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Abstract

If A is a set of positive integers, we denote by p(A, n) the number of partitions of n with parts in A. First, we recall the following
simple property: let f (z) = 1 + ∑∞

n=1�nzn be any power series with �n = 0 or 1; then there is one and only one set of positive
integers A(f ) such that p(A(f ), n) ≡ �n(mod 2) for all n�1. Some properties of A(f ) have already been given when f is a
polynomial or a rational fraction. Here, we give some estimations for the counting function A(P, x) = Card{a ∈ A(P ); a�x}
when P is a polynomial with coefficients 0 or 1, and P(0) = 1.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let us denote by N the set of positive integers. If A is a subset of N, its characteristic function is denoted by
�(A, n) or more simply by �(n) when there is no confusion

�(n) = �(A, n) =
{

1 if n ∈ A,

0 if n /∈A.
(1)

If A={n1, n2, . . .} ⊂ N with 1�n1 < n2 < . . . then p(A, n) denotes the number of partitions of n whose parts belong
to A: it is the number of solutions of the diophantine equation

n1x1 + n2x2 + · · · = n,

in non-negative integers x1, x2, . . . . The generating series associated to the set A is

FA(z) =
∞∑

n=0

p(A, n)zn =
∏
a∈A

1

1 − za
(2)
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and we shall set p(A, 0) = 1. In [11], by considering the logarithmic derivative of FA, it was shown that

z
F ′
A(z)

FA(z)
=

∞∑
n=1

�(A, n)zn,

where

�(n) = �(A, n) =
∑
d | n

�(A, d)d =
∑

d | n,d∈A
d . (3)

Definition 1. We shall say that two power series f, g with integral coefficients are congruent modulo M (where M is
any positive integer) if their coefficients of the same power of z are congruent modulo M . In other words, if

f (z) = a0 + a1z + a2z
2 + · · · + anz

n + · · · ∈ Z[[z]]
and

g(z) = b0 + b1z + b2z
2 + · · · + bnz

n + · · · ∈ Z[[z]]
then

f ≡ g (mod M) ⇐⇒ ∀n�0, an ≡ bn (mod M).

If f ∈ F2[[z]],

f (z) =
∞∑

n=0

�nz
n with �n ∈ {0, 1} and �0 = 1, (4)

it is proved in [2] and [7] that there exists a unique set A(f ) ⊂ N such that

FA(f )(z) =
∏

a∈A(f )

1

1 − za
=

∞∑
n=0

p(A(f ), n)zn ≡ f (z) (mod 2), (5)

in other words

p(A(f ), n) ≡ �n (mod 2), n = 1, 2, 3, . . . . (6)

Indeed, for n = 1,

p(A(f ), 1) =
{

1 if 1 ∈ A(f ),

0 if 1 /∈A(f )

and therefore, by (6),

1 ∈ A(f ) ⇐⇒ �1 = 1. (7)

Further, assuming that the elements of A(f ) are known up to n − 1, we set (A(f ))n−1 = A(f ) ∩ {1, 2, . . . , n − 1};
observing that there is only one partition of n using the part n, we see that

p(A(f ), n) = p((A(f ))n−1, n) + �(A(f ), n)

and (1) and (6) yield

n ∈ A(f ) ⇔ �(A(f ), n) = 1 ⇔ p((A(f ))n−1, n) ≡ 1 + �n (mod 2). (8)

Let P ∈ F2[z] be a polynomial of degree, say, N . Considering P as a power series allows one to define A(P ) by
(7) and (8). In [4,11,12], this set A(P ) was introduced in a slightly different way: it was shown that, for any finite set
B ⊂ N and any integer M �maxb∈B b, there exists a unique set A0 = A0(B, M) such that p(A0, n) is even for all
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n > M . Clearly, from (6), the set A(P ) has the property that p(A(P ), n) is even for n > N (since, in (4), �n = 0 for
n > N ) and so, by defining B = A(P ) ∩ {1, 2, . . . , N}, the two sets A(P ) and A0(B, N) coincide. In other words,
knowing B and M , the polynomial

