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Abstract. Among various fonctions used to count the factorizations of an
integer n, we consider here the number of ways of writing n as an ordered

product of primes, which, if n = ¢{"¢5* ... ¢, is equal to the multinomial

a1+ ag+ -+ ag)! )

(o1 + a5 ) . The function P(s) = ).
ol ag! - ay!

sometimes called the prime zeta function, plays an important role in the

study of the function h. We denote by A = 1.399433... the real number
1

defined by P(A) = 1. The mean value of the function h satisfies — Z h(n) ~
T

n<x

coefficient h(n) =

—s
p prime p

1
AP'()N)
there exists a constant C; > 0 such that, for all n > 3, logh(n) < Alogn —
C’lM holds. We also prove that there exists a constant Cs such that, for
(logn)

loglogn
all n > 3, there exists m < n satisfying log h(m) > Alogn — Cy 1oglogj:' Let
us call h-champion an integer N such that M < N implies h(M) < h(N). S.
Ramanujan has called highly composite a T-champion number, where 7(n) =
D _d|n 1 is the number of divisors of n. We give several results about the
number of prime factors of an hA-champion number N, about the exponents
in the standard factorization into primes of such an N and about the number

2271, In this paper, we study how large h(n) can be. We prove that
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Algébrigque et Applications.



Q(X) of h-champion numbers N < X. At the end of the paper, several open
problems are listed.

1 Introduction

1.1 Diverses fonctions de factorisation

La fonction de factorisation la plus classique est le nombre de diviseurs
de D'entier n :

(1.1) T(n) =Y 1
d|n

qui est aussi le nombre de solutions de ’équation diophantienne x,x5 = n en
entiers positifs x; et xs.
Pour r > 2, le nombre de solutions de I’équation diophantienne

(1.2) T1To ... Ty =N

est 7.(n), le nombre de décomposition de n en produit de r facteurs. On a
Ta(n) = 7(n), et la série génératrice vaut

3 S _ )y

ns

ot ((s) =>77 1/n® est la fonction de Riemann.

La fonction de Kalmar (cf. [18], [19], [17] et [10]) fx(n) compte le nombre
de solutions de (1.2) pour tout r, mais avec la restriction que chaque facteur
x; doit vérifier x; > 2. Ainsi, fK(12) = 8 et les & factorisations de 12 sont :
12=6-2=4-3=3-4=3-2-2=2-6=2-3-2=2-2-3. La fonction
de Kalmér satisfait fx(n) = 1 defK (%) pour n > 2 avec Fr(1) =1 et sa
série génératrice est

= fx(n) 1
(1.4) d = :

—~ n 2—((s)
Elle est reliée a la fonction 7, par la formule

La fonction d’Oppenheim (cf. [25], [2] et [14]), fo(n), a la méme défini-
tion que celle de Kalmar, mais, cette fois, 'ordre ne compte pas : les trois

pour n > 2.

l\l)lr—A
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factorisations de 12 : 3-2-2, 2-3-2 et 2-2-3 ne comptent que pour une. Ainsi,
12 n’a plus que 4 factorisations d’Oppenheim : 12 =6-2=4-3=3-2-2 et
fo(12) = 4. Elle a pour série génératrice (cf. [23])

(1.5) i On(n) =11 (1 - %)1

n>2
Soit A C {2,3,4,...}; dans [16] et [9] (cf. aussi [21] et [22]), E. Hille et P.
Erdds ont généralisé la fonction de Kalméar en définissant la fonction f4(n)
qui compte le nombre de solutions de (1.2) pour tout 7, avec la restriction que
chaque z; doit vérifier z; € A. La fonction de Kalmér apparait ainsi comme
fr(n) = fN\{O,l}(n)' La formule (1.4) se généralise sous certaines conditions :

(1.6) ; f“jl(?) = 1= éA(S) avec  (4(s) = T;%

1.2 La fonction h = fp

Soit P ={2,3,5,7,11,13, ...} 'ensemble des nombres premiers. Dans cet
article, nous nous intéresserons essentiellement a la fonction fp(n), que nous
appellerons h(n) et qui est donc le nombre de solutions de (1.2) en nombres
premiers xi, T, ..., T,. Soit n = ¢"¢5? ... qp" et Qn) = a1 +as + ...+ .
La seule possibilité d’écrire n sous la forme (1.2) avec 1, xo, ..., z, premiers
est de prendre r = (n) et de choisir «; variables x; égales & ¢y, ay égales a
G2, - ., ay égales a qi. Le nombre de fagons de faire ces choix est le coefficient
multinomial (cf. [4], p. 38) et 'on a donc

(1.7) h(n):(a1+a2+...—l—ak) (a1 +ag+ ... +ay)!

a1, 0, ..., Qs op!l ag! - ay!

pour n > 2 et h(1) = 1. Nous définissons

1 1 1 1 1
1.8 P(s) = = — ==t =+t =+=+... Rs > 1
(18)  P(s) = p(s) p;ps sttt R

La fonction P est quelquefois appelée la fonction ( des nombres premiers (cf.
[28], p. 69). La série génératrice de h(n) est, d’aprés (1.6)

(1.9) 3 hflf) = - _;(S), Rs > A

n=1



ol \ est défini par

(1.10) P\ =1, A =1.399433...,
et 'on a
(1.11) h(n) = Z h (ﬁ) pour n > 2.
peP, p|n p
Il résulte de (1.9) que
—1
(1.12) Z h(n) = PO (1 + o(1)), T — 00
n<x

cf. [22], ot est aussi étudié Pordre normal des fonctions fx, fo et h.

1.3 Grandes valeurs des fonctions de factorisation

S. Ramanujan fut le premier, dans [26], a étudier de fagon extensive les
grandes valeurs de la fonction 7 définie par (1.1). Pour cela, il a introduit
les nombres hautement composés (un nombre N est dit hautement composé
siM <N = 7(M) < 7(N)) et donné de nombreuses propriétés de ces
nombres.

Diverses généralisations des idées de S. Ramanujan ont été développées
(cf. [24]), essentiellement en remplagant la fonction 7 par une autre fonction
arithmétique. Les grandes valeurs de 7,., définie par (1.3), sont étudiées dans
6]

Les grandes valeurs de la fonction d’Oppenheim sont étudiées dans [2] et
[20]. Quant a la fonction de Kalmaér, a la fin de [9], pp. 992-993, P. Erdés dit
qu’il sait démontrer qu’il existe deux constantes ¢ et cp, 0 < ¢ < o < 1,
telles que, pour une suite infinie de valeurs de n, on ait

o~ nP

(1.13) fr(n) >

e(lOgn)cl

(out p = 1.728647 . .. est défini par ((p) = 2) et que, pour tout n > ny,

(1.14) Fie(n) < n

logn)°2 '

Les grandes valeurs de la fonction de Kalmar ont été précisées par R. Evans
(cf. [10], Th. 6 et 7).



