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1 Introduction

Np and N denote the sets of the non-negative resp. positive integers;
A, B... denote sets of positive integers, and their counting functions are
denoted by A{z), B{z},..., so that, e.g,,

Alz)=|{a: a<z,a€ A}|

If A= {a,0as,...} C N (where a; < a; <...), then p(A,n) denotes the
number of partitions of n with parts in 4, that is, the number of solutions
of the equation

a1rr tagre +--=n

in nop-negative integers x3, z2,.... As usual, we set p(A,0) = 1.
Fori=0or 1, if A C N and there is a number N such that

p(A,n) =i(mod2) for all ne N, n>N,

then A is said to possess property P;. Hi=0o0r 1, B = {by,..., bt} # 0
(where by < -+ < by) is a finite set of positive integers, N € Nand N > b,
then there is a unique set A C N such that

ANn{L,2,...,N} =8

and
p{A,n)=i(mod2) for neN n>AN.

We will denote this set .4 by A;(53,N) and, in particular, we will write
Ai(B, b} = A;(B). The construction of the set A;(B, N) is described in
(3]; let us recall it when, for instance, i = 0. The set 4 = Ag(B, N) will be
defined by recursion. We write A, = AN {1,2,...,n}, so that

Axv =AN{1,2,...,N} = B.
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56 J.-L. Nicolas and A. Sdrkézy

Assume that n > N +1 and A, _; has been defined so that p(4,m) is even
for N+1<m<n-—1. Then set

n€ A if and only if p(A4,_1,n) is odd.

It follows from the construction that for » > N + 1 we have p(A4,n) =
1+4 p(An-1,n) if n € A4, and p(A,n) = p(A._1,n) if n € A. This shows
that p(4,n) iseven forn > N + 1.

Note that, in the same way, any finite set 8 = {b1,b2,...,b} can be
extended to an infinite set 4 so that Ap, = B and the parity of p(A,n)
is given for n > N + 1 (where N is any integer such that N > be). The
problem we will consider here is the estimation of A(z).

In [4] we initiated the study of sets .4 possessing property Fy or P.
In [3] we asked the following question: But what can one say on such a
set A... 7 In particular, how thin, or how dense can a set of this type
be? All we could prove in this direction was that there is an infinite set A
which possesses property P, and for which A(z) > z/log z; more precisely,
p{A,n) is even for n > 4 and

lmint 21082 S 1 (1.1)
Z—+00 T 2
Indeed, we showed that the set
A= Ap(B), where B={1,2,3} (1.2)

has these properties. In 3] we wrote regarding this set A: First we thought
thet perhaps even -

A(e) = (5 + o))

- holds. However, computing the elements of A up to 10000, it turned out
" that A(10000) = 2204 so that, probably,
Alzy 1

lminf «=2 « =,
T—+00 T 2

In this paper we will first continue the study of the sequence A in {1.2).
Then, in Section 3, we will show that there are numerous sequences 4
which possess property P, or P, and whose counting function grows very
slowly: namely, we have

A(z) < log z.

{(Computer experiments lead us to the construction of sets .4 with those
properties; it surprised us very much that such sets A exist.) In Section 4
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we will prove a criterion which can be used to show that for fixed i, B, N
the set A = A;{BB, N) satisfies an inequality like (1.1}, i.e., we have

A(z) » @. (1.3)

This criterion will suggest that for the most B, N the set A = A4;(B,N)
(for both i = 0 and 1) satisfies (1.3). In Section 5 we will improve on (1.3)
by constructing a set A = Ag(B, N) with

T

A(:B) > W

for some ¢ > (. Finally, in Section 6 we will formulate several problems
and conjectures based on computer experiments.

By using modular forms, K. Ono has obtained in [5] and [6] nice results
about the distribution of the values of the classical partition function p(n) =
p(N,n} in the different residues classes modulo m. By the above algorithm,
it is possible to construct sets .4 such that, for n = a (mod m) and n > N,
the parity of p(A4,n) is fixed.