P(z) ≡
M∑

n=0

p(A0(B, M), n)zn (mod 2)

of degree N �M satisfies A(P ) = A0(B, M).
Let the factorization of P into irreducible factors over F2[z] be

P = Q
�1
1 Q

�2
2 . . . Q

��

� . (9)

We denote by �i , 1� i��, the order of Qi(z), that is the smallest integer such that Q(z) divides 1 + z� in F2[z]. It is
known that �i is odd (cf. [9, Chapter 3]). Let us set

q = lcm(�1, �2, . . . , ��) (q is odd). (10)

It was proved in [4] (cf. also [11] and [1]) that, for all k�0, the sequence (�(A(P ), 2kn) mod 2k+1)n�1 is periodic
with period q defined by (10); in other words,

n1 ≡ n2(mod q) ⇒ ∀k�0, �(A(P ), 2kn1) ≡ �(A(P ), 2kn2) (mod 2k+1). (11)

Some attention has been paid to the counting function of the sets A(f ):

A(f, x) = Card{a : a�x, a ∈ A(f )} =
∑
n�x

�(A(f ), n). (12)

It was observed in Reference [12] that for some polynomials P , the set A(P ) is a union of geometric progressions of
quotient 2, and so A(P, x) = O(log x). For instance, from the classical identity

1 − z = 1

(1 + z)(1 + z2) . . . (1 + z2n
) . . .

(13)

it is easy to see that the set G = {1, 2, 4, 8, . . . , 2n, . . .} satisfies

∞∑
n=0

p(G, n)zn =
∏
a∈G

1

1 − za
≡ 1 + z (mod 2)

and thus, from the characteristic property (5), A(1 + z) = G.
In [7], it is shown that, if the power series f is a rational fraction, say P/Q, there exists a polynomial U ∈ F2[z]

such that

A

(
P

Q
, x

)
= A(U, x) + O(log x), x → ∞.

In the paper [3], it is shown that the counting function of the set A(1 + z + z3) = A0({1, 2, 3}, 3) satisfies

A(1 + z + z3, x) ∼ c
x

(log x)3/4
, x → ∞,

where c = 0.937 . . . is a constant. In [10], it is shown that the number of odd elements of the set A(1 + z + z3 + z4 +
z5)=A0({1, 2, 3, 4, 5}, 5) up to x is asymptotic to c2x(log log x/(log x)1/3); the constant c2 is estimated in [5], where
the approximate value c2 = 0.070187 . . . is given.

In [2], a law for determining A(f1f2) in terms of A(f1) and A(f2) is given, which yields an estimation of
the counting function A(f1f2, x) in terms of A(f1, x) and A(f2, x). For instance, if f1(z) = 1 + z + z3 and f2(z) =
1 + z + z3 + z4 + z5, it is proved that

A(f1f2, x) ∼ A(f2, x), x → ∞.
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The aim of this paper is to give some general estimates for A(P, x), the counting function (12) of the set A(P ), when
P ∈ F2[z] is a polynomial and x tends to infinity. We shall prove

Theorem 1. Let P ∈ F2[z] be a polynomial such that P(0) = 1, let A = A(P ) be the set defined by (7) and (8) and
let q, defined by (10), be an odd period of the sequences (�(A, 2kn)mod 2k+1)n�1. Let r be the order of 2 modulo q,
that is the smallest positive integer such that 2r ≡ 1(mod q). We shall say that a prime p 
= 2 is a bad prime if

∃s, 0�s�r − 1 such that p ≡ 2s (mod q). (14)

Then

(i) if p is a bad prime, we have (p, n) = 1, for all n ∈ A;
(ii) there exists an absolute constant C1 such that, for all x > 1,

A(P, x)�7(C1)
r x

(log x)r/�(q)
, (15)

where � is Euler’s function.