1.4 Grandes valeurs de la fonction h

Nous nous proposons dans cet article d’étudier les grandes valeurs de la
fonction h définie par (1.7), autrement dit, de résoudre le probléme d’opti-
misation en nombres entiers

(1.15) { nsX

max h(n).

Soit p1 = 2, po = 3,...,px le k-iéme nombre premier. Par (1.7), le probléme
(1.15) est, pour k assez grand, équivalent a

(1.16)

zy!zo! - xp!

{ x1log2 4+ x5log3 + ... + xxlogpr < log X

max log ((m1+z2+...+xk)!>

ol les inconnues x; sont des entiers positifs ou nuls. Grace a la formule de
Stirling, nous remplacons dans (1.16) la fonction & optimiser par une fonction

plus grande, F(xy1, 2o, -+ , ), définie en (2.1) ci-dessous. Le probléme
(1.17) r1log2 4+ xolog3 + ... + zplogpr < log X
' max F'(zy, o, ,xx)

a une solution simple, 7,23, ..., 2}, donnée au §4, qui permet de majorer
h(n). Pour une valeur de k convenable, en choisissant pour a; un entier voisin
de zf, on construit des nombres entiers n = p{'p3?...pi* avec une grande
valeur de h(n).

Au paragraphe 6, nous étudierons les propriétés des nombres h-champion.

Un nombre N est dit h-champion si
(1.18) M < N = h(M) < h(N).

Nous montrons que le nombre w(N) de facteurs premiers d’'un nombre h-
1/x (log N)'/*
~ Aa / loglog N
premiers comptés avec multiplicité, satisfait Q(N) ~ 2*alog N, ol a est une
constante définie au paragraphe 3. Nous donnons enfin un encadrement (assez
grossier) pour Q(X), le nombre de nombres N < X qui sont h-champions.

Le pragraphe 7 présente une liste de problémes ouverts.

champion satisfait w(N) et que Q(NV), le nombre de facteurs

1.5 Notations et remerciements

Nous noterons |¢] la partie entiére du nombre réel ¢. Dans tout l'article,
on désigne par py le k-iéme nombre premier (p; = 2,py = 3, etc... ) et
par qi,qs,-..,qr des nombres premiers quelconques. La décomposition en



facteurs premiers d’un entier générique n sera notée n = ¢ ¢5” ... ¢;", ¢1 <

¢2 < ... < g On désigne par v,(n) la valuation p-adique de n et par w(n)
(resp. 2(n)) le nombre de facteurs premiers (resp. comptés avec multiplicité)
de n. Enfin, N désignera toujours un nombre h-champion.

Une partie des travaux exposés dans cet article a été développée par le
deuxiéme auteur lors d’un séjour a I’Université du Witwatersrand de Johan-
nesburg en avril 1992. Nous avons donc plaisir & remercier A. et J. Knopf-
macher, et R. Warlimont pour les discussions et échanges sur ce sujet ainsi
que P. Erdés, trés intéressé par les grandes valeurs de la fonction h. Nous
avons plaisir également a remercier M. Deléglise pour son aide, notamment
dans la construction de la table des nombres h-champion, L. Rifford pour
ses remarques sur les problémes d’optimisation et ’arbitre qui nous a signalé
une erreur dans le développement asymptotique (3.18).

2 Approximation de log (h) par F

Proposition 1. Soit la décomposition en facteurs premiers de n = g7 q5>
q* et h(n) défini par (1.7). Soit x1,xa, ...,z des nombres réels positifs ou
nuls; on pose

(2.1)

k
F(xy,z9,...,208) = (931+x2+...+$k)log(m1+$2+...+:Ek)—inlog:ﬁi
i=1

avec la convention tlogt =0 si t = 0. Alors, pour tout n > 2, on a

k—1
(2) logh(n) < Flag, az, ..., ax) — 5 = Flog, o, ... o)
Lk
(i7) logh(n) > F(ag,aq,...,0p) — k — 5 ,E_l log «;.

Démonstration. Nous utiliserons la formule valable pour tout m > 1
(2.2) m™exp(—m) vV2rm < m! < em™ exp(—m)y/m.

La formule (2.2) se déduit de la formule de Stirling classique (cf. [1], 6.1.38),
valable pour m > 1

0
(2.3) m! =m"™ exp(—m)V2mm exp <F> avec 0<f<1
m



car, pour m > 2, v2mexp(1/24) = 2.61... < e, et pour m = 1, la majoration
dans (2.2) est évidente.

Majoration. Lorsque k = 1, on a h(n) = 1, F(a;) = 0 et (i) est vérifiée.
Nous pouvons donc supposer k > 2.
En utilisant (1.7), (2.2) et (2.1), il vient

6\/Oé1+062+"'+06k.

(2.4) h(n) < exp (F(o,as,...,ay)) %
(27‘()2 oy Qg - - O

Mais, a; > 1, et

ap+Qy+ - Qq «Q _
L. +...+—k§k§2k1
al a2."ak; al QQ"‘ak; al a2-..ak

et (2.4) entraine, car k > 2,

e m 3
k+2
V25t

1—k 1—k
3 < e 3

62%(2@%/2 =

IA

h(n) exp(—F(a1, ag, . .., ax))

IA

e
\/§7r2/37r
ce qui prouve (i).

Minoration. Par (1.7), (2.2) et (2.1), il vient

>\/27T(a1+042+--~ozk)> 1

- ek /oy as - - ag ek Jag ag - ay

h(n)exp (—F(ay, ag, ..., ax))
ce qui prouve (ii). O

3 Etude de )\ et )\

Soit p1 = 2, po = 3, ..., pr le k-iéme nombre premier. Pour £ > 1, on
pose :

(3.1) Py(s) = Z

Jj=1

-

Pour chaque k fixé, la fonction Py(s) décroit de k a 0 lorsque s varie de 0 &
+00; elle admet donc une fonction réciproque P, *(y) définie pour 0 < y < k.
On pose

(3.2) A= P, autrement dit Pi(A\) = 1.



