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1. Introduction

Throughout this paper, we shall use the following notatidsidenotes the set of the positive
integers,r (x) denotes the number of the prime numbers not exceediagd p; denotes
theith prime number. The number of the positive divisorsiaf N is denoted byd(n),
and we write

D(X) = maXxd(n).

Following Ramanujan we say that a numibee N is highly composite, briefly h.c., if
d(m) < d(n) for allm € N, m < n. For information about h.c. numbers, see [13, 15] and
the survey paper [11].

The sequence of h.c. nhumbers will be denotedhpyn,, ...y =1,n, =2, nz3 =4,
ng=6,ns =12 ... (for atable of h.c. numbers, see [13, Section 7, or 17].)For 1, let
Nk = Nix) denote the greatest h.c. number not exceedingo that

D(X) = d(nk(x)).

*Research partially supported by Hungarian National Foundation for Scientific Research, Grant No. T017433 and
by C.N.R.S, Institut Girard Desargues, UPRES-A-5028.
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It is known (cf. [13, 8]) thahy is of the formn, = pi*p5 - - - p}’, wherery >rp, > - .-
=Ty,

log X
=1 1) —— 1
= (1+0o( ))Ioglogx’ 1)
o log pe log pi
r =@+ o(1)) log 2100, (for X = 00 andIog 0. -0 2)
and, ifm s the greatest integer such thgt> 2,
0 Tl
Pm = p; + O (p;”) 3
where
l0g(3/2)
0 = =0.585.. 4
log 2 “)

andrg is a constank 1 which will be given later in (8).

ForO<z <1 X > 1, let S(X, z) denote the set of the integaravith n < X, d(n) >
zD(X). In this paper, our goal is to study the functibiX, z) = Card S(X, 2)).

In Section 4, we will studyF (X, 1), further we will prove (Corollary 1) that for some
¢ > 0 and infinitely manyX's with X — 400, we haveF (X, z) = 1 for all z and X
satisfying

1-— ! <z<
(log X)©

Thus, to have a non trivial lower bound f&r( X, z) for all X, one needs an assumption of
the typez < 1 — f(X), cf. (6).

In Section 2, we shall give lower bounds fBr(X, z). Under a strong, but classical,
assumption on the distribution of primes, the lower bound given in Theorem 1 is similar
to the upper bound given in Section 3. The proofs of the lower bounds will be given in
Section 5: in the first step we construct an inteer S(X, z) such thad(h) is as close
to zD(X) as possible. This will be done by using diophantine approximatien(défined
by (4)), following the ideas of [2, 8]. Further, we observe that slightly changing large
prime factors ofi will yield many numbers not much greater thaf and so belonging to
S(X, z). The proof of the upper bound will be given in Section 7. It will use the superior
h.c. numbers, introduced by Ramanujan (cf. [13]). Such a nutdperaximizesd(n)/n®.

The problem of finding h.c. numbers is in fact an optimization problem

maxd(n)
n<x

and, in this optimization problem, the parameteplays the role of a Lagrange mul-
tiplier. The properties of the superior h.c. numbers that we shall need will be given in
Section 6.
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In [10, p. 411], it was asked whether there exists a positive constsunth that, fon;
large enough,

d(nj;1) <1 1 '
d(nj) (lognj)c
In Section 8, we shall answer this question positively, while in Section 4 we shall prove

that for infinitely manyn;, one hasl(nj;1)/d(nj) > 1+ (logn; )=0.71,
We are pleased to thank J. Rivat for communicating us reference [1].