2 Further Study of the Set A in (1.2)

We will use the following notation: If A C N, then x(A,n) denotes the
characteristic function of A, i.e.,

wan-{ned
Moreover, we write
o(An) = x(Add= Y d (2.1)
d|n d|n, dEA
By (4.5) in [3] we have
np(A,n) = nf p(A, k)o(An — k). (2.2)
k=0

Let u denote the Mobius function. We shall need the following lemma,
which allows us to determine x(.A,n) for n odd if the ¢ function is known:

Lemma 1. If n is odd, then

x(An) = Y p(d)o(4n/d) (mod2), (23)

d|n
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while if n = 2%m, a > 1, and m is odd, then

nx(A4,n) = — Z Pmx(A,2°m) + 3 p(d)o(A,n/d).  (24)

=0 djm

Proof. Applying the Mdbius inversion formula, it follows from (2.1) that

n) =3 wdo( A n/d), (25)

din

which gives (2.3) for n odd. When n is even, we write the divisors d of n
in the form d = 295, where 8 < & and d|m, so that {2.5) can be written as

) = 55w H)e(A n/2%)

Stm =0
= Y wd)o(A,n/8) - =Y w(d)o(A4,n/26).
&|m d|m

Here the last sum is

Yu® Y xAa

i

Y ax(Aa) Y )

lm al(n/28) al{r/2) 8|(r/(2a),m)
a—1
= Z Pmyx(A, 2°m)
A=0
This completes the proof of Lemma 1. a

From now on A denotes the set (1.2). In [3] we showed that o(A,n)
_modulo 2 is periodic with period 7. More precisely, as

n=0,1,23,4,5 and 6 (mod7),

we have
o(A,n) =1,1,1,0,1,0 and 0 (mod2).
This can be expressed in the following form:

o(An) =1+ %((g) - (;)2) (mod 2), (2.6)

where (%) is the Legendre symbol for (n,7) = 1, and (%) = 0 for 7|n.
In [3] we proved that a prime p belongs to A if and only if p=3,5 or

6 {mod 7) (i.e., if (;) = ~1). We will prove:
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Theorem Y. The odd elements of A are of the following form: n =1, or
n=p® orn="Tp*, where p is a prime = 3,5 or 6 (mod 7) and o > 1.

Proof. By Lemma 1 and (2.6) we have, for n odd, n > 1,

xan = Y u@(1+3((%) - (£)))

d|n
= 2(A(n) ~ fo(n) (mod2) 27)
with
ftn) = Y i) (MY

d|n

But fi{n) and fa(n) are multiplicative functions, and fa(n) = 0 for all n
except for n = 1 and n = 7 when fo(1) = +1 and f2(7) = —1. Further,

f(p®) = 0 for (7) = 41 and f1(p*) = (-1)*- 2 for (7) = —1, and
fi(7) = —1 and fi(7®) = 0 for o > 2. Thus it follows from (2.7) that
7¢ A, and for n odd, n # 1,7,

1
x(A4,n) = 5 fHi(n) (mod2),
so that by using the multiplicativity of fi(n) and the values of f;(p*),

fi(n) = 2 (mod 4) holds only if » = p* or 7p® with (g-) = —1. This
completes the proof of Theorem 1.

The even elements of A4 could be determined if the following conjecture
holds:

Conjecture. If n is even then
olA,n) =2,3,1 (modd) for (g) = —1,+1,0, respectively. (2.8)

More generally, if K > 1, up = o(A,3-2%), vp = 0(A4,2%), and n is a
multiple of 2%, then
(A1) = ug, vk, —3 (med2*TYY for (g) = —1,41,0, respectively.
(2.9)
This conjecture has been checked up to n = 10000 by computer. By

an argument similar to the proof of Theorem 1, one may deduce from the
validity of (2.8) for n < ng that the elements n of .4 with n = 2 (mod 4)

and n < mp are n = 2; n = 2p°77, (-;,3) =-1,p=1(mod4),dodd, y=0
or 1; or n = 2p%¢P77, ($)=(%) =-Lp#qazl, 21, y=0orl
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3 Thin Sets with Properties Py, P,

We will show that there are sets B, C such that Ay(B) and .4;(C) are
geometric progressions (apart from a single exceptional element):

Theorem 2. (i) For all a,b € N such that alb, we have
Ao({a,b}) = {a,b,2b,...,2%,...}. (3.1)
(ii) We have
A ({1} = {1} (3.2)
and, for all k € N,
Ai({2,26+1}) = {2,2k + 1,2(2k + 1),..., 22k + 1),...}.  (3.3)