La série ) 7%, pi converge normalement pour s > sg > 1 et donc la suite
J

des sommes partielles (Pg(s))g>1 converge uniformément vers P(s) pour s >
sg > 1; par les méthodes habituelles de I'analyse, il est facile de montrer

(3.3) M < d<...<N<...<X et lim M\ = N\

k—oo

On a

k= 1 2 3 4 ) 10 100 1000 10000
A= 0 0.788 1.033 1.147 1.201 1.304 1.384 1.396 1.398

La valeur numérique de A donnée en (1.10) peut étre calculée avec précision
a l'aide de la formule ([28], p. 70)

(3.4) P(s) = /LE’T) log ¢(ms)

m=1
par les méthodes indiquées dans [3].
Proposition 2. Soit k > 1, Ay défini par (3.2) et X par (1.10). Lorsque

k — o0, on a

1 1.44617 . ..
(35 A— A~ o LA
O )PV (logk)S R (log k)

Démonstration. Soit 7(z) le nombre de nombres premiers inférieurs ou
égaux & . Le théoréme des nombres premiers (cf. [8], Th. 4.7) donne

(3.6) 7(z) = Li(z) + R(x)

ou le logarithme intégral Li est défini en [1], p. 228 et

(3.7) R(z) = O, ( <1o§x>u)

ol v est un nombre réel fixé supérieur a 1. Cela entraine pour le k-iéme
nombre premier py

(3.8) pr ~ klogk et logp, ~logk lorsque k — oo.

Introduisons 'exponentielle intégrale (cf. [1], p. 228)

oo —t
(3.9) El(x):/ ert, x>0,

8



dont le développement asymptotique est
1 1 2 6
(3.10) El(x)—e‘”(————l—————l—...), T — +00.

Considérons d’abord la quantité P(s) — Py(s); en utilisant l'intégrale de
Stieltjes, (3.6), (3.9), (3.10) et (3.7), il vient pour s > so > 1

P(s) ~ Pils) = py =

j= k+1

> d|R(t
Ry +/ [S()]
pktlogt - t

- s
= Ei((s —1)logps) — ]ng’;s) +/ t]fﬁ)dt

i O,o(1)
(3.11) = Ei((s —1)logp) +pz—1(10g k)

De méme, on a pour s > so > 1

B - Pl = 3 B /”W

Jj= k+1 pﬂ £
B / / logt
1
(3.12) = Vs(]( )

+ S—
(s — 1)pk py " (log k)=
Par la formule de Taylor, on a

(Ar — N)?
2

(3.13) Py(A) — Pe(N) = (A — N P(A) + M’
avec M’ = P//(€) et Ay <& < A. On a donc, pour k > 3

_ (log2)?
(3.14) 0.182. >

De (1.10) et (3.2), on déduit Py(Ax) — Pe(A) = P(A) — P(X\) et (3.11) et
(3.12) (en prenant s = \) donnent avec (3.13)

=P/(\) < M' < P"()\3) =926.56. ..

1 Ou(1) M=)

+ M’
A=Dppy" pp ' (log k)1 2

(A= A) |[P'(A) +




o1
py ' (log k)

Lorsque k — oo, par (3.3), A — A — 0 et (3.15), (3.10) et (3.8) entrainent

(3.15) = Ei((A—1)logpr) +

1
O\ — Dk (log k)’

—(A = X)P'(A) ~ Er((A—1)log py) ~

ce qui prouve (3.5). O
Remarque 1. Compte tenu de (3.5), (3.15) donne le résultat plus précis

En((A—1Dlogpi) 0,(1)
—P'(\) A 1(log k) v—1

(3.16) A=\ =

pour tout v > 1. En utilisant le développement asymptotique de Cipolla (cf.

[71)

Ly—2 L3
(3.17) P~ it (k) =k (Li+Ly— 1+ 2" 4+0 (2
Ly L?

avec Ly = logk et Ly = loglog k, on déduit de (3.10) et (3.16)

-1 ALy + 22N L2
Nl A— A\ = 1]— = A1l =2 ‘
BA8) A== PO ) ( Lol

En utilisant les inégalités (cf. [30], p. 69 et [7]) :
(3.19) k(logk +loglogk — 1) < pr, < k(logk +loglogk), k > 6,

on peut obtenir un encadrement effectif de A — g (cf. [15]).

Proposition 3. Soit k > 1, A\, Ay, P et Py définis par (1.10), (3.2), (1.8) et
(3.1). On définit a et ay, par

-1 —1
3.20 = = 0.5776486 . .. t =
3200 =y T
On a
(3.21) ayr>ay > ...>a, > ...>a, klimak:a
et lorsque k — oo
1 ~0.835378....

B2 PP RIg kT (FloghpT
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Démonstration. On a

k= 1 2 3 4 5) 10 100 1000 10000
ar = 1.443 1.158 1.003 0.920 0.869 0.759 0.629 0.595 0.584

En remarquant par (3.1) et (3.2) que I'on a

_ 1
(3'23) Akt = Pk ' <1 o >\k+1) !

il vient par le théoréme des accroissements finis

10g DPrk+1

Pip1(Nern) = P(\) = o T Dr(Aks) = Pr(Ae)
Di+a
|
- BBy pop (1 )—P;opklm
Diy1

IngkH 1 PP ( Y

AT (O 1( ))

avec 1 — < mp < 1. En posant p, = P '(nx), on a par (3.2) et (3.23)

>‘k+1
k+1

)\k < pr < )‘k+1 et

1
Prp1(Ner1) = Pe(A) = ) (log pr+1 P (px) + Py (pr)
P (=Filor))
k 2
1 log”p;  logp;log pyi1
- Ak41 / Z ( Pk - ’ Pk <0
Py (= Fi(px)) j=1 Pj Pj

et par (3.20) cela démontre a1 < ai. Comme Pj(s) tend uniformément vers
P'(s) pour 1 < sg < s,0n alimy_ ay = a, ce qui achéve la preuve de (3.21).
Pour démontrer (3.22), on utilise la formule de Taylor, comme en (3.13)

(A = A)?

(3.24) Py M) — PLA) = (e = NP/ (N) + 5

M/I

avec, pour k > 3, |M"| < |P"()\3)|. Ensuite, on a, comme en (3.12)

= log’p;  (A—1)logp, +1 0,(1)
(3.25) P"(\)—P!(\) = 4 — — 4 ——
(V= S T o sk

11



Il vient alors, par (3.24), (3.25), (3.12) et (3.5)

Pi(Ae) = P'(A) = Pr(Ax) — Pr(A) + P(A) = P'(X)

= O [Py - B O e
Pl p. (logk) 2
R SN ¢
A=Dpp™t pp(log k)t
| O,(1)

= (M= NP'(\) +

+ .
A=Dp " oy (loghk) !

Par la formule de Taylor appliquée a la fonction ¢ — —1/t, on a

w-a = oo ik) - p,‘&) - LA (;)f N oprng - PO
(A — AN P"(N) 1 0,(1)
(3:26) POVE O g PO P o e

et comme, par (3.5), le premier terme de (3.26) est négligeable devant le
second, on obtient (3.22) a l'aide de (3.8). O

4 Un probléme d’optimisation

Lemme 1. La fonction F définie par (2.1) est concave dans RY.

