Estimates of $\text{li}(\theta(x)) - \pi(x)$ and the Riemann Hypothesis

Jean-Louis Nicolas

To Krishna Alladi for his sixtieth birthday

Abstract Let us denote by $\pi(x)$ the number of primes $\leq x$, by $\text{li}(x)$ the logarithmic integral of x, by $\theta(x) = \sum_{p \leq x} \log p$ the Chebyshev function and let us set $A(x) = \text{li}(\theta(x)) - \pi(x)$. Revisiting a result of Ramanujan, we prove that the assertion "$A(x) > 0$ for $x \geq 11$" is equivalent to the Riemann Hypothesis.

Keywords Chebyshev function · Riemann Hypothesis · Explicit formula

2010 Mathematics Subject Classification 11N37 · 11M26

1 Introduction

Let us denote by $\pi(x)$ the number of primes $\leq x$ and by $\text{li}(x)$ the logarithmic integral of x (see, below, §2.2). It has been observed that, for small x, $\pi(x) < \text{li}(x)$ holds, but Littlewood (cf. [7] or [5, chap. 5]) has proved that, for x tending to infinity, the difference $\pi(x) - \text{li}(x)$ oscillates infinitely many often between positive and negative values.

Research partially supported by CNRS, UMR 5208.

J.-L. Nicolas (✉)
Institut Camille Jordan, Univ. Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Mathématiques, Bât. Doyen Jean Braconnier,
43 Bd du 11 Novembre 1918, Villeurbanne cedex F-69622, France
e-mail: nicolas@math.univ-lyon1.fr

© Springer International Publishing AG 2017
G. E. Andrews and F. Garvan (eds.), Analytic Number Theory,
Modular Forms and q-Hypergeometric Series, Springer Proceedings
in Mathematics & Statistics 221, https://doi.org/10.1007/978-3-319-68376-8_32
Let us set $\theta(x) = \sum_{p \leq x} \log p$, the Chebyshev function, and
\[A(x) = \text{li}(\theta(x)) - \pi(x). \]

What is the behavior of $A(x)$? In [11, (220), (222), (227), and (228)], under the Riemann Hypothesis (RH), Ramanujan proved that
\[A(x) = 2\sqrt{x} + \sum_{\rho} \frac{x^\rho}{\rho^2} + O\left(\frac{\sqrt{x}}{\log^3(x)}\right) \]

where ρ runs over the nontrivial zeros of the Riemann ζ function. Moreover, in [11, (226)], Ramanujan writes under the Riemann Hypothesis
\[\left| \sum_{\rho} \frac{x^\rho}{\rho^2} \right| \leq \sum_{\rho} \left| \frac{x^\rho}{\rho^2} \right| = \sqrt{x} \sum_{\rho} \frac{1}{\rho(1-\rho)} = \sqrt{x} \sum_{\rho} \left(\frac{1}{\rho} + \frac{1}{1-\rho} \right) \]
\[= 2\sqrt{x} \sum_{\rho} \frac{1}{\rho} = \sqrt{x}(2 + \gamma_0 - \log(4\pi)) = 0.046...\sqrt{x} \]

where γ_0 is the Euler constant and concludes
\[\text{under RH, } \exists x_0 \text{ such that, for } x \geq x_0, \ A(x) \text{ is positive.} \]

The aim of this paper is to make these results effective and, in particular, to show that Ramanujan’s result (1.4) is true for $x_0 = 11$.

Let us set $\lambda = \sum_{\rho} \frac{1}{|\rho|^2}$. Under the Riemann Hypothesis, we have (see below (2.26))
\[\lambda = \sum_{\rho} \frac{1}{|\rho|^2} = \sum_{\rho} \frac{1}{\rho(1-\rho)} = 0.0461914179322420... \]

We shall prove

Theorem 1.1. *Under the Riemann Hypothesis, we have*
\[\limsup_{x \to \infty} \frac{A(x) \log^2(x)}{\sqrt{x}} \leq 2 + \lambda = 2.046... \]
\[\liminf_{x \to \infty} \frac{A(x) \log^2(x)}{\sqrt{x}} \geq 2 - \lambda = 1.953... \]

A(x) is positive for $x \geq 11$,
\[A(x) \geq (2 - \lambda)\frac{\sqrt{x}}{\log^2(x)} \text{ for } x \geq 37, \]
Estimates of $\text{li}(\theta(x)) - \pi(x)$ and the Riemann Hypothesis

and

$$A(x) \leq M \frac{\sqrt{x}}{\log^2(x)} \quad \text{for} \ x \geq 2,$$

(1.10)

where $M = A(3643)(\log^2 3643)/\sqrt{3643} = 5.0643569138\ldots$

Corollary 1.2. Each of the five assertions (1.6)–(1.10) is equivalent to the Riemann Hypothesis.

Proof. In 1984, Robin (cf. [10, Lemma 2 and (8)]) has shown that, if the Riemann Hypothesis does not hold, there exists $b > 1/2$ such that

$$A(x) = \Omega_{\pm}(x^b), \quad \text{i.e.} \limsup_{x \to \infty} \frac{A(x)}{x^b} > 0 \quad \text{and} \quad \liminf_{x \to \infty} \frac{A(x)}{x^b} < 0$$

and the five assertions of the theorem are no longer satisfied. \qed

1.1 Notation

$\pi(x) = \sum_{p \leq x} 1$ is the prime counting function.

$$\Pi(x) = \sum_{p \leq x} \frac{1}{k} = \sum_{k=1}^{\kappa} \frac{\pi(x^{1/k})}{k} \quad \text{with} \ \kappa = \left\lfloor \frac{\log x}{\log 2} \right\rfloor.$$

$\theta(x) = \sum_{p \leq x} \log p$ and $\psi(x) = \sum_{p^n \leq x} \log p = \sum_{k=1}^{\kappa} \theta(x^{1/k})$ are the Chebyshev functions.

$$\Lambda(x) = \begin{cases} \log p & \text{if} \ x = p^k \\ 0 & \text{if not} \end{cases}$$

is the von Mangoldt function.

$$\tilde{\psi}(x) = \psi(x) - \frac{1}{2} \Lambda(x) \quad \text{and} \quad \tilde{\Pi}(x) = \Pi(x) - \frac{\Lambda(x)}{2 \log x}.$$

li(x) denotes the logarithmic integral of x (cf. below §2.2).

$$L_1(t) = \text{li}(t) - \frac{t}{\log t}, \ L_2(t) = \text{li}(t) - \frac{t}{\log t} - \frac{t}{\log^2 t},$$

$$F_1(t) = \frac{L_1(t)}{t/\log^2 t}, \ F_2(t) = \frac{L_2(t)}{t/\log^2 t} \quad \text{(} t > 1).$$
\(\tilde{F}_1(t) \) and \(\tilde{F}_2(t) \) are defined below in (3.16).

\(\gamma_0 = 0.57721566 \ldots \) is the Euler constant. \(\lambda \) is defined in (1.5), cf. also (2.26).

\[
\sum_{\rho} f(\rho) = \lim_{T \to \infty} \sum_{|\Im(\rho)| \leq T} f(\rho) \text{ where } f : \mathbb{C} \to \mathbb{C} \text{ is a complex function and } \rho \text{ runs over the nontrivial zeros of the Riemann } \zeta \text{ function.}
\]

1.2 Plan of the article

In §2, we shall recall some definitions and prove some results that we shall use in the sequel, first, in §2.2, about the logarithmic integral, and, further, in §2.3, about the Riemann \(\zeta \) function and explicit formulas of the theory of numbers.

In §3, the proof of Theorem 1.1 is given. First, we write \(A(x) = A_1(x) + A_2(x) \) with

\[
A_1(x) = \text{li}(\psi(x)) - \Pi(x) \quad \text{and} \quad A_2(x) = \text{li}(\theta(x)) - \text{li}(\psi(x)) + \Pi(x) - \pi(x).
\]

In §3.1, under the Riemann Hypothesis, an estimate of \(A_1(x) \) is given, by applying the explicit formulas. In §3.2, it is shown that \(A_2(x) \) depends on the quantity \(B(y) = \pi(y) - \theta(y)/\log y \) which is carefully studied.

In §3.3 (resp. §3.4), an effective lower (resp. upper) estimate for \(A(x) \) is given when \(x \geq 10^8 \).

In §3.5, for \(x < 10^8 \), estimates of \(A(x) \) are given by numerical computation.

Finally, Theorem 1.1 is proved in two steps, depending on the cases \(x \leq 10^8 \) or \(x > 10^8 \).

The computations, both algebraic and numerical, have been carried out with Maple. On the website [13], one can find the code and a Maple sheet with the results.

We often implicitly use the following result: for \(u \) and \(v \) positive, the function

\[
t \mapsto \frac{\log^u t}{t^v} \quad \text{is increasing for } 1 \leq t \leq e^{u/v} \text{ and decreasing for } t > e^{u/v}.
\] (1.11)

Moreover

\[
\max_{t \geq 1} \frac{\log^u t}{t^v} = \left(\frac{u}{e^v} \right)^u.
\] (1.12)
2 Preliminary results

2.1 Effective estimates

Without any hypothesis, Platt and Trudgian [9] have shown by computation that

\[\theta(x) < x \text{ for } 0 < x \leq 1.39 \times 10^{17} \]

(2.1)

so improving on results of Schoenfeld [12] and Dusart [3]. Under the Riemann Hypothesis, for \(x \geq 599 \), we shall use the upper bounds (cf. [12, (6.3)])

\[|\psi(x) - x| \leq \frac{1}{8\pi} \sqrt{x} \log^2 x \quad \text{and} \quad |\theta(x) - x| \leq \frac{1}{8\pi} \sqrt{x} \log^2 x. \]

(2.2)

2.2 The logarithmic integral

For \(x \) real \(> 1 \), we define \(\text{li}(x) \) as (cf. [1, p. 228])

\[\text{li}(x) = \int_0^x \frac{dt}{\log t} = \lim_{\epsilon \to 0^+} \left(\int_0^{1-\epsilon} \frac{dt}{\log t} + \int_{1+\epsilon}^x \frac{dt}{\log t} \right) = \int_2^x \frac{dt}{\log t} + \text{li}(2). \]

We have the following values:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(1)</th>
<th>1.45136...</th>
<th>2</th>
<th>3.8464...</th>
<th>8.3</th>
<th>599</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{li}(x))</td>
<td>(-\infty)</td>
<td>0</td>
<td>1.145163...</td>
<td>2.8552...</td>
<td>5.39671...</td>
<td>117.49...</td>
</tr>
</tbody>
</table>

(2.3)

From the definition of \(\text{li}(x) \), it follows that

\[\frac{d}{dx} \text{li}(x) = \frac{1}{\log x} \quad \text{and} \quad \frac{d^2}{dx^2} \text{li}(x) = -\frac{1}{x \log^2 x}. \]

(2.4)

We also have

\[\text{li}(x) = \gamma_0 + \log(\log(x)) + \sum_{n=1}^{\infty} \frac{(\log x)^n}{n \times n!} \]

(where \(\gamma_0 = 0.577... \) is the Euler constant) which implies

\[\text{li}(x) = \log(\log(x)) + \gamma_0 + o(1), \quad x \to 1^+. \]

(2.5)
Let \(N \) be a positive integer. For \(t > 1 \), we have (cf. [13])

\[
\int \frac{dt}{\log^N t} = \frac{1}{(N-1)!} \left(\text{li}(t) - \sum_{k=1}^{N-1} (k-1)! \frac{t}{\log^k t} \right)
\]
(2.6)

and, for \(x \to \infty \),

\[
\text{li}(x) = \sum_{k=1}^{N} \frac{(k-1)! x}{(\log x)^k} + \mathcal{O}\left(\frac{x}{(\log x)^{N+1}} \right).
\]
(2.7)

Lemma 2.1. For \(t > 1 \), we have

\[
L_2(t) = \text{li}(t) - \frac{t}{\log t} - \frac{t}{\log^2 t} = F_2(t) \left(\frac{t}{\log^3 t} \right) < 4.05 \frac{t}{\log^3 t}.
\]
(2.8)

For \(t \geq t_0 \geq 381 \), we have

\[
L_2(t) < F_2(t_0) \frac{t}{\log^3 t}.
\]
(2.9)

For \(t > 29 \), we have

\[
L_2(t) > 2 \frac{t}{\log^3 t}.
\]
(2.10)

Proof. Let us set (cf. the Maple sheet [13])

\[
f_1(t) = (3 - \log t) \li(t) + t - \frac{2t}{\log t} - \frac{t}{\log^2 t} = \frac{t^2 F_2'(t)}{\log^2(t)},
\]

\[
f_2(t) = \frac{t}{\log t} + \frac{t}{\log^2 t} + 2 \frac{t}{\log^3 t} - \li(t) = t f_1'(t)
\]

and

\[
f_3(t) = f_2'(t) = -\frac{6}{\log^4(t)}.
\]

Since \(f_2'(t) = f_3(t) \) is negative, \(f_2(t) \) decreases and vanishes for

\[
t_2 = 28.19524 \ldots
\]

It follows that \(f_1'(t) = f_2(t)/t \) is positive for \(1 < t < t_2 \) and negative for \(t > t_2 \) so that \(f_1(t) \) has a maximum for \(t = t_2 \),

\[
f_1(t_2) = 4.54378 \ldots
\]
and \(f_1 \) vanishes (and so does \(F'_2 \)) in two points

\[
t_3 = 3.384879 \ldots \quad t_4 = 380.1544 \ldots
\]

From (2.5), we get \(\lim_{t \to +1} F_2(t) = 0 \) and the variation of \(F_2 \) is given in the following array:

\[
\begin{array}{|c|cccc|}
\hline
\hline
\quad t \quad & 1 & 3.38 \ldots & 10.39 \ldots & 380.15 \ldots & \infty \\
\hline
F_2(t) = \frac{L_1(t)}{t/\log^2 t} & \downarrow & \uparrow & 0 & \uparrow & \downarrow \\
& -1.369496 \ldots & 4.040415 \ldots & & & \\
\hline
\end{array}
\tag{2.11}
\]

The proof of (2.8) and (2.9) follows from Array 2.11 and also the proof of (2.10), after deducing from \(f_2(t_2) = 0 \) that \(F_2(t_2) = 2 \) holds.

In the same way, it is possible to study the variation of the function

\[
F_1(t) = \frac{L_1(t)}{(t/\log^2 t)} = \frac{\text{li}(t) - \frac{t}{\log t}}{(t/\log^2 t)},
\]

The details can be found on [13]. We have

\[
\begin{array}{|c|cccc|}
\hline
\hline
\quad t \quad & 1 & 1.85 \ldots & 3.8464 \ldots & 94.6 \ldots & \infty \\
\hline
F_1(t) = L_1(t) \left(\frac{\log^2 t}{t} \right) & \downarrow & \uparrow & 0 & \uparrow & \downarrow \\
& -0.448 \ldots & 1.784 \ldots & & & \\
\hline
\end{array}
\tag{2.12}
\]

Since \(L_1(10.3973 \ldots) = 1 \), Array (2.12) yields

\[
t > 10.4 \quad \implies \quad L_1(t) = \text{li}(t) - \frac{t}{\log t} > \frac{t}{\log^2 t}.
\tag{2.13}
\]

The derivative of \(\text{li}(t)/t \) is \(\frac{t/\log t - \text{li}(t)}{t^2} = -\frac{F_1(t)}{t \log^2 t} \) which, from Array 2.12, is positive for \(1 < t < 3.8464 \) and negative for \(t > 3.8465 \). Therefore, we have

\[
t > 1 \quad \implies \quad \text{li}(t) \leq \frac{\text{li}(3.8464 \ldots)}{3.8464 \ldots} t = 0.7423 \ldots \quad t < \frac{3t}{4}.
\tag{2.14}
\]

Lemma 2.2. Let \(a \) and \(x \) be two real numbers satisfying \(\exp(1) \leq a < a^3 \leq x \). Let \(k_1 \) and \(k_2 \) be two integers such that

\[
2 \leq k_1 < k_2 = \left\lfloor \frac{\log x}{\log a} \right\rfloor.
\]
Then we have
\[\sum_{k=k_1+1}^{k_2} \frac{1}{k} L_1(x^{1/k}) \leq 1.785 \left(4.05 \frac{k_1^{3} x^{1/k_1}}{\log^3 x} - L_2(a) \right). \] (2.15)

Proof. Let us set
\[T = \sum_{k=k_1+1}^{k_2} \frac{1}{k} L_1(x^{1/k}). \]

It follows from Array 2.12 that, for \(t > 1 \), \(L_1(t) = t F_1(t)/\log^2 t \leq 1.785 \frac{t}{\log^3 t} \) holds and therefore,
\[T \leq \frac{1.785}{\log^2 x} \sum_{k=k_1+1}^{k_2} k x^{1/k}. \]

Now, as \(x \geq \exp(1) > 1 \), the function \(t \mapsto t x^{1/t} \) is positive and decreasing for \(0 < t \leq \log x \) so that
\[T \leq \frac{1.785}{\log^2 x} \int_{k_1}^{k_2} t x^{1/t} dt \leq \frac{1.785}{\log^2 x} \int_{k_1}^{\log x} \frac{t}{\log^3 t} dt = \frac{1.785}{\log^3 x} \int_{a}^{x^{1/k_1}} \frac{du}{\log u} \]
by the change of variable \(u = x^{1/t} \). Finally, by (2.6) and (2.8), we get
\[T \leq 1.785 \left(L_2(x^{1/k_1}) - L_2(a) \right) \leq 1.785 \left(4.05 \frac{x^{1/k_1}}{\log^3 (x^{1/k_1})} - L_2(a) \right) \]
which ends the proof of Lemma 2.2.

Lemma 2.3. Let \(a \geq 2.11 \) and \(x \geq a^3 \) be real numbers and \(k_2 = \left\lfloor \frac{\log x}{\log a} \right\rfloor \). Then we have
\[\sum_{k=2}^{k_2} \frac{1}{x^{1/(2k)}} \leq \frac{5}{4} x^{1/4}. \] (2.16)

Proof. Let us set
\[T = \sum_{k=2}^{k_2} \frac{1}{k} x^{1/(2k)}. \]

Since \(x \geq a^3 > 1 \), the function \(t \mapsto x^{1/(2t)}/t \) is positive and decreasing for \(t > 0 \) so that
\[T = \frac{1}{2} x^{1/4} + \sum_{k=3}^{k_2} \frac{1}{k} x^{1/(2k)} \leq \frac{1}{2} x^{1/4} + \int_{2}^{\log x/\log a} x^{1/(2t)}/t \, dt = \frac{1}{2} x^{1/4} + \int_{\sqrt{a}}^{x^{1/4}} \frac{du}{\log u} \]
Estimates of \(\text{li}(\theta(x)) - \pi(x) \) and the Riemann Hypothesis

by the change of variable \(u = x^{1/(2n)} \). Finally, by (2.6) and (2.14), we get

\[
T \leq \frac{1}{2} x^{1/4} + \text{li}(x^{1/4}) - \text{li}(\sqrt{a}) \leq \frac{5}{4} x^{1/4} - \text{li}(\sqrt{a})
\]

and (2.16) follows since \(\sqrt{a} \geq \sqrt{2.11} > 1.452 \) so that, from Array (2.3), \(\text{li}(\sqrt{a}) > 0 \) holds.

\[\Box \]

Lemma 2.4. Under the Riemann Hypothesis, for \(x \geq 599 \), one has

\[
\frac{\theta(x) - x}{\log x} - \frac{9 \log^2 x}{10000} \leq \text{li}(\theta(x)) - \text{li}(x) \leq \frac{\theta(x) - x}{\log x}, \tag{2.17}
\]

\[
\frac{\psi(x) - x}{\log x} - \frac{9 \log^2 x}{10000} \leq \text{li}(\psi(x)) - \text{li}(x) \leq \frac{\psi(x) - x}{\log x}. \tag{2.18}
\]

and

\[
\frac{\psi(x) - \theta(x)}{\log x} - \frac{9 \log^2 x}{10000} \leq \text{li}(\psi(x)) - \text{li}(\theta(x)) \leq \frac{\psi(x) - \theta(x)}{\log x} + \frac{9 \log^2 x}{10000}. \tag{2.19}
\]

Proof. Let us suppose that \(x \geq 599 \) holds. From (2.2) and (1.11), we get

\[
\frac{\psi(x)}{x} \geq \frac{\theta(x)}{x} \geq \frac{1}{x} \left(x - \sqrt{x} \log^2 x \right) = 1 - \frac{\log^2 x}{8\pi \sqrt{x}} \geq 1 - \frac{(\log 599)^2}{8\pi \sqrt{599}} > 0.9335. \tag{2.20}
\]

Further, for \(h > 1 - x \), Taylor’s formula and (2.4) yield

\[
\text{li}(x + h) = \text{li}(x) + \frac{h}{\log x} - \frac{h^2}{2 \xi \log^2 \xi}, \tag{2.21}
\]

with \(\xi \geq \min(x, x + h) \). Let us set \(h = \theta(x) - x \); we have \(h + x = \theta(x) \geq \theta(599) > 1 \). From (2.20), we get \(\xi \geq bx \) with \(b = 0.9335 \) and

\[
\xi \log^2 \xi \geq bx \log^2(bx) = bx \log^2(x) \left(1 + \frac{\log b}{\log x} \right)^2 \geq bx \log^2(x) \left(1 + \frac{\log b}{\log(599)} \right)^2 \geq 0.9135 x \log^2 x.
\]

From (2.2), it follows that

\[
0 \leq \frac{h^2}{2 \xi \log^2 \xi} \leq \frac{x \log^4 x}{128 \pi^2 \xi \log^2 \xi} \leq \frac{\log^2 x}{0.9135 \times 128 \pi^2} < \frac{9 \log^2 x}{10000}
\]
which, with (2.21), proves (2.17). In the same way, setting \(h = \psi(x) - x \) yields (2.18), and (2.19) follows by subtracting (2.17) from (2.18).

2.3 The Riemann \(\zeta \) function

We shall use the two explicit formulas valid for \(x > 1 \)

\[
\tilde{\psi}(x) = \psi(x) - \frac{1}{2} \Lambda(x) = x - \sum_{\rho} \frac{x^\rho}{\rho} - \log(2\pi) - \frac{1}{2} \log \left(1 - \frac{1}{x^2} \right) \tag{2.22}
\]

and

\[
\tilde{\Pi}(x) = \Pi(x) - \frac{\Lambda(x)}{2 \log x} = \text{li}(x) - \sum_{\rho} \text{li}(x^\rho) - \log 2 + \int_x^\infty \frac{dt}{t(t^2 - 1) \log t} \tag{2.23}
\]

which can be found in many books in analytic number theory, for instance [5, chap. 4]. To Formula (2.23), we prefer the form described in [6, p. 361 and 362, with \(R = 0 \)]:

\[
\tilde{\Pi}(x) = \text{li}(x) - \sum_{\rho} \int_0^\infty \frac{x^\rho - t}{\rho - t} dt - \log 2 + \int_x^\infty \frac{dt}{t(t^2 - 1) \log t}, \quad x > 1. \tag{2.24}
\]

We also have (cf. [4, p. 67] or [2, p. 272])

\[
\sum_{\rho} \frac{1}{\rho} = 1 + \frac{\gamma_0}{2} - \frac{1}{2} \log \pi - \log 2 = 0.02309570896612103 \ldots \tag{2.25}
\]

and (cf. (1.5))

\[
\sum_{\rho} \frac{1}{\rho(1 - \rho)} = \sum_{\rho} \left(\frac{1}{\rho} \frac{1}{1 - \rho} \right) = 2 \sum_{\rho} \frac{1}{\rho} = 2 + \gamma_0 - \log(4\pi). \tag{2.26}
\]

3 Proof of Theorem 1.1

3.1 Study of \(A_1(x) = \text{li}(\psi(x)) - \Pi(x) \)

Under the Riemann Hypothesis, we write
Estimates of \(\text{li}(\theta(x)) - \pi(x)\) and the Riemann Hypothesis

\[\gamma = 3\rho \quad \text{i.e.} \quad \rho = \frac{1}{2} + iy. \]

Lemma 3.1. _Under the Riemann Hypothesis_, we have

\[\sum_{\rho} \frac{1}{|\gamma|^3} \leq \frac{1}{300}. \]

Proof. It is possible to get better estimates for the sum \(\sum_{\rho} \frac{1}{|\gamma|^3}\), but, for our purpose, the above upper bound will be enough. By observing that

\[|\rho|^2 = \rho(1 - \rho) = \frac{1}{4} + \gamma^2 \]

and that the first zero of \(\zeta(s)\) is \(1/2 + 14.134725 \ldots i\) (cf. [4, p. 96] or the extended tables of [8]), we get

\[\sum_{\rho} \frac{1}{\gamma^2} = \sum_{\rho} \frac{1 + 1/(4\gamma^2)}{1/4 + \gamma^2} \leq \sum_{\rho} \frac{1 + 1/(4 \times 14.134^2)}{1/4 + \gamma^2} \leq \frac{800}{799} \sum_{\rho} \frac{1}{\rho(1 - \rho)}. \]

Further, from (2.26), we get

\[\sum_{\rho} \frac{1}{|\gamma|^3} \leq \frac{1}{14.134} \sum_{\rho} \frac{1}{\gamma^2} \leq \frac{800}{799 \times 14.134} \sum_{\rho} \frac{1}{\rho(1 - \rho)} = 0.00327 \ldots \]

which completes the proof of Lemma 3.1. \(\square\)

Lemma 3.2. For \(x > 1\), under the Riemann Hypothesis, we have

\[\sum_{\rho} \int_{0}^{\infty} \frac{x^{\rho-t}}{\rho - t} \, dt = \sum_{\rho} \frac{x^{\rho}}{\rho \log x} + \sum_{\rho} \frac{x^{\rho}}{\rho^2 \log^2 x} + K(x) \]

with

\[|K(x)| \leq \frac{2}{300} \frac{\sqrt{x}}{\log^3 x}. \] (3.1)

Proof. By partial integration, one has

\[\int_{0}^{\infty} \frac{x^{\rho-t}}{\rho - t} \, dt = \frac{x^{\rho}}{\rho \log x} + \frac{x^{\rho}}{\rho^2 \log^2 x} + \frac{2}{\log^2 x} \int_{0}^{\infty} \frac{x^{\rho-t}}{(\rho - t)^3} \, dt \]

and

\[\left| \int_{0}^{\infty} \frac{x^{\rho-t}}{(\rho - t)^3} \, dt \right| \leq \frac{1}{|3\rho|^3} \int_{0}^{\infty} x^{1/2-t} \, dt = \frac{1}{|3\rho|^3} \frac{\sqrt{x}}{\log x} \]
so that we get

\[|K(x)| \leq \left| \sum_{\rho} \frac{2}{\log^2 x} \int_0^\infty \frac{x^{\rho-1}}{(\rho-t)^3} dt \right| \leq \frac{2\sqrt{x}}{\log^3 x} \sum_{\rho} \frac{1}{|\beta|^3} \]

and (3.1) follows from Lemma 3.1.

Proposition 3.3. Under the Riemann Hypothesis, for \(x \geq 599 \), we have

\[A_1(x) = \text{li}(\psi(x)) - \Pi(x) = \sum_{\rho} \frac{x^\rho}{\rho^2 \log^2 x} + J(x) \]

with

\[-0.0009 \log^2 x - \frac{2}{300 \log^3 x} \leq J(x) \leq \frac{2}{300 \log^3 x} + \log 2. \]

Proof. Let us write

\[\text{li}(\psi(x)) = \text{li}(x) + \frac{\psi(x) - x}{\log x} + J_1(x) = \text{li}(x) + \frac{\psi(x) - x + \Lambda(x)/2}{\log x} + J_1(x) \]

with, from (2.18), for \(x \geq 599 \),

\[-0.0009 \log^2 x \leq J_1(x) \leq 0. \]

Therefore, from (2.22) and (2.24), we have

\[A_1(x) = \text{li}(x) + \frac{1}{\log x} \left(-\sum_{\rho} \frac{x^\rho}{\rho} - \log(2\pi) - \frac{1}{2} \log \left(1 - \frac{1}{x^2} \right) + \frac{1}{2} \Lambda(x) \right) + J_1(x) - \left(\text{li}(x) - \sum_{\rho} \int_0^\infty \frac{x^{\rho-1}}{\rho-t} dt + \int_x^\infty \frac{dt}{t(t^2-1) \log t} - \log 2 + \frac{\Lambda(x)}{2 \log x} \right) \]

\[= \sum_{\rho} \int_0^\infty \frac{x^{\rho-t}}{\rho-t} dt - \frac{1}{\log x} \sum_{\rho} \frac{x^\rho}{\rho} + J_1(x) + J_2(x) + J_3(x) \]

with

\[J_2(x) = \log 2 - \frac{\log(2\pi)}{\log x} \quad \text{and} \quad J_3(x) = -\frac{\log(1-1/x^2)}{2 \log x} - \int_x^\infty \frac{dt}{t(t^2-1) \log t}. \]

Further, from Lemma 3.2, one gets

\[A_1(x) = \sum_{\rho} \frac{x^\rho}{\rho^2 \log^2 x} + J(x) \]

(3.4)
Estimates of $\text{li}(\theta(x)) - \pi(x)$ and the Riemann Hypothesis

with

$$J(x) = K(x) + J_1(x) + J_2(x) + J_3(x)$$

(3.5)

and $K(x)$ is as in Lemma 3.2.

It remains to bound $J_2(x) + J_3(x)$. We have

$$J_3(x) = \int_x^\infty \frac{1}{t(t^2 - 1)} \left(\frac{1}{\log x} - \frac{1}{\log t} \right) dt$$

which, for $x \geq 599$, implies

$$0 \leq J_3(x) \leq \frac{1}{\log x} \int_x^\infty \frac{dt}{t(t^2 - 1)} = \frac{\log(1 + 1/(x^2 - 1))}{2 \log x} \leq \frac{1}{2(x^2 - 1) \log x} < \frac{\log(2\pi)}{\log x}$$

and $0 < J_2(x) + J_3(x) < \log 2$. Therefore, (3.2) results from (3.1), (3.3), (3.4), and (3.5). \[\square \]

3.2 Study of $A_2(x) = \text{li}(\theta(x)) - \text{li}(\psi(x)) + \Pi(x) - \pi(x)$

For $y \geq 2$, let us set

$$B(y) = \pi(y) - \frac{\theta(y)}{\log y} = \sum_{p \leq y} \left(1 - \frac{\log p}{\log y} \right).$$

Note that $B(y)$ is nonnegative. If $q < q'$ are two consecutive primes, $B(y)$ is increasing and continuous on $[q, q')$ and

$$\lim_{y \to q', y < q'} B(y) = \pi(q) - \frac{\theta(q)}{\log q'} = \pi(q') - 1 - \frac{\theta(q') - \log q'}{\log q'} = B(q')$$

so that $B(y)$ is continuous and increasing for $y \geq 2$. In the two following lemmas, we give estimates of $B(y)$.

Lemma 3.4. Let y be a real number satisfying $y_0 = 8.3 \leq y \leq 1.39 \times 10^{17}$. We have

$$B(y) \leq L_1(y) = \text{li}(y) - \frac{y}{\log y}$$

(3.6)

while, if $y \geq y_1 = 599$, under the Riemann Hypothesis, we have

$$B(y) \leq L_1(y) + \frac{\sqrt{y}}{4\pi}$$

(3.7)
Under the Riemann Hypothesis, for \(y \geq y_2 = 2903 \), we have

\[
B(y) \geq L_1(y) - \frac{\sqrt{y}}{4\pi}.
\] (3.8)

Proof. By Stieljes's integral, one has

\[
\pi(y) = \int_{2}^{y} \frac{d[\theta(t)]}{\log t} = \frac{\theta(y)}{\log y} + \int_{2}^{y} \frac{\theta(t)}{t \log^2 t} dt.
\] (3.9)

Further, we have

\[
B(y) = \int_{2}^{y} \frac{\theta(t)}{t \log^2 t} dt = \int_{2}^{y_0} \frac{\theta(t)}{t \log^2 t} dt + \int_{y_0}^{y} \frac{\theta(t)}{t \log^2 t} dt = B(y_0) + \int_{y_0}^{y} \frac{\theta(t)}{t \log^2 t} dt.
\] (3.10)

By (2.1) and (2.6), for \(y \leq 1.39 \times 10^{17} \), we get

\[
\int_{y_0}^{y} \frac{\theta(t)}{t \log^2 t} dt \leq \int_{y_0}^{y} \frac{1}{\log^2 t} dt = \text{li}(y) - \frac{y}{\log y} - \text{li}(y_0) + \frac{y_0}{\log y_0} = L_1(y) - L_1(y_0),
\]

so that (3.10) yields \(B(y) \leq L_1(y) + B(y_0) - L_1(y_0) \), which proves (3.6), since \(B(y_0) - L_1(y_0) = -0.001379 \ldots < 0 \) (cf. [13]).

Replacing \(y_0 \) by \(y_1 \) in (3.10) yields

\[
B(y) = B(y_1) + \int_{y_1}^{y} \frac{\theta(t) dt}{t \log^2 t} = B(y_1) - L_1(y_1) + L_1(y) + T(y, y_1)
\] (3.11)

with \(T(y, y_1) = \int_{y_1}^{y} \frac{\theta(t) dt}{t \log^2 t} \) and, from (2.2),

\[
|T(y, y_1)| \leq \int_{y_1}^{y} \frac{\sqrt{t \log^2 t}}{8\pi t \log^2 t} dt = \frac{\sqrt{y} - \sqrt{y_1}}{4\pi}.
\] (3.12)

From (3.11) and (3.12), it follows that

\[
B(y) \leq L_1(y) + \frac{\sqrt{y}}{4\pi} + B(y_1) - L_1(y_1) - \frac{\sqrt{y_1}}{4\pi}
\]

which proves (3.7), since \(B(y_1) - L_1(y_1) - \frac{\sqrt{y_1}}{4\pi} = -4.80566 \ldots < 0 \).

In the same way than the one used to get (3.11), for \(y \geq y_2 \), we obtain

\[
B(y) = B(y_2) - L_1(y_2) + L_1(y) + T(y, y_2) \geq L_1(y) - \frac{\sqrt{y}}{4\pi} + B(y_2) - L_1(y_2) + \frac{\sqrt{y_2}}{4\pi}
\]
and as $B(y_2) - L_1(y_2) + \frac{\sqrt{y}}{4\pi} = 0.00671 \ldots > 0$, this completes the proof of Lemma 3.4.

Let us set

$$
e(y) = \begin{cases}
0 & \text{if } y \leq 1.39 \times 10^{17} \\
1 & \text{if } y > 1.39 \times 10^{17}.
\end{cases}
$$

It follows from (3.6) and (3.7) that, under the Riemann Hypothesis, one has

$$B(y) \leq L_1(y) + \varepsilon(y) \frac{\sqrt{y}}{4\pi} \quad \text{for } y \geq 8.3. \quad (3.13)$$

Proposition 3.5. Under the Riemann Hypothesis, for $x \geq 599$, we have

$$A_2(x) = \text{li}(\theta(x)) - \text{li}(\psi(x)) + \Pi(x) - \pi(x) = \sum_{k=2}^{\kappa} \frac{1}{k} B(\chi^{1/k}) + U(x) \quad (3.14)$$

with

$$\kappa := \left\lfloor \frac{\log x}{\log 2} \right\rfloor \quad \text{and} \quad |U(x)| \leq \frac{9 \log^2 x}{10000}. \quad (3.15)$$

Proof. From (2.19), for $x \geq 599$, we get

$$\text{li}(\theta(x)) - \text{li}(\psi(x)) = \frac{\theta(x) - \psi(x)}{\log x} + U(x) \text{ with } |U(x)| \leq \frac{9 \log^2 x}{10000}. \quad (3.16)$$

From the definition of $\psi(x)$ and $\Pi(x)$, this implies

$$A_2(x) = \sum_{k=2}^{\kappa} \left(\frac{\pi(x^{1/k})}{k} - \frac{\theta(x^{1/k})}{\log x} \right) + U(x)$$

which, via the definition of B, proves (3.14).

It is convenient to introduce the notation

$$F_2(t) = \begin{cases}
4.05 & \text{if } t \leq 381 \\
F_2(t) & \text{if } t > 381
\end{cases} \quad \text{and} \quad F_1(t) = \begin{cases}
1.785 & \text{if } t \leq 95 \\
F_1(t) & \text{if } t > 95
\end{cases} \quad (3.16)$$

so that, from Arrays (2.11) and (2.12), for $t > 1$, $\tilde{F}_2(t)$ and $\tilde{F}_1(t)$ are nonincreasing and we have

$$L_2(t) = \frac{t F_2(t)}{\log^2 t} \leq \frac{t \tilde{F}_2(t)}{\log^2 t} \quad \text{and} \quad L_1(t) = \frac{t F_1(t)}{\log^2 t} \leq \frac{t \tilde{F}_1(t)}{\log^2 t}. \quad (3.17)$$
Lemma 3.6. Let us set $a = 10.4$. For $x > 10^8$, we set $\kappa = \lfloor \log x \log 2 \rfloor$, $\kappa_2 = \lfloor \log x \log a \rfloor$ and let κ_1 be an integer satisfying $3 \leq \kappa_1 < \kappa_2$. Then, under the Riemann Hypothesis, we have

$$\sum_{k=2}^{\kappa} \frac{B(x^{1/k})}{k} \leq \frac{2\sqrt{x}}{\log^2 x} + \frac{4\sqrt{x}}{\log^3 x} F_2(\sqrt{x}) + \sum_{k=3}^{\kappa_1} \frac{kx^{1/k}}{\log^2 x} F_1(x^{1/k})$$

$$+ 7.23 \frac{\kappa_1^3 x^{1/\kappa_1}}{\log^3 x} + 2.35 + 0.94 \frac{\sqrt{x}}{\log^5 x}.$$

Proof. For $2 \leq k \leq \kappa_2$ we have $x^{1/k} > x^{1/\kappa_1} > x^{(\log a)/\log x} = a$, and, under the Riemann Hypothesis, it follows from (3.13) that

$$B(x^{1/k}) \leq L_1(x^{1/k}) + \varepsilon(x^{1/k}) \frac{x^{1/(2k)}}{4\pi}$$

which implies that

$$\sum_{k=2}^{\kappa} \frac{B(x^{1/k})}{k} \leq T_1 + T_2 + T_3 + T_4 + T_5$$

with

$$T_1 = \frac{1}{2} \frac{L_1(\sqrt{x})}{L_1(\sqrt{x})}, \quad T_2 = \sum_{k=3}^{\kappa} \frac{L_1(x^{1/k})}{k}, \quad T_3 = \sum_{k=\kappa_1+1}^{\kappa} \frac{L_1(x^{1/k})}{k},$$

$$T_4 = \sum_{k=\kappa_2+1}^{\kappa} \frac{B(x^{1/k})}{k}, \quad T_5 = \sum_{k=2}^{\kappa_2} \varepsilon(x^{1/k}) \frac{x^{1/(2k)}}{4k\pi}.$$

From the definition of L_1, L_2, F_1, F_2 and from (3.17), one has

$$T_1 = \frac{L_2(\sqrt{x})}{2} + \frac{\sqrt{x}}{2 \log^2 \sqrt{x}} = \frac{2\sqrt{x}}{\log^2 x} + \frac{4\sqrt{x} F_2(\sqrt{x})}{\log^3 x} \leq \frac{2\sqrt{x}}{\log^2 x} + \frac{4\sqrt{x} F_2(\sqrt{x})}{\log^3 x}$$

and

$$T_2 = \sum_{k=3}^{\kappa_1} \frac{L_1(x^{1/k})}{k}.$$
Estimates of \(\text{li}(\theta(x)) - \pi(x) \) and the Riemann Hypothesis

\[
T_3 \leq 1.785 \left(4.05 \frac{\kappa_1^3 x^{1/\kappa_1}}{\log^3 x} - L_2(10.4) \right)
\leq 1.785 \times 4.05 \frac{\kappa_1^3 x^{1/\kappa_1}}{\log^3 x} \leq 7.23 \frac{\kappa_1^3 x^{1/\kappa_1}}{\log^3 x}.
\]

For \(k \geq \kappa_2 + 1 > (\log x)/\log a \), we have \(x^{1/k} < a \); since \(y \mapsto B(y) \) is nondecreasing, we have \(B(x^{1/k}) \leq B(a) = B(10.4) = 1.7166 \ldots < 1.72 \) and

\[
T_4 \leq 1.72 \sum_{k=\kappa_2+1}^{\kappa} \frac{1}{k} \leq 1.72 \int_{\kappa_2}^{\kappa} \frac{dt}{t} \leq 1.72 \int_{\log a}^{\log 5} \frac{dt}{t} = 1.72 \left(\log \frac{\log x}{\log 2} - \log \left(\frac{\log(x/a)}{\log a} \right) \right)
= 1.72 \left(\log \frac{\log a}{\log 2} + \log \left(\frac{\log x}{\log(x/a)} \right) \right)
\leq 1.72 \left(\log \frac{\log a}{\log 2} + \left(\frac{\log x}{\log(x/a)} - 1 \right) \right)
= 1.72 \left(\log \frac{\log a}{\log 2} + \frac{\log a}{\log(x/a)} \right)
\leq 1.72 \left(\log \frac{\log a}{\log 2} + \frac{\log a}{\log(10^8/a)} \right) = 2.34449 \ldots
\]

Since \(\varepsilon(t) \) is nondecreasing and vanishes for \(x \leq 10^{17} \), from Lemma 2.3, one gets

\[
T_5 = \sum_{k=2}^{\kappa_2} \varepsilon(x^{1/k}) \frac{x^{1/(2k)}}{4k\pi} \leq \varepsilon(\sqrt{x}) \sum_{k=2}^{\kappa_2} \frac{x^{1/(2k)}}{4k\pi} \leq \frac{5}{16\pi} \varepsilon(\sqrt{x}) x^{1/4}
= \frac{5}{16\pi} \varepsilon(\sqrt{x}) \frac{\sqrt{x}}{\log^2 x} \frac{\log^2 x}{x^{1/4}} < \frac{5}{16\pi} \frac{\sqrt{x}}{\log^5 x} \frac{10^{34}}{x^{10^{34}/4}} = 0.93 \ldots \frac{\sqrt{x}}{\log^5 x}.
\]

which completes the proof of Lemma 3.6.

\[
\square
\]

3.3 A lower bound for \(A(x) \)

Proposition 3.7. Under the Riemann Hypothesis, for \(x \geq 9 \times 10^6 \), we have

\[
A(x) \geq \frac{\sqrt{x}}{\log^2 x} \left(2 - \frac{1}{\lambda} + \frac{1}{\log x} \left(7.993 - \frac{\log^3 x}{8\pi x^{1/4}} - \frac{18}{10000} \frac{\log^5 x}{\sqrt{x}} \right) \right). \tag{3.18}
\]
Proof. Since $B(y)$ is nonnegative, from (3.14) and (3.15), we get, for $x \geq 599$

$$A_2(x) \geq \frac{1}{2} B(\sqrt{x}) - \frac{9 \log^2 x}{10000}.$$

As $x \geq 2903^2$, we may apply (3.8) which yields

$$A_2(x) \geq \frac{1}{2} \left(L_1(\sqrt{x}) - \frac{x^{1/4}}{4\pi} \right) - \frac{9 \log^2 x}{10000}$$

$$= \frac{1}{2} \left(\frac{\sqrt{x}}{\log^2 \sqrt{x}} + L_2(\sqrt{x}) - \frac{x^{1/4}}{4\pi} \right) - \frac{9 \log^2 x}{10000}.$$

Now, as $x > 29^2$, by (2.10), it follows

$$A_2(x) \geq \frac{1}{2} \left(\frac{\sqrt{x}}{\log^2 \sqrt{x}} + \frac{2\sqrt{x}}{\log^3 \sqrt{x}} - \frac{x^{1/4}}{4\pi} \right) - \frac{9 \log^2 x}{10000}$$

$$= \frac{\sqrt{x}}{\log^2 x} \left(2 + \frac{8}{\log x} - \frac{\log^2 x}{8\pi x^{1/4}} - \frac{9 \log^4 x}{10000 \sqrt{x}} \right).$$

From Proposition 3.3, one has:

$$A_1(x) \geq -\left| \sum_{\rho} \frac{x^\rho}{\rho^2 \log^2 x} \right| - 0.0009 \log^2 x \geq \frac{2 \sqrt{x}}{300 \log^3 x}$$

so that $A(x) = A_1(x) + A_2(x)$ satisfies

$$A(x) \geq \frac{\sqrt{x}}{\log^2 x} \left(2 - \sum_{\rho} \frac{1}{|\rho^2|} \right) + \frac{8 - 2/300}{\log x} - \frac{\log^2 x}{8\pi x^{1/4}} - \frac{18 \log^4 x}{10000 \sqrt{x}}$$

which, via 1.5, implies (3.18). \qed

Corollary 3.8. Under the Riemann Hypothesis, for $x \geq 10^8$, we have

$$A(x) \geq \frac{\sqrt{x}}{\log^2 x} \left(2 - \frac{5.12}{\log x} \right).$$ (3.19)

Proof. From (1.11), the functions $x \mapsto \frac{\log^3 x}{x^{1/4}}$ and $x \mapsto \frac{\log^5 x}{\sqrt{x}}$ are decreasing for $x \geq 10^8$ and therefore, we have

$$7.993 - \frac{\log^3 x}{8\pi x^{1/4}} - \frac{18}{10000} \frac{\log^5 x}{\sqrt{x}} \geq 7.993 - \frac{\log^3 10^8}{8\sqrt{10^8} \pi} - \frac{18}{10000} \frac{\log^5 10^8}{\sqrt{10^8}} = 5.124 \ldots$$

(cf. [13]). \qed
3.4 An upper bound for $A(x)$

Proposition 3.9. Under the Riemann Hypothesis, for $x \geq 10^8$, we have

$$A(x) \leq \frac{\sqrt{x}}{\log^2 x} \left(2 + \lambda + \frac{Q(\kappa_1, x)}{\log x} \right)$$

(3.20)

where κ_1 is an integer satisfying $3 \leq \kappa_1 < \left\lfloor \frac{\log x}{\log 10.4} \right\rfloor$ and

$$Q(\kappa_1, x) = 4 \tilde{F}_2(\sqrt{x}) + \frac{2}{300} + \frac{3.05}{\sqrt{x}} \left(\frac{\log^3 x}{\sqrt{x}} + \sum_{k=3}^{\kappa_1} \frac{k \tilde{F}_1(x^{1/k}) \log x}{x^{1/2-1/k}} \right)$$

$$+ \frac{7.23 \kappa_1^3}{x^{1/2-1/k}} + \frac{0.949}{\log^3 x} + \frac{9 \log^5 x}{10000 \sqrt{x}}$$

(3.21)

with \tilde{F}_2 and \tilde{F}_1 defined in (3.16).

Proof. From Proposition 3.3 and (1.5), for $x \geq 599$, we have

$$A_1(x) \leq \lambda \frac{\sqrt{x}}{\log^2 x} + \frac{2}{300} \frac{\sqrt{x}}{\log^3 x} + 0.7$$

while, from Proposition 3.5, we have

$$A_2(x) \leq \sum_{k=2}^{\kappa_1} \frac{1}{k} B(x^{1/k}) + \frac{9 \log^2 x}{10000}.$$

Therefore, from Lemma 3.6, we get the upper bound (3.20) for $A(x) = A_1(x) + A_2(x).$

□

Corollary 3.10. Under the Riemann Hypothesis, for $x \geq 10^8$, we have

$$A(x) \leq \frac{\sqrt{x}}{\log^2 x} \left(2 + \lambda + \frac{25.22}{\log x} \right).$$

(3.22)

Proof. We choose $\kappa_1 = 5$ and observe that, from (3.16) and (1.11), all the terms of the right-hand side of (3.21) are positive and nonincreasing for $x \geq 10^8$ so that $Q(5, x) \leq Q(5, 10^8) = 25.2119 \ldots$ (cf. [13]).

□

Corollary 3.11. Under the Riemann Hypothesis, for x tending to infinity, we have

$$\frac{\sqrt{x}}{\log^2 x} \left(2 - \lambda + \frac{7.993 + o(1)}{\log x} \right) \leq A(x) \leq \frac{\sqrt{x}}{\log^2 x} \left(2 + \lambda + \frac{8.007 + o(1)}{\log x} \right).$$

(3.23)
Proof. The lower bound of (3.23) follows from Proposition 3.7. From Array (2.11), from (2.13) and from (3.16), one sees in (3.21) that \(\lim_{x \to \infty} \tilde{F}_2(\sqrt{x}) = 2 \) and \(\lim_{x \to \infty} \tilde{F}_1(x^{1/3}) = 1 \) so that (3.21) yields \(\lim_{x \to \infty} Q(3, x) = 8 + 2/300 \) and the upper bound of (3.23) follows from Proposition 3.9 with \(\kappa_1 = 3 \).

\[\square \]

3.5 Numerical computation

Let us denote by \(p^- \) and \(p^+ \) the primes surrounding the prime \(p \).

Proposition 3.12. For \(x < 1.39 \times 10^{17} \), \(A(x) \) is nondecreasing. There exists infinitely many primes \(p \) for which \(A(p) < A(p^-) \) holds.

Proof. Let us consider a prime \(p \) satisfying \(3 \leq p < 1.39 \times 10^{17} \). From (2.1), one has

\[
A(p) - A(p^-) = \text{li}(\theta(p)) - \text{li}(\theta(p^-)) - 1 = -1 + \int_{\theta(p^-)}^{\theta(p)} \frac{dt}{\log t} > -1 + \frac{\theta(p) - \theta(p^-)}{\log \theta(p)} = \frac{\log p}{\log \theta(p)} - 1 > 0.
\]

From Littlewood (cf. [7] or [5, chap. 5]), we know that there exists \(C > 0 \) and a sequence of values of \(x \) going to infinity such that

\[\theta(x) \geq x + C \sqrt{x} \log \log \log x. \]

Let \(p \) be the largest prime \(\leq x \). For \(x \) and \(p \) large enough, one has

\[\theta(p) = \theta(x) \geq x + C \sqrt{x} \log \log \log x > p + \log p \]

and

\[A(p) - A(p^-) < \frac{\log p}{\log \theta(p^-)} - 1 = \frac{\log p}{\log(\theta(p) - \log p)} - 1 < 0 \]

which completes the proof of Proposition 3.12.

\[\square \]

Remark. In [9, p. 8], Platt and Trudgian have proved the existence of \(u \) satisfying \(727 < u < 728 \) and \(\theta(e^u) - e^u > 10^{152} \). If \(P \) is the largest prime \(\leq e^u \), this implies

\[\theta(P) = \theta(e^u) > e^u + 10^{152} > P + u \geq P + \log P \]

and

\[A(P) < A(P^-) + \frac{\log p}{\log(\theta(P) - \log p)} - 1 < A(P^-). \]
Proposition 3.13. (i) For $11 \leq x \leq 1.39 \times 10^{17}$ we have
\[A(x) > 0. \] (3.24)

(ii) Under the Riemann Hypothesis, for $x \geq 2$ we have
\[A(x) \leq \frac{\sqrt{x}}{\log x} \left(2 + \lambda + \frac{27.7269 \ldots}{\log x} \right) \] (3.25)
with equality for $x = 33647$.

(iii) Under the Riemann Hypothesis, for $x \geq 520878$ we have
\[A(x) \leq \frac{\sqrt{x}}{\log^2 x} \left(2 + \lambda + \frac{25.22}{\log x} \right). \] (3.26)

(iv) For $2 \leq x \leq 10000$ we have
\[A(x) \leq 5.0643 \ldots \frac{\sqrt{x}}{\log^2 x}. \] (3.27)
with equality for $x = 3643$.

(v) Under the Riemann Hypothesis, for $x \geq 84.11$ we have
\[A(x) \geq \frac{\sqrt{x}}{\log^2 x} \left(2 - \lambda + \frac{5.12}{\log x} \right). \] (3.28)

(vi) For $37 \leq x < 89$ we have
\[A(x) \geq \frac{\sqrt{x}}{\log^2 x} (2 - \lambda). \] (3.29)

Proof. First, for $x \geq 2$, we define $C(x)$ and $c(x)$ by
\[A(x) = \frac{\sqrt{x}}{\log^2 x} \left(2 + \lambda + \frac{C(x)}{\log x} \right) \quad \text{and} \quad A(x) = \frac{\sqrt{x}}{\log^2 x} \left(2 - \lambda + \frac{c(x)}{\log x} \right) \]
so that
\[C(x) = (\log x) \left(\frac{A(x) \log^2 x}{\sqrt{x}} - 2 - \lambda \right) \]
and
\[c(x) = (\log x) \left(\frac{A(x) \log^2 x}{\sqrt{x}} - 2 + \lambda \right). \]
(i) (3.24) follows from Proposition 3.12 and \(A(11) = 0.1301 \ldots \) Note that \(A(7) = -0.1541 < 0 \) (cf. [13]).

