
ILLINOIS JOURNAL OF MATHEMATICS
Volume 39, Number 4, Winter 1995

ON THE PARITY OF PARTITION FUNCTIONS

J.L. NICOLAS AND A. S,RK/ZY

Section 1

For n 1, 2,..., p(n) denotes the number of unrestricted partitions of n,
and q(n) the number of partitions of n into distinct parts, and we write
p(0)=q(0)= 1, p( -1) q( -1) p( 2) q( 2) 0. If N,b are
positive integers, a is an integer, then let Ea, b(N) denote the number of
non-negative integers n such that n < N and p(n) a mod b.

Starting out from a question of Ramanujan, in 1920 MacMahon [3] gave an
algorithm for determining the parity of p(n). Since then, many papers have
been written on the parity of p(n). In particular, in 1959 Kolberg proved that
p(n) assumes both even and odd values infinitely often (for n > 0). His proof
was based on Euler’s identity

+ E 0
k>l

k(3k + 1) and the summation extends over allwhere sk 1/2k(3k 1), tk 7
terms with a non-negative argument. It follows from this identity that

p(n) + _, (p(n s) +p(n t)) Omod2.
k>l

(1)

Other proofs have been given for Kolberg’s theorem by Newman [5] and
Fabrykowski and Subbarao [1]. Parkin and Shanks [7] have computed the
parity of p(n)up to n 2039999. Their calculation suggest that E0,z(N)
EI, z(N) N/2. Mirsky [4] has proved the only quantitative result on the
frequency of the odd values and even values of p(n). In fact, starting out
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form (1), he proved that for N > No we have

min(Eo, e(N),E,e(N)) > log log N
2 log 2 (2)

Note that he claims the following result: for each b there exist at least two
distinct values of a (with 0 < a < b) such that, whenever N is sufficiently
large,

log log N
Ea’b(N) > blog2 (3)

However, his proof seems to give only the following slightly weaker result:
for each b and N > No(b) there exist at least two distinct values al a(N),
a2 a2(N) depending on N (with 0 < aa < a2 < b) such that

min(E,,,b(N),Ea,b(N)) > log log N
b log 2

This implies that there exist at least two distinct values of a (with
0 < a < b) such that (3) holds for infinitely many N, and it gives also (2).

In this paper, first we will improve on (2) by showing that there is a
constant c > 0 such that

min(Eo, z( N), El,z( N) ) >> (log N) c.
Moreover, we will point out that the parity of the values of q(n) can be
determined easily. Motivated by this fact, we will show that the parities of
p(n) and q(n) are different for infinitely many n. Finally, we will discuss
several related unsolved problems.
We are pleased to thank P. Bateman who introduced us in the subject, and

M. Del6glise for kindly computing the parity of p(f(n)) displayed at the end
of this paper.

We write

and

Section 2

1 ifp(n) p(n 1) mod2
0 ifp(n) =-p(n 1) mod2

N

G(N)= _, g(n).
n=l
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We will prove:

THEOREM 1. Let r be an integer > 2. For M > 2r2, we have

CrG(M) > (log M) (4)
3 log(2r2)

where

3 1 )/log 2c log 2 2r

COROLLARY 1. For any c < log(3/2)/log2 0.585..., we have

(log N)min(Eo,e(N),E,(N)) >_ -G(N) >> . (5)

Proofof the theorem. The proof of (4) will be based on Euler’s identity (1)
(although a lower bound of type (4) could be derived from (27) below as
well). First we will prove that for every positive integer M we have

3r- 1
a(2riM2) > 2------- G(M). (6)

Replacing n by n- 1 in (1) and subtracting the congruence obtained in
this way from (1), we get

g(n) + , (g(n sk) + g(n tk)) =- Omod2
k>l

(7)

where the summation extends over all terms with a non-negative argument
(note that g(0) p(0) p(- 1) p(0) 1).

Let U denote the set of the integers u with 1 < u < M, g(u) 1 so that
UI G(M). Let us consider the congruence (7)with tj + u in place of n for
all u Uandj=M+ 1, M+2,...,rM:

g(t + u) + E (g(tj + u s) + g(t + u -t,)) =- 0 mod2 (8)
k>_l

where

u U,j=M+ 1,...,rM. (9)

We have

tj + U tj+ < tj -Jr- U Sj+ 1/2j(3j + 1) + u g(j + 1)(3j + 2)
-2j- 1 +u < -2M- I+M= -M- 1<0
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and

t + u s > t + u t u > O.