Theorem 2. Let P ∈ F2[z] be a polynomial such that P(0) = 1, let A = A(P ) be the set defined by (7) and (8) and
let q (cf. (10)) be a period of the sequences (�(A, 2kn)mod 2k+1)n�1.

• Case 1: If the property

all the odd prime divisors of any n ∈ A divide q (16)

is true, then we have

A(P, x) = Oq((log x)�(q)+1), (17)

where �(q) is the number of prime factors of q.
• Case 2: If (16) is not true, there exists a positive real number � depending on n0 and q, such that

lim inf
x→∞

A(P, x) log x

x�
> 0. (18)

What Theorem 2 says is that there exist two kinds of sets A(P ): those of the first case are thin while those of the
second case are denser. We shall prove

Theorem 3. Let f1, f2 ∈ F2[[z]] be such that f1(0)=f2(0)=1. Let us assume that there exist two polynomials P1, P2 ∈
F2[z] which are products in F2[z] of cyclotomic polynomials and satisfy f1P1 = f2P2. Then the set A(f1)	A(f2) =
(A(f1)\A(f2)) ∪ (A(f2)\A(f1)) is included in a finite union of geometric progressions of quotient 2, and thus

|A(f1, x) − A(f2, x)| = O(log x). (19)

In particular, let P ∈ F2[z] be a polynomial which is a product of cyclotomic polynomials. Then the set A(P ) is
included in a finite union of geometric progressions of quotient 2, and thus

A(P, x) = O(log x). (20)

We formulate the following conjecture:

Conjecture 1. Let P ∈ F2[z] be a polynomial which is not congruent modulo 2 to any product of cyclotomic polyno-
mials. Then there exists a constant c(P ) < 1 such that

A(P, x) � x

(log x)c(P )
· (21)
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One of the tools of the proofs of Theorems 1 and 2 will be the following. Let A be any subset of N. If m is an odd
positive integer, we set, as in [4], for k�0

S(m, k) = �(A, m) + 2�(A, 2m) + · · · + 2k�(A, 2km). (22)

It follows from (3) that for n = 2km, we have

�(A, n) = �(A, 2km) =
∑
d | m

dS(d, k). (23)

By applying Möbius’s inversion formula, (23) yields

mS(m, k) =
∑
d | m


(d)�
(
A,

n

d

)
=
∑
d | m


(d)�
(
A,

n

d

)
, (24)

where 
 is Möbius’s function and m =∏
p | mp is the radical of m. Another useful remark is that, if 0�j < k and m is

odd, a divisor of 2km is either a divisor of 2jm or a multiple of 2j+1, so that, for 0�j �k, we have

�(A, 2km) ≡ �(A, 2jm) (mod 2j+1) (25)

(note that (25) trivially holds for j = k).

2. Proof of Theorem 1

Let us start with two lemmas:

Lemma 1. Let K be any positive integer and let x�1 be any real number. Then we have

Card{n�x; n coprime with K} =
∑

n�x; (n,K)=1

1�7
�(K)

K
x, (26)

where � is Euler’s function.

Proof. This is a classical result from sieve theory: see Theorems 3–5 of [6]. �

Lemma 2 (Mertens’s formula). Let a and q be two positive coprime integers. There exists an absolute constant C1
such that, for all x > 1,

�(x; q, a)
def=

∏
p�x

p≡a (mod q)

(
1 − 1

p

)
� C1

(log x)1/�(q)
· (27)

Proof. We have

log �(x; q, a) = −
∑
p�x

p≡a(mod q)

1

p
+

∑
p�x

p≡a(mod q)

(
1

p
+ log

(
1 − 1

p

))
. (28)

The second sum satisfies:

0�
∑
p�x

p≡a(mod q)

(
1

p
+ log

(
1 − 1

p

))
�
∑
p

(
1

p
+ log

(
1 − 1

p

))
= −0.3157 . . . (29)

as quoted in [15], 2.7 and 2.10. The first sum in (28) was estimated by Mertens who proved (cf. [8, Sections 7 and 110])∑
p�x

p≡a (mod q)