Proof. (i) By the uniqueness of 4o({a, b}), it suffices to show that, writing
D ={a,b,2b,...,2%b, ...}, we have

DN{L,2,...,b} = {a,b) (3.4)

and
p(D,n) =0 (mod?2) for n > b. (3.5)

(3.4) is trivial, so it remains to prove (3.5). Clearly we have

f = 1 ﬁ 1
p(D,n)z™ = S = =
n=0 aep 1T 11—z L 1-a?
_ 1 *ﬁ° 1
R SR
l_mb a 2a b—a
= 1_ma=1+m +z 4z (mod 2),

which proves (3.5). (Here the notation = (mod 2) means that the corre-
sponding coefficients are congruent modulo 2)

(ii) (3.2) is trivial, while (3.3) can be proved in the same way as (3.1).

O

The sets constructed in Theorem 2, possessing properties Py, resp. P,
consist of a single geometric progression, apart from their smallest elements.
We can show that a set possessing property Py or P, may consist of arbi-
trarily many geometric progressions. Here we will consider only the even
case (Po), since the other case is similar but slightly more complicated.
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Theorem 3. Letk e Nandletqy < gz <--- <-r.1;ﬁc be arbitrary posjt:’ve odd
integers. Then defining D, M and B by D = U_, {¢:2¢:, .-, 2°qs,. .. },
M= Ef___l g; and B=DnN{1,2,..., M}, respectively, we have

Ao(B, M) =D. (3.6)
Note that the function o(D,n) defined by (2.1) satisfies

k

o(D,n) = Z 1 (mod 2)
i=1,q; | n
and is periodic in n with period lem(g1, g2, - - -, Gk )

Proof. To prove (3.6) we have to show that

DN{L,2,...,M}=8B (3.7)

and
p(D,n) =0 {mod2} for n > M. (3.8)

(3.7) holds by the definition of B. Thus it remains to show that (3.8} also

holds.
Clearly we have

+00 1
Y oDt = ] T
n=0 deD
k4o 1 3 k 4oo 1
= Nl =111l 5w

= H(l — %) =ag + oz + -+ apz™ (mod2),

t=1

where ag, a1,...,a) are integers, and this proves (3.8). O

4 Dense Sets with Properties P, P,

We believe that the sets Ag, A; of “geometric progression type”, described
in Section 3, are exceptional, and that typically, the sets 4 = AO(B,N' ),
A = A (B,N) are “dense” in the sense that they satisfy (1.3). We will
prove a criterion which provides a simple algorithm to show that, for fixed
B, N, the sets Ao{B, N) and A, (B, N) are indeed of this type:
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Theorem 4. For every finite set B = {by,...,bx} (where by < --- < by},
every N € N, N > b, and for both A = Ag(B,N)} and A = A,(B,N),
there is 0 g = q(A) € N such that ¢ is odd,

q(Ao(B,N)) <2V, g(A4i(B,N)) < 2NH! (4.1)

and
o(An)=c(d,n+q) (mod2) forn>1; {4.2)
i.e., o(A,n) is periodic modulo 2 for n > 1 with period g satisfying (4.1).
The proof will be based on the following lemma:

Lemma 2. For every finite set B = {by,...,bp} (where b, < --- < by) and
every N € N, N > by, both A = Ay(B,N) and A = A (B, N) satisfy a

congruence of form

J
o(A,n)=gp + Z gjo(A,n —7) (mod2) for n=J+1,J+2,., (4.3)
i=1
where each of €g,€1,...,65_1 is equal to 0 or 1, &5 = 1, and J is a positive

integer satisfying J < N tf A= Ao(B,N) and J < N+1if A= A (B,N).

