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Abstrget—We study the properties of the maximum entropy spectral
estimator in pure frequencies estimation. We model this situation bya
sum of pure frequencies added to white noise. We study the effect of
the signal-to-noise ratio, of the autoregressive filter order, and of the
puze frequencies amplitude ratio on the resolving power, Neglecting the
uncertainties in the autoregressive filter coefficient estimates, we show
that the poles of the autoregressive filter transfer function can be classi-
fied into two families: one gives the pure frequencies and the other the
white noise. By a first-order development we can specify the position
of the pure frequencies associated poles. This allows us to give analyti-
cal results on the bias of the pure frequency estimation and on the re-
solving power. These theoretical results are confirmed and illustrated
by computer simulations.

I. INTRODUCTION

THE maximum entropy spectral estimation is a very useful
tool in the analysis of pure frequencies corrupted by addi-
tive white noise. Several studies have used this technique in
order to obtain spectral estimation in time-dependent signal
analysis {3], [4] or in space-dependent signal analysis (array
processing) [6]-[8]. In these papers the resolving power
of the maximum entropy spectral estimator was stated “ex-
perimentally.” Recently, papers giving a theoretical analysis
of this problem have appeared. Lang and McClellan [2] give
the estimator variance and bias issuing from the uncertainties
in the autoregressive (AR) filter coefficients, and Herring [1]
studies the lire splitting with two complex sinusoidal signals
when the Burg algorithm is used.

In this paper, we present a theoretical approach to the prop-
erties of the maximum entropy spectral estimator of one or
two pure frequencies corrupted by additive white noise with
the assumption that the AR filter coefficient estimates are
based on exact correlation samples. After a presentation of
the model, we will show, using results presented in [5], that
in the case of one frequency, the poles of the AR filter can
be classified into two families: one pole representing the pure
frequency, and the others the white noise. This allows us to
propose a detection procedure of the pure frequency and to
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relate the “apparent bandwidth” of the pure frequency to the
signal-to-noise ratio. In the two-frequency case, we generalize
the preceding results and give a theoretical study of the poles
associated with the pure frequency locations in the complex z
plane. This allows us to give theoretical results on the bias and
on the resolution power of the ME spectral estimator as a
function of the signal-to-noise ratio, AR filter order, and fre-
quency separation.

II. MopEL
Let us state the Yule-Walker equations in vector notation:

cf = (@F -} with z; = e""af, the M-dimensional vec-
tor associated with a pure frequency
a =i afy) is the M-dimensional vector associated

with the AR filter coefficients

+ denotes complex transpose.

With these notations, the exact correlation matrix (M X M)
of the sum of L statistically independant pure frequencies
and white noise is

L
C=3 pie; ¢ +p,1

i=i

p; power of the ith pure frequency
P, power of the white noise
I identity matrix

and the Yule-Walker equations are

L L
2 (i ef +pu1) =3 picy (1a)
i=1 i=1
Developing {la)
L . L
2. pilei ~aye;tpra=3 piey (1b)
i=1 i=1
shows that the AR filter coefficients can be written
L
a= Z &jcj (2)
j=1
and the oy are given [substitute (2) into (1)] by
L
Zoz,—c?-cj+p[-af=l; i=1,---,L (3)
i=1
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where p; = p,/p; is the noise-to-signal ratio for the ith compo-

nent.
The maximum entropy (ME) spectral estimator is

1
O

where G (z) is the transfer function of the AR filter

Tmen(2) =

G(z)=1-(z+-a)=1—}£_’ cxj(z+-cf) (4}

i=1

2

(ot - -M
andzt=(z"%,z7%, - ,27")

From this formulation we easily obtain some general results.

1) For z* =cj(z = €’¥): G(z)= p;e; and so when p; =0 (no
white noise), L poles of the AR filter transfer function give
exactly the L pure frequencies.

2) In the general case (3) gives

C{i+ Z Oil;““_j““d“““ H
j#i
the second term of this equation (given before in [4]) “cou-
ples™ the different frequencies.
If all the pure frequencies are well separated, the terms
(cf - ¢;)/M are small and (3) can be written

. 1
(1"‘&)&,::_ i=

M M
In this case, as quoted before by [4], the “L frequencies”
problem is equivalent to L “one frequency” problems.