2. Lower bounds
We will show that
Theorem 1. Assume that is a positive number less thdrand such that

y T
n(x)—n(x—y)>A@ forx* <y < x (5)

for some A> 0 and x large enough. Then for &l > 0, there is a number X= Xgp(e)
such thatif X > Xg(¢) and

exp(—(log X)*) < z < 1 —log X)™* (6)

wherex is any fixed positive real numberl and A, a positive real numbex0.03, then
we have

F(X, 2) > exp((1—e) min{2(Alog 2 logX log(1/2))Y2 2(log X)1~* log log X log(1/2)}).
(7)

Note that (5) is known to be true with
T=1=0535 and A=1/20 (8)
(cf. [1]) so that we have
F(X, 2) > exp((1 — &)2(log X)**®°log log X log(1/2))

for all z satisfying (6), and assuming the Riemann hypothesis, (5) holds foralll/2
so that

F(X, 2) > exp((log X)?~¢ log(1/2))

foralle > 0, X large enough angsatisfying (6). Moreover, if (5) holds with some< 1/2
andA > 1— ¢/2 (as it is very probable), then for a fixedve have

F(X,2) > exp((2 — &) ((log 2)(log X) log(1/2))*/?). ©)
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In particular,
F(X,1/2) > exp((1 — ¢)(log 2)(log X)Y/?). (10)

While we need a very strong hypothesis to prove (9) foXalve will show without any
unproved hypothesis that, for fixednd with another constant in the exponent, it holds for
infinitely many X € N:

Theorem 2. If z is a fixed real number with < z < 1,and ¢ > 0, then for infinitely
many Xe N we have

F(X,2) > exp((1 — ¢)(log 4 logX log(1/2)%?) (11)
so that in particular
F(X,1/2) > exp((1 — &)~/2 log Zlog X)Y/?). (12)

We remark that the constant factgf2 log 2 on the right hand side could be improved by
the method used in [12] but here we will not work out the details of this. It would also be
possible to extend Theorem 2 to allepending orK and satisfying (6).

3. Upper bounds
We will show that:

Theorem 3. There exists a positive real numbersuch thatfor z > 1 — (log X)~7, as
X — 400 we have

log F (X, 2) = O((log X)*/2), (13)
and if A, n are two real number) < A < 1,0 < < y, we have for
1— (logX)™"*" = z > exp(—(log X)*), (14)

and X large enough

F(X,2) < exp( (log(1/2) log X)1/2>. (15)

24
Vi-y
The constany will be defined in Lemma 5 below. One may take= 0.03. Then for

z=1/2, (15) yields

logF (X, 1/2) < 21(y/log X)

which, together with the results of Section 2, shows that the right order of magnitude of
log F(X, 1/2) is, probably,./Tog X.
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4. Thecasegz = landzcloseto 1l

Let us first define an integerto be largely composite (I.c.) th < n = d(m) < d(n).

S. Ramanujan has built a table of I.c. numbers (see [14, p. 280 and 15, p. 150]). The
distribution of l.c. numbers has been studied in [9], where one can find the following
results:

Proposition 1. Let Q,(X) be the number of I.c. numbers up to X. There exist two real
numberd.2 < b; < b, < 0.5such that for X large enough the following inequality holds

exp((log X)) < Q.(X) < exp((log X)™2).

We may take any number(1 — 58%2)/2 = 0.20752 for by, and any numbes-(1—y)/2

with y > 0.03defined in Lemma,For by.

From Proposition 1, it is easy to deduce:

Theorem 4. There exists a constant b< 0.485such that for all X large enough we have
F(X, 1) < exp((log X)?). (16)

There exists a constant Is- 0.2 such that for a sequence of X tending to infinitye have
F(X, 1) > exp((log X)?). (17)

Proof: F(X, 1) is exactly the number of |.c. numbenssuch thatny < n < X. Thus
F(X,1) < Q.(X) and (16) follows from Proposition 1.

The proof of Proposition 1 in [9, Section 3] shows that for &py< 0.207, there exists
an infinite number of h.c. numbeng such that the number of l.c. numbers betwagn
andn; (which is exactlyF (n; — 1, 1)) satisfiesF (n; — 1, 1) > exp((log nj)bl) for nj large
enough, which proves (17). O

We shall now prove:

Theorem5. Let(n;) be the sequence of h.c. numbers. There exists a positive real number
a, such that for infinitely many;rs, the following inequality holds:

d(nj) -1 1
d(nj_1) — (lognj)3’

One may take any a 0.71in (18).