Proof. (i) Consider first the case A = Ay(B, N) (“even case”) where p(A, n)
=0 (mod 2) for n > N + 1. Let us define J as the smallest integer such
that p{A,J) = 1 (mod 2) and p(A4,j) = 0 (mod 2) for j > J + 1. (Note
that J > & = minB, since p(A,b;) = 1.} From the definition of J it
follows that J < N and

p{An)=0 (mod?2) for n=J+1,J+2,.... (4.4)
‘The proof will be based on identity (2.2), which can be rewritten as
n—1
np(A,n) =o(A,n)+ Y p(A,ko(An—k), n>1l  (45)
k=1

By (4.4), it follows that for n > J + 1 we have

J
0=0(A,n) + > plA k)o(An —k) (mod2). (4.6)
k=1

Writing ey = p(A, k) (mod 2), that is

_J1 if p(Ak) is odd,
10 if p(4,k) is even,
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for k=1,2,...,J, it follows from (4.6) that
J
o(A4n) =) exo(A,n—k) (mod2),
k=1

which is a congruence of form (4.3} with gg = 0.
(ii) Consider now the odd case, i.e., a set A = A;(B, N) so that
p(A,n) =1 (mod2) for n=N+1,N+2,.... (4.7)

Replacing n by n — 1 in (2.2) we obtain for n > 1

n—-2 n—1
(n-Dp(An~1)= Y pAKo(n-1-k) = 3 p(Aj-Do(An-j)
k=0 j=1 (48)
Subtracting (4.8) from (2.2) yields for n > 1
n—1
np(An) — (n— )p(A,n—1) =o(4,n) + Y _tio(dn-j)  (49)
i=1

with t; = p(4, j)—p(A, j—1). Here we define J as the smallest integer such
that p(A4, J —~ 1) = 0 (mod 2) and p(A4,j) =1 (mod 2) for j > J. Except
for the case B = {1} (which leads to A;(B,N) = {1} for all N > 1), suc}n
a J always exists: if 1 ¢ B, p(A,b = 1) = 0 so that J > b, while, if
1=b; € B, p(A,by) =2and J > by + 1. From (4.7), J < N +1 holds, and
for > J + 1, we have t; =0 (mod 2). Defining ¢; by

= 0, if t; =p(A,J) "‘P(A,J:— 1) ?s even (for j=1,...,0),
P70, ity =p(A,5) - p(A4,j—1) is odd
{4.9) implies

J
olAn) =1+ Z gjo(A,n —j) (mod2) (for n2>J+1) (4.10)

i=1
which is again of form (4.3). This completes the proof of Lemma 2. a

Proof of Theorem 4. We start out from the characteristic polynomial of
the linear recurrence relation (4.3):

J
PX)=X"+Y ax’™* (4.11)
k=1
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Let us consider this polynomial on the finite field Fy, and let K = Fyu be
a finite extension of F; on which P splits into linear factors. Let £y, 80
be the (not necessarily distinct) roots of P on K and
Sp =&+ +-+£€F, n=1,23,...
the associated Newton sums. These sums belong to F2 and, by a classical
result in elementary algebra, they satisfy the following identities:
S +e =0,

Ss + 6181 + 29 = 0,

SnteSp14- - +ep1S1+ne, =0, forl<n<J
Sp+e1Sny+- 0+ EJ-19n—Jp1 + E7Sp_g = 0, forn>J41.
In the even case, since €4 = p(A, k) (mod 2), it follows by induction on
n from (4.5) that
o(A,n) =95, (mod2). (4.12)
But each non-zero root &; has an order in X which divides 2% — 1, and
$0 Sy is periodic in n > 1 with a period dividing 2% — 1. Then it follows

from (4.12) that the period ¢ of o(.4,n) mod 2 is a divisor of 2% —1 and so
is odd, and that (4.2) holds.

The odd case is similar, with (4.12) replaced by
o(A,n)=1+S8, (mod2).
If the polynomial P is irreducible over Fp, we can choose K = Fyy,
since J is the degree of P. If P is reducible, let us write its factorisation as
P=PPF..F5,

where Py, Py,..., P, are the (nop necessary distinct) irreducible factors of
P over Fy. If we denot@ by S,(:) the Newton sum of index n associated
to the polynomial P, S,(:') is periodic in n with period ¢; dividing 2% — 1,
where d; is the degree of P;. Clearly,

Sn=8"+ 8@ +... 4+ 80,
and the period of Sy, is a divisor of lem (gy, g, ... ,9») S0 that

