , nk

(see a table of g(n) in [16, p. 187]), such that

g(nk) > g(nk − 1). (3)

The above mentioned result can be read:

lim(nk+1 − nk) = +∞. (4)

Here, I shall prove the following result:

Theorem 1.

lim(nk+1 − nk) < +∞. (5)

Let us set p1 = 2, p2 = 3, p3 = 5, . . ., pk = the k-th prime. It is easy to
deduce Theorem 1 from the twin prime conjecture (i.e. lim(pk+1−pk) = 2) or
even from the weaker conjecture lim(pk+1−pk) < +∞. (cf. Sect. 4 below.) But
I shall prove Theorem 1 independently of these deep conjectures. Moreover I
shall explain below why it is reasonable to conjecture that the mean value of
nk+1 − nk is 2; in other terms one may conjecture that

nk ∼ 2k (6)

and that nk+1 − nk = 2 has infinitely many solutions. Due to a parity
phenomenon, nk+1 − nk seems to be much more often even than odd;
nevertheless, I conjecture that:

lim(nk+1 − nk) = 1. (7)

The steps of the proof of Theorem 1 are first to construct the set G
of values of g(n) corresponding to the so called superior highly composite
numbers introduced by S. Ramanujan, and then, when g(n) ∈ G, to build
the table of g(n+d) when d is small. This will be done in Sects. 4 and 5. Such
values of g(n+d) will be linked with the number of distinct differences of the
form P−Q where P andQ are primes satisfying x−xα ≤ Q ≤ x < P ≤ x+xα,
where x goes to infinity and 0 < α < 1. Our guess is that these differences
P − Q represent almost all even numbers between 0 and 2xα, but we shall
only prove in Sect. 3 that the number of these differences is of the order of
magnitude of xα, under certain strong hypothesis on x and α, and for that a
result due to Selberg about the primes between x and x+ xα will be needed
(cf. Sect. 2).

To support conjecture (6), I think that what has been done here with
g(n) ∈ G can also be done for many more values of g(n), but, unfortunately,
even assuming strong hypotheses, I do not see for the moment how to
manage it.

I thank very much E. Fouvry who gave me the proof of Proposition 2.
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1.1 Notation

p will denote a generic prime, pk the k-th prime; P,Q, Pi, Qj will also denote
primes. As usual π(x) =

∑
p≤x 1 is the number of primes up to x.

|S| will denote the number of elements of the set S. The sequence nk is
defined by (3).

2. About the Distribution of Primes

Proposition 1. Let us define π(x) =
∑

p≤x 1, and let α be such that 1
6 <

α < 1, and ε > 0. When ξ goes to infinity, and ξ′ = ξ + ξ/ log ξ, then for all
x in the interval [ξ, ξ′] but a subset of measure O((ξ′ − ξ)/ log3 ξ) we have:

∣∣
∣
∣π(x+ xα)− π(x)− xα

log x

∣∣
∣
∣ ≤ ε

xα

log x
(8)

∣
∣
∣∣π(x)− π(x − xα)− xα

log x

∣
∣
∣∣ ≤ ε

xα

log x
(9)

∣∣
∣
∣

x

log x
− Qk −Qk−1

logQ

∣∣
∣
∣ ≥

√
x

log4 x
for all primes Q, and k ≥ 2. (10)

Proof. This proposition is an easy extension of a result of Selberg (cf. [21])
who proved that (8) holds for most x in (ξ, ξ′). In [18], I gave a first extension
of Selberg’s result by proving that (8) and (9) hold simultaneously for all x in
(ξ, ξ′) but for a subset of measure O((ξ′ − ξ)/ log3 ξ). So, it suffices to prove
that the measure of the set of values of x in (ξ, ξ′) for which (10) does not
hold is O((ξ′ − ξ)/ log3 ξ).

We first count the number of primes Q such that for one k we have:

ξ

log ξ
≤ Qk −Qk−1

logQ
≤ ξ′

log ξ′
. (11)

If Q satisfies (11), then k ≤ log ξ′
log 2 for ξ′ large enough. Further, for k fixed,

(11) implies that Q ≤ (ξ′)1/k, and the total number of solutions of (11) is

≤
log ξ′/ log 2∑

k=2

(ξ′)1/k = O(
√

ξ′) = O(
√

ξ).