(18)

Proof: Let X tend to infinity, and defin& = k(X) by nx < X < ng,3. By [8], the
numberk(X) of h.c. numbers up tX satisfies

k(X) < (log X)* (19)
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for X large enough, and one may choose/iathe valuex = 1.71, cf. [10, p. 411 or 11,
p. 224]. From (19), the proof of Theorem 5 follows by an averaging process: one has

din) _ DX
ﬂ<njfxd(nj—l) D(VX)

The number of factors in the above produdt(¥) — k(+/X) < k(X) so that there exists
i, KWX) +1 < j < k(X), with

. 1/k(X)
d(ny) >< D<X>> | 20

d(nj-1) ~ \DWX)

But it is well known that logD (X) ~ % and thus

log2 log X
log(D(X)/D(v/X)) ~ % lo;ﬁ)g =

Observing thaiX < n?, it follows from (19) and (20) foiX large enough:

d(n)) - oxnf 1
d(nj_1) — P 3 (log X)*—1loglog X

1
> exp<§ (2logn;)~1log(2lognj) )

1 1
= eXp((lognj)a) =1+ (lognj)?

foranya > u — 1, which completes the proof of Theorem 5. O

A completely different proof can be obtained by choosing a superior h.c. numbeyr for

and following the proof of Theorem 8 in [7, p. 174], which yiells= 'Olgo(% =0.585...
See also [10, Proposition 4].

Corollary 1. Forc > 0.71, there exists a sequence of values of X tending to infinity such
that F(X,z) = 1forallz,1—1/(log X)¢ <z < 1.

Proof: Let us chooseX = nj, with n; satisfying (18), an¢ > a. For alln < X, we
have

‘ d(n;) __ bX
d(n) <d(nj_y) < 1+ (lognj)=2 ~ 1+ (logX)—2

< zD(X).

ThusS(X, 2) = {n;}, andF (X, 2) = 1. -
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5. Proofs of the lower estimates
Proof of Theorem 1. Let us denote by; /B the convergents df, defined by (4). Itis
known that9 cannot be too well approximated by rational numbers and, more precisely,
there exists a constantsuch that

196 — pl>q™ (21)
for all integersp, q # 0 ( cf. [4]). The best value of

k =7.616 (22)

is due to G. Rhin (cf. [16]). It follows from (21) that

Bi+1 = O(B). (23)

Let us introduce a positive real numkewhich will be fixed later, and defing = j (X, )
so that

Bi < (ogX)’ < Bjt1. (24)

By Kronecker’s theorem (cf. [6], Theorem 440), there exist two integexsds such that

logz 2 2
and
bep< (26)

Indeed, asy; andg; are coprime, one can writg, the nearest integer ig; :g%é + 2), as

B = uiaj — upBj with |ug| < Bj/2, and thery = «j 4+ up andp = B; + u; satisfy (25).
With the notation of Section 1, we write

Pm+1Pm+2 - - - Pm+s (27)

A= Nk
PePe—1--+ Pr—a+1

for X large enough. By (26), (24), and (6), (25) yields

log(1/2)

) A
a < B0+ log 2 < max((log X)°, (log X)*) (28)
and
logz 4 6 log(1l/2)
2P o2 "B, TP T BT Tlog2 T
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for X large enough. Thus, if we chooge< 1, from (3) and (1)) wehavwe =r, ; =--- =
re_o+1 = 1. By (1) and the prime number theorem, we also have

pe ~ log X (29)
and by (3), we haven1 =rmy2 = - - - = Imyp = 1 so that, by (25),
. (3/2)
d(f) = d(ny) = d(ny) explog 2(86 — @)) > zd(nk) = zD(X).  (30)