¢<qg...¢ < (2% -1)(22-1)... (2% - 1)

dida+obde _ oJ
< 9oitda + __2,

which, from the definition of J, implies (4.1). This completes the proof of
Theorem 4. O
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Theorem 5. Let A = Ap(B,N) or A = A (B,N), let g = q{A) be the
period of o(A,n) (mod 2) es described in Theorem 4, and ¢ the number of
m with 1 <m < q, such that

(m,g)=1 and o(A,m)=1-x(A4,1) (mod?2), (4.13)

(where x(A,n} is the characteristic function of the set A as in Section 2).
Then any prime p = m (mod gq), where m is any integer satisfying (4.13),
belongs to A, and thus

liminf Afz)log = > c

14
T—00 T - (ID(Q) ' (4 ! )

where @ 15 Buler’s function.

Note that Theorems 4 and 5 also provide a simple algorithm to show
that for fixed B, N, (4.14) holds for both sets A = A¢(B,N) and A4 =
A1{B, N} (and, indeed, for the most B and N this is expected to happen).
Namely, we first look for a period g satisfying (4.1) and (4.2), and then we
count the m’s satisfying 1 < m < ¢ and (4.13) to get ¢; if ¢ # 0, then (4.14)
is proved.

Proof of Theorem 5. If p is a prime congruent to m modulo ¢, then by (4.2)
and (4.13) we have

o(A,p) = o(A,m)=1~-x(A, 1) (mod2),

so that by Lemma 1

X(A4,p) = Y p(d)o(A,p/d)
c(ril(z:fl,p) —o(A,1)=1-x(A 1) -o(A4,1)=1 (mod 2),

whence p € A. By the prime number theorem for arithmetic progressions,
it follows that for each m coprime to g,

T

Hp:p<z, p=m (mod g} = (1+oll)) e,

whence the result follows. O

5 Improving on (1.3)

We will prove:
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Theorem 6. There is an absolute constant ¢ > 0 such that for A =
AO({]'? 2’ 334, 5}) we haUB

Alz) > for z > g {5.1)

_®
(log z)t~¢
P:joof. A simple computation (cf. Example 2 in Section 7) shows that for
this set A the period g defined in Theorem 4 is ¢ = 31, and o{A,n) =0
(mod 2) if and only if n is congruent to 3, 5, 6, 7, 9, 10, 12, 14, 17, 18, 19,
20, 24, 25, 28 modulo 31. Thus for
n= G143 ... Gk, (6.2)
where ¢q;, ¢, . .., ¢ are distinct primes = 5 {mod 31), we have
o(A,n) =1 (mod2) if and only if 3|k. {5.3)
By (2.3) in Lemma 1, for the n in (5.2) we have
xAn = > o(Adag...q/d) (mod2)
dlg19z...qx
so that, by (5.3),
_ k
x(A4n)= 3 .| (mod2). (5.4)

0L r<k
r=0 (mod 3)

Now we need the following lemma:

S(a, k) = Z (f)

0<r<h
r=a(mod3)

Lemma 3. Write

Then for k € N we have

S(ak) = {0 (mod2) if a+k =0 (mod3) 535)

1 (med2) if a+k=1 or 2 {(mod3).

Proof. By the identity

6 =(3)+G20)

we have for k > 4
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S(a,k) = S(a,k=1)+Sa—-1k-1)
= S(ak—2)+25(@—1,k—2) +5(a—2,k—2)
= S(a,k —3)+3S(a—1,k—3 +35(a— 2,k — 3)+S(a— 3,k - 3)
=28(a,k—3) +3S(a-1,k—3)+3S(a—2,k—3)

=3 z (k:3) ~ S(ak—3) =325 = §(a,k —3),

0<r<k—3

and finally

S{a, k) = S(a,k—3) (mod2). (5.6)
(5.5) follows by induction from (5.6) and
So,1))=1, S(,1)=1, S2,1)=0
5(0,2) =1, S(1,2)=2 S22 =1
S0,3) =2, 5(1,3)=3, 5(2,3)=3. [}
By Lemma 3, it follows from (5.4) that if n is of the form (5.2), where
k=1 or 2 (mod3), (5.7)

then we have n € A. The following lemma then completes the proof of
Theorem 6. 0

Lemma 4. For > zo the number of the integers n of form (5.2), where
n<x q <qge< < qp are primes =5 (mod 31} and k = 1,2 (mod 3),
is > Iﬁﬂ—_—; for a positive constant c.