With a more careful estimation, this upper bound could be improved, but this

crude result is enough for our purpose. Now, for all values of y = Qk−Qk−1

logQ

satisfying (11), we cross out the interval
(
y −

√
ξ′

log4 ξ′ , y +
√
ξ′

log4 ξ′

)
. We also

cross out this interval whenever y = ξ
log ξ and y = ξ′

log ξ′ . The total sum of

the lengths of the crossed out intervals is O
(

ξ
log4 ξ

)
, which is smaller than
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the length of the interval
(

ξ
log ξ ,

ξ′

log ξ′

)
and if x

log x does not fall into one of

these forbidden intervals, (10) will certainly hold. Since the derivative of the
function ϕ(x) = x/ log x is ϕ′(x) = 1

log x − 1
log2 x

and satisfies ϕ′(x) ∼ 1
log ξ for

all x ∈ (ξ, ξ′), the measure of the set of values of x ∈ (ξ, ξ′) such that ϕ(x)
falls into one of the above forbidden intervals is, by the mean value theorem

O
(

ξ
log3 ξ

)
, and the proof of Proposition 1 is completed. �

3. About the Differences Between Primes

Proposition 2. Suppose that there exists α, 0 < α < 1, and x large enough
such that the inequalities

π(x+ xα)− π(x) ≥ (1− ε)xα/ logx (12)

π(x) − π(x− xα) ≥ (1− ε)xα/ logx (13)

hold. Then the set

E = E(x, α) = {P −Q;P,Q primes, x− xα < Q ≤ x < P ≤ x+ xα}
satisfies:

|E| ≥ C2x
α

where C2 = C1α
4(1 − ε)4 and C1 is an absolute constant (C1 = 0.00164

works).

Proof. The proof is a classical application of the sieve method that Paul
Erdős enjoys very much. Let us set, for d ≤ 2xα,

r(d) = |{(P,Q);x− xα < Q ≤ x < P ≤ x+ xα, P −Q = d}|.
Clearly we have

|E| =
∑

0<d≤2xα

r(d) �=0

1 (14)

and
∑

0<d≤2xα

r(d) = (π(x + xα)− π(x))(π(x) − π(x− xα)) ≥ (1 − ε)2x2α/ log2 x.

(15)
Now to get an upper bound for r(d), we sift the set

A = {n;x− xα < n ≤ x}
with the primes p ≤ z. If p divides d, we cross out the n’s satisfying n ≡ 0
(mod p), and if p does not divide d, the n’s satisfying

n ≡ 0 (mod p) or n ≡ −d (mod p)
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so that we set for p ≤ z:

w(p) =

{
1 if p divides d

2 if p does not divide d.

By applying the large sieve (cf. [14, Corollary 1]), we have

r(d) ≤ |A|
L(z)

with

L(z) =
∑

n≤z

(
1 +

3

2
n|A|−1z

)−1

μ(n)2

⎛

⎝
∏

p|n

w(p)

p− w(p)

⎞

⎠

(μ is the Möbius function), and with the choice z = (23 |A|)1/2, it is proved in
[23] that

|A|
L(z)

≤ 16
∏

p≥3

(
1− 1

(p− 1)2

) |A|
log2(|A|)

∏

p|d
p>2

p− 1

p− 2
.

The value of the above infinite product is 0.6602 . . . < 2/3. We set f(d) =∏
p|d
p>2

p−1
p−2 , and we observe that |A| ≥ xα − 1, so that for x large enough

r(d) ≤ 32

3α2

|A|
log2 x

f(d). (16)

Now, for the next step, we shall need an upper bound for
∑

n≤x f
2(n). By

using the convolution method and defining

h(n) =
∑

a|n
μ(a)f2(n/a)

one gets h(2) = h(22) = h(23) = . . . = 0 and, for p ≥ 3, h(p) = 2p−3
(p−2)2 ,

h(p2) = h(p3) = . . . = 0, so that
∑

n≤x
f2(n) =

∑

n≤x

∑

a|n h(a) =
∑

a≤x
h(a)

⌊x
a

⌋

≤ x
∑∞

a=1

h(a)

a
= x

∏

p≥3

(
1 +

2p− 3

p(p− 2)2

)
(17)

= 2.63985 . . .x ≤ 8

3
x.