Démonstration. En posant = (21, %s,...,2%) et S = (v1+ 22+ ...+ 1),
il résulte de (2.1), pour z € ]Rik,

OF S 0*F 1 1 0*F 1
(z) = log —, W@)Zg—— (&):g

€X; Z; i l‘f 8@8%

(4.1)

de telle sorte que la forme quadratique des dérivées secondes de F' s’écrit
2 k
— I

(4.2) F"(z) - (hy,ho, ... hg) = % (Z hl-)

Par 'inégalité de Cauchy-Schwarz, on obtient

(20) - () =t

=1

=1

. , k
et il en résulte, par (4.2), que F est concave dans RY. [

12



Soit k > 2, p;, le k-iéme nombre premier et A un nombre réel positif. On
considére le domaine D(A) C ]Ri défini par 1 >0, 20 >0, ..., 2, > 0 et

(4.3) r1log2 4+ x9logd3 + ... + xplogpr < A.

Soit F' définie par (2.1). Comme la fonction F' est croissante par rapport a
chaque variable, le probléme d’optimisation

(4.4) { z € D(A)

max F'(z)

a la méme solution que le probléme

(4.5) {x110g2+x210g3—|—...—f—mklogpk:A

max F(xy,za,...,xk).

Proposition 4. La solution du probleme (4.5) (ou du probléeme équivalent
(4.4)) est donnée par

(lkA

(4.6) xl = o

)

ol \p et ag sont définis par (3.2) et (3.20), et satisfait

(4.7) F(x], 23, ..., x5) = MA.

Démonstration. Utilisons les multiplicateurs de Lagrange ; une solution de
(4.5), (xf, 23, ..., %) satisfait pour 1 <i <k

1 oF, ., . log(z] + 25+ ...+ 2}) — log z}
—(a,xh, . xp) = (2 + 24 ) = A,
log p; O; log p;

(4.8)

d’oit 'on tire

. T Ftas+. o
- ’

(4.9) ; "
p;

i=1,2,... k.

En ajoutant z7j, x3, ..., z} donnés par (4.9), ou trouve pour ) la valeur don-
née en (3.2). La solution (x3,x3,...,x;) satisfait la contrainte, autrement

dit

(4.10) xilog2 + x5 log3 + ... + xp log p, = A.

13



On a ensuite avec (3.1)

A= Zx logp; = — (] + a5+ ...+ x3)Pi(\r)
d’ou par (3.20)
(4.11) ritas+ . = - = A

et par (4.9), on obtient (4.6) ; en multipliant (4.8) par x} log p; et en ajoutant,
on obtient (4.7) a l'aide de (4.10). O

Proposition 5. Soit k > 2, (z1,29,...,21) € D(A) (défini par (4.3)),
xy, @y, ..., xy définis par (4.6) et F' définie par (2.1). Alors on a

F(-Tl,ﬂfg,...,.fﬂk) S F(Z’T,x;,,.TZ) QAIng (Zlogplkvz x; |>

k—1

(log p;)? 2
412 < F z; — )2,
( ) — (1:17‘7:27 ) k ZZI 2A10gpk; IZ)
Démonstration. Définissons y = (y1,%2,...,yx) par
k
(4.13) Y1 =121, Y2 = T2, - Yk—1 = Th-1, Zyz logp; = A.
i=1

Comme z € D(A), par (4.3), on a x < yi et la croissance de F' par rapport
a chacune des variables entraine

(4.14) F(zy, 2o, ... x8) < Fy1, Y2, - -+ Uk)-

Posons h; = y; — xf; on a par (4.13) et (4.10)

k k k
(4.15) Zhilogpi:Zyilogpi—fologpi:A—Azo.
i=1 i=1 i=1
Appliquons la formule de Taylor a la fonction F' entre les points y et z* :

(4.16) F(g)—F<ﬁ>=Zh§Z< )+ 5 )
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ot { =0y + (1 —0)z" et 0 <6 < 1. Par (4.8) et (4.15), il suit

bOF
(4.17) Zhax( —)\kZhlogpz—O

=1

Il vient ensuite, par (4.15) et I'inégalité de Cauchy-Schwarz
A togpi \ ) 5 b2 logpi \*
(; hi) - (; & (1 - 10gpk)> Gt ) z;f_ ( 10gpk) .
Mais, pour t = logp’ ,onal<t<let(l—1t)?<1-—t;par(4.2), il suit
’ 02 log p; ) * log pi h;
F1O- W) < ;& ((1_1ngk> - ) ZIngk?
En utilisant encore une fois 'inégalité de Cauchy-Schwarz sous la forme

k 2 k
h; i h? log p;
(S mien) = (3 vemes ‘W;gp) cay e

i=1 i=1 &

(car, par (4.13) et (4.10), 321, &logp; = A) on obtient

k-1 2
1
> il < - > il log p;
Alogp < || ngz> S~ logn ( I ngz>

=1

F(§) - (h) <

ce qui, avec (4.14), (4.16), (4.17) et (4.13), compléte la preuve de la proposi-
tion 5. [

5 Grandes valeurs de la fonction h

Théoréme 1. Soit n un entier, n > 3, et k = w(n) le nombre de facteurs
premiers de n. Alors on a

(logn)'/

. k—1
(7) logh(n) < Aglogn — —5 < Alogn — Clw

ol A\ et A sont définis en (3.2) et (1.10) . D’autre part, pour n > 3, il existe
m <n tel que

(logn)*/*

¥ 1 > Al —(————
) og h(m) > Alogn — Cy og log 1

15



Les constantes positives C et Cy sont absolues.

a1 a2

Démonstration de (i). Soit n=¢{"¢5” ... ¢,". On pose N =pi"p3?...p* <
n. Par (1.7), on a h(N) = h(n), et oy log2+aslog3+. ..+ oy log pr = log N.
Par la proposition 4 avec A = log N, il vient

F(Ofl,O[27. e ,CYk) S )\klOgN
tandis que, par la proposition 1 (i), on obtient

k—1 k—1
log h(n) =log h(N) < A\glog N — 5 < < A logn — 5

Il reste a prouver

k—1 (logn)'/*
5.1 A=)l — > —=—
(5.1) ( ¢)logn + 3 ! log logn
Supposons C; < 0.135. On s’assure que (5.1) est vérifiee pour 3 < n < 15.
On supposera donc que n > 16 > e ce qui implique loglogn > 1. On
observe que (5.1) est vérifice pour k = 1 (car A\; = 0) et pour tout n > 16.
On suppose donc que k > 2. Par la proposition 2, il existe une constante

positive ; telle que l'on ait A — A\, > W (vraisemblablement, v, =
A —X)22 1 (log2)* =0.48...). Si k < (logm)!/2 < logn, on a
loglogn
(5.2) Ao > " _ 71 (log n)Y/A=1
. - /AL log logn
(qzilo)gn) (log logn))‘ 508
tandis que, pour k > %, na’t>*% % ce qui, avec (5.2)

prouve (5.1) et (i) en choisissant C; = min(7,0.135).

Remarque 2. On peut prouver la relation log h(n) < A logn par une autre

méthode en démontrant, pour k fixé, h(n) < n* pour tous les nombres

n ayant au plus k facteurs premiers, et ceci par récurrence sur n. Comme

h(1) = 1, la propriété est vraie pour n = 1. Supposons la vraie jusqu’a n — 1,
a1 o

avec n = ¢7'q5 ...q?j et 7 < k. Par (1.11), I'hypothése de récurrence et
(3.2), il vient

9 (@) E () g
=1 =1 i=1 1

Lemme 2. Soit k un entier positif ; on range les 2% diviseurs de n=pips . . . pi
par ordre croissant : 1 = d; < dy < ... < dor = n. Alors, pour tout i,
1<i<2¥~1, onadiy < 2d,.
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Démonstration. Considérons d; # n; si d; est impair, 2d; est un diviseur
de n, donc d;;1 < 2d;; sinon, soit p; > 3 le plus petit nombre premier
ne divisant pas d;; d;p;/pj—1 est un diviseur de n plus grand que d;, par
conséquent, d;+1 < d;p;/pj—1. Mais, par le postulat de Bertrand (cf. [13], Th.
418), p; < 2pj_1, ce qui achéve la preuve du lemme 2. [J

Démonstration du théoréme 1, (ii) : choix de k. On applique la pro-
position 4 avec A = logn et

(53) - LFUMJ

loglogn
ol k est une constante positive satisfaisant
(5.4) K< Aal/* =0.945. ..

et a est défini en (3.20). On a alors par (4.6) et (4.10)

1
(5.5) L S O U
p;*
et
k
(5.6) fo log p; = logn.
i=1

Par (5.5), (3.3), (3.21), (3.8), (5.3) et (5.4), on a, lorsque n — oo

. . ., aplogn _ alogn alogn Ma
5.7 TI>Ty> .. > = > ~ ~ > 1.
( ) 1 2 k pgk Pé (k? log k’))‘ KA
Par (4.7), il vient
(5.8) F(a7, x5, ... x5) = Mg logn = Alogn — (A — Ag) logn

tandis que, par la proposition 2 et (5.3), lorsque n — oo, on a

1 M (log n)/A—1

(5.9) A=A~ —(A = 1)P' (N 1 (log k)* - —~(A = 1P’ (\)r*loglogn

Par (4.11) et (3.21), on a, lorsque n — oo,

(5.10) x]+ x5+ ...+ a; = ailogn ~ alogn.

17



Nous aurons aussi besoin d’une estimation de Zlelog x;. En notant
O(t) = >_,<,logp la fonction de Chebichev, on a par (5.5),

k k
(5.11) Zlog T = Zlog(ak logn) — A, logp; = klog(aglogn) — A\O(pk).
i=1 i=1
Mais, par le théoréme des nombres premiers (cf. [8], Th. 4.7) et (3.17), on a
O(pk>2 = k(logk +loglogk —1+0(1)), k— o0

(log px)
et (5.11) devient avec (5.3)

O(pr) = pr +

k
1
(5.12) Z log x; = log ay, + loglogn — A (— loglogn + log oy 0(1)) .
i=1

A el

Par (3.21), logay = loga + o(1) et par (5.9) et (5.4), (5.12) donne, pour n
assez grand

(e a

o > \k.

k
(5.13) Zlog x; ~ klog

i=1
Construction de m. k étant défini par (5.3) et x} par (5.5), on pose mg =

[Tieipi - Par (5.6), ona .—— =T[_,p;"  <mo <[[;i_;p;" =n. Soit
d le plus grand diviseur de pips ... p satisfaisant d < n/mg. Par le lemme
2, on ad > n/2mg. On écrit d = Hlepfi, avec ¢; € {0,1}, et 'on pose

m = mod. On a donc

(5.14) n/2 <m=myd <n,

k
(5.15) m = pr“
i=1
avec
(5.16) a; = |z ] + &, ;=0 ou 1,

et, par (5.14), (5.6) et (5.15), il vient

k
m
5.17 “log2 < log 2 = Sy — 27) log pi < 0.
(5.17) og2 <log— =3 (o —a)logp; <

i=1

18



De plus, par (5.16) et (5.7), on a

(5.18) 1<|2f| <a; <1+ |z <1+a <2z, 1<i<k
et
(5.19) o —zf| <1,  1<i<k.

Fin de la démonstration du théoréme 1 (ii). Appliquons la formule de
Taylor; il vient, par (4.2)
(5.20)

k Zk | — T i F i — T
Fla) = F)+ Y (s — o) g (a) + <2(§1+ — gk) -yt

i=1

avec, pour 1 < i <k, & =6a;+(1—0)xf et 0 <6 < 1. On a donc, par (5.18)

(5.21) § 20|z +(1-0) 7] = [27] = 1.

Par (4.8), (5.17) et (3.3), le deuxiéme terme du membre de droite de (5.20)
satisfait

: OF
Z(ai )a (z* )—)\klog—> —Xxlog2 > —Xlog2,
z;

le troisiéme terme est positif et, par (5.19) et (5.21), le quatriéme vérifie
k)2
Sob sl < ko Ainsi, (5.20) entraine

i=1" 2

. k
(5.22) F(g)zF(x_)—)\logQ—§-
Maintenant, par la proposition 1 (ii) et (5.15), il vient

k
1
log h(m) ZF(al,...,ak)—k—ﬁzlogai

qui, par (5.22) et (5.18), donne

logh(m) > F(z7,...,x}5) — )\log2— — = —Zlog (2x})

Par (5.8), (5.9) et (5.13), il en découle log h(m) > Alogn — O(k), ce qui, par
(5.3) achéve la preuve du théoréme 1. O
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6 Propriétés des nombres h-champions

Comme la fonction h ne dépend, par (1.7), que des exposants dans la dé-
composition en facteurs premiers de n, il est clair qu'un nombre h-champion
défini par (1.18) s’écrit

(6.1) N =2%3%__.pi* avecay >ay>...>a;>1 et k=uw(N).
Par ailleurs, il résulte du théoréme 1 (ii) que

lim h(n) = 400

n—oo

et donc, il existe une infinité de nombres h-champions. Si N; désigne le i-éme
nombre h-champion (N; = 1, Ny = 6, N3 = 12, etc..., cf. [5]) on a, pour
1> 1,

Par (1.7), w(n) = 1 implique h(n) = 1; mais h(6) = 2, et donc, pour i > 2,
on a w(N;) > 2, ce qui entraine, par (1.7), h(2N;) > h(N;). Il en résulte que

(6.3) Ny  <2N;,  i>2.

6.1 Encadrement de w(IN)

Proposition 6. Soit N # 1 un nombre h-champion. Alors on a

(log N)'/*

‘ logh(N) > ANog N —
() o8 h(N) = Xog N = (o s

o X est défini en (1.10) et Cy est la constante définie dans le théoreme 1. De
plus, il existe trois constantes positives Cs, Cy et Ny telles que, pour N > Ny,
on ait

g (log N)'/* (log N)V/A
—— < w(N) < COp———"—-
(i) s loglog N — w(N) < Cy loglog N

Démonstration de (i). Appliquons le théoréme 1 (ii). Il existe m < N avec

log h(m) > Alog N — Cy (}nggl}y. Mais, par (1.18), on a h(N) > h(m), ce qui

prouve (i).
Démonstration de (ii). Posons & = w(N). Par le théoréme 1 (i), on a

-1
(6.4) logh(N) < Alog N — (A — Ag)log N — kT
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En comparant avec (i), il vient

(log N)'/*

A— M) log N <
( k) log N < G loglog N

qui, avec la proposition 2, donne

log N)'='/*loglog N

-1 (
(6.5) KA (log k)Y 2 —Cy(A— 1)P'(N)

Mais la fonction y = f(t) = t*!(logt)* est croissante pour ¢ > 1, sa fonction
réciproque f~!(y) satisfait, lorsque y — oo

1

i~ -0 ()

(logy)*

1

A ) ﬁ, (6.5) démontre la minoration

et ainsi, en choisissant C5 < (m

de (ii).
En comparant (6.4) et (i), il vient

k-1 _ (log N)'/*

3 =7 loglog N

ce qui implique la majoration de (ii). O

6.2 Factorisation de N : petits facteurs premiers

Théoréme 2. Soit N un nombre h-champion dont la décomposition en fac-
teurs premiers est donnée par (6.1). On définit X\ et a par (1.10) et (3.20).
Lorsque N — oo, on a

, a (log N)© ,

(Z) OzZ:UpZ(N):—i\lOgN—f—O(]Og—pZ), 1§’l§k—1,
(17) QN)=a1+as+...+ap =alogN + O ((log N)°)
ol

(6.6) c=(1+1/))/2=0857...
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Démonstration de (i). Par la proposition 6 (i) et (3.3), on a , avec k =
w(N) :

(log N)'/*
loglog N

(log N)'/*

. > -
(6.7) log h(N) > Alog N — C loglog N

Z /\kIOgN—OQ

Maintenant, par la proposition 5, avec A =log N, k = w(N) et z; défini par
(4.6), on a, par (4.7), F(x}, x5, ..., x5) = A\ log N et

(6.8) Flai,az,...,a;) < Aglog N — 210gNlogp (Zlogplml L |>

Par la proposition 1 (i), (6.7) et (6.8), on obtient

(log N)VA
6.9 E log p;|c; —_—
(6.9) 210gNlogp ( ogpil — |> loglogN

Par la propositions 6 (i), on a w(N) =< (log N)1/

ce qui entraine par (3.8),

loglog N
lorsque N — oo,
1
(6.10) log py, ~ log(klogk) ~ log k ~ X loglog N.
De (6.9) et (6.10), on déduit
(6.11) > lai = aj|log p; = O((log N))

ou ¢ est donné en (6.6). Pour démontrer (i), on remarque que, par (4.6),
(6.11) entraine, pour 1 <i <k —1,

log N)°
(6.12) ai—a—/\klogN:(9<(Og ) )

Ensuite par le théoréme des accroissements finis appliqué a la fonction ¢ —
p; ', les propositions 2, 3 et 6 (ii) ainsi que (6.10), on a pour 1 <i < k,

@ _af| _ ’(1 1)a+(a )
log p; ar —a
< B+ P < - Aaslog e+ (o - a)
p; ‘
(6.13) =0 : =0 1
- = \E s ) T\ wee i)
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Finalement, (6.12) et (6.13) entrainent (i), car, par (6.10), logp; < logpx =
O(loglog N) et 1/X < c.

Démonstration de (ii). On remarque d’abord que, par (4.11) et (4.10), on
a Zle i = aplog N et Zle x;logp; = log N, ce qui, par (6.1) et (6.11),
entraine

|Q(N) —aplog N| =

i=1 =1
k-1 k-1 log p;
(6.14) < ;]ai—xﬂ < ;\ai—xﬂlogz = O((log N)°).

Ensuite, par les propositions 3 et 6 (ii), on a, comme en (6.13)

1 1
o=@ =0 (k“aogkw) =0 (aogN)“/A)

qui, avec (6.14), achéve la preuve du théoréme 2. [J

6.3 Factorisation de N : grands facteurs premiers

Théoréme 3. Soit N un nombre h-champion dont la décomposition en fac-
teurs premiers est donnée par (6.1). Alors, pour N assez grand, on a

(6.15) ap = 1.

De plus, si P; désigne le plus grand nombre premier tel que P]J divise N
(d’apres (6.1), Py = py), alors, pour j fixé, j > 1, on a , lorsque N — o0,

(6.16) Py ~ (a % ) ~ P,

oti X et a sont définis par (1.10) et (3.20) (a*/* = 0.676..., 27V/* =
0.609..., 37Y*=0.456..., etc...). Il en résulte que

g NV o o (log N)'

6.17 E=w(N)~A . .
( ) w(N) ¢ loglog N log log N

Démonstration. Par la proposition 6 (ii), £ = w(N) tend vers I'infini avec
N et, par (3.8), on a pour N assez grand

M def Npk+1pk+2 <N,
2DkPr—1
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ce qui implique, par (1.7) et (1.18)

Q1010
6.18 h(M) = h(N) < h(N).
( ) ( ) o +ag 4+ ..+ o ( ) ( )

Appliquons maintenant le théoréme 2 : lorsque N — o0, on a o)

a1
autaat..tor 9N — 2.63... et donc,
aq

(6.19) ap +ag+ ...+ ag < 3ag

pour N assez grand. Il résulte de (6.1), (6.18) et (6.19) que

ar+ae+ ...+«
1§az§akak,1< ! 2 k<3,
aq

ce qui prouve (6.15).

Remarque 3. D’aprés la table numérique (cf. [5]), il semble que les seuls
nombres h-champions pour lesquels aj > 2 soient

N N h(N)
3175200 | 27375272 540 540
6 350 400 | 2635272 | 1261 260

12 700 800 | 27345272 | 2 702 700
19 051 200 | 26355272 | 3 783 780
38102400 | 2735272 | 8 648 640

Démontrons maintenant (6.16). Fixons j; on désigne par i = i(j) le rang
du nombre premier P;, autrement dit,

(6~20) P;=pi = YZ16)
et, par la définition de P;, on déduit de (6.1)
(621) a; Z ] et [e7A} S j — 1.

Il résulte du théoréme 2 (i) que ¢ = i(j) et donc aussi p; tendent vers I'infini
avec N et, par le théoréme des nombres premiers, p;1/p; tend vers 1. Le
nombre }zgg étant irrationnel, si 'on ordonne les nombres de la forme 2*3"
(u, v entiers, u,v > 0) en une suite croissante (7,)n>1, on a lim == =1 (cf.
[32]). En conséquence, a tout £, 0 < € < 1, on peut associer N. tel que, pour
N > N, il existe des entiers u, v, u’, v’ satisfaisant

(6.22) (1 —e)p; < 23" < p; < pis1 < 293" < pia(1+¢) < pi(1+ 2¢).
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Comme i < k, de (6.22) et (6.10) on déduit

(6.23) u,v,u’,v" = O(loglog N).

On considére alors les deux nombres

N2u3v _ Npina

<N t M =
2 ’ 23"

(6.24) M = <N.

Par (1.18), (1.7) et (6.21), il vient en posant © = Q(N)

1>h(M) _ a(Q+1) ... (Q+u+v-—1)
h(N) (o +1)... (g +u)(ag+1)... (a2 +0)
jQu-‘,—v—l

(6.25)

(ar + u)*(as + v)¥

Par (6.23) et le théoréme 2, on a

- (57) (o))~ (755)

et, similairement, (ag + v)" ~ (%—%N)U et QU= ~ (alog N)“t*~1 La rela-

2
(n +u)" = afexp(ulog(l+ ozi)) < of exp <Z_>
1

tion (6.25) entraine alors 1 2 ]((12—3)A, c’est-a-dire 243V < (@) , ce qui,

log N
avec (6.22) donne

1 alog N /A
6.26 P =p; < _

On procéde de méme pour M’ défini en (6.24) : on a

1> h(M") _ (g —u' +1)... (a1 + Dag(ag —v" + 1) ... (g + 1)y
h(N) 14+ ) —1)... (2 —u —v' +2)
S (o —u') (g — V')V _ alogN
- jQuLF’U/*l j(2u/3v/))\

qui, avec (6.22) donne

1 alog N /A
6.27 P =p;, > _
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Comme ¢ peut étre choisi arbitrairement petit, (6.26) et (6.27) prouvent

(6.16). En utilisant (3.8), on a k ~ 2 = P et ainsi, (6.17) découle de
08 Pk og [

(6.16) avec j = 1. O

Remarque 4. Le résultat (6.16) du théoréme 3 peut s’exprimer en d’autres
termes : pour chaque j fixé, la proportion % d’exposants exacte-
ment égaux a j dans la décomposition en facteurs premiers d’un nombre

h-champion satisfait

m(P;) — m(Pjy1) I 1 _/j+1 dt
m(P) UG+ AL/

Pour les nombres highly factorable, qui sont les champions pour la fonction

d’Oppenheim, la conjecture énoncée dans [2] et prouvée dans [20] donne pour
—1_ 1 _ (itldt,
B

Si 'on remplace dans (6.24) p; et p;41 par des produits de nombres pre-
miers consécutifs, en utilisant le résultat de [32] et le théoréme des nombres

premiers dans des petits intervalles, il est possible d’améliorer (6.16) en
/A
P = <‘“°jgN> (1+(fg%> avec 3 > 0.

cette proportion la valeur asymptotique 1/(5(j + 1))

6.4 Estimation de Q(X)

Soit Q(X) le nombre de nombres h-champions inférieurs & X. Il résulte
de (6.3) que Q(X) > log X. D’autre part, les nombres h-champions sont de
la forme (6.1), et, par [11] ou [27], on a

2m log X
V3 \ loglog X |~

Q(X) < exp ((1 +o(1))—%

A Taide des résultats précédents, nous pouvons montrer

Proposition 7. Il existe un nombre réel positif 6 (6 = 0.059 convient) tel
que, pour X assez grand

(i) Q(X) = (log X)***.
Pour X assez grand, on a
(i1) log Q(X) = O ((log X)C/Q) .

ol ¢ a été défini en (6.6).
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Démonstration. Soit N un nombre h-champion assez grand. Nous allons
montrer que le nombre h-champion N’ suivant N satisfait

2nloglog N)

(6.28) N <N (1 + Mo Ny

ol 7 est un nombre réel positif & préciser. En effet, par le théoréme des
nombres premiers, entre (log N)" et 2(log N)”, il y a un nombre de nombres
premiers équivalent a n(llgggl]:g)j\, et donc, si N est assez grand, il existe deux

nombres premiers consécutifs p, et p,.1 satisfaisant

(6.29) (log N)" < p, <pr +2 < pry1 <2(logN)"
et
(630) Dr <D+ 2 < DPr+1 < Dr + 277 1Og 1Og N.

Par le théoréme des accroissements finis et (6.29), on a

- 22 A2
6.31 A A > (Pl T P _
O3 PR 2 AT 2 g N (log Ny
et, si I'on choisit
1— A1
(6.32) ¢ _ = 0.0594. ..

< =
TSXF1 T 2011
il résulte de (6.31) et du théoréme 2 (i) que, dans (6.1), on a
(6.33) o, — gy > 2 aX(log N7 L O(log N)© > 2

pour N assez grand.
Considérons le nombre

M= S N

Dr
Par (1.7) et (6.33), on a
Qy
h(M)=———=h(N) > h(N
(M) = "L HN) > h(Y)

et, par (6.2), (6.30) et (6.29), le nombre h-champion N’ suivant N vérifie

. + 2nloglog N 2nlog log N
(631) N< N <M< N (PranoslosN) oy 2noslosll
pr (log V)7
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ce qui établit (6.28).
Soit NV; le i-éme nombre h-champion. Pour prouver (i), écrivons les nom-
bres h-champions entre v X /2 et X :

VX

N, < N < Nuy1 < Nygo <o < Nypy < X < Ny

En choisissant § < 7, par (6.34), on aura pour X assez grand

Nuyti 2nlogl X /2 1

uritl p o 21708 08(VX/2) <1+ -(logX)™, 1<i<w
Nui (log(v'X/2))" 2

et, par (6.3), f_f < N;j\;fu“ < Nﬁﬁfl < (1+ 3(log X)™)* qui donne Q(X) >
3 log X 146 : :

v > bg(lﬁ%(T)_‘;) > (log X)'*° et démontre (i).