1, L.

HI. ANALYSIS OF ONE FREQUENCY
For a single frequency, the AR filter transfer function is
given by
M M M M-n
M+p)z"Gz)=M+p,)z ‘ZthZ . (5)
I
It is shown in [5] that, when g, = 0, the roots of this equa-
tion (poles of the ME spectral estimator) can be classified in
two families and that: _
1) One root is near z = e'®' . Specifically, this root is inside

the unit circle. Its angular position is v; (no bias in the fre-
quency estimate due to this root alone) and it is at a distance

2py

e:m (6)

from the unit circle.

2) The (M- 1) other roots are regularly distributed inside
the unit circle in the ring

1
@My <zl <1 - = (7)
M

These roots represent the white noise (Fig. 1}. The limits

given in (7) allow us to propose the following “pure frequency

detection” criterion: the number of pure frequencies is the
number of poles satisfying
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A very similar criterion (for the detection of sinusoids in white
noise by AR processing) was given recently by [9].

The poie associated to the pure frequency is, in the presence
of noise, inside the unit circle. In the estimated PSD, the pure
frequency is not represented by an infinitely sharp Dirac func-
tion but by a function peaked at

Wy = ¢

and the extension in « of the peak depends on the distance of
the poles from the unit circle. So, as in spectral analysis using
the Fourier transforms of the signal windowed by a finite
duration function, a pure frequency has an “apparent band.-
width” characteristic of the method of analysis, There exist
different definitions of this bandwidth and we have chosen
the “white noise equivalent bandwidth® [10] given by

L]

’ jwvz(w)dw |

-m

©)

Wn

In the analysis of a pure frequency, with a signal-to-noise
ratio of
1
G =
P
with an autoregressive model of order M, the *white noise
equivalent bandwidth™ of a pure frequency corrupted by
white noise is [5]

6
Bwn = MM+ Do’

This result is interesting in two respects. First, this bandwidth
depends on the autoregressive model order and on the signal-
to-noise ratio, and second, this characterization can be used
in order to compare the analysis by autoregressive method and
by the Fourier transform,

For a Fourier transform on kM samples of the signal, the
“white noise equivalent bandwidth™ is

1
Pwe =Skt

(10)

So, if
M+1)o
12
the PSD obtained by the Fourier transform is more peaked
than the autoregressive one, and if
M+ 1)e
12

the autoregressive estimate is more peaked than the Fourier
transform.

k>

k<

IV. ANaLYsIS oF Two CLOSE
FREQUENCIES—RESOLVING POWER

Let us consider two pure frequencies with

z; =1
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for the locations in the complex z plane of the poles associated
with the two pure frequencies (it is always possible to locate
one of the frequencies at z; = 1 by a rotation in the complex z
plane), and with the amplitudes p; and p, giving the noise-to-
signal ratios p; and p,.

Then a straightforward calculation using (3) and (4) gives the
AR filter transfer function (G (z)) by

F@) = azMG(z)

M M
= qozM - @, > M-r_ > zi M- (11)
i
with
ap = (M+p, ) (M+py)- lAlz
24} =M+,02 -A

Ctz =M+Pl _A$

M
A=3" z7.
n=1
The polynomial F(z) can be written

F(z)=Folz) + Fyyp,(2)
with

Fo(z}=F(z) for p,=p, =0

Fy10,{(2) = the remaining part of F(z).

Furthermore, when p;, p,, and ¢ are small, in a domain A in
the neighborhood of 1 and z,, we can write

F@)~ - 1)(z-22) By, (2).