From (15) and (16), one can deduce

(1− ε)2x2α

log2 x
≤

∑

0<d≤2xα

r(d) �=0

r(d) ≤ 32

3α2

|A|
log2 x

∑

0<d≤2xα

r(d) �=0

f(d)
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which implies

∑

0<d≤2xα

r(d) �=0

f(d) ≥ 3α2x2α(1− ε)2

32|A| .

By Cauchy-Schwarz’s inequality, one has
( ∑

0<d≤2xα

r(d) �=0

1

)( ∑

0<d≤2xα

r(d) �=0

f2(d)

)
≥ 9α4x4α(1− ε)4

1,024|A|2

and, by (14) and (17)

|E| ≥ 9α4x4α(1− ε)4

1,024|A|2
/

8

3
(2xα) =

27

16,384

x3α(1− ε)4

|A|2 ·

Since |A| ≤ xα + 1, and x has been supposed large enough, Proposition 2 is
proved. �

4. Some Properties of g(n)

Here, we recall some known properties of g(n) which can be found for instance
in [16]. Let us define the arithmetic function � in the following way: � is
additive, and, if p is a prime and k ≥ 1, then �(pk) = pk. It is not difficult to
deduce from (1) (cf. [13] or [16]) that

g(n) = max
�(M)≤n

M. (18)

Now the relation (cf. [16, p. 139])

M ∈ g(N) ⇐⇒ (M ′ > M =⇒ �(M ′) > �(M)) (19)

easily follows from (18), and shows that the values of the Landau function
g are the “champions” for the small values of �. So the methods introduced
by Ramanujan (cf. [19]) to study highly composite numbers can also be used
for g(n). Indeed M is highly composite, if it is a “champion” for the divisor
function d, that is to say if

M ′ < M =⇒ d(M ′) < d(M).

Corresponding to the so-called superior highly composite numbers, one
introduces the set G : N ∈ G if there exists ρ > 0 such that

∀M ≥ 1, �(M)− ρ logM ≥ �(N)− ρ logN. (20)

Equations (19) and (20) easily imply that G ⊂ g(N). Moreover, if ρ > 2/ log 2,
let us define x > 4 such that ρ = x/ log x and

Nρ =
∏

p≤x

pαp =
∏

p

pαp (21)
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with

αp =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if p > x

1 if p
log p ≤ ρ < p2−p

log p

k ≥ 2 if pk−pk−1

log p ≤ ρ < pk−1−pk

log p

then Nρ ∈ G. With the above definition, since x ≥ 4, it is not difficult to
show that (cf. [11, (5)])

pαp ≤ x (22)

holds for p ≤ x, whence Nρ is a divisor of the least common multiple of the
integers ≤ x. Here we can prove

Proposition 3. For every prime p, there exists n such that the largest prime
factor of g(n) is equal to p.

Proof. We have g(2) = 2, g(3) = 3. If p ≥ 5, let us choose ρ = p/ log p >
2/ log 2. Nρ defined by (21) belongs to G ⊂ g(N), and its largest prime factor
is p, which proves Proposition 3. �

From Proposition 3, it is easy to deduce a proof of Theorem 1, under the
twin prime conjecture. Let P = p + 2 be twin primes, and n such that the
largest prime factor of g(n) is p. The sequence nk being defined by (3), we
define k in terms of n by nk ≤ n < nk+1, so that g(nk) = g(n) has its largest
prime factor equal to p. Now, from (18) and (19),

�(g(nk)) = nk

and g(nk + 2) > g(nk) since M = P
p g(nk) satisfies M > g(nk) and

�(M) = nk + 2. So nk+1 ≤ nk + 2, and Theorem 1 is proved under this
strong hypothesis.