(ii) If \(x \geq 10^8 \), (3.25) follows from Corollary 3.10.

If \(2 \leq x < 409 \), from (1.12), one has \((\log^2 x) / \sqrt{x} \leq 16 / e^2 \) and, from Proposition 3.12, \(A(x) \leq A(401) \leq 2.52 \) so that

\[
C(x) = (\log x) \left(A(x) \frac{\log^2 x}{\sqrt{x}} - 2 - \lambda \right) \leq (\log 409) \left(2.52 \frac{16}{e^2} - 2 - \lambda \right) < 20.51
\]

which proves (3.25).

If \(409 \leq x < 10^8 \), let \(p \) be the largest prime \(\leq x \). As \(409 > e^6 \) holds, from (1.11), for \(x \in [p, p^+] \), the function \(x \mapsto (\log x) \left(A(p) \frac{\log^2 x}{\sqrt{x}} - 2 - \lambda \right) \) is decreasing, which implies

\[
C(x) \leq C(p)
\]

and, by computation,

\[
\max_{409 \leq x \leq 10^8} C(x) = \max_{409 \leq p < 10^8} C(p) = C(33647) = 27.7269 \ldots
\]

which completes the proof of (3.25).

(iii) For \(x \geq 10^8 \), (3.26) follows from Corollary 3.10.

We compute \(p_0 = 520867 \) the largest prime \(< 10^8 \) such that \(C(p_0) \geq 25.22 \). For \(p_0^+ = 520889 \leq x < 10^8 \), we denote by \(p \) the largest prime \(\leq x \) and, from (3.30), one has \(C(x) \leq C(p) < 25.22 \), which implies (3.26). Then, one calculates

\[
\lim_{x \to p_0^+ \atop x < p_0^+} C(x) = (\log p_0^+) \left(A(p_0) \frac{\log^2 p_0^+}{\sqrt{p_0^+}} - 2 - \lambda \right) = 25.21964 \ldots
\]

As the above value is \(< 25.22 \), we have to solve the equation \(C(t) = 25.22 \) for \(p_0 \leq t < p_0^+ \) and find \(t = 520877.54 \ldots \)

(iv) For \(t \geq 1 \) the function \(t \mapsto (\log^2 t) / \sqrt{t} \) is maximal for \(t = e^4 \) \(= 54.59 \ldots \) where its value is \(16 / e^2 = 2.16 \ldots \) (cf. (1.11) and (1.12)). As \(A(x) \) is nondecreasing, for \(x < 59 \), we have

\[
A(x) \frac{\log^2 x}{\sqrt{x}} \leq \frac{16}{e^2} A(53) = \frac{16}{e^2} 1.155 \ldots = 2.501 \ldots
\]

For \(p \geq 59 \) and \(p \leq x < p^+ \), one has

\[
A(x) \frac{\log^2 x}{\sqrt{x}} = A(p) \frac{\log^2 x}{\sqrt{x}} \leq A(p) \frac{\log^2 p}{\sqrt{p}}
\]
and we compute the maximum of \(A(p) \frac{\log^2 x}{\sqrt{p}} \) for \(59 \leq p < 10000 \) which is equal to 5.064... for \(p = 3643 \).

(v) Let us set
\[
f(x) = \frac{\sqrt{x}}{\log^2 x} \left(2 - \lambda + \frac{5.12}{\log x} \right).
\]

For \(x \geq 10^8 \), \(A(x) > f(x) \) follows from Corollary 3.8.

Let \(p \) be a prime satisfying \(e^e < 409 \leq p < 10^8 \). For \(p \leq x < p^+ \), one has \(A(x) = A(p) \),
\[
c(x) = (\log x) \left(A(p) \frac{\log^2 x}{\sqrt{x}} - 2 + \lambda \right),
\]
\[
c'(x) = \frac{A(p)(\log^2 x)(6 - \log x) - 2(2 - \lambda)\sqrt{x}}{2x^{3/2}} < 0
\]
so that \(c(x) \) is decreasing and
\[
c(x) \geq \bar{c}(p) \overset{\text{def}}{=} \lim_{x \to \rho^+, x < \rho^+} c(x) = (\log p^+) \left(A(p) \frac{\log^2 p^+}{\sqrt{p^+}} - 2 + \lambda \right)
\]
Therefore, for \(409 \leq x < 10^8 \) one has \(c(x) \geq \min_{409 \leq p < 10^8} \bar{c}(p) \) and, by computation, one gets
\[
\min_{409 \leq p < 10^8} \bar{c}(p) = \bar{c}(409) = 15.3735...
\]
which implies \(A(x) > f(x) \).

The function \(f \) is decreasing on \((1, x_1 = 111.55...]\) and increasing for \(x \geq x_1 \)
(cf. [13]). Therefore, for \(1 < a < b \), the upper bound of \(f \) on the interval \([a, b]\) is \(\max(f(a), f(b)) \). We have \(A(84.1) = A(83) < f(84.1) \) while, for \(84.11 \leq x < 89 \), \(A(x) = A(83) > \max(f(84.11), f(89)) \) holds.

For \(89 \leq p \leq 401 = 409^{-} \), one checks that \(A(p) > \max(f(p), f(p^+)) \) holds which shows that \(A(x) > f(x) \) for \(89 \leq x < 409 \) and completes the proof of (3.28).

(vi) From (1.1), the function \(\varphi(t) = (\log^2 t)/\sqrt{t} \) is increasing for \(1 \leq t \leq e^e = 54.598... \) and decreasing for \(t \geq e^e \) so that, for \(1 < a < b \), the lower bound of \(\varphi \) on the interval \([a, b]\) is \(\min(\varphi(a), \varphi(b)) \).

Let \(p \) be a prime satisfying \(11 \leq p \leq 83 \). From (i), one has \(A(p) > 0 \) and, for \(x \in [p, p^+] \),
\[
A(x) \frac{\log^2 x}{\sqrt{x}} = A(p) \frac{\log^2 x}{\sqrt{x}} \geq A(p) \min(\varphi(p), \varphi(p^+)).
\]
To prove (3.29), it remains to check that \(A(p) \min(\varphi(p), \varphi(p^+)) > 2 - \lambda \) holds for \(37 \leq p \leq 83 \).
3.6 Proof of Theorem 1.1

Proof. The proof of (1.6) follows from Corollary 3.10 while Corollary 3.8 yields (1.7).

The proof of (1.8) results of Proposition 3.13, (i) and (v).

Inequality (1.9) results of Proposition 3.13, (v) and (vi).

If \(x \leq 10000 \), Inequality (1.10) follows from Proposition 3.13, (iv), while for \(x > 10000 \), Proposition 3.13, (ii), implies

\[
A(x) \leq \frac{\sqrt{x}}{\log^2 x} \left(2 + \lambda + \frac{27.7269 \ldots}{\log x} \right) \\
\leq \frac{\sqrt{x}}{\log^2 x} \left(2 + \lambda + \frac{27.7269 \ldots}{\log 10000} \right) = 5.0566 \ldots \frac{\sqrt{x}}{\log^2 x}
\]

which ends the proof of Theorem 1.1.

Acknowledgements I am pleased to thank Marc Delégile for his computations and for several discussions about this paper.

References

3. P. Dusart, Explicit estimates of some functions over primes. Ramanujan J. (to appear)