When ¢ tends to 0, it can be shown (Appendix B) that the
roots of B, .,(z) are inside the unit circle and outside the
sector defined by

Kig

-2y

argz =

The domain A being included in this sector, Fy(2), can be
approximated by

Fo@)~ -z - T2

with Fg(1) the second derivative of Fy (2).
With the hypothesis g, p; small, F410,(2) can be approxi-
mated by

M M
A = M - -
Fp]pz(Z)"M(,Dg"’pz)Z —pIZZM n‘pzZZgzM v
1 1
end, with z, = ¢/¥, o~ 0, a first-order development in ¢ of

Fy(z)and F, ,,(2) gives

MM+ (M- 1) M +2)
72 ¥

MM +1)(py +py) ,}
2

Fo(l)~

A prtzyp
Fptﬂz(z)w - : l]'

Pyt p,

Fig. 1. Pole locations in the z complex plane for the limiting case p — 0
and an autoregressive filter order 10,

Finaily,
~ Fi(1) -
P =22U ey
with
~ P2t P12y
2y~z2-(l+zy ~-Mztg, - 2122
flay~2 - (42 D)z vz, - 1 220

_ 72(p1 t+p2)
MM+ 1) (M- 1D M+2)¢*

We will study two cases:

(12)

» two frequencies with equal amplitude
» two frequencies with different amplitude.

A. Two Frequencies with Equal Amplitude

For equal amplitude, p, = p, = p, the noise-to-signal ratio
for each frequency.
In this case (12) gives

1 +z,

A=z"-(1+2,-Dz+z,-T

e 144p
MM+ 1DYM-1DH(M+2)*

We are interested in the roots of (13) {(pole of the PSD esti-
mated) which represent the “apparent frequencies” seen by

this spectral analysis.,
These roots are

(13)

1+Z'z"[‘ \/Z
Zgp=— ¢
: 2 2
A=T2%- g, (14)

For 0<T'<y the two roots for (14} are located sym-
metricaily on the semicircle shown in Fig. 2.

For I'>0 the two roots tends to 1 and z, and (as stated
before) the true frequencies are obtained.

When p (and T') increases, the two roots go inside the unit
circle, so the PSD estimate is less “peaked.” The arguments
of the roots are no longer 0 and v, introducing a bias on the
estimated frequencies.

When "=y, the two roots collapse and then one frequency
is seen by the analyzer,

When I' >, the two roots move along the radius of argu-
ment ¢/2. One root goes inside the unit circle and will be
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Fig, 2. Location of the autoregressive filter poles versus T' (two fre-
quencies with equal amplitude).

interpreted as a “noise root;” the other root goes toward the
unit circle and will be interpreted as a “pure frequency root.”
In this situation, the two frequencies will be “seen’ by the
analyzer as “one frequency” with a value equal to the mean
of the two initial values, It must be noted that the root closer
to the unit circle stays inside the unit circle [it is seen from
a4l

These results merit comment. First of all, one can say that
the two frequencies are separated as long as the two roots have
a different argument (this is in some way an artificial defini-
tion, and other kinds of definitions can be used). With this
definition the resolution power of the AR analysis is given by
[ <, for resolution which gives

144p <1
MM+1DYM- 1M+ @

This relation shows us the effect of the noise-to-signal ratio (p)
and of the AR filter order (M) on the resolution power. The
noise-to-signal ratio must be lower than a threshold value in
order to separate the two fregencies. This result gives a justi-
fication of the “hybrid methods™ {3] in which the resolution
power is increased by subtraction of noise.

The regular approach to the resolving power can be ob-
tained through the plot of the PSD in “normalized {requency.”
Letting

(15)

z=g

we obtain
7(w) =__WIG(e e

which is plotied for [- 1/, +1/7].
Using the previous results one can see (Appendix A) that the
maxima of the PSD are located at

@ Fz)i,fz]
=L |1-(1t-2—
L (125

for I' < ¢//2 and there is only one maximum, located at

(16}

Wy,

Wep = _2—
for I' = p/\/2. We see that with this representation, the two
frequencies are separated for I' < g/\/2 and not, as previously,
for I' < p. In the range of value of I" between ¢/+/2 and g the
two frequencies are represented by two poles with different
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(a)

{b)

Fig. 3. PSD (plotted around the unit circle) and pole filter presentation.
(a) = 0.1, ¢ =0.02 1ad, M = 16. The pure frequencies are separated
by the pole presentation but not separated by the PSD presentation.
(p) p=0.1, o = 0.02 1ad, M = 18, The pure frequencies are separated
by the pole and PSD presentations.

angular position, but give rise to only one maximum in the
PSD plot. This effect is shown in Fig, 3.