Thus the greatest s, resp. t, appearing in the sum in (8) is sy, resp. t., so
that (8)can be rewritten in the form

g(t +
J_, (g(tj + u s,) + g(tj + u -t,)) 0 mod2.

k=l

The term g(tj + u -tj)= g(u)= 1 (since u U) appears on the left
hand side. Thus there is another term equal to 1 on the left hand side, in
other words, there is a v v(j, u) such that

g(v) 1, (10)

and v can be represented in one of the forms

o tj -k- U,

v=#+u-s (withl <k<j)

(11)

(12)

and

v=tj+u-tk (withl <k<j- 1). (13)

The smallest of the numbers on the right hand sides of (11), (12) and (13) is

t. + u s. and the largest is t. + u so that

v > tj + u si =j + u > j > M (14)

and

2M2 1/2rM + M < ( + + 2r2M2v<tj+U<trM+M=-r_ + m2 7r3 2 $rl 1)<
(15)

Let V denote the set of the distinct integers u that can be obtained as

v v(j,u) (16)

for some u, j satisfying (9), and let h(v) denote the number of the solutions
of (16) in j and u. The number of pairs (j, u) satisfying (9) is Ul(r 1)M
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(r 1)MG(M) so that clearly,

IvI > (r- 1)MG(M)
maxo h(v) (17)

To obtain an upper bound for h(v), we will first show that the numbers
tj + u (with j, u satisfying (9)) are distinct. In fact, assume that

whence

If j’ > j, then

tj + u =tj, + u’

tj,- tj u u’. (18)

tj.,- tj > t.+l tj 3j + 2 > M. (19)

Moreover, we have

lu u’l <M. (20)

(18), (19) and (20) imply j j’, u u’.
Thus for fixed v, (11) has at most one solution in j and u. Moreover, if (12)

holds for some v, j, u and k, then we have 1 < k < j < rM so that k can be
chosen in at most rM ways. If v and k in (12) are fixed, then, by the
argument above, v + s tj + u has at most one solution in j and u, so that
for fixed v the total number of solutions of (12) is at most rM. A similar
argument gives that (13) has at most rM- 1 solutions. Summarizing, we
obtain that

h(v) N 1 + rM + (rM- 1) =2rM.

Thus it follows form (17) that

Ivl > (r- 1)MG(M) r- 1G(M) (21)2rM 2r

By (10), (14), (15) and (21) we have

G(2r2M2) (G(2r2M2) G(M)) + G(M)
3r- 1

> IV[ +G(M) > 2r G(M) (22)

which completes the proof of (6).
Let us write M (2r2)2k-1 for k 1,2,... so that M 2r2 and M+

2 22r M{ for k 1, 2, Clearly we have g(2) g(3)= 1 so that

G(M1) > G(8)
8, g(n) > g(2) + g(3) 2 > (3r- 1)/2r.

n=l
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Thus it follows form (6) by straightforward induction that

(3r- 1)G(M) > 2r for k 1,2, (23)

To complete the proof of the theorem, assume that M > 8 and define k by

M, < M < M,+ 2rZM,

Then we have

loglog M < loglog Mk+ loglog(2r2)2k+1-

(k + 1)1og2 + loglog(2r2).

< log log(2r2) 2k+1

Thus it follows from (23) that

G(M)>_G(M)> (3r-12r) >(3r-1 (log log M-log 2-log log(2r2))/log 2

2r --Cr
(

2 (logM)Cr
3 log(2r2 )

which completes the proof of Theorem 1.

Proof of the corollary. Clearly, g(n)= 1 if and only if one of p(n) and
p(n- 1) is odd and the other one is even, and this is so if and only if
Ei,2(n) Ei,2(n 2) 1 for both 0 and 1. Thus for both 0 and 1 we
have

N [N/2] [(N+ 1)/2]

g(n) g(Zm) + g(Zm- 1)
n=l m=l m=l

[N/2]., (Ei,2(Zm) Ei,2(Zm 2))
m=l

[(N+ 1)/2]

m=l
(Ei,2(2m 1) Ei,2(2m 3))

(Ei,z(2[N/2]) Ei,2(0))
+(Ei,z(2[(N + 1)/2] 1) Ei,2(-1))

(24)

< 2Ei,z(N).
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(5) follows from (4) (with r chosen large enough to ensure Cr
and this completes the proof of the corollary.