Let us introduce now the so-called benefit method. For a fixed ρ > 2/ log 2,
N = Nρ is defined by (21), and for any integer M ,

M =
∏

p

pβp ,

one defines the benefit of M :

ben(M) = �(M)− �(N)− ρ logM/N. (23)

Clearly, from (20), ben(M) ≥ 0 holds, and from the additivity of � one has

ben(M) =
∑

p

(
�(pβp)− �(pαp)− ρ(βp − αp) log p

)
. (24)

In the above formula, let us observe that �(pβ) = pβ if β ≥ 1, but that
�(pβ) = 0 
= pβ = 1 if β = 0, and, due to the choice of αp in (21), that, in
the sum (24), all the terms are non negative: for all p and for β ≥ 0, we have

�(pβ)− �(pαp)− ρ(β − αp) log p ≥ 0. (25)



214 Jean-Louis Nicolas

Indeed, let us consider the set of points (0, 0) and (β, pβ log p) for β integer
≥ 1. For all p, the piecewise linear curve going through these points is convex,
and for a given ρ, αp is chosen so that the straight line L of slope ρ going

through
(
αp,

pαp

log p

)
does not cut that curve. The left-hand side of (25), (which

is ben(Npβ−αp)) can be seen as the product of log p by the vertical distance

of the point
(
β, pβ

log p

)
to the straight line L, and because of convexity, we

shall have for all p,

ben(Npt) ≥ t ben(Np), t ≥ 1 (26)

and for p ≤ x,

ben(Np−t) ≥ t ben(Np−1), 1 ≤ t ≤ αp. (27)

5. Proof of Theorem 1

First the following proposition will be proved:

Proposition 4. Let α < 1/2, and x large enough such that (10) holds. Let
us denote the primes surrounding x by:

. . . < Qj < . . . < Q2 < Q1 ≤ x < P1 < P2 < . . . < Pi < . . . .

Let us define ρ = x/ log x,N = Nρ by (21), n = �(N). Then for n ≤ m ≤
n+ 2xα, g(m) can be written

g(m) = N
Pi1Pi2 . . . Pir

Qj1Qj2 . . . Qjr

(28)

with r ≥ 0 and i1 < . . . < ir, j1 < . . . < jr, Pir ≤ x+ 4xα, Qjr ≥ x− 4xα.

Proof. First, from (18), one has �(g(m)) ≤ m, and from (23) and (18)

ben(g(m)) = �(g(m))− �(N)− ρ log
g(m)

N
≤ m− n ≤ 2xα (29)

for n ≤ m ≤ 2xα.
Further, let Q ≤ x be a prime, and k = αQ ≥ 1 the exponent of Q in

the standard factorization of N . Let us suppose that for a fixed m, Q divides
g(m) with the exponent βQ = k + t, t > 0. Then, from (24), (25), and (26),
one gets

ben(g(m)) ≥ ben(NQt) ≥ ben(NQ) (30)

and

ben(NQ) = Qk+1 −Qk − ρ logQ

= logQ

(
Qk+1 −Qk

logQ
− ρ

)
.
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From (21), the above parenthesis is nonnegative, and from (10), one gets:

ben(NQ) ≥ log 2

√
x

log4 x
. (31)

For x large enough, there is a contradiction between (29), (30) and (31), and
so, βQ ≤ αQ.

Similarly, let us suppose Q ≤ x, k = αQ ≥ 2 and βQ = k − t, 1 ≤ t ≤ k.
One has, from (24), (25) and (27),

ben(g(m)) ≥ ben(NQ−t) ≥ ben(NQ−1)

and

ben(NQ−1) = Qk−1 −Qk + ρ logQ

= logQ

(
ρ− Qk −Qk−1

logQ

)
≥ log 2

√
x

log4 x

which contradicts (29), and so, for such a Q, βQ = αQ.
Now, let us suppose Q ≤ x, αQ = 1, and βQ = 0 for some m,n ≤ m ≤

n+ 2xα. Then

ben(g(m)) ≥ ben(NQ−1) = −Q+ ρ logQ = y(Q)

by setting y(t) = ρ log t− t. From the concavity of y(t) for t > 0, for x ≥ e2,
we get

y(Q) ≥ y(x) + (Q − x)y′(x) = (Q− x)
( ρ

x
− 1

)

= (x−Q)

(
1− 1

log x

)
≥ 1

2
(x−Q)

and so,

ben(g(m)) ≥ 1

2
(x−Q)

which, from (29) yields

x−Q ≤ 4xα.