2&

Now we need an upper bound fidfng. First, it follows from (5) that foi = o(m) we have

i
Pms+i — Pm < maX< Prsi» A log pm+i> (31)

and consequently,

B )
1—[ Pm+i _ exp(
i=1

m

B B
Pm+i Pm+i — Pm
lo < eXx E _—
-1 *pn ) - p( Pm )

i=1

B . B
< exp(amw(pmw A log pm+ﬂ>>
< exp(O(max((log X)) (log X)*~* log log X))) (32)

by (26), (24), (3) and (1). Similarly, we get

a_lﬂ < exp< i max(p’ gIog p ))
io Pe—i Pe—a+1 T A ‘

(log X)? —logz ((log X)? —logz)?
< exp<0<max( JogX)i™ log X loglog X))) (33)

by (28). Further, it follows from (3) and (25) that

: 44 -
o= p @ o)) = 0™ exp(o(pr )
(4
logz ) 4log p; B }
<expy | —=lo + + . 34
p{(logZ 9P B, pél—r)(? (34)

It follows from (23) and (24) that

Bj > (log X)*/%. (35)
Multiplying (32), (33) and (34), we get from (27) and (29):

(36)

A/ < exp{ 1+ 0(1))W}

log 2
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if we chooses in such a way that the error terms in (32), (33) and (34) can be neglected.
More precisely, from (6) and (36J,should satisfy:

§+0(t—1) < —Aq
25— 6 <_)\.1
ki <8 < 1.

It is possible to find such &if A; satisfies

. ((1-1)8 0
AL < minf ———, .
14+« 14+ 2%
(4), (8) and (22) yield.; < 0.03157.
For convenience, let us write
f=ppZ.- pf (37)

with, by (27),t = ¢ — «. It follows from (1) and (28) that

logX
t=>0+ 0(1))W7 pr ~ log X (38)
and from (24) and (26) that
fi=1 fori >t—t%1 (39)

Now, consider the integetssatisfying

Pt v) % PPz P exp<<1 —e)
pt—v+l pt—v+2 e pt

log(1/2) log X) (40)

log 2
and
v < '[9/10. (41)

By a calculation similar to that of (32) and (33), by (5) and the prime number theorem, for
all v satisfying (41) and for all ¥ i < v we have:

Pt+i — Pt—v+i 1 v
= §1+(1+0(1))—ma><< (v — O )
p[*UJri ptvari pt pt+ A g pH_

1 T -1 Y
= 1+(1+o(1)){max t*(logt) A
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so that, by (38), the left hand side of (40) is

Pt = [P

i=1 Pt—v+i

1 v
< exp|l v(l+ o(l))Ymax<tf(Iogt)f , Z))

= exp((l +o(D)v loglog X max( (log X)” v ))

log X loglogX’ A
B -1 v loglogX
= exp((l +o(D)v max((log X)), A log X )) (42)

By (42), (40) follows from

-1 v loglogX &) log(1/2)log X)
exp<(1+o(1))v max((logX) " A logX ))<exp(<1 2)7|092 .

(43)

An easy computation shows that with
S5e\ . Alog X 12 1. 10glog X
(1 5 )mm(( l0g 2 log(1/2) , (log X) 1092 log(1/2)

in place ofv both (41) and (43) hold. Thus fixingnow as the greatest integesatisfying
(41) and (43), we have

3 Alog X 12 1. loglog X
v > (1 4>m|n(( log 2 log(1/2) ),(IogX) log 2 Iog(l/z)). (44)

Then it follows from (39) and (41) that
fiopi=1 fori=1212,...,v. (45)

Let now.4 denote the set of the integea®f the form

a=2p7...pi ) p, - p, wheret —v4+1<ij<iz<---<i, <t+uv. (46)
Then, by (37), (46) and (30) we have

d(@) = d(h) > zD(X). (47)
Moreover, by (40) and (36) such arsatisfies
a=_— PP P 4 b A <, (48)

Pt—v+1Pt—v42 - P
It follows from (47) and (48) thaa € S(X, z) and

F(X,2) > | Al (49)

The numbers$,, i, ..., i, in (46) can be chosen iﬁ[j) ways so that

|Al = (2:) > exp((l— %)(Iog 4)v>. (50)
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Now (7) follows from (44), (49) and (50), and this completes the proof of Theorenil.

Proof of Theorem 2: By a theorem of Selberg [19, 9], if the real functidnx) is
increasing,f (x) > x%/6 and% N\, 0, then there are infinitely many integersuch that

f f
n(y+f<y>>—n<y)~% and n(y)—n(y—f(y))~%. (51)

We use this result wittf (y) = (1— %) log y(y"l’g’—élé(z))l/2 and for ay value satisfying (51),
definet by

p<y < P (52)

Further, we defing; (instead of (24)) so that; > gé;??fa anda, B by (25) and (26); we
set! =t + « and choos&X = ni a h.c. number whose greatest prime factgoigsuch a
number exists, see [13] or (59), (60) below). We defingy (27), and (30) and (38) still

hold, while (36) becomes

nﬂ < exD<(1+ o(1)) log |09X<IO£ + i))
k

log2 B
< exp| (1+ o(1)) loglog X logz(1—¢)
< exp log 2 g
loglog X 3
< exp( log 2 log z(l - 5)) (53)

for X large enough. Let denote the greatest integer with
P =Y+ f(y) and p, =y— f(y), (54)
so that by the definition of we have

f(y)
v~

gy’ (55)

By (38) and (52), we have
y ~ logx. (56)

Moreover, by (38), (54) and (55), we have

v

P(t. v) d=ef1—[ Pr+i - <Y+ f(Y))

=1 Pt—v+i \ f (y)
f(y) f(y)
< exp((l +0(1)) loglog X Iog(l + ZT))

_ fZ(y) B 1 e 2
= eXD((Z +0(1)) yiog IogX) = <Iog 5T o(l)) (1 - 5) log log X log(1/2).
(57)
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It follows from (53) and (57) thaP (t, v) < ny/f for X large enough angsmall enough.
Again, as in the proof of Theorem 1, we consider the4ef the integers of the form
(48). Then as in the proof of Theorem 1, by using (38) and (55) finally we obtain

F(X.2) > |Al = (i”) > exp((l— g)aog 4>v)

> exp((1 — &) (log H?(log X)"/?(log(1/2))*/?)

which completes the proof of Theorem 2. O

6. Superior highly composite numbers and benefits

Following Ramanujan (cf. [13]) we shall say that an intelyas superior highly composite
(s.h.c.) if there exists > 0 such that for all positive intege¥ the following inequality
holds:

d(M)/M¢ < d(N)/N¢, (58)

Let us recall the properties of s.h.c. numbers (cf. [13], [7, p. 174], [8-11]). To any
g,0 < ¢ < 1, one can associate the s.h.c. number:

N, =] p* (59)
p=<x
where
x =24 ¢=(log2)/logx (60)
and
o= | 515 | -
Fori > 1, we write
x; = xlog(1+1/)/log2 (62)
and then (61) yields:
ap =1 Xiy1 < P < X. (63)

A s.h.c. number is h.c. thus from (1) we deduce:
x ~ log N,. (64)

Let P > x be the smallest prime greater than There is a s.h.c. numbét’ such that
N’ < NPandd(N’) < 2d(N).
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Definition Lete, 0 < ¢ < 1, andN, satisfy (58). For a positive integdf, let us define
the benefit ofM by

benM =¢ IogNM - Iogd(M)

- %N (69)

From (58), we have beM > 0. Note that betN depends om, but not onN,: If N® and
N @ satisfy (58), (65) will give the same value for bhif we setN, = N®or N, = N@,
Now, let us write a generic integer:

M=]]p".
p

for p > X, let us setyp, = 0, and define:

ber,(M) = &(8p — ap) log p — |og(ﬂ"“>. (66)
Op+1
From the definition (61) ok, we have bep(M) > 0, and (65) can be written as

benM = Zberb(M). (67)
P

If Bp = ap, we have bep(M) = 0. If B > «p, let us set

ap+2 p
= , b, R = — lo —lo P = — lo
01 = @1(&, P, ap, Bp) = (Bp Olp)<8 agp gap+l> (Bp —aple g<xap+1)

1 Bp—«
1 = Valep ) = (8~ aplog 1+ ap ;) - toa(1+ ﬁ>
We have

beny(M) = @1 + Y11,

@1 >0, ¢1 > 0andy(ap, ap + 1) = 0. Similarly, for 8, < ay, let us introduce:

+1 Xa
@2 = @2(&, P, ap, Bp) = (ap — /3p)<|09ap —¢elog p) = (ap—Bp¢ |Og(?p>

Op

1 >_|Og(1_M>_
ap+1 ap+1

We haveyp, > 0, ¥, > 0, y2(a2, «p — 1) = 0. Moreover, observe thait, is an increasing
function of 8, — ap, andyr, is an increasing function ef, — B, for «, fixed.
We will prove:

Yo = Yaltp, Bp) = (@p — ﬁp)log(l _

Theorem 6. Let x — 400, ¢ be defined by60) and N. by (59). Leti < 1 be a positive
real number p a positive real number not too large: < 0.16) and B = B(x) such that
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X~ < B(x) < x*. Then the number of integers M such that the benefit ofidlined by
(65)) is smaller than Bsatisfies

v < exp(\/lzf_ux/@) (68)

for x large enough.

In [9], an upper bound for was given, withB = x~7. In order to prove Theorem 6, we
shall need the following lemmas:

Lemmal. Letp =2, p, =3,..., pk be the kth prime. For k= 2 we have Kogk >
0.46p.

Proof: By [18] for k > 6 we have
pk < k(logk + loglogk) < 2klogk
and the lemma follows after checking the cakes 2, 3, 4, 5. O

Lemma2. Letp =2, p,=3,..., pk be the kth prime. The number of solutions of the
inequality

P1X1 + PoXo + - 4 PXu t o <X (69)
in integers x, Xz, ..., isexp((1 + 0(1))% @).
Proof: The numberT (n) of partitions ofn into primes satisfies (cf. [5]) log(n) ~
% % and the number of solutions of (69)}s,,_, T (n). O

Lemma 3. The number of solutions of the inequality
X1+Xo+---+X% <A (70)
inintegers X, ..., X is < (2r)A.

Proof: Leta = [A]. Itis well known that the number of solutions of (70) is

a = : <(r+21%<(@2r)°.

r+a _r+ar+a—1 r+2r+1
a a—1 2 1

Proof of Theorem 6: Any integerM can be written as

A .
M = BNE’ (A, D) = 1 andD dividesN;.
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First, we observe that, ¥ divides A and berM < B, we have forx large enough:
y <X (71)
Indeed, by (61), we have

1 1 logx log x
op < . < = =< 2
pe—1" elogp log2logp ~ (log2

< 3logx.

It follows that

B > benM > ben,(AN,) > Yi(ap, ap +Y)

1 y
=yl 1 —1 1
yog( +0‘p+1> og( +0‘p+1)

zl—log(1+y)> Y —log(1+y),

op ~ 3logx

and sinceB < x*, this inequality does not hold for > x andx large enough.
Further we writeA = A1 Ay - - - Ag with (A, Aj) =1 and

plAL = p > 2X
PlA2=— X < p<2X
Pl A3 = 2% < P <X
PlAI= X2 < P=<2%
Pl As => 2X3 < P < Xo
Pl As = p =< 2Xs,

wherex; andxz are defined by (62). Similarly, wewri@= D;D;... Ds, with (D;, Dj) =1
and

p|D1 = Xx/2< p<X
PID2= X2 < p=<x/2
PID3s = X2/2 < p=X
P|Ds = 2X3 < P < Xo/2
p|Ds = p < 2Xs.

We have
6 5
benM =) " ben(AiN,) + ) _ ben(N, /D),
i=1 i=1

and denoting by; (resp.v{) the number of solutions of

benAiN;) < B (resp. betN./Dj) < B),
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we have
6 5
V< 1_[ Vi l_[ V. (72)
i=1 i=1

In (72), we shall see that the main factors sr@andv] and the other ones are negligible.