The bias in the frequency estimate (given by the maxima of
the PSD) is '

p r2)1[2
Ap=2{1-2-—=) .
¥ 2( v’

So, the estimation of the frequencies by the pole locations is
better than the direct examination of the estimated PSD.

Another “technical reason” is favorable at the poles. The
plot of the PSD is sampled and, in order to get a good defini-
tion of the maxima of the PSD, it is necessary tc oversample
the spectrum. However, a “sampling bias,”’ which can be
made negligible, will always remain in this presentation.

B. Two Frequencies with Different Amplitudes
The two roots of G(z) given by (12) are now

1+z,-T /A

with

217 Py

) (17)
P1 TP

A=T?%- ¢ +2/T
With p, =kp, (k> 1: the amplitude of the z =1 pure fre-
quency is greater than the amplitude of the z =z, one), the
root locus of G(z) in the z complex plane, for I" increasing
from 0, is given in Fig. 4.

As previousty for I"'=+0, the two poles tend to I and z,.
For increasing values of I" the two poles go inside the unit
circle. Pole 1, associated to the frequency of greater ampli-
tude, follows a curve situated in the semicircle obtained with
two frequencies of equal amplitude. Pole 2, associated to the
frequency of lower amplitude, follows a curve situated outside
the same semicircle, When I’ becomes greater than y, pole 1
goes toward the unit circle and pole 2 toward the center. The
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Fig. 4. Location of the autoregressive filter poles versus for two fre-
quencies with different amplitude (6 = {¢/2} (p2 - p1 ) (22 + 21)).
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limiting values of the angular positions of the two poles
(I' > e} are

Y 9P 0y
0y, =—x ===
) 2pytp,y

In the case of two frequencies of different amplitudes, it is
shown in Appendix A that the PSD presents two different

maxima for
- 2/3 a/3
- bz (1))
Pz TP [

1
() =2
@ 2

When the two frequencies have different amplitudes, the reso-
lution power is “lowered™ by the second term in {18).

(18)

V. EXPERIMENTAL ILLUSTRATION

A simulation was made using two frequencies of equal ampli-
tude corrupted by additive white noise with

¢ =0.02 (rad)
p=0.1

The AR filter coefficients were estimated by the Burg method
using 256 samples of the signal studied,
In Fig. 5, we present the evolution of

as frequency separation

noise-to-signal ratio.

¢ the maxima of the PSD (+)

the pole location (X)

the theoretical pole location [using (13) (C1)]

versus filter order obtained by averaging over 20 inde-
pendent realizations,

In Fig. 6, we show the evolution of the distance between
the unit circle (e) and the AR filter poles versus AR filter order
(M) in the same conditions (¢ =0.02rad, p = 0.1). In this
situation, the two roots coliapse for M = 15. One can see that

for M > 15, the two poles (X, +) are at the same distance from
the unit circle. For M <15, one pole goes inside the unit cir-
cle and the other one towards the unit circle. The experi-
mental values follow the theoretical curves except near the
“collapsing point,” where it seems that the two curves tend
to separate themselves. We think that this minor discrepancy
is due to the approximations in the pole location calculation
and that in this region a more precise calculation is needed.

V1. ConcLusiON

We have presented a theoretical calculation of the bias and
the *“resonance amplitude” of the maximum entropy spectral
estimate of pure frequencies corrupted by additive white noise.
This study allows us in the one-frequency case to obtain a
“separation criterion” of the poles of the AR filter associated
with the white noise and the pure frequency, and to calculate
the amplitude of the ME spectral estimator peak. In the two-
frequency case the theoretical calculation gives the value of
the frequency estimation bias and relates the resolving power
of the method to the noise-tosignal ratio, AR filter order, .
and frequency separation,