In conclusion, the only prime factors allowed in the denominator of g(m)
N are

the Q’s, with x− 4xα ≤ Q ≤ x, and αQ = 1.
What about the numerator? Let P > x be a prime number and suppose

that P t divides g(m) with t ≥ 2. Then, from (26) and (23),

ben(Npt) ≥ ben(Np2) = P 2 − 2ρ logP.

But the function t �→ t2 − 2ρ log t is increasing for t ≥ √
ρ, so that,

ben(NP t) ≥ x2 − 2x > 2xα
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for x large enough, which contradicts (29). The only possibility is that P
divides g(m) with exponent 1. In that case, from the convexity of the function
z(t) = t− ρ log t, inequality (26) yields

ben(g(m)) ≥ ben(NP ) = z(P ) ≥ z(x) + (P − x)z′(x)

= (P − x)

(
1− 1

log x

)
≥ 1

2
(P − x)

for x ≥ e2, which, with (29), implies

P − x ≤ 4xα.

Up to now, we have shown that

g(m) = N
Pi1 . . . Pir

Qj1 . . .Qjs

with Pir ≤ x + 4xα, Qjs ≥ x − 4xα. It remains to show that r = s. First,
since n ≤ m ≤ n+ 2xα, and N belongs to G, we have from (18) and (19)

n ≤ �(g(m)) ≤ n+ 2xα. (32)

Further,

�(g(m))− n =

r∑

t=1

Pit −
s∑

t=1

Qjt

and since r ≤ 4xα, and s ≤ 4xα,

�(g(m))− n ≤ r(x + 4xα)− s(x − 4xα)

≤ (r − s)x+ 32x2α.

From (32), �(g(m))− n ≥ 0 holds and as α < 1/2, this implies that r ≥ s for
x large enough. Similarly,

�(g(m))− n ≥ (r − s)x,

so, from (32), (r − s)x must be ≤ 2xα, which, for x large enough, implies
r ≤ s; finally r = s, and the proof of Proposition 4 is completed. �

Lemma 1. Let x be a positive real number, a1, a2, . . . , ak, b1, b2, . . . , bk be
real numbers such that

bk ≤ bk−1 ≤ . . . ≤ b1 ≤ x < a1 ≤ a2 ≤ . . . ≤ ak

and Δ be defined by Δ =
∑k

i=1(ai − bi). Then the following inequalities

x+Δ

x
≤

k∏

i=1

ai
bi

≤ exp

(
Δ

x

)

hold.
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Proof. It is easy, and can be found in [16, p. 159]. �

Now it is time to prove Theorem 1. With the notation and hypothesis of
Proposition 4, let us denote by B the set of integers M of the form

M = N
Pi1Pi2 . . . Pir

Qj1Qj2 . . .Qjr

satisfying

�(M)− �(N) =

r∑

t=1

(Pit −Qjt) ≤ 2xα.

From Proposition 4, for n ≤ m ≤ 2xα, g(m) ∈ B, and thus, from (18),

g(m) = max
�(M)≤m
M∈B

M. (33)

Further, for 0 ≤ d ≤ 2xα, define

Bd = {M ∈ B : �(M)− �(N) = d}.
I claim that, if d < d′ (which implies d ≤ d′−2), any element of Bd is smaller
than any element of Bd′ . Indeed, let M ∈ Bd, and M ′ ∈ Bd′ . From Lemma 1,
one has

M

N
≤ exp

(
d

x

)
and

M ′

N
≥ x+ d′

x
≥ x+ d+ 2

x
.