> c) and (24),

Section 3

Let q(n) denote the number of partitions of n into unequal parts, and let
E(n), resp. U(n), be the number of partitions of n into an even, resp. odd,
number of unequal parts. It follows from an identity of Euler (see Theorem
358 in [2]) that E(n)= U(n) except when n is a pentagonal number, i.e.,
n s 1/2k(3k- 1) or n tk 1/2k(3k + 1); in these latter cases we have
E(n) U(n) (- 1). Since

q(n) E(n) + U(n) E(n) U(n) mod2,

thus q(n) is odd if and only if n is a pentagonal number. In view of this fact,
one might like to see that the parities of p(n) and q(n) are independent. We
will prove the following result in this direction:

THEOREM 2. Both

and

p(n) q(n) mod2, n < N

p(n) q(n) + 1 mod2, n < N

have more than (log N) solutions for N large enough, where c is a fixed positive
constant.

Proof We start out from the well-known recursion formula (cf. [6], p. 44).

n-1

np(n) p(i)tr(n -i) (25)
i=0

where r(n) denotes the sum of the positive divisors of the positive integer n.
If p is a prime and r is a positive integer, then o(pr) 1 + p + p2 + +pr
is odd if and only if either p 2 or p 4:2 and r is even. By the multiplicativ-
ity of r(n), it follows that r(n) is odd if and only if n is of the form either
n k2 or n 2k2. Thus we obtain from (25) that

[x/h--] [,,/h--/2]

np(n) p(n k2) + p(n 2k2) mod 2. (26)
k=l k=l
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Next, we shall prove a similar formula for q(n), namely,

[yen-1 [/h--/21
nq(n) q(n k2) 4- ] q(n 2k2) mod2.

k=l k=l
(27)

Differentiating the function

F(x) _. q(n)x
n=O

I-I(a
i=1

(28)

we get

E nq( H)Xn-1
n-----O

/xi_
F(x) ] i 7i"

i=1

Multiplying by x, we have

nq(n)x
n=O

/x
=- F( x) .,

1- xi=1

mod 2. (29)

NOW,

E ixki: X
i=1 k=l m=l

_, o’(m)xm,
m=l

and (28) and (29)yield

n-1

nq(n) =- _. q(i)tr(n -i) mod2. (30)
i=0

Finally (27) follows from (30) in the same way as (26) from (25). Now, write
F(n) p(n) q(n). From (26) and (30), we get

nF(n) =- F(n k2) 4- ] F(n 2k2) mod2. (31)
kZ<n 2kZ<n

Let h(n)= 0 for n _< 1 and

h(n) 0 if F(n) F(n 2) mod2

h(n) 1 if F(n) F(n 2) mod2
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forn >2, and

H(N) E h(n).
<n <N

We shall prove

H(N) >> (log N) c, (32)

and then the proof of Theorem 2 can be completed similarly to the proof of
the corollary of Theorem 1. Indeed, let us define

T/(N) =card{1 <n <N,n--Nmod2, F(n) --imod2)

and T/(N) 0 for N < 0. Then we have h(n) 1 if and only if one of F(n)
and F(n- 2) is odd, and the other even, and this is so if and only if
T/(n) T/(n 4) 1 for both 0 and 1. Thus for both 0 and 1,
we have

N

H(N) E h(n) < E (T/(n) T/(n-4))
l<n<N n=l

T/(N) + T/(N- 1) + T/(N- 2) + T/(N- 3)
< 2(T/(N) + T/(N 1))
2card{n < N; F(n) =-i mod2}

which, assuming (32), completes the proof of Theorem 2.
Since the proof of (32) is similar to the proof of Theorem 1, we shall leave

some details to the reader. Replacing n by n 2 in (31), and then subtract-
ing we obtain

/,1,h(/7) E h(/’1, k2) q- E h( F/, 2k2) mod 2. (33)
k2<n 2k2<n

Let M be a positive integer and let

U= {u,l<u NM, h(u) 1),
1 {jg-} < 1J-- j, rM <j <sM, 2rv

<

where {x} denotes the fractional part of x, and r and s are two integers to be
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fixed, but such that 2 _< r < s. Substituting n 2u + j2 in (33)where u U,
j J, we obtain

euh(2j2+u) + E h(2j2+u-k2) + Eh(2j2 +u-2k2) =0 mod2
k=l k=l

(34)

where eu u mod2. Here the term h(2j 2 + u- 2j2) h(u)= 1 appears,
thus there is another term equal to 1 so that there is a

to to(j, u) (35)

such that h(to) 1, to =/= u, and to can be represented in the form

to 2j2 + u,2j2 + u 2 {with 1 < k < [jlQI)
2j2 + u 2k2 (with 1 < k < j 1).

or

(36)

It follows form (36) that

M < to < (2s 2 + I)M2.