APPENDIX A
PosiTION OF THE MAXIMA OF THE PSD
The modulus of f(z) is

/@) = (2*1)(z—z2)+r(z-u)"
Py o
We are near the point z = 1 so we can let
z=e™ ~ 1 +j

zzzel"ﬂr\.l.[.!'w
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|
r
) NoIsE 7o SIGNAL RATIC = N.]
gL FREQUENCY SEPARATION = (.02 T
*‘*———X——*—ale__* AR FILTER
25“00) ORDER
Fig. 6. Evolution of the unit circle distance of the two pole (experi-
mental: X, +} results and theoretical cuzve. Noise-to-signal ratio:
o=0.1. Frequency separation: ¢ = 0,02 rad.
which gives (z- 1) (z - 22) Fo(z)

) =|-ot- o+ (0 v )

and with w =8 + (w@/2)
(£
2
NS plﬁ+w2+Fﬂf(fz—pffl
pztpr 16 4 \patp;

The extrema of the PSD (proportional to 1/] f(ﬁ)") are the

roots of
1'\2) + sz.’i_p_l_
P2t o

d Frmyl2 2
M = 463 - 2.6 (_l{_ -
dp 2
If the two frequencies have equal amplitude, there are three
extrema located at

2 Fz 1/2
8=0, ﬁ=:("°———)

RO

+1?

(19)

4 2
if T' < @/+/Z, and one extrema, located at
g=0
if '=g//2. If the two frequencies have different ampli-

tudes, (19) has three roots if and only if

1-1 2/3 r 413
[1_ (3\[— P2 - .01) _) .
o P2t Py ¥
APPENDIX B
LOCALIZATION OF THE ROOTS OF Fy(2)

WHEN 2, Is CLosE TO 1

Letting p; = p» =0 and multiplying (11) by (z~ 1) (z-z3)
gives

- m+1
=qoz™*? -

(ao+05022 + 0y +0€222)Z
+(a022 +0‘.022 +a222)zm
(20)

+(oy t ezt )z - oyzo - a, zit*!

When z, = 1 the roots of (20) tends to the root of the poly-
nomijal

m+2
m

m+1

Apiafz)=2m2 -2 z

m+i)(m+2)
m{m-1)

m+2) 2
mm-1) m

In order to get this expression, let us define
& = f(z2)-

The first derivative of f(z,)forz; =1 is
=0

and the second derivative is

f”(1)=m2(m + 16)(m— 1)‘

So, when z, tendsto 1,

;- 1P m(m+1)(m-1)
2 6 )

Qp 77

The same calculations give the other coefficients of (20}.
z =1 is a four-order root of 4, , (), so

Am+2(z)= (z - 1)4 Bm—z(z)
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and
1
Bm—z(z)_{z_ ¥ Apm+2(2)
=(f: (k+ 1)(k+2)(k+3)zk) Apos (@)
k=0 6

which gives (by identification)
B L " e+ 2 1-k)z*
e a—— + + -1-
o G DIGRILEEOES

A polynomial with all coefficients >0,
The roots of B,,_,(z) are all inside the unit circle: Let us
define

Ple)=ap tayz+---+aq,z"

- 1
Pizy=al tas_ 2+ ---+afz" =z”P*(—
z

* = complex conjugate
and
TP(z) = adP(2) - a,B(2).
The polynomial TP(z) is of degree # - 1 and here

m+2
TBm I (*)B:!-:i .
At that place we use the “Rouche theorem™ [11]: if two com-
plex functions f and g are holomorph in the unit circle (|z| <
1) and verify

le@)| <|f@)| for |z|=1
then the two equations
fz)=0
f2) +g(z)=0

have the same number of roots in the unit circle (]z[ <1)
Let us apply this theorem to

2 - m+2
T8y s =;n"Bm—z"Bm—2=_ m Bin-3
For jz| =1, |Bm -1(2)| = |Bm -2(2)| and so, if m>2, |2/m -

By —2(3)! < Iém ‘2(2){-

The hypothesis of the Rouche theorem is fulfilled, and so
Byy-2 and B, _; have the same number of roots in the unit
circle.

By iteration we can so prove that B,,_, and B, have the
same number of roots in the unit circle. The last (B,) has no
roots in the unit circle, so B,,_, has no roots in the unit cir-
cle and B,, ., has all its roots in the unir circle.

The roots of B, -, are outside the sector ]arg z[ < mfm:
This follows from the fact that all the coefficients of B,, _, are
positive or null.
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