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ON THE PARITY OF GENERALIZED PARTITION FUNCTIONS
II

Jean-Louls NicoLas (Lyon)

To Professo?s Kdlmdn Gydry and Andrds Sdrkézy
on the occasion of their 60th birthday

Abstract

Let A = {a; < ag < ---} be a set of positive integers and A(z) its counting
function. Let us denote the number of partitions of n with parts in A by p(A,n}.
Improving on two preceding papers jointly written with L.Z, Ruzsa and A. Sarkozy
(J. Number Theory, 1998} and with A. Sarkézy (Millennial Conference on Number
Theory, May 2000, Urbana, Illinois, U.3.A.}, it is shown that there exists a set A
xloglogx

satisfying Az} > CW?

¢ > 0, such that, for » large enough, p(A,n) is always

even.

1. Introduction

N* and N denote the set of the non-negative integers, resp. