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Abstract. Among various fonctions used to count the factorizations of an
integer n, we consider here the number of ways of writing n as an ordered
product of primes, which, if n = qα1

1 qα2
2 . . . qαk

k , is equal to the multinomial
coe�cient h(n) =

(α1 + α2 + · · ·+ αk)!

α1! α2! · · · αk!
. The function P (s) =

∑
p prime p−s,

sometimes called the prime zeta function, plays an important role in the
study of the function h. We denote by λ = 1.399433 . . . the real number
de�ned by P (λ) = 1. The mean value of the function h satis�es 1

x

∑
n≤x

h(n) ∼

− 1

λP ′(λ)
xλ−1. In this paper, we study how large h(n) can be. We prove that

there exists a constant C1 > 0 such that, for all n ≥ 3, log h(n) ≤ λ log n −
C1

(log n)1/λ

log log n
holds. We also prove that there exists a constant C2 such that, for

all n ≥ 3, there exists m ≤ n satisfying log h(m) ≥ λ log n− C2
(log n)1/λ

log log n
· Let

us call h-champion an integer N such that M < N implies h(M) < h(N). S.
Ramanujan has called highly composite a τ -champion number, where τ(n) =∑

d |n 1 is the number of divisors of n. We give several results about the
number of prime factors of an h-champion number N , about the exponents
in the standard factorization into primes of such an N and about the number
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et par l'action de coopération franco-algérienne 01 MDU 514, Arithmétique, Géométrie
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Q(X) of h-champion numbers N ≤ X. At the end of the paper, several open
problems are listed.

1 Introduction

1.1 Diverses fonctions de factorisation

La fonction de factorisation la plus classique est le nombre de diviseurs
de l'entier n :
(1.1) τ(n) =

∑
d |n

1

qui est aussi le nombre de solutions de l'équation diophantienne x1x2 = n en
entiers positifs x1 et x2.

Pour r ≥ 2, le nombre de solutions de l'équation diophantienne
(1.2) x1x2 . . . xr = n

est τr(n), le nombre de décomposition de n en produit de r facteurs. On a
τ2(n) = τ(n), et la série génératrice vaut

(1.3)
∞∑

n=1

τr(n)

ns
= (ζ(s))r

où ζ(s) =
∑∞

n=1 1/ns est la fonction de Riemann.
La fonction de Kalmár (cf. [18], [19], [17] et [10]) f̂K(n) compte le nombre

de solutions de (1.2) pour tout r, mais avec la restriction que chaque facteur
xi doit véri�er xi ≥ 2. Ainsi, f̂K(12) = 8 et les 8 factorisations de 12 sont :
12 = 6 · 2 = 4 · 3 = 3 · 4 = 3 · 2 · 2 = 2 · 6 = 2 · 3 · 2 = 2 · 2 · 3. La fonction
de Kalmár satisfait f̂K(n) = 1

2

∑
d |n f̂K

(
n
d

) pour n ≥ 2 avec f̂K(1) = 1 et sa
série génératrice est

(1.4)
∞∑

n=1

f̂K(n)

ns
=

1

2− ζ(s)
·

Elle est reliée à la fonction τr par la formule

f̂K(n) =
1

2

∞∑
r=1

τr(n)

2r
pour n ≥ 2.

La fonction d'Oppenheim (cf. [25], [2] et [14]), f̂O(n), a la même dé�ni-
tion que celle de Kalmár, mais, cette fois, l'ordre ne compte pas : les trois
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factorisations de 12 : 3 ·2 ·2, 2 ·3 ·2 et 2 ·2 ·3 ne comptent que pour une. Ainsi,
12 n'a plus que 4 factorisations d'Oppenheim : 12 = 6 · 2 = 4 · 3 = 3 · 2 · 2 et
f̂O(12) = 4. Elle a pour série génératrice (cf. [23])

(1.5)
∞∑

n=1

f̂O(n)

ns
=
∏
n≥2

(
1− 1

ns

)−1

.

Soit A ⊂ {2, 3, 4, . . .} ; dans [16] et [9] (cf. aussi [21] et [22]), E. Hille et P.
Erd®s ont généralisé la fonction de Kalmár en dé�nissant la fonction fA(n)
qui compte le nombre de solutions de (1.2) pour tout r, avec la restriction que
chaque xi doit véri�er xi ∈ A. La fonction de Kalmár apparaît ainsi comme
f̂K(n) = fN\{0,1}(n). La formule (1.4) se généralise sous certaines conditions :

(1.6)
∞∑

n=1

fA(n)

ns
=

1

1− ζA(s)
avec ζA(s) =

∑
n∈A

1

ns
·

1.2 La fonction h = fP

Soit P = {2, 3, 5, 7, 11, 13, . . .} l'ensemble des nombres premiers. Dans cet
article, nous nous intéresserons essentiellement à la fonction fP(n), que nous
appellerons h(n) et qui est donc le nombre de solutions de (1.2) en nombres
premiers x1, x2, . . ., xr. Soit n = qα1

1 qα2
2 . . . qαk

k et Ω(n) = α1 + α2 + . . . + αk.
La seule possibilité d'écrire n sous la forme (1.2) avec x1, x2, . . ., xr premiers
est de prendre r = Ω(n) et de choisir α1 variables xi égales à q1, α2 égales à
q2,. . ., αk égales à qk. Le nombre de façons de faire ces choix est le coe�cient
multinomial (cf. [4], p. 38) et l'on a donc

(1.7) h(n) =

(
α1 + α2 + . . . + αk

α1, α2, . . . , αk

)
=

(α1 + α2 + . . . + αk)!

α1! α2! · · · αk!

pour n ≥ 2 et h(1) = 1. Nous dé�nissons

(1.8) P (s) = ζP(s) =
∑
p∈P

1

ps
=

1

2s
+

1

3s
+

1

5s
+

1

7s
+ . . . , <s > 1

La fonction P est quelquefois appelée la fonction ζ des nombres premiers (cf.
[28], p. 69). La série génératrice de h(n) est, d'après (1.6)

(1.9)
∞∑

n=1

h(n)

ns
=

1

1− P (s)
, <s > λ
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où λ est dé�ni par

(1.10) P (λ) = 1, λ = 1.399433 . . . ,

et l'on a

(1.11) h(n) =
∑

p∈P, p |n

h

(
n

p

)
pour n ≥ 2.

Il résulte de (1.9) que

(1.12)
∑
n≤x

h(n) =
−1

λP ′(λ)
xλ(1 + o(1)), x →∞

cf. [22], où est aussi étudié l'ordre normal des fonctions f̂K , f̂O et h.

1.3 Grandes valeurs des fonctions de factorisation

S. Ramanujan fût le premier, dans [26], à étudier de façon extensive les
grandes valeurs de la fonction τ dé�nie par (1.1). Pour cela, il a introduit
les nombres hautement composés (un nombre N est dit hautement composé
si M < N =⇒ τ(M) < τ(N)) et donné de nombreuses propriétés de ces
nombres.

Diverses généralisations des idées de S. Ramanujan ont été développées
(cf. [24]), essentiellement en remplaçant la fonction τ par une autre fonction
arithmétique. Les grandes valeurs de τr, dé�nie par (1.3), sont étudiées dans
[6].

Les grandes valeurs de la fonction d'Oppenheim sont étudiées dans [2] et
[20]. Quant à la fonction de Kalmár, à la �n de [9], pp. 992�993, P. Erd®s dit
qu'il sait démontrer qu'il existe deux constantes c1 et c2, 0 < c1 < c2 < 1,
telles que, pour une suite in�nie de valeurs de n, on aît

(1.13) f̂K(n) >
nρ

e(log n)c1

(où ρ = 1.728647 . . . est dé�ni par ζ(ρ) = 2) et que, pour tout n > n0,

(1.14) f̂K(n) <
nρ

e(log n)c2
·

Les grandes valeurs de la fonction de Kalmár ont été précisées par R. Evans
(cf. [10], Th. 6 et 7).
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1.4 Grandes valeurs de la fonction h

Nous nous proposons dans cet article d'étudier les grandes valeurs de la
fonction h dé�nie par (1.7), autrement dit, de résoudre le problème d'opti-
misation en nombres entiers

(1.15)
{

n ≤ X
max h(n).

Soit p1 = 2, p2 = 3,. . . , pk le k-ième nombre premier. Par (1.7), le problème
(1.15) est, pour k assez grand, équivalent à

(1.16)
{

x1 log 2 + x2 log 3 + . . . + xk log pk ≤ log X

max log
(

(x1+x2+...+xk)!
x1! x2! ···xk!

)
où les inconnues xi sont des entiers positifs ou nuls. Grâce à la formule de
Stirling, nous remplaçons dans (1.16) la fonction à optimiser par une fonction
plus grande, F (x1, x2, · · · , xk), dé�nie en (2.1) ci-dessous. Le problème

(1.17)
{

x1 log 2 + x2 log 3 + . . . + xk log pk ≤ log X
max F (x1, x2, · · · , xk)

a une solution simple, x∗1, x
∗
2, . . . , x

∗
k, donnée au �4, qui permet de majorer

h(n). Pour une valeur de k convenable, en choisissant pour αi un entier voisin
de x∗i , on construit des nombres entiers n = pα1

1 pα2
2 . . . pαk

k avec une grande
valeur de h(n).

Au paragraphe 6, nous étudierons les propriétés des nombres h-champion.
Un nombre N est dit h-champion si

(1.18) M < N =⇒ h(M) < h(N).

Nous montrons que le nombre ω(N) de facteurs premiers d'un nombre h-
champion satisfait ω(N) ∼ λa1/λ (log N)1/λ

log log N
et que Ω(N), le nombre de facteurs

premiers comptés avec multiplicité, satisfait Ω(N) ∼ 2λa log N , où a est une
constante dé�nie au paragraphe 3. Nous donnons en�n un encadrement (assez
grossier) pour Q(X), le nombre de nombres N ≤ X qui sont h-champions.

Le pragraphe 7 présente une liste de problèmes ouverts.

1.5 Notations et remerciements

Nous noterons btc la partie entière du nombre réel t. Dans tout l'article,
on désigne par pk le k-ième nombre premier (p1 = 2, p2 = 3, etc... ) et
par q1, q2, . . . , qk des nombres premiers quelconques. La décomposition en
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facteurs premiers d'un entier générique n sera notée n = qα1
1 qα2

2 . . . qαk
k , q1 <

q2 < . . . < qk. On désigne par vp(n) la valuation p-adique de n et par ω(n)
(resp. Ω(n)) le nombre de facteurs premiers (resp. comptés avec multiplicité)
de n. En�n, N désignera toujours un nombre h-champion.

Une partie des travaux exposés dans cet article a été développée par le
deuxième auteur lors d'un séjour à l'Université du Witwatersrand de Johan-
nesburg en avril 1992. Nous avons donc plaisir à remercier A. et J. Knopf-
macher, et R. Warlimont pour les discussions et échanges sur ce sujet ainsi
que P. Erd®s, très intéressé par les grandes valeurs de la fonction h. Nous
avons plaisir également à remercier M. Deléglise pour son aide, notamment
dans la construction de la table des nombres h-champion, L. Ri�ord pour
ses remarques sur les problèmes d'optimisation et l'arbitre qui nous a signalé
une erreur dans le développement asymptotique (3.18).

2 Approximation de log (h) par F

Proposition 1. Soit la décomposition en facteurs premiers de n = qα1
1 qα2

2 . . .
qαk
k et h(n) dé�ni par (1.7). Soit x1, x2, . . . , xk des nombres réels positifs ou
nuls ; on pose
(2.1)

F (x1, x2, . . . , xk) = (x1 + x2 + . . . + xk) log(x1 + x2 + . . . + xk)−
k∑

i=1

xi log xi

avec la convention t log t = 0 si t = 0. Alors, pour tout n ≥ 2, on a

(i) log h(n) ≤ F (α1, α2, . . . , αk)−
k − 1

3
≤ F (α1, α2, . . . , αk)

(ii) log h(n) ≥ F (α1, α2, . . . , αk)− k − 1

2

k∑
i=1

log αi.

Démonstration. Nous utiliserons la formule valable pour tout m ≥ 1

(2.2) mm exp(−m)
√

2πm ≤ m! ≤ e mm exp(−m)
√

m.

La formule (2.2) se déduit de la formule de Stirling classique (cf. [1], 6.1.38),
valable pour m ≥ 1

(2.3) m! = mm exp(−m)
√

2πm exp

(
θ

12m

)
avec 0 < θ < 1
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car, pour m ≥ 2,
√

2π exp(1/24) = 2.61 . . . < e, et pour m = 1, la majoration
dans (2.2) est évidente.
Majoration. Lorsque k = 1, on a h(n) = 1, F (α1) = 0 et (i) est véri�ée.
Nous pouvons donc supposer k ≥ 2.

En utilisant (1.7), (2.2) et (2.1), il vient

(2.4) h(n) ≤ exp (F (α1, α2, . . . , αk))
e
√

α1 + α2 + · · ·+ αk

(2π)
k
2
√

α1 α2 · · ·αk

·

Mais, αi ≥ 1, et
α1 + α2 + · · ·αk

α1 α2 · · ·αk

=
α1

α1 α2 · · ·αk

+ . . . +
αk

α1 α2 · · ·αk

≤ k ≤ 2k−1

et (2.4) entraîne, car k ≥ 2,

h(n) exp(−F (α1, α2, . . . , αk)) ≤ e2
k−1
2 (2π)−k/2 =

e√
2

π
1−k
3

π
k+2
6

≤ e√
2π2/3

π
1−k
3 ≤ e

1−k
3

ce qui prouve (i).
Minoration. Par (1.7), (2.2) et (2.1), il vient

h(n) exp (−F (α1, α2, . . . , αk)) ≥
√

2π(α1 + α2 + · · ·αk)

ek
√

α1 α2 · · ·αk

≥ 1

ek
√

α1 α2 · · ·αk

ce qui prouve (ii). �

3 Étude de λ et λk

Soit p1 = 2, p2 = 3, . . . , pk le k-ième nombre premier. Pour k ≥ 1, on
pose :

(3.1) Pk(s) =
k∑

j=1

1

ps
j

.

Pour chaque k �xé, la fonction Pk(s) décroît de k à 0 lorsque s varie de 0 à
+∞ ; elle admet donc une fonction réciproque P−1

k (y) dé�nie pour 0 < y ≤ k.
On pose

(3.2) λk = P−1
k (1), autrement dit Pk(λk) = 1.
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La série ∑∞
j=1

1
ps

j
converge normalement pour s ≥ s0 > 1 et donc la suite

des sommes partielles (Pk(s))k≥1 converge uniformément vers P (s) pour s ≥
s0 > 1 ; par les méthodes habituelles de l'analyse, il est facile de montrer

(3.3) λ1 < λ2 < . . . < λk < . . . < λ et lim
k→∞

λk = λ.

On a
k = 1 2 3 4 5 10 100 1000 10000
λk = 0 0.788 1.033 1.147 1.201 1.304 1.384 1.396 1.398

La valeur numérique de λ donnée en (1.10) peut être calculée avec précision
à l'aide de la formule ([28], p. 70)

(3.4) P (s) =
∞∑

m=1

µ(m)

m
log ζ(ms)

par les méthodes indiquées dans [3].
Proposition 2. Soit k ≥ 1, λk dé�ni par (3.2) et λ par (1.10). Lorsque
k →∞, on a

(3.5) λ− λk ∼
1

−(λ− 1)P ′(λ)kλ−1 (log k)λ
=

1.44617 . . .

kλ−1 (log k)λ

Démonstration. Soit π(x) le nombre de nombres premiers inférieurs ou
égaux à x. Le théorème des nombres premiers (cf. [8], Th. 4.7) donne

(3.6) π(x) = Li(x) + R(x)

où le logarithme intégral Li est dé�ni en [1], p. 228 et

(3.7) R(x) = Oν

(
x

(log x)ν

)
où ν est un nombre réel �xé supérieur à 1. Cela entraîne pour le k-ième
nombre premier pk

(3.8) pk ∼ k log k et log pk ∼ log k lorsque k →∞.

Introduisons l'exponentielle intégrale (cf. [1], p. 228)

(3.9) E1(x) =

∫ ∞

x

e−t

t
dt, x > 0,
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dont le développement asymptotique est

(3.10) E1(x) = e−x

(
1

x
− 1

x2
+

2

x3
− 6

x4
+ . . .

)
, x → +∞.

Considérons d'abord la quantité P (s) − Pk(s) ; en utilisant l'intégrale de
Stieltjes, (3.6), (3.9), (3.10) et (3.7), il vient pour s ≥ s0 > 1

P (s)− Pk(s) =
∞∑

j=k+1

1

ps
j

=

∫ ∞

p+
k

d[π(t)]

ts

=

∫ ∞

pk

dt

ts log t
+

∫ ∞

p+
k

d[R(t)]

ts

= E1((s− 1) log pk)−
R(p+

k )

(p+
k )s

+

∫ ∞

pk

sR(t)

ts+1
dt

= E1((s− 1) log pk) +
Oν,s0(1)

ps−1
k (log k)ν

·(3.11)

De même, on a pour s ≥ s0 > 1

P ′
k(s)− P ′(s) =

∞∑
j=k+1

log pj

ps
j

=

∫ ∞

p+
k

d[π(t)] log t

ts

=

∫ ∞

pk

dt

ts
+

∫ ∞

p+
k

d[R(t)] log t

ts

=
1

(s− 1)ps−1
k

+
Oν,s0(1)

ps−1
k (log k)ν−1

·(3.12)

Par la formule de Taylor, on a

(3.13) Pk(λk)− Pk(λ) = (λk − λ)P ′
k(λ) +

(λk − λ)2

2
M ′

avec M ′ = P ′′
k (ξ) et λk < ξ < λ. On a donc, pour k ≥ 3

(3.14) 0.182 . . . =
(log 2)2

2λ
= P ′′

1 (λ) < M ′ < P ′′(λ3) = 926.56 . . .

De (1.10) et (3.2), on déduit Pk(λk) − Pk(λ) = P (λ) − Pk(λ) et (3.11) et
(3.12) (en prenant s = λ) donnent avec (3.13)

(λk − λ)

[
P ′(λ) +

1

(λ− 1)pλ−1
k

+
Oν(1)

pλ−1
k (log k)ν−1

+
λk − λ

2
M ′
]
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(3.15) = E1((λ− 1) log pk) +
Oν(1)

pλ−1
k (log k)ν

·

Lorsque k →∞, par (3.3), λk − λ → 0 et (3.15), (3.10) et (3.8) entraînent

−(λ− λk)P
′(λ) ∼ E1((λ− 1) log pk) ∼

1

(λ− 1)kλ−1(log k)λ
,

ce qui prouve (3.5). �

Remarque 1. Compte tenu de (3.5), (3.15) donne le résultat plus précis

(3.16) λ− λk =
E1((λ− 1) log pk)

−P ′(λ)
+

Oν(1)

kλ−1(log k)λ+ν−1

pour tout ν > 1. En utilisant le développement asymptotique de Cipolla (cf.
[7])

(3.17) pk ∼ Li−1(k) = k

(
L1 + L2 − 1 +

L2 − 2

L1

+O
(

L2
2

L2
1

))
avec L1 = log k et L2 = log log k, on déduit de (3.10) et (3.16)

(3.18) λ− λk =
−1

(λ− 1)P ′(λ)kλ−1(L1)λ

(
1−

λL2 + λ(2−λ)
λ−1

L1

+O
(

L2
2

L2
1

))
.

En utilisant les inégalités (cf. [30], p. 69 et [7]) :

(3.19) k(log k + log log k − 1) ≤ pk ≤ k(log k + log log k), k ≥ 6,

on peut obtenir un encadrement e�ectif de λ− λk (cf. [15]).
Proposition 3. Soit k ≥ 1, λ, λk, P et Pk dé�nis par (1.10), (3.2), (1.8) et
(3.1). On dé�nit a et ak par

(3.20) a =
−1

P ′(λ)
= 0.5776486 . . . et ak =

−1

P ′
k(λk)

·

On a

(3.21) a1 > a2 > . . . > ak > . . . > a, lim
k→∞

ak = a

et lorsque k →∞

(3.22) ak − a ∼ 1

(λ− 1)(P ′(λ))2(k log k)λ−1
=

0.835378 . . .

(k log k)λ−1
·
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Démonstration. On a
k = 1 2 3 4 5 10 100 1000 10000
ak = 1.443 1.158 1.003 0.920 0.869 0.759 0.629 0.595 0.584

En remarquant par (3.1) et (3.2) que l'on a

(3.23) λk+1 = P−1
k

(
1− 1

p
λk+1

k+1

)
,

il vient par le théorème des accroissements �nis

P ′
k+1(λk+1)− P ′

k(λk) = − log pk+1

p
λk+1

k+1

+ P ′
k(λk+1)− P ′

k(λk)

= − log pk+1

p
λk+1

k+1

+ P ′
k ◦ P−1

k

(
1− 1

p
λk+1

k+1

)
− P ′

k ◦ P−1
k (1)

= − log pk+1

p
λk+1

k+1

− 1

p
λk+1

k+1

P ′′
k (P−1

k (ηk))

P ′
k(P

−1
k (ηk))

avec 1 − 1

p
λk+1
k+1

< ηk < 1. En posant ρk = P−1
k (ηk), on a par (3.2) et (3.23)

λk < ρk < λk+1 et

P ′
k+1(λk+1)− P ′

k(λk) =
1

p
λk+1

k+1 (−P ′
k(ρk))

(log pk+1P
′
k(ρk) + P ′′

k (ρk))

=
1

p
λk+1

k+1 (−P ′
k(ρk))

k∑
j=1

(
log2 pj

pρk
j

− log pj log pk+1

pρk
j

)
< 0

et par (3.20) cela démontre ak+1 < ak. Comme P ′
k(s) tend uniformément vers

P ′(s) pour 1 < s0 ≤ s, on a limk→∞ ak = a, ce qui achève la preuve de (3.21).
Pour démontrer (3.22), on utilise la formule de Taylor, comme en (3.13)

(3.24) P ′
k(λk)− P ′

k(λ) = (λk − λ)P ′′
k (λ) +

(λk − λ)2

2
M ′′

avec, pour k ≥ 3, |M ′′| < |P ′′′(λ3)|. Ensuite, on a, comme en (3.12)

(3.25) P ′′(λ)−P ′′
k (λ) =

∞∑
j=k+1

log2 pj

pλ
j

=
(λ− 1) log pk + 1

(λ− 1)2pλ−1
k

+
Oν(1)

pλ−1
k (log k)ν−2

·

11



Il vient alors, par (3.24), (3.25), (3.12) et (3.5)

P ′
k(λk)− P ′(λ) = P ′

k(λk)− P ′
k(λ) + P ′

k(λ)− P ′(λ)

= (λk − λ)

[
P ′′(λ)− (λ− 1) log pk + 1

(λ− 1)2pλ−1
k

+
Oν(1)

pλ−1
k (log k)ν−2

+
λk − λ

2
M ′′
]

+
1

(λ− 1)pλ−1
k

+
Oν(1)

pλ−1
k (log k)ν−1

= (λk − λ)P ′′(λ) +
1

(λ− 1)pλ−1
k

+
Oν(1)

pλ−1
k (log k)ν−1

·

Par la formule de Taylor appliquée à la fonction t 7→ −1/t, on a

ak − a =
−1

P ′
k(λk)

− −1

P ′(λ)
=

P ′
k(λk)− P ′(λ)

P ′(λ)2
+O(P ′

k(λk)− P ′(λ))2

=
(λk − λ)P ′′(λ)

P ′(λ)2
+

1

(λ− 1)pλ−1
k P ′(λ)2

+
Oν(1)

kλ−1(log k)λ+ν−2
(3.26)

et comme, par (3.5), le premier terme de (3.26) est négligeable devant le
second, on obtient (3.22) à l'aide de (3.8). �

4 Un problème d'optimisation

Lemme 1. La fonction F dé�nie par (2.1) est concave dans Rk
+.

Démonstration. En posant x = (x1, x2, . . . , xk) et S = (x1 + x2 + . . . + xk),
il résulte de (2.1), pour x ∈ R∗k

+ ,

(4.1) ∂F

∂xi

(x) = log
S

xi

,
∂2F

∂x2
i

(x) =
1

S
− 1

xi

,
∂2F

∂xi∂xj

(x) =
1

S

de telle sorte que la forme quadratique des dérivées secondes de F s'écrit

(4.2) F ′′(x) · (h1, h2, . . . , hk) =
1

S

(
k∑

i=1

hi

)2

−
k∑

i=1

h2
i

xi

·

Par l'inégalité de Cauchy-Schwarz, on obtient(
k∑

i=1

hi

)2

=

(
k∑

i=1

√
xi

hi√
xi

)2

≤ S
k∑

i=1

h2
i

xi

,

et il en résulte, par (4.2), que F est concave dans Rk
+. �
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Soit k ≥ 2, pk le k-ième nombre premier et A un nombre réel positif. On
considère le domaine D(A) ⊂ Rk

+ dé�ni par x1 ≥ 0, x2 ≥ 0, . . . , xk ≥ 0 et

(4.3) x1 log 2 + x2 log 3 + . . . + xk log pk ≤ A.

Soit F dé�nie par (2.1). Comme la fonction F est croissante par rapport à
chaque variable, le problème d'optimisation

(4.4)
{

x ∈ D(A)
max F (x)

a la même solution que le problème

(4.5)
{

x1 log 2 + x2 log 3 + . . . + xk log pk = A
max F (x1, x2, . . . , xk).

Proposition 4. La solution du problème (4.5) (ou du problème équivalent
(4.4)) est donnée par

(4.6) x∗i =
akA

pλk
i

où λk et ak sont dé�nis par (3.2) et (3.20), et satisfait

(4.7) F (x∗1, x
∗
2, . . . , x

∗
k) = λkA.

Démonstration. Utilisons les multiplicateurs de Lagrange ; une solution de
(4.5), (x∗1, x

∗
2, . . . , x

∗
k) satisfait pour 1 ≤ i ≤ k

(4.8) 1

log pi

∂F

∂xi

(x∗1, x
∗
2, . . . , x

∗
k) =

log(x∗1 + x∗2 + . . . + x∗k)− log x∗i
log pi

= λk,

d'où l'on tire

(4.9) x∗i =
x∗1 + x∗2 + . . . + x∗k

pλk
i

, i = 1, 2, . . . , k.

En ajoutant x∗1, x
∗
2, . . . , x

∗
k donnés par (4.9), ou trouve pour λk la valeur don-

née en (3.2). La solution (x∗1, x
∗
2, . . . , x

∗
k) satisfait la contrainte, autrement

dit

(4.10) x∗1 log 2 + x∗2 log 3 + . . . + x∗k log pk = A.

13



On a ensuite avec (3.1)

A =
k∑

i=1

x∗i log pi = −(x∗1 + x∗2 + . . . + x∗k)P
′
k(λk)

d'où par (3.20)

(4.11) x∗1 + x∗2 + . . . + x∗k = − A

P ′
k(λk)

= akA

et par (4.9), on obtient (4.6) ; en multipliant (4.8) par x∗i log pi et en ajoutant,
on obtient (4.7) à l'aide de (4.10). �

Proposition 5. Soit k ≥ 2, (x1, x2, . . . , xk) ∈ D(A) (dé�ni par (4.3)),
x∗1, x

∗
2, . . . , x

∗
k dé�nis par (4.6) et F dé�nie par (2.1). Alors on a

F (x1, x2, . . . , xk) ≤ F (x∗1, x
∗
2, . . . , x

∗
k)−

1

2A log pk

(
k−1∑
i=1

log pi|xi − x∗i |

)2

≤ F (x∗1, x
∗
2, . . . , x

∗
k)−

k−1∑
i=1

(log pi)
2

2A log pk

(xi − x∗i )
2.(4.12)

Démonstration. Dé�nissons y = (y1, y2, . . . , yk) par

(4.13) y1 = x1, y2 = x2, . . . , yk−1 = xk−1,
k∑

i=1

yi log pi = A.

Comme x ∈ D(A), par (4.3), on a xk ≤ yk et la croissance de F par rapport
à chacune des variables entraîne

(4.14) F (x1, x2, . . . , xk) ≤ F (y1, y2, . . . , yk).

Posons hi = yi − x∗i ; on a par (4.13) et (4.10)

(4.15)
k∑

i=1

hi log pi =
k∑

i=1

yi log pi −
k∑

i=1

x∗i log pi = A− A = 0.

Appliquons la formule de Taylor à la fonction F entre les points y et x∗ :

(4.16) F (y)− F (x∗) =
k∑

i=1

hi
∂F

∂xi

(x∗) +
1

2
F ′′(ξ) · (h)

14



où ξ = θy + (1− θ)x∗ et 0 < θ < 1. Par (4.8) et (4.15), il suit

(4.17)
k∑

i=1

hi
∂F

∂xi

(x∗) = λk

k∑
i=1

hi log pi = 0.

Il vient ensuite, par (4.15) et l'inégalité de Cauchy-Schwarz(
k∑

i=1

hi

)2

=

(
k∑

i=1

hi

(
1− log pi

log pk

))2

≤ (ξ1+. . .+ξk)
k∑

i=1

h2
i

ξi

(
1− log pi

log pk

)2

.

Mais, pour t = log pi

log pk
, on a 0 < t ≤ 1 et (1− t)2 ≤ 1− t ; par (4.2), il suit

F ′′(ξ) · (h) ≤
k∑

i=1

h2
i

ξi

((
1− log pi

log pk

)2

− 1

)
≤ −

k∑
i=1

log pi

log pk

h2
i

ξi

·

En utilisant encore une fois l'inégalité de Cauchy-Schwarz sous la forme(
k∑

i=1

|hi| log pi

)2

=

(
k∑

i=1

√
ξi log pi

|hi|
√

log pi√
ξi

)2

≤ A

k∑
i=1

h2
i log pi

ξi

,

(car, par (4.13) et (4.10), ∑k
i=1 ξi log pi = A) on obtient

F ′′(ξ) · (h) ≤ − 1

A log pk

(
k∑

i=1

|hi| log pi

)2

≤ − 1

A log pk

(
k−1∑
i=1

|hi| log pi

)2

ce qui, avec (4.14), (4.16), (4.17) et (4.13), complète la preuve de la proposi-
tion 5. �

5 Grandes valeurs de la fonction h

Théorème 1. Soit n un entier, n ≥ 3, et k = ω(n) le nombre de facteurs
premiers de n. Alors on a

(i) log h(n) ≤ λk log n− k − 1

3
≤ λ log n− C1

(log n)1/λ

log log n

où λk et λ sont dé�nis en (3.2) et (1.10) . D'autre part, pour n ≥ 3, il existe
m ≤ n tel que

(ii) log h(m) ≥ λ log n− C2
(log n)1/λ

log log n
·
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Les constantes positives C1 et C2 sont absolues.
Démonstration de (i). Soit n=qα1

1 qα2
2 . . . qαk

k . On pose N =pα1
1 pα2

2 . . . pαk
k ≤

n. Par (1.7), on a h(N) = h(n), et α1 log 2+α2 log 3+ . . .+αk log pk = log N .
Par la proposition 4 avec A = log N , il vient

F (α1, α2, . . . , αk) ≤ λk log N

tandis que, par la proposition 1 (i), on obtient

log h(n) = log h(N) ≤ λk log N − k − 1

3
≤ λk log n− k − 1

3
.

Il reste à prouver

(5.1) (λ− λk) log n +
k − 1

3
≥ C1

(log n)1/λ

log log n
·

Supposons C1 ≤ 0.135. On s'assure que (5.1) est véri�ée pour 3 ≤ n ≤ 15.
On supposera donc que n ≥ 16 > ee, ce qui implique log log n > 1. On
observe que (5.1) est véri�ée pour k = 1 (car λ1 = 0) et pour tout n ≥ 16.
On suppose donc que k ≥ 2. Par la proposition 2, il existe une constante
positive γ1 telle que l'on ait λ − λk ≥ γ1

kλ−1(log k)λ (vraisemblablement, γ1 =

(λ− λ2)2
λ−1(log 2)λ = 0.48 . . .). Si k ≤ (log n)1/λ

log log n
< log n, on a

(5.2) λ− λk ≥
γ1(

(log n)1/λ

log log n

)λ−1

(log log n)λ

=
γ1(log n)1/λ−1

log log n
,

tandis que, pour k > (log n)1/λ

log log n
, on a k−1

3
≥ k

6
> (log n)1/λ

6 log log n
ce qui, avec (5.2)

prouve (5.1) et (i) en choisissant C1 = min(γ1, 0.135).
Remarque 2. On peut prouver la relation log h(n) ≤ λk log n par une autre
méthode en démontrant, pour k �xé, h(n) ≤ nλk pour tous les nombres
n ayant au plus k facteurs premiers, et ceci par récurrence sur n. Comme
h(1) = 1, la propriété est vraie pour n = 1. Supposons la vraie jusqu'à n− 1,
avec n = qα1

1 qα2
2 . . . q

αj

j et j ≤ k. Par (1.11), l'hypothèse de récurrence et
(3.2), il vient

h(n) =

j∑
i=1

h

(
n

qi

)
≤

j∑
i=1

(
n

qi

)λk

≤ nλk

k∑
i=1

1

pλk
i

= nλk .

Lemme 2. Soit k un entier positif ; on range les 2k diviseurs de n=p1p2 . . . pk

par ordre croissant : 1 = d1 < d2 < . . . < d2k = n. Alors, pour tout i,
1 ≤ i ≤ 2k − 1, on a di+1 ≤ 2di.
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Démonstration. Considérons di 6= n ; si di est impair, 2di est un diviseur
de n, donc di+1 ≤ 2di ; sinon, soit pj ≥ 3 le plus petit nombre premier
ne divisant pas di ; dipj/pj−1 est un diviseur de n plus grand que di, par
conséquent, di+1 ≤ dipj/pj−1. Mais, par le postulat de Bertrand (cf. [13], Th.
418), pj < 2pj−1, ce qui achève la preuve du lemme 2. �

Démonstration du théorème 1, (ii) : choix de k. On applique la pro-
position 4 avec A = log n et

(5.3) k =

⌊
κ

(log n)1/λ

log log n

⌋
où κ est une constante positive satisfaisant

(5.4) κ < λa1/λ = 0.945 . . .

et a est dé�ni en (3.20). On a alors par (4.6) et (4.10)

(5.5) x∗i =
ak log n

pλk
i

, i = 1, 2, . . . , k

et

(5.6)
k∑

i=1

x∗i log pi = log n.

Par (5.5), (3.3), (3.21), (3.8), (5.3) et (5.4), on a, lorsque n →∞

(5.7) x∗1 > x∗2 > . . . > x∗k =
ak log n

pλk
k

≥ a log n

pλ
k

∼ a log n

(k log k)λ
∼ λλa

κλ
> 1.

Par (4.7), il vient

(5.8) F (x∗1, x
∗
2, . . . , x

∗
k) = λk log n = λ log n− (λ− λk) log n

tandis que, par la proposition 2 et (5.3), lorsque n →∞, on a

(5.9) λ− λk ∼
1

−(λ− 1)P ′(λ)kλ−1 (log k)λ
∼ λλ(log n)1/λ−1

−(λ− 1)P ′(λ)κλ−1 log log n
·

Par (4.11) et (3.21), on a, lorsque n →∞,

(5.10) x∗1 + x∗2 + . . . + x∗k = ak log n ∼ a log n.
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Nous aurons aussi besoin d'une estimation de ∑k
i=1 log x∗i . En notant

Θ(t) =
∑

p≤t log p la fonction de Chebichev, on a par (5.5),

(5.11)
k∑

i=1

log x∗i =
k∑

i=1

log(ak log n)− λk log pi = k log(ak log n)− λkΘ(pk).

Mais, par le théorème des nombres premiers (cf. [8], Th. 4.7) et (3.17), on a

Θ(pk) = pk +
O(pk)

(log pk)2
= k(log k + log log k − 1 + o(1)), k →∞

et (5.11) devient avec (5.3)

(5.12) 1

k

k∑
i=1

log x∗i = log ak + log log n− λk

(
1

λ
log log n + log

κ

eλ
+ o(1)

)
.

Par (3.21), log ak = log a + o(1) et par (5.9) et (5.4), (5.12) donne, pour n
assez grand

(5.13)
k∑

i=1

log x∗i ∼ k log
(eλ)λa

κλ
> λk.

Construction de m. k étant dé�ni par (5.3) et x∗i par (5.5), on pose m0 =∏k
i=1 p

bx∗i c
i . Par (5.6), on a n

p1p2...pk
=
∏k

i=1 p
x∗i−1
i < m0 ≤

∏k
i=1 p

x∗i
i = n. Soit

d le plus grand diviseur de p1p2 . . . pk satisfaisant d ≤ n/m0. Par le lemme
2, on a d > n/2m0. On écrit d =

∏k
i=1 pεi

i , avec εi ∈ {0, 1}, et l'on pose
m = m0d. On a donc

(5.14) n/2 < m = m0d ≤ n,

(5.15) m =
k∏

i=1

pαi
i

avec

(5.16) αi = bx∗i c+ εi, εi = 0 ou 1,

et, par (5.14), (5.6) et (5.15), il vient

(5.17) − log 2 < log
m

n
=

k∑
i=1

(αi − x∗i ) log pi ≤ 0.
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De plus, par (5.16) et (5.7), on a

(5.18) 1 ≤ bx∗i c ≤ αi ≤ 1 + bx∗i c ≤ 1 + x∗i ≤ 2x∗i , 1 ≤ i ≤ k

et

(5.19) |αi − x∗i | ≤ 1, 1 ≤ i ≤ k.

Fin de la démonstration du théorème 1 (ii). Appliquons la formule de
Taylor ; il vient, par (4.2)
(5.20)

F (α) = F (x∗) +
k∑

i=1

(αi − x∗i )
∂F

∂xi

(x∗) +

(∑k
i=1 αi − x∗i

)2

2(ξ1 + . . . + ξk)
−

k∑
i=1

(αi − x∗i )
2

2ξi

avec, pour 1 ≤ i ≤ k, ξi = θαi +(1−θ)x∗i et 0 < θ < 1. On a donc, par (5.18)

(5.21) ξi ≥ θ bx∗i c+ (1− θ) bx∗i c = bx∗i c ≥ 1.

Par (4.8), (5.17) et (3.3), le deuxième terme du membre de droite de (5.20)
satisfait

k∑
i=1

(αi − x∗i )
∂F

∂xi

(x∗) = λk log
m

n
≥ −λk log 2 ≥ −λ log 2,

le troisième terme est positif et, par (5.19) et (5.21), le quatrième véri�e∑k
i=1

(αi−x∗i )2

2ξi
≤ k

2
. Ainsi, (5.20) entraîne

(5.22) F (α) ≥ F (x∗)− λ log 2− k

2
·

Maintenant, par la proposition 1 (ii) et (5.15), il vient

log h(m) ≥ F (α1, . . . , αk)− k − 1

2

k∑
i=1

log αi

qui, par (5.22) et (5.18), donne

log h(m) ≥ F (x∗1, . . . , x
∗
k)− λ log 2− 3k

2
− 1

2

k∑
i=1

log(2x∗i ).

Par (5.8), (5.9) et (5.13), il en découle log h(m) ≥ λ log n−O(k), ce qui, par
(5.3) achève la preuve du théorème 1. �
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6 Propriétés des nombres h-champions

Comme la fonction h ne dépend, par (1.7), que des exposants dans la dé-
composition en facteurs premiers de n, il est clair qu'un nombre h-champion
dé�ni par (1.18) s'écrit

(6.1) N = 2α13α2 . . . pαk
k avec α1 ≥ α2 ≥ . . . ≥ αk ≥ 1 et k = ω(N).

Par ailleurs, il résulte du théorème 1 (ii) que

lim
n→∞

h(n) = +∞

et donc, il existe une in�nité de nombres h-champions. Si Ni désigne le i-ème
nombre h-champion (N1 = 1, N2 = 6, N3 = 12, etc..., cf. [5]) on a, pour
i ≥ 1,

(6.2) Ni ≤ n < Ni+1 =⇒ h(n) ≤ h(Ni).

Par (1.7), ω(n) = 1 implique h(n) = 1 ; mais h(6) = 2, et donc, pour i ≥ 2,
on a ω(Ni) ≥ 2, ce qui entraîne, par (1.7), h(2Ni) > h(Ni). Il en résulte que

(6.3) Ni+1 ≤ 2Ni, i ≥ 2.

6.1 Encadrement de ω(N)

Proposition 6. Soit N 6= 1 un nombre h-champion. Alors on a

(i) log h(N) ≥ λ log N − C2
(log N)1/λ

log log N

où λ est dé�ni en (1.10) et C2 est la constante dé�nie dans le théorème 1. De
plus, il existe trois constantes positives C3, C4 et N0 telles que, pour N ≥ N0,
on ait

(ii) C3
(log N)1/λ

log log N
≤ ω(N) ≤ C4

(log N)1/λ

log log N
·

Démonstration de (i). Appliquons le théorème 1 (ii). Il existe m ≤ N avec
log h(m) ≥ λ log N −C2

(log N)1/λ

log log N
. Mais, par (1.18), on a h(N) ≥ h(m), ce qui

prouve (i).
Démonstration de (ii). Posons k = ω(N). Par le théorème 1 (i), on a

(6.4) log h(N) ≤ λ log N − (λ− λk) log N − k − 1

3
·
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En comparant avec (i), il vient

(λ− λk) log N ≤ C2
(log N)1/λ

log log N

qui, avec la proposition 2, donne

(6.5) kλ−1(log k)λ &
(log N)1−1/λ log log N

−C2(λ− 1)P ′(λ)
·

Mais la fonction y = f(t) = tλ−1(log t)λ est croissante pour t ≥ 1, sa fonction
réciproque f−1(y) satisfait, lorsque y →∞

f−1(y) ∼ (λ− 1)
λ

λ−1

(
y

(log y)λ

) 1
λ−1

et ainsi, en choisissant C3 <
(

λλ

−C2(λ−1)P ′(λ)

) 1
λ−1 , (6.5) démontre la minoration

de (ii).
En comparant (6.4) et (i), il vient

k − 1

3
≤ C2

(log N)1/λ

log log N

ce qui implique la majoration de (ii). �

6.2 Factorisation de N : petits facteurs premiers

Théorème 2. Soit N un nombre h-champion dont la décomposition en fac-
teurs premiers est donnée par (6.1). On dé�nit λ et a par (1.10) et (3.20).
Lorsque N →∞, on a

(i) αi = vpi
(N) =

a

pλ
i

log N +O
(

(log N)c

log pi

)
, 1 ≤ i ≤ k − 1,

(ii) Ω(N) = α1 + α2 + . . . + αk = a log N +O ((log N)c)

où

(6.6) c = (1 + 1/λ)/2 = 0.857 . . .
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Démonstration de (i). Par la proposition 6 (i) et (3.3), on a , avec k =
ω(N) :

(6.7) log h(N) ≥ λ log N − C2
(log N)1/λ

log log N
≥ λk log N − C2

(log N)1/λ

log log N
·

Maintenant, par la proposition 5, avec A = log N , k = ω(N) et x∗i dé�ni par
(4.6), on a, par (4.7), F (x∗1, x

∗
2, . . . , x

∗
k) = λk log N et

(6.8) F (α1, α2, . . . , αk) ≤ λk log N − 1

2 log N log pk

(
k−1∑
i=1

log pi|αi − x∗i |

)2

.

Par la proposition 1 (i), (6.7) et (6.8), on obtient

(6.9) 1

2 log N log pk

(
k−1∑
i=1

log pi|αi − x∗i |

)2

≤ C2
(log N)1/λ

log log N
·

Par la propositions 6 (ii), on a ω(N) � (log N)1/λ

log log N
ce qui entraîne par (3.8),

lorsque N →∞,

(6.10) log pk ∼ log(k log k) ∼ log k ∼ 1

λ
log log N.

De (6.9) et (6.10), on déduit

(6.11)
k−1∑
i=1

|αi − x∗i | log pi = O((log N)c)

où c est donné en (6.6). Pour démontrer (i), on remarque que, par (4.6),
(6.11) entraîne, pour 1 ≤ i ≤ k − 1,

(6.12) αi −
ak

pλk
i

log N = O
(

(log N)c

log pi

)
.

Ensuite, par le théorème des accroissements �nis appliqué à la fonction t 7→
p−t

i , les propositions 2, 3 et 6 (ii) ainsi que (6.10), on a pour 1 ≤ i ≤ k,∣∣∣∣ ak

pλk
i

− a

pλ
i

∣∣∣∣ =

∣∣∣∣( 1

pλk
i

− 1

pλ
i

)
ak + (ak − a)

1

pλ
i

∣∣∣∣
≤ log pi

pλk
i

(λ− λk)ak +
(ak − a)

pλ
i

≤ (λ− λk)ak log pk + (ak − a)

= O
(

1

kλ−1(log k)λ−1

)
= O

(
1

(log N)1−1/λ

)
.(6.13)
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Finalement, (6.12) et (6.13) entraînent (i), car, par (6.10), log pi ≤ log pk =
O(log log N) et 1/λ < c.
Démonstration de (ii). On remarque d'abord que, par (4.11) et (4.10), on
a ∑k

i=1 x∗i = ak log N et ∑k
i=1 x∗i log pi = log N , ce qui, par (6.1) et (6.11),

entraîne

|Ω(N)− ak log N | =

∣∣∣∣∣
k∑

i=1

(αi − x∗i )

∣∣∣∣∣ =

∣∣∣∣∣
k−1∑
i=1

(αi − x∗i )

(
1− log pi

log pk

)∣∣∣∣∣
≤

k−1∑
i=1

|αi − x∗i | ≤
k−1∑
i=1

|αi − x∗i |
log pi

log 2
= O((log N)c).(6.14)

Ensuite, par les propositions 3 et 6 (ii), on a, comme en (6.13)

ak − a = O
(

1

kλ−1(log k)λ−1

)
= O

(
1

(log N)1−1/λ

)
qui, avec (6.14), achève la preuve du théorème 2. �

6.3 Factorisation de N : grands facteurs premiers

Théorème 3. Soit N un nombre h-champion dont la décomposition en fac-
teurs premiers est donnée par (6.1). Alors, pour N assez grand, on a

(6.15) αk = 1.

De plus, si Pj désigne le plus grand nombre premier tel que P j
j divise N

(d'après (6.1), P1 = pk), alors, pour j �xé, j ≥ 1, on a , lorsque N →∞,

(6.16) Pj ∼
(

a log N

j

)1/λ

∼ j−1/λP1

où λ et a sont dé�nis par (1.10) et (3.20) (a1/λ = 0.676 . . . , 2−1/λ =
0.609 . . . , 3−1/λ = 0.456 . . . , etc . . .). Il en résulte que

(6.17) k = ω(N) ∼ λa1/λ (log N)1/λ

log log N
= 0.945 . . .

(log N)1/λ

log log N
·

Démonstration. Par la proposition 6 (ii), k = ω(N) tend vers l'in�ni avec
N et, par (3.8), on a pour N assez grand

M
def
== N

pk+1pk+2

2pkpk−1

< N,
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ce qui implique, par (1.7) et (1.18)

(6.18) h(M) =
α1αk−1αk

α1 + α2 + . . . + αk

h(N) < h(N).

Appliquons maintenant le théorème 2 : lorsque N → ∞, on a Ω(N)
α1

=
α1+α2+...+αk

α1
∼ 2λ = 2.63 . . . et donc,

(6.19) α1 + α2 + . . . + αk < 3α1

pour N assez grand. Il résulte de (6.1), (6.18) et (6.19) que

1 ≤ α2
k ≤ αkαk−1 <

α1 + α2 + . . . + αk

α1

< 3,

ce qui prouve (6.15).
Remarque 3. D'après la table numérique (cf. [5]), il semble que les seuls
nombres h-champions pour lesquels αk ≥ 2 soient

N N h(N)
3 175 200 25345272 540 540
6 350 400 26345272 1 261 260

12 700 800 27345272 2 702 700
19 051 200 26355272 3 783 780
38 102 400 27355272 8 648 640

Démontrons maintenant (6.16). Fixons j ; on désigne par i = i(j) le rang
du nombre premier Pj, autrement dit,

(6.20) Pj = pi = pi(j)

et, par la dé�nition de Pj, on déduit de (6.1)

(6.21) αi ≥ j et αi+1 ≤ j − 1.

Il résulte du théorème 2 (i) que i = i(j) et donc aussi pi tendent vers l'in�ni
avec N et, par le théorème des nombres premiers, pi+1/pi tend vers 1. Le
nombre log 3

log 2
étant irrationnel, si l'on ordonne les nombres de la forme 2u3v

(u, v entiers, u, v ≥ 0) en une suite croissante (xn)n≥1, on a lim xn+1

xn
= 1 (cf.

[32]). En conséquence, à tout ε, 0 < ε < 1, on peut associer Nε tel que, pour
N ≥ Nε, il existe des entiers u, v, u′, v′ satisfaisant

(6.22) (1− ε)pi < 2u3v < pi < pi+1 < 2u′3v′ < pi+1(1 + ε) < pi(1 + 2ε).
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Comme i ≤ k, de (6.22) et (6.10) on déduit

(6.23) u, v, u′, v′ = O(log log N).

On considère alors les deux nombres

(6.24) M =
N2u3v

pi

< N et M ′ =
Npi+1

2u′3v′
< N.

Par (1.18), (1.7) et (6.21), il vient en posant Ω = Ω(N)

1 >
h(M)

h(N)
=

αi(Ω + 1) . . . (Ω + u + v − 1)

(α1 + 1) . . . (α1 + u)(α2 + 1) . . . (α2 + v)

≥ jΩu+v−1

(α1 + u)u(α2 + v)v
·(6.25)

Par (6.23) et le théorème 2, on a

(α1 + u)u = αu
1 exp(u log(1 +

u

α1

)) ≤ αu
1 exp

(
u2

α1

)
=

(
a log N

2λ

)u(
1 +O

(
u

(log N)1−c

))
∼
(

a log N

2λ

)u

et, similairement, (α2 + v)v ∼
(

a log N
3λ

)v et Ωu+v−1 ∼ (a log N)u+v−1. La rela-
tion (6.25) entraîne alors 1 & j(2u3v)λ

a log N
, c'est-à-dire 2u3v .

(
a log N

j

)1/λ

, ce qui,
avec (6.22) donne

(6.26) Pj = pi .
1

1− ε

(
a log N

j

)1/λ

.

On procède de même pour M ′ dé�ni en (6.24) : on a

1 >
h(M ′)

h(N)
=

(α1 − u′ + 1) . . . (α1 + 1)α1(α2 − v′ + 1) . . . (α2 + 1)α2

(1 + αi+1)Ω(Ω− 1) . . . (Ω− u′ − v′ + 2)

≥ (α1 − u′)u′(α2 − v′)v′

jΩu′+v′−1
∼ a log N

j(2u′3v′)λ

qui, avec (6.22) donne

(6.27) Pj = pi &
1

1 + 2ε

(
a log N

j

)1/λ

.
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Comme ε peut être choisi arbitrairement petit, (6.26) et (6.27) prouvent
(6.16). En utilisant (3.8), on a k ∼ pk

log pk
= P1

log P1
et ainsi, (6.17) découle de

(6.16) avec j = 1. �

Remarque 4. Le résultat (6.16) du théorème 3 peut s'exprimer en d'autres
termes : pour chaque j �xé, la proportion π(Pj)−π(Pj+1)

π(P1)
d'exposants exacte-

ment égaux à j dans la décomposition en facteurs premiers d'un nombre
h-champion satisfait

π(Pj)− π(Pj+1)

π(P1)
∼ 1

j1/λ
− 1

(j + 1)1/λ
=

∫ j+1

j

dt

λt1+1/λ
·

Pour les nombres highly factorable, qui sont les champions pour la fonction
d'Oppenheim, la conjecture énoncée dans [2] et prouvée dans [20] donne pour
cette proportion la valeur asymptotique 1/(j(j + 1)) = 1

j
− 1

j+1
=
∫ j+1

j
dt
t2
·

Si l'on remplace dans (6.24) pi et pi+1 par des produits de nombres pre-
miers consécutifs, en utilisant le résultat de [32] et le théorème des nombres
premiers dans des petits intervalles, il est possible d'améliorer (6.16) en
Pj =

(
a log N

j

)1/λ (
1 + O(1)

(log N)β

)
avec β > 0.

6.4 Estimation de Q(X)

Soit Q(X) le nombre de nombres h-champions inférieurs à X. Il résulte
de (6.3) que Q(X) � log X. D'autre part, les nombres h-champions sont de
la forme (6.1), et, par [11] ou [27], on a

Q(X) ≤ exp

(
(1 + o(1))

2π√
3

√
log X

log log X

)
.

A l'aide des résultats précédents, nous pouvons montrer
Proposition 7. Il existe un nombre réel positif δ (δ = 0.059 convient) tel
que, pour X assez grand

(i) Q(X) ≥ (log X)1+δ.

Pour X assez grand, on a

(ii) log Q(X) = O
(
(log X)c/2

)
.

où c a été dé�ni en (6.6).
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Démonstration. Soit N un nombre h-champion assez grand. Nous allons
montrer que le nombre h-champion N ′ suivant N satisfait

(6.28) N ′ ≤ N

(
1 +

2η log log N

(log N)η

)
où η est un nombre réel positif à préciser. En e�et, par le théorème des
nombres premiers, entre (log N)η et 2(log N)η, il y a un nombre de nombres
premiers équivalent à (log N)η

η log log N
et donc, si N est assez grand, il existe deux

nombres premiers consécutifs pr et pr+1 satisfaisant

(6.29) (log N)η ≤ pr < pr + 2 ≤ pr+1 < 2(log N)η

et

(6.30) pr < pr + 2 ≤ pr+1 ≤ pr + 2η log log N.

Par le théorème des accroissements �nis et (6.29), on a

(6.31) p−λ
r − p−λ

r+1 ≥ λ
pr+1 − pr

pλ+1
r+1

≥ 2λ

(2(log N)η)λ+1
=

λ2−λ

(log N)η(λ+1)

et, si l'on choisit

(6.32) η <
1− c

λ + 1
=

λ− 1

2λ(λ + 1)
= 0.0594 . . . ,

il résulte de (6.31) et du théorème 2 (i) que, dans (6.1), on a

(6.33) αr − αr+1 ≥ 2−λaλ(log N)1−η(λ+1) +O(log N)c ≥ 2

pour N assez grand.
Considérons le nombre

M =
pr+1

pr

N > N.

Par (1.7) et (6.33), on a

h(M) =
αr

αr+1 + 1
h(N) > h(N)

et, par (6.2), (6.30) et (6.29), le nombre h-champion N ′ suivant N véri�e

(6.34) N < N ′ ≤ M ≤ N

(
pr + 2η log log N

pr

)
≤ N

(
1 +

2η log log N

(log N)η

)
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ce qui établit (6.28).
Soit Ni le i-ème nombre h-champion. Pour prouver (i), écrivons les nom-

bres h-champions entre
√

X/2 et X :

Nu <

√
X

2
≤ Nu+1 < Nu+2 < . . . < Nu+v < X ≤ Nu+v+1.

En choisissant δ < η, par (6.34), on aura pour X assez grand

Nu+i+1

Nu+i

≤ 1 +
2η log log(

√
X/2)

(log(
√

X/2))η
≤ 1 +

1

2
(log X)−δ, 1 ≤ i ≤ v

et, par (6.3), X√
X

< Nu+v+1

2Nu
≤ Nu+v+1

Nu+1
≤ (1 + 1

2
(log X)−δ)v qui donne Q(X) ≥

v ≥
1
2

log X

log(1+ 1
2
(log X)−δ)

≥ (log X)1+δ et démontre (i).
Avant de démontrer (ii), établissons le lemme suivant

Lemme 3. Le nombre de solutions ν(n, k) de l'inéquation diophantienne

(6.35) x1 + x2 + . . . + xk ≤ n, x1 ≥ x2 ≥ . . . ≥ xk ≥ 0, et xi ∈ N

satisfait pour tout k

(6.36) ν(n, k) = O

(
exp

(
π

√
2n

3

))
.

Démonstration. Le nombre de solutions de l'équation diophantienne x1 +
x2 + . . . + xk = m, x1 ≥ x2 ≥ . . . ≥ xk ≥ 0, est le nombre de partitions de m
en au plus k parts (cf. [4], p. 105) et est majoré par p(m), le nombre total de
partitions de m. Comme p(m) est une fonction croissante de m, le nombre
ν(n, k) de solutions de (6.35) satisfait ν(n, k)−1 ≤ p(1)+p(2)+ . . .+p(n) ≤
np(n) et (6.36) résulte de la formule classique de Hardy et Ramanujan (cf.
[12]) p(n) ∼ 1

4n
√

3
exp

(
π
√

2n
3

)
. �

Démonstration de la proposition 7 (ii). Soit X assez grand et N un
nombre h-champion inférieur à X. On pose A = log N ; pour 1 ≤ i ≤ k, on
dé�nit x∗i par (4.6) et αi par (6.1).

Soit J un nombre entier, J ≥ 3 ; on a, par (3.3), λJ ≥ λ3 > 1. On
s'intéresse à la somme

(6.37) TJ = TJ(N) =
k∑

i=J+1

αi.
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Si J ≥ k, on a TJ = 0 et si J < k, on a par (6.11), (6.10), (6.15) et (4.6)

TJ ≤
k−1∑

i=J+1

αi log pi + αk log pk

≤
k−1∑

i=J+1

x∗i log pi +O((log N)c)

= ak log N
k−1∑

i=J+1

log pi

pλk
i

+O((log N)c).(6.38)

Maintenant, on a par (3.3), (3.1), (1.8), (3.12) et la proposition 2
k−1∑

i=J+1

log pi

pλk
i

≤
∞∑

i=J+1

log pi

pλJ
i

= P ′
J(λJ)− P ′(λJ) = O

(
1

JλJ−1

)
= O

(
1

Jλ−1

)
et (6.38) entraîne

(6.39) TJ = O
(

log N

Jλ−1

)
+O((log N)c).

Fixons
J = b(log X)γc

avec, par (6.6) et (1.10),

(6.40) γ =
1− c

λ− 1
=

1

2λ
= 0.357 . . .

Pour chaque nombre h-champion N ≤ X, la somme TJ(N) satisfait par
(6.39)

TJ(N) = αJ+1 + αJ+2 + . . . + αk = O((log X)c)

et, par le lemme 3, le nombre de choix possibles pour αJ+1, αJ+2, . . . , αk est
(6.41) exp(O((log X)c/2)).

Ensuite, par (6.1) et le théorème 2 (i), en notant que a
2λ < 0.219 < 1

2
, on a

αJ ≤ αJ−1 ≤ . . . ≤ α2 ≤ α1 ≤
log X

2

et le nombre de choix possibles pour α1, α2, . . . , αJ est majoré par

(6.42)
(

1 +
log X

2

)J

≤ (log X)(log X)γ

= exp((log X)γ log log X).

On déduit alors de (6.41) et (6.42) que Q(X) ≤ exp((log X)γ log log X +
O((log X)c/2)) et comme, par (6.40), on a γ < c/2, cela prouve (ii). �
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6.5 Table des nombres h-champions

La méthode utilisée par M. Deléglise pour construire la table des nombres
h-champions (cf. [5]) consiste à déterminer par backtracking tous les nombres
entiers de la forme (6.1) et inférieurs à une borne donnée X. Ensuite, à l'aide
de la fonction h, les non champions sont éliminés par (1.18). A l'aide de
MAPLE, pour X =

∏22
i=1 pi = 3.2 · 1030, ont été trouvés 814236 nombres de

la forme (6.1) et, parmi eux, 785 nombres h-champions ; le plus grand est
N785 = 224 · 314 · 56 · 75 · 112 · 132 · 17 · 19 · 23.

7 Problèmes ouverts

1. Existe-t-il une constante C telle que, lorsque le nombre h-champion N
tend vers l'in�ni, on ait

(7.1) log h(N) = λ log N − (C + o(1))
(log N)1/λ

log log N
?

Par la proposition 6 (i) et le théorème 1 (i), on a C1 ≤ C ≤ C2.
2. Est il possible de montrer que tous les nombres h-champion dont les ex-
posants dans la décomposition en facteurs premiers sont supérieurs ou égaux
à 2 sont les cinq nombres tabulés dans la remarque 3 ? La démonstration de
(6.15) est e�ective, mais le calcul d'une borne pour sa validité serait pénible.
3. Dans son article [26], S. Ramanujan appelle superior highly composite
un nombre N pour lequel il existe ε > 0 tel que pour tout M ≥ 1 on ait
τ(M)
Mε ≤ τ(N)

Nε , où τ(n) est le nombre de diviseurs de n. Nous n'avons pas réussi
à généraliser cette notion à la fonction h. En fait, pour ρ < λ, il résulte de
la proposition 6 (i) que lim(log h(n)− ρ log n) = +∞ tandis que pour ρ ≥ λ,
par le théorème 1 (i), la fonction log h(n)− ρ log n atteint son maximum en
n = 1. On peut dé�nir un nombre h-superchampion N s'il existe ρ > 0 tel
que, pour tout M ≥ 1 on ait

(7.2) log h(M)− ρ log2 M ≤ log h(N)− ρ log2 N.

Il est facile de voir qu'un tel nombre N est h-champion, mais ses proprié-
tés sont moins simples que celles des nombres superior highly composite de
Ramanujan.
4. Nous avons montré (proposition 7) que Q(X) ≥ (log X)1+δ pour X assez
grand. Existe-t-il une constante γ > 0 telle que Q(X) ≤ (log X)γ ? Pour
X ≤ 1030, la quantité log Q(X)

log log X
n'excède pas 1.573 tandis que, si l'on admet
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que le théorème 2 (i) est vraie pour c = 0, la proposition 7 (i) donnerait
Q(X) ≥ (log X)1.41.
5. Nous avons donné en 6.5 un algorithme de calcul des nombres h-champion.
Peut on l'améliorer ? En particulier, peut on donner une forme e�ective au
théorème 2 de façon à restreindre les nombres candidats à un sous-ensemble
de l'ensemble des nombres satisfaisant (6.1) ?
6. P. Erd®s a posé le problème suivant : dans la formule (1.12), on restreint
la somme aux f(x) plus grandes valeurs de h(n) pour 1 ≤ n ≤ x. Quelle est
la valeur minimale de f(x) telle que la somme soit encore égale au second
membre de (1.12) ?
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