1

p
= log log x

�(q)
+ Oq(1). (30)
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But Ramaré has told us that it is possible to prove (30) with an error term independent of q: in his paper [13], p. 496,
the formula below is given

∑
n�x

n≡a(mod q)

�(n)

n
= log x

�(q)
+ C(q, a) + O

(√
q log3q

�(q)

)
(31)

where �(n) is the Von Mangoldt function

�(n) =
{

log p if n is a power of a prime p,

0 if not
(32)

and C(q, a) is a constant depending on q and a. Since Euler’s function satisfies �(q)� log 2(q/ log(2q)) (cf. [14],
p. 316), the error term in (31) is bounded, and setting x =1 in (31) shows that C(q, a) is also bounded. So, (31) implies

∑
n�x

n≡a(mod q)

�(n)

n
= log x

�(q)
+ O(1) (33)

and the constant involved in the O term is absolute. Let us set

W(x; q, a)
def=

∑
p�x

p≡a(mod q)

log p

p
· (34)

It follows from (32) that

W(x; q, a)�
∑
n�x

n≡a(mod q)

�(n)

n
�W(x; q, a) +

∑
p

∑
m�2

log p

pm
�W(x; q, a) + 0.76

as mentioned in [15], 2.8 and 2.11, and (33) yield

W(x; q, a) = log x

�(q)
+ O(1), (35)

where the constant involved in the O term is absolute. By using Stieltjes’s integral and partial summation, it follows
from (35) that

∑
p�x

p≡a(mod q)

1

p
=
∫ x

2−
d[W(t; q, a)]

log t
= W(x; q, a)

log x
+
∫ x

2

W(t; q, a)

t (log t)2
dt

= log log x

�(q)
+ O(1) (36)

and the constant involved in the O term is absolute; therefore, from (28), (36) and (29), Lemma 2 follows. Unfortunately
no precise value for C1 seems to be known. �

Proof of Theorem 1. (i) Let p be a bad prime, let m be an odd multiple of p and let j be any non-negative integer.
We have to prove that

n = 2jm /∈A = A(P ). (37)

It follows from (24), with A = A(P ), that

mS(m, j) =
∑
d | m


(d)�
(n

d

)
=

∑
d | m/p


(d)

(
�
(n

d

)
− �

(
n

dp

))
. (38)
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But, from (14), there exists s, 0�s�r − 1, such that p ≡ 2s(mod q); therefore, for each divisor d of m/p, we have

n

d
≡ 2s n

dp
(mod q). (39)

Since n = 2jm, (25) gives

�

(
2s n

dp

)
≡ �

(
n

dp

)
(mod 2j+1). (40)

From (11), (39) implies

�
(n

d

)
≡ �

(
2s n

dp

)
(mod 2j+1) (41)

while (40) and (41) imply

�
(n

d

)
− �

(
n

dp

)
≡ 0 (mod 2j+1),

and (38) becomes mS(m, j) ≡ 0 (mod 2j+1) which yields, since m is odd,

S(m, j) ≡ 0 (mod 2j+1). (42)

From (22) and (1), it follows that

0�S(m, j) < 2j+1. (43)

So, (42) and (43) give S(m, j) = 0, which, from (22), yields �(A, 2jm) = 0, which, by applying (1), proves (37).
(ii) Let us denote by K = K(x) the product of the bad primes (see (14)) up to x. It follows from (i), Lemmas 1 and

2 that

A(P, x)�
∑
n�x

(n,K)=1

1�7
�(K)

K
x = 7x

r−1∏
s=0

∏
p�x

p≡2s (mod q)

(
1 − 1

p

)
� 7(C1)

rx

(log x)r/�(q)

which completes the proof of Theorem 1. �

3. Proof of Theorem 2

Lemma 3. Let a1, a2, . . . , ak and y be positive real numbers. The number N(a1, a2, . . . , ak; y) of solutions of the
diophantine inequality

a1x1 + a2x2 + · · · + akxk �y (44)

in non-negative integers x1, x2, . . . , xk satisfies

N(a1, a2, . . . , ak; y)�

(
y +∑k

i=1ai

)k

k!
k∏

i=1

(
1

ai

)
. (45)

Proof. This is a classical lemma that can be found, for instance, in [16], III.5.2. �

Proof of Theorem 2. Case 1: Let us write the standard factorization of q into primes: q=q
�1
1 q

�2
2 . . . q

�s
s with s=�(q).