Since d < 2xα < x, and et ≤ 1
1−t for 0 ≤ t < 1, one gets

M

N
≤ 1

1− d/x
=

x

x− d
.

This last quantity is smaller than x+d+2
x if (d + 1)2 < 2x + 1, which is true

for x large enough, because d ≤ 2xα and α < 1/2.
From the preceding claim, and from (33), it follows that, if Bd is non

empty, then

g(n+ d) = maxBd.

Further, since N ∈ G, we know that n = �(N) belongs to the sequence (nk)
where g is increasing, and so, n = nk0 . If 0 < d1 < d2 < . . . < ds ≤ 2xα

denote the values of d for which Bd is non empty, then one has

nk0+i = n+ di, 1 ≤ i ≤ s. (34)

Suppose now that α < 1/2 and x have been chosen in such a way that
(12) and (13) hold. With the notation of Proposition 2, the set E(x, α) is
certainly included in the set {d1, d2, . . . , ds}, and from Proposition 2,

s ≥ C2x
α (35)
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which implies that for at least one i, di+1 − di ≤ 2
C2

, and thus

nk0+i+1 − nk0+i ≤ 2

C2
.

Finally, for 1
6 < α < 1

2 , Proposition 1 allows us to choose x as wished, and
thus, the proof of Theorem 1 is completed. �

With ε very small, and α close to 1/2, the values of C1 and C2 given in
Proposition 2 yield that for infinitely many k′s,

nk+1 − nk ≤ 20,000.

To count how many such differences we get, we define

γ(n) = Card{m ≤ n : g(m) > g(m− 1)}.
Therefore, with the notation (3), we have nγ(n)

= n.
In [16, 162–164], it is proved that

n1−τ/2 � γ(n) ≤ n− c
n3/4

√
logn

where τ is such that the sequence of consecutive primes satisfies pi+1 − pi
� pτi . Without any hypothesis, the best known τ is > 1/2.

Proposition 5. We have γ(n) ≥ n3/4−ε for all ε > 0, and n large enough.

Proof. With the definition of γ(n), (34) and (35) give

γ(n+ 2xα)− γ(n) ≥ s � xα (36)

whenever n = �(N), N = Nρ, ρ = x/ log x, and x satisfies Proposition 1. But,
from (21), two close enough distinct values of x can yield the same N .

I now claim that, with the notation of Proposition 1, the number of primes
pi between ξ and ξ′ such that there is at least one x ∈ [pi, pi+1) satisfying
(8), (9) and (10) is bigger than 1

2 (π(ξ
′)− π(ξ)). Indeed, for each i for which

[pi, pi+1) does not contain any such x, we get a measure pi+1 − pi ≥ 2, and if
there are more than 1

2 (π(ξ
′)−π(ξ)) such i′s, the total measure will be greater

than π(ξ′)− π(ξ) ∼ ξ/ log2 ξ, which contradicts Proposition 1.
From the above claim, there will be at least 1

2 (π(ξ
′)− π(ξ)) distinct N ’s,

with N = Nρ, ρ = x/ log x, and ξ ≤ x ≤ ξ′. Moreover, for two such distinct
N , say N ′ < N ′′, we have from (21), �(N ′′)− �(N ′) ≥ ξ.

Let N (1) and N (0) the biggest and the smallest of these N ’s, and n(1) =
�(N (1)), n(0) = �(N (0)), then from (36),

γ(n(1)) ≥ γ(n(1))− γ(n(0)) ≥ 1

2
(π(ξ′)− π(ξ)) ξα � ξ1+α

log2 ξ
. (37)

But from (21) and (22), x ∼ logNρ, and from (2),

x ∼ logNρ ∼
√
n logn with n = �(Np)
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so

ξ ∼
√
n(1) logn(1)

and since α can be choosen in (37) as close as wished of 1/2, this completes
the proof of Proposition 5. �
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6. P. Erdős, J.-L. Nicolas, “Répartition des nombres superabondants”, Bull. Soc.
Math. France, 103, 1975, 65–90.
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