Lemma 4 will follow from the following theorem:

Theorem 7. Let £ and m be two positive coprime integers. Let p be the
multiplicative function defined by

plp)=1 ifp=£¢ (modm)
pp)=0 ifp#{ (modm)

and p(p®) = 0 for all primes p and all exponents o > 2. Let w(n) denote
the number of prime factors of n, let ¢ be Buler’s function, z any complex

number and
Uz, z) = Z p(n)z=t™.

n<e

Then, for x going fo infinity, we have

c* z 1\* z
V)~ 5ol p=t god m) (1+ 5) (1 - 5) (log @)i—2/e(m)’
(5.8)
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where

1/e(m)
¢:= {@gm II (L(l,x))f“’} ; (5.9)

XFXxo

L{s, x) is the Dirichlet function associated to a character x modulo m, and
g 1s the function (holomorphic in Rs > 1/2)

w=on (SROLE)

p =2

Proof. Theorem 7 is an extension of the so-called Selberg-Delange formula
(¢f. [7], I1.5) by considering only the squarefree integers composed of primes
congruent to £ modulo m. A sketch of the proofis given (for the case z = 1)
in [8], as the solution to Exercise I1.8.6, p. 124-125. A detailed proof will
appear in [1]. O

Proof of Lemma 4. Let us set & = €2/3, In Theorem 7, let us fix £ = 5
and m = 31. The number V(z,a) of integers n < z satisfying (5.2) with
k =w(n) =a (mod 3) is, by (5.8), equal to

2 2
COENED M OEE S 35 DA I Sl N}
r=0

- n<= —
win}=a (mod 3) n<er=0

5.11
But, from (5.8) it follows that, for r =1 or 2, ¢4y

U(z,€") = O (w(log 2)R€/¢B01) = O (3(l0g z)~#)

while U(z,1) x z(log )~ %. Therefore, {5.11) yields for a = 0,1 or 2

g

1
V{z,a) ~ gU(m, 1) » z(log z)~ %0,
This completes the proof of Lemma 4. [

An improvement of Theorem 6 is given in [2].

6 Problems

In this section we list several unsolved problems and conjectures based on
the computer experiments carried out by us (see the examples below).
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e Is it true that for all B and N, and for both A = Ag(B,N) and A=
A1 (B, N), we have A(z) = o(x) # We believe that A(z) < =/(log z)°
with some ¢ > 0. However, we cannot even show that there is an A
with A(z) # Oflog z), and

fimint &) o L

z—+00 T 2

To show this, it would suffice to show that for the set A = Ao({1,2,3})
studied in Section 2, the number of the even elements of A not ex-
ceeding « is < (3 — &)z for infinitely many z € N.

o Is it true that if A(z) # O(log z) so that A is not of the “geometric
progression type” (see Section 8), then we have Téig% — oo ¢ Perhaps,

in this case even Al
z)log z
lim ——-———( ) log =00
T—r00 x

must hold.

e Is it true that for all B and N, and for both A = Ao(B,N) and
A = Ai(B, N), denoting the smallest period of o(A, n) by g we have

o(A,2(n +q)) = o(A,2n) (mod 4)
and more generally,

o(A, 2" (n + q) = 0(A4,2"'n) (mod 2%)?

7 Examples

By computer, we have studied all sets A:(B, N) for BC {1,2,3,4,5},i=0

or 1 and I;la.é{b < N < 10. For all of these sets, we have computed the pe-
€
riod ¢ of o(A, n) mod 2, the constants ¢ and ¢/(g) introduced in Theorem

5, the characteristic polynomial P defined by (4.11) and its factorisation
into irreducible factors over Fa, the values of the first elements of A (up to
1000), and the values of p{A,n) for small n.

We give below the description of some of these sets which seem to us
particularly interesting: in Examples 1 and 7, the elements greater than 5
of A coincide; in Examples 3 and 8, we have ¢/@(q) # 0,1/2; the sets Ain
Examples 5 and 6 coincide apart from the first element; in Example 5, the
elements are twice the elements of A of Example 4.
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Example 1: B={1,2,3}; N=3; i =0.
=7, c=3, c/p(q) =1/2,
P=X%+X?+1: irreducible ,
A={1,2,3,58,9,10,13,14,16,17,19, 20, 21, 24, 25, 26, 27, 28, 30, 31,
34,35,36,40,41,47,48...}; A{1000) = 293.