From (16), we have

A(P, x)�Card{n�x, n = 2i0q
i1
1 q

i2
2 . . . qis

s , i0 �0, . . . , is �0}. (46)
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By using the notation of Lemma 3, the right-hand side of (46) can be written as N(log 2, log q1, . . . , log qs; log x) and
(45) yields, since log qj � log 3�1,

A(P, x)� 1

(�(q) + 1)! log 2
(log x + log(2q))�(q)+1

�(q)∏
j=1

1

log qj

� (log x)�(q)+1

(�(q) + 1)! log 2

(
1 + log(2q)

log x

)�(q)+1

which, for x → ∞, implies (17).
Case 2: Here, (16) does not hold; so, there exists an odd prime p0 which is coprime to q and divides some element

n0 ∈ A(P ); such an element can be written as

n0 = 2k0m0 ∈ A(P ), k0 �0, m0 odd, m0 = p�
0a0, ��1, (p0, a0) = 1 (47)

and (22) and (24) yield

m0S(m0, k0) =
∑

d | m0


(d)�
(n0

d

)
=
∑
d | a0


(d)

(
�
(

2k0
m0

d

)
− �

(
2k0

m0

dp0

))
, (48)

where �(n) = �(A(P ), n) is defined in (3).
Let p be an odd prime satisfying

p ≡ p0 (mod 2k0+1q) and (p, a0) = 1 (49)

and let us set

m = p�a0, n = 2k0m. (50)

We want to show that

n ∈ A(P ). (51)

As in (48), we have

mS(m, k0) =
∑
d | a0


(d)

(
�
(

2k0
m

d

)
− �

(
2k0

m

dp

))
. (52)

It follows from (49), (50) and (47), that

m ≡ m0 (mod 2k0+1q) (53)

which implies that m ≡ m0(mod q); further, for any divisor d of a0, we have 2k0(m/d) ≡ 2k0(m0/d) (mod q) and
2k0(m/dp) ≡ 2k0(m0/dp0)(mod q). By applying (11), it follows that �(2k0(m/d)) ≡ �(2k0(m0/d)) (mod 2k0+1) and
�(2k0(m/dp)) ≡ �(2k0(m0/dp0))(mod 2k0+1), which, from (48) and (52) implies

mS(m, k0) ≡ m0S(m0, k0) (mod 2k0+1). (54)

But, from (53), m ≡ m0(mod 2k0+1) holds, and, as m is odd, (54) yields

S(m, k0) ≡ S(m0, k0) (mod 2k0+1).

Since, from (22), the inequalities 0�S(m, k0) < 2k0+1 and 0�S(m0, k0) < 2k0+1 hold, we have

S(m, k0) = S(m0, k0)

and, from the unicity of the binary expansion of (22), it follows that

�(2jm) = �(2jm0), j = 0, 1, . . . , k0

which, for j = k0, implies �(n) = �(n0) = 1 and proves (51).



F.B. Saïd et al. / Discrete Mathematics 306 (2006) 1115 –1125 1123

How many such n’s do we get? Let us denote by 
(y; k, �) =∑
p�y

p≡�(mod k)

1 the number of primes up to y in the

arithmetic progression p ≡ �(mod k). If k and � are fixed and coprime, it is known that (cf. [8, Section 120, 16, Section
II.8])


(y; k, �) ∼ y

�(k) log y
, y → ∞. (55)

The number of n’s, n�x, satisfying (50) and (49) is certainly not less than




((
x

2k0a0

)1/�

; 2k0+1q, p0

)
− �(a0)