Avant de démontrer (ii), établissons le lemme suivant

Lemme 3. Le nombre de solutions v(n, k) de l’inéquation diophantienne
(6.35) X1+ a0+ ... +ap<n, x1>10>...22, >0, eta; €N

satisfait pour tout k

(6.36) vin k) =0 (exp <7r 2?71)) :

Démonstration. Le nombre de solutions de I’équation diophantienne x; +
To+...+xp=m, x> 29> ...> x5 > 0, est le nombre de partitions de m
en au plus k parts (cf. [4], p. 105) et est majoré par p(m), le nombre total de
partitions de m. Comme p(m) est une fonction croissante de m, le nombre
v(n, k) de solutions de (6.35) satisfait v(n, k) —1 < p(1)+p(2)+...+p(n) <
np(n) et (6.36) résulte de la formule classique de Hardy et Ramanujan (cf.

[12) p(n) ~ 3= exp (7? %n) O

Démonstration de la proposition 7 (ii). Soit X assez grand et N un
nombre h-champion inférieur & X. On pose A =log N ; pour 1 <1 < k, on
définit =} par (4.6) et «o; par (6.1).

Soit J un nombre entier, J > 3; on a, par (3.3), Ay > A3 > 1. On
s’'intéresse a la somme

(6.37) Ty=T;N)= > .

i=J+1
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SiJ>k,onaT;=0etsiJ <k, onapar (6.11), (6.10), (6.15) et (4.6)

k-1
T, < ) a;logp; + axlogpy
i=J+1
k—1
< Y ajlogp;+ O((log N)°)
i=J+1
Lo
(6.38) = aplogN Z g/\fz—i-O((logN)c).
i=J+1 Pi

Maintenant, on a par (3.3), (3.1), (1.8), (3.12) et la proposition 2

k—1 00

log p; log p; 1 1
Z Ak S Z AJg - Pl]()\J) - P/()\J) =0 F =0 Jr-1
i=J+1 D; i=J+1 D;

et (6.38) entraine

(6.39) T,=0 (13‘3_]1[) + O((log N)°).

Fixons
J = [(log X)7]
avec, par (6.6) et (1.10),
1—-c 1
=31 —5—0.357...
Pour chaque nombre h-champion N < X, la somme T;(N) satisfait par
(6.39)

(6.40) v

TJ(N) = dj41 +&J+2+...+()Zk = O((lOgX)C>

et, par le lemme 3, le nombre de choix possibles pour aiyy1, ajyo,. .., a est
(6.41) exp(O((log X)</?)).
Ensuite, par (6.1) et le théoréme 2 (i), en notant que 55 < 0.219 < %, on a
log X
aj<aj1<...<ap<a <
et le nombre de choix possibles pour aq, as,...,a  est majoré par
log X ! (log X))
(6.42) 1+ 5 < (log X)) = exp((log X)” log log X).

On déduit alors de (6.41) et (6.42) que Q(X) < exp((log X)7loglog X +
O((log X)¢/?)) et comme, par (6.40), on a v < ¢/2, cela prouve (ii). O

29



6.5 Table des nombres h-champions

La méthode utilisée par M. Deléglise pour construire la table des nombres
h-champions (cf. [5]) consiste & déterminer par backtracking tous les nombres
entiers de la forme (6.1) et inférieurs a une borne donnée X. Ensuite, a 'aide
de la fonction h, les non champions sont éliminés par (1.18). A T'aide de
MAPLE, pour X = [[22,pi = 3.2- 10°, ont été trouvés 814236 nombres de
la forme (6.1) et, parmi eux, 785 nombres h-champions; le plus grand est
Nogs = 22431456 .75 . 112.132. 17 19 - 23,

7 Problémes ouverts

1. Existe-t-il une constante C' telle que, lorsque le nombre h-champion N
tend vers l'infini, on ait

(log N)'/*,

(7.1) log h(N) = Alog N — (C + o(1)) log log N

Par la proposition 6 (i) et le théoréme 1 (i), on a €} < C' < Cs.

2. Est il possible de montrer que tous les nombres hA-champion dont les ex-
posants dans la décomposition en facteurs premiers sont supérieurs ou égaux
a 2 sont les cinq nombres tabulés dans la remarque 37 La démonstration de
(6.15) est effective, mais le calcul d’une borne pour sa validité serait pénible.

3. Dans son article [26], S. Ramanujan appelle superior highly composite
un nombre N pour lequel il existe ¢ > 0 tel que pour tout M > 1 on ait
T](\%) < T](VJZ), ou 7(n) est le nombre de diviseurs de n. Nous n’avons pas réussi
a généraliser cette notion a la fonction h. En fait, pour p < A, il résulte de
la proposition 6 (i) que lim(log h(n) — plogn) = +oo tandis que pour p > A,
par le théoréme 1 (i), la fonction log h(n) — plogn atteint son maximum en
n = 1. On peut définir un nombre h-superchampion N s’il existe p > 0 tel

que, pour tout M > 1 on ait

(7.2) log h(M) — plog® M < log h(N) — plog® N.

Il est facile de voir qu’un tel nombre N est h-champion, mais ses proprié-
tés sont moins simples que celles des nombres superior highly composite de
Ramanujan.

4. Nous avons montré (proposition 7) que Q(X) > (log X)'*° pour X assez
grand. Existe-t-il une constante v > 0 telle que Q(X) < (log X)”? Pour

X < 10%, la quantité iiﬁ(g);) n’excéde pas 1.573 tandis que, si 'on admet
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que le théoréme 2 (i) est vraie pour ¢ = 0, la proposition 7 (i) donnerait
Q(X) > (log X)L,

5. Nous avons donné en 6.5 un algorithme de calcul des nombres h-champion.
Peut on 'améliorer 7 En particulier, peut on donner une forme effective au
théoréme 2 de facon a restreindre les nombres candidats & un sous-ensemble
de I'ensemble des nombres satisfaisant (6.1) 7

6. P. Erdés a posé le probléme suivant : dans la formule (1.12), on restreint
la somme aux f(x) plus grandes valeurs de h(n) pour 1 < n < x. Quelle est
la valeur minimale de f(x) telle que la somme soit encore égale au second
membre de (1.12) 7
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