If V denotes the number of distinct integers to that can be obtained in
form (35) for some j J, u U, and for a fixed to V, l(to) denotes the
number of solutions of (35) in j, u, then a simple computation shows that if r,
s and e > 0 are fixed, then for M > Mo(r, s, e) we have

H((2s2 + 1)m)- H(M) >_ IVI IJIH(M)
max 1(v)

(1 1/(2rye) e)(s r)
H(M). (37)>

(1 + v)s

The proof can be completed in the same way as the proof of Theorem 1.
Observe that choosing r large and, say, s r 2, the constant factor on the
right of (37) is close to 1/(1 + -), which yields c in Theorem 2 as close to
1/2 as we wish.

Section 4

The problems discussed so far can be generalized by studying the parity of
generalized additive representation functions. Indeed, for A c N let r(A, n)
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and p(A, n) denote the number of solutions of

a +a’ =n,a A,a’ A,a <a’,
and

ail + ai2 + +ai n, ail, ai A, ail < < ai

respectively.
Answering a question of the authors, V. Flynn (in a letter written to one of

the authors) and I.Z. Ruzsa (oral communication) showed that there are
infinitely many (but only countably many) infinite sets A c N such that
r(A, n) is either odd or it is even from a certain point on, and the same is
true with p(A, n) in place of r(A, n). One might like to study density and
other properties of the sets A with these properties; we will return to these
problems in a subsequent paper.

In both recursion formulas (1) and (26), sums of the form Ep(f(k))
appear where f(k) is a quadratic polynomial. This suggests that, perhaps,
there is a quadratic polynomial f(k) such that p(f(k)) is more often odd,
than even, or vice versa. Thus we have computed the parity of p(f(k)) up to
k < 16,000,000 for each of the polynomials f(k) k2 + a, a 0, 1, 2,..., 9
and, in view of Theorem 2, f(k)= 1/2k(3k + 1)+ a, a 0, 1,2,..., 9 (cf.
Table 1).

Table
For -9 < a < 9, this table shows the number of n’s satisfying 0 < n < 16,000,000 which are of
the form n k + a, or n k(3k 1)/2 + a or n k(3k + 1)/2 + a and such that p(n) is
odd or even.

k(3k- 1) k(3k + 1)
n k +a 2 +a 2 +a

p(n) even odd even odd even odd

a -9 2044 1954 1681 1583 1658 1605
-8 2012 1986 1579 1685 1602 1661
-7 2053 1945 1614 1650 1644 1620
-6 2049 1949 1646 1618 1612 1652
-5 1984 2014 1630 1635 1615 1649
-4 2000 1999 1585 1680 1578 1686
-3 1986 2013 1604 1661 1636 1628
-2 2023 1976 1624 1641 1640 1625

2027 1973 1627 1639 1614 1651
0 2006 1994 1592 1675 1661 1605

2003 1997 1547 1720 1574 1692
2 2002 1998 1583 1684 1677 1589
3 1943 2057 1663 1604 1593 1673
4 2014 1986 1628 1639 1623 1643
5 1977 2023 1700 1567 1615 1651
6 1992 2008 1598 1669 1680 1586
7 1991 2009 1633 1634 1590 1676
8 1935 2065 1635 1632 1606 1660
9 2039 1961 1614 1653 1621 1645
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It turned out that in each of these cases, the odd values and the even
values occur with about the same frequency. This fact, together with several
results [1], [7] of the type that p(f(k)) assumes both odd and even values
infinitely often for certain special linear polynomials f(k), suggests the
following conjecture: If f(k) is a polynomial whose coefficients are integers,
then p(f(k)) assumes both odd and even values infinitely often, and, indeed,
we have

lim I{n’n <N,p(f(n)) 0mod2}lN-1

N+

Table 1 was calculated by Marc Del6glise on an HP 730. In a first step he
calculated p(n) mod 2 up to n 16- 106 by Euler’s identity (1), and next he
extracted the values of p(f(k)) from the memory.
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