(where �(a0) is the finite number of prime factors of a0) so that, from (51) and (55),

A(P, x)�


((
x

2k0a0

)1/�

; 2k0+1q, p0

)
− �(a0)�

1

2�
(
2k0+1q

) y

log y

holds for x large enough with y = (x/2k0a0)
1/�. Since log y� log x/�,

A(P, x)� �

2k0+1�(q)
(
2k0a0

)1/�

x1/�

log x
·

This implies (18), with � = 1/�, which completes the proof of Theorem 2. �

4. Proof of Theorem 3

Lemma 4. Let f ∈ F2[[z]], f (0) = 1 and � ∈ N. We have:

A((1 − z�)f (z)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A(f )\{�}
if � ∈ A(f )

A(f )\{2h�} ∪ {�, 2�, . . . , 2h−1�}
if h is the smallest integer such that 2h� ∈ A(f )

A(f ) ∪ {�, 2�, . . . , 2h�, . . .}
if for all non-negative h, 2h� /∈A(f )

(56)

and

A(f (z)/(1 − z�)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A(f ) ∪ {�}
if � /∈A(f )

A(f ) ∪ {2h�}\{�, 2�, . . . , 2h−1�}
if h is the smallest integer such that 2h� /∈A(f )

A(f )\{�, 2�, . . . , 2h�, . . .}
if for all non-negative h, 2h� ∈ A(f ).

(57)

Proof. To prove (56), let us first assume that

∀h�0, 2h� /∈A(f ). (58)

If we denote by

G(�) = {�, 2�, 4�, . . .} (59)
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the infinite geometric progression with first term � and quotient 2, we have from (2) and (13)

FA(f ) ∪G(�)(z) = FA(f )(z)

∞∏
n=0

1

1 − z�2n ≡ FA(f )(z)(1 + z�) (mod 2)

which, from the characteristic property (5), proves the third case of (56).
If (58) does not hold, let us denote by h�0 the smallest integer such that 2h� ∈ A(f ) and by A′ the set A′ =

A(f )\{2h�} ∪ {�, 2�, . . . , 2h−1�} (if h 
= 0) and A′ = A(f )\{�} (if h = 0). From (2), we have

FA′(z) = FA(f )(z)
1 − z�2h

(1 − z�) . . . (1 − z�2h−1
)

≡ FA(f )(z)(1 + z�) (mod 2)

which, from the characteristic property (5), proves the first case (h = 0) and the second case (h�1) of (56).
Formula (57) is identical to formula (56), but expressed in a different way. �

Proof of Theorem 3. By using the notation (59), it follows from Lemma 4 that, for any � ∈ N and f ∈ F2[[z]],

A
(
(1 − z�)±1f (z)

)
⊂ A(f ) ∪ G(�). (60)

Let us call �n(z) ∈ Z[z] the cyclotomic polynomial of index n. From the classical formula

�n(z) =
∏
d | n

(1 − zd)
(n/d)

and from our hypothesis, it follows that there exists a finite sequence d1 �d2 � · · · �d� of positive integers such that

f2(z) = f1(z)

�∏
i=1

(1 − zdi )�i , �i = −1 or 1.

By applying (60) � times, we have

A(f2) ⊂ A(f1) ∪
(

�⋃
i=1

G(di)

)

and, symmetrically,

A(f1) ⊂ A(f2) ∪
(

�⋃
i=1

G(di)

)

so that

A(f1)	A(f2) = (A(f1)\A(f2)) ∪ (A(f2)\A(f1)) ⊂
(

�⋃
i=1

G(di)

)
(61)

which proves the first part of Theorem 3; (19) is an easy consequence of (61).
To prove the second part of Theorem 3, let us set f1(z)=P2(z)=1 and f2(z)=P1(z)=P(z). SinceA(f1)=A(1)=∅,

it follows from (61) that there exist d1 �d2 � · · · �d� such that

A(P ) ⊂
�⋃

i=1

G(di)

which completes the proof of Theorem 3. �
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