Estimation ofv,. Let us denote the primes betweemnd X by x < P, < P, < --- <
P, < 2%, and let

Ay =PlPy ... PY

r o

yi > 0.
From the Brun-Titchmarsh inequality, it follows for> 2 that

 — X P —X
<

P=m(R)—70) = 2IOg(F’l —X) ~ log2(i -1

and it follows from Lemma 1:
g|
P—x> —IogZ(| —1)> — > 0.23p;.

By (60) and (61) we havep = 0 and
r r
ber(AzN,) > Zgol(s, R.0,y) = Zeyi log(Pi /%)

> Zgyl

By (71), the number of possible choices faris less than(x + 1), so thatv, is certainly
less than(x + 1) times the number of solutions of:

_Zﬁ(P —%) >20115—p..

Zp.m (0115) < 126Bxlogx,

and, by Lemma 2,

v < (X +1) exp{(1+ o(1)) 2% |126Bxlogx } < exp( 13 BX)

f log(BXx) JI=p)

Estimation ofv;.  First we observe that, if a large prinfedividesM and berM < B then
we have:

B > benM > ber,(M) > ¢1(e, P, 0, Bp) > ¢log(P/x),
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so that

P < xexp(B/e) =X exp(B Iogx>.

log2

If 1 islarge, we divide the interval [Q] into equal subintervalsif, Aj 1], 0 <i <s-—1,
such thatj 1 — Aj < 1;2" We setTop = 2x, T = x exp(x¥) for1 <i < s— 1, and
Ts=X exp(%ggzx). If A < %, there is just one interval in the subdivision. Further, we write
A =aay...aswith p| & = Ti_1 < p < Ti, and if we denote the number of solutions
of ben(gN;) < B by u{') clearly we have

s
v < 1_[1):([').
i=1
(@)

To estimate; ’ letus denote the primes betwekn, andT by Ti_1 < Pr < --- < B < T,
and letaj = P)* ... P”". We have

r r
P,
B >benaN,) > Y ¢i(e. R.0.¥) =) eyilog—
i=1 i=1

Ifi =1, To = 2x, this impliesy__; yi < ?.SZ%)XQ

< 3Blogx, and by Lemma 3,
P < exp(3Blogx log(2r)) < exp3BlogxlogTr) < exp((1+ 0(1))BX*™).

Ifi > 1, wehave}|_,yi < —2—, and by Lemma 3,

— SX)\i 1

v < exp( o |09Ti> < exp{(1+0(1))Bx" "1},
EXM-
and from the choice of thg;'s, one can easily see that, f& < x*, v, = ]'[iS:1 vf) is
negligible compared with,.
The other factors of (72) are easier to estimate:

Estimation ofvs. Let us denote the primes betweexp 2ndx by 2x, < P < P_; <
... <Py < x. By(62)and (4)x, = x’, and by (63)ap = 1. LetuswriteAs = P} - - P
We have

r

P (log 2)?
Z .

I
- > .
Xo log x i

r r
B > ber(AsM) > D “pi(e. P L. 1+y) =) eyilog

i=1 i=1 i=1

So,Y_, ¥ < Blogx/(log2? < 3Blogx, and by Lemma 3,

vz < exp(3Blogx log(2r)) < exp(3B(logx)?).
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Estimation ofvy. Replacingx by x, the upper bound obtained fos becomes:
vz = exp(O(y/Bx)) = exp(O(VBx?)).
Estimation ofus. Replacingx by x,, the upper bound obtained fog becomes:
s < exp(3B logx log xo) = exp(30 B(logx)?).

Estimation ofvg. Let py, p2, ..., pr < 2X3 be the first primes and writdg = pl p2
p'". By (71),y: < x, and thus by (62),

ve < (X+ 1" < (x+ 1" = expix}?log(x + 1))
and forB > x™* andu < 0.16, this is negligible compared with.