Example 2: B = {1,2,3,4,5}; N=5; i =0.
g =31, c=15, ¢/p(g) =1/2,
P=X’+X*+X*+ X +1: irreducible,
A={1,2,3,4,5,7,8,10,12, 14, 16,17, 19, 20, 22, 26, 27, 28,33, 34, 36,
37,38,39,41,42,43,45,46,48,50...}; A(1000) = 480.

Example 3: B={1,2,4}; N=8; i =0.
g =63, c =24, cfp(g) = 2/3,
P=X?+X"+1=(X2+X+1)(X*+X*+ X3+ X +1),
A={1,2,4,9,10,11,12,13,14, 15, 18, 19, 22, 23, 25, 26, 28,29, 31, 32
33,34,36,37,41,43,44,45,46,47,48,50,...};  A(1000) = 496.
Example 4: B={1,2}; N=4;i =0,
¢=15 e=4, c/p(q) =1/2,
P=X*+X3%4+1: irreducible,
A={1,2,5,6,7,10,11,13,14, 16, 21, 22, 24, 28, 29, 33, 35, 37, 39,
41,42,43,48,49,...}; A(1000) = 307.
Example 5: 8= {2,4}; N =8; i =0.
¢=1,¢=0, c/p(g) =0,
P=X34+ X0 41=(X*+X3+1)3
A =1{2,4,10,12,14,20,22, 26, 28, 32, 42, 44,48, ... }; A(1000) = 171.
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Example 6: B={1,4}; N =9;i=0.
g=1,¢=0, ¢/p(q} =0,
P=X’+X*+ X"+ X+ X +1=(X +1)(X* + X% +1)%,
A ={1,4,10,12,14, 20,22, 26,28, 32, 42,44,48, ... }; A(1000) = 171.
Examplé 7: B={3,4}; N=4;i=1.
¢g=T,¢=3, c/plq) =1/2,
P=X*4+X%*+1: irreducible ,
A=1{3,4,5,8,9,10,13,14,16, 17,19, 20, 21, 24, 25, 26, 27, 28, 30, 31,
34,35,36,40,41,47,48 ... };  A(1000) = 292.
Example 8: B={6}; N=9;i=1,
g=31, ¢c=10, ¢/p(g) = 1/3,
P=X"+ X4+ X+ X341 = (XS4 X34+ X234 X+ 1) ( X0+ X4+ X3+ X +1).
A = {6,10,11,13,14, 15,20, 21, 22, 23, 27, 29, 30, 31, 32, 33,
34,38,39,40,45,46,48,...}; A(1000) = 479.

References

[1] F. Ben Said and J.-L. Nicolas, Sur une ertension de la formule de
Selberg-Delange, to appear.

[2] J.-L. Nicolas, On the parity of generalized partition functions. II, Period.
Math. Hungar. 43 (2001), 177-189.

(3] J.-L. Nicolas, I. Z. Ruzsa, and A. Sirkdzy, On the parity of additive
representation functions, J. Number Theory 73 (1998), 292-317, With
an appendix in French by J.-P. Serre.

[4] J.-L. Nicolas and A. Sarkdzy, On the parity of partition functions, Illi-
nois J. Math. 39 (1995), 586-597.

[5] K. Ono, Perity of the partition function in arithmetic progressions, J.
Reine Angew. Math. 472 (1996), 1-15.

[6]

, Distribution of the partition function modulo m, Ann. of Math.
(2) 151 (2000), 293-307.




72 | J.-L. Nicolas and A. Sérkézy

[7] G. Tenenbaum, Introduction to analytic and probabilistic number the-
ory, Cambridge University Press, Cambridge, 1995, Translated from
the second French edition (1995) by C. B. Thomas.

[8] G. Tenenbaum and J. Wu, Ezercices corrigés de théorie analytique et
probabiliste des nombres, Société Mathématique de France, Paris, 1996.