Estimation ofv;. Let us denote the primes betwe?randx by % <P <Pa<---<
P, < x,and letD; = Py1 - P’". We havexp = 1 and sinceD; dividesN,, yi = 0 or 1.
By a computation S|m|lar to that af, we obtain

N, P
B> ben— > Z(pz(s P,1Ly)= Zey. IOg— > ZSM

and by using the Brun-Titchmarsch inequality and Lemma 1, it follows that

Zp.m < —~ <6.3Bxlogx.

Thus, asy; can only take 2 values, by Lemma 2 we have

v < 2 exp(l+ 0(1))2771 %ﬁ exp(9.2v/BX).

Estimation ofv;,. By an estimation similar to that af;, replacingg: by ¢, and using
Lemma 3, we get

< exp(3Blog? X).

Estimation ofv;. Replacingx by x», it is similar to that ofv; and we get
vj = exp(O(v/Bxy)).
Estimation ofv;. Replacingx by x,, we get, as fop,

< exp(3Blog x logxz) = exp(30 B log? x).
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Estimation ofu;. As we have seen fas, we have
Ds = pf*--- p'
with y; < ap < 3logx andr < 7(2x3) < x3. Thus
vg < (14 3logx)" < expix*~?log(1 + 3logx)).
By formula (68) and the estimateswgfandv/, the proof of Theorem 6 is completed

By a more careful estimate, it would have been possible to improve the constant in (68).
However, using the Brun-Titchmarsch inequality we loose a fag®rand we do not see
how to avoid this loss. A similar method was used in [3]. Also, the condjtian 0.16 can
be replaced easily by < 1.

7. Proof of Theorem 3
We shall need the following lemmas:

Lemma4. Letn; the sequence of h.c. numbers. There exists a positive real number ¢ such
that for j large enoughthe following inequality holds

nj+1 < 1
nj — (lognj)c’

Proof. This result was first proved by Eodin [2]. The best constantis given in [8]:

log(15/8)
=——"(1- = 0.1405..
Cc |098 ( T0) 0.1405

with the value ofrg given by (8). O

Lemma5. Letn; beah.c. numbeand N the superior h.c. number preceding.riThen
the benefit of p (defined by(65)) satisfies

benn; = O((logn;j)™").
Proof: Thisis Theorem 1 of [8]. The value ¢fis given by
y =0(1—19)/(14«) = 0.03157...
wheref, o andk are defined by (4), (8) and (22). O
To prove Theorem 3, first recall that is defined so that

Nk < X < Ny (73)
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We defineN; as the largest s.h.c. numben,. Now letn € S(X, z). We get from (65):

n d(n)
—¢log— — |
benn = ¢log N, Ogd(NE)’
Nk d(ny)
=c¢log— —|
benn, = ¢log N, Ogd(Ne)
and, subtracting,
d(n)
b =b I —1
enn ennk+sog Ogd(n 3

Butn € S(X, z) so thatnh < X andd(n) > zd(ny). Thus
X
benn < benny + slogn— +log(1/2).
k

By (73) and Lemma 4, we havg ~ X, and by (60), (64), (73) and Lemma 4, we have

X Nk+1 1
log— <c¢lo < .
¢ gﬂk =#l0d nk ~ (log X)cto®
By Lemma 5,
1 _
benn < B = IogE + O(log X)77".
Applying Theorem 6 completes the proof of Theorem 3. O

8. An upper bound for d(nj1)/d(n;)
We will prove:

Theorem 7. There exists a constant 0 such that for j large enoughthe inequality

dinjsn) _ 1
dnj)) — (logn;j)©

holds. Here ¢ can be chosen as any number less thdefined in Lemma.

Proof: Let N, the s.h.c. number preceding. We have by Lemma 5 bedn;) =
O((lognj)~") and beitnj+1) = O((logn;)~7). Further, it follows from (65) that

é('*)l) = elog—tt ’+1 + ben(nj;1) — bennj) < log i+t | benn;_1)
J J

which, by using Lemma 4 and Lemma 5, completes the proof of Theorem 7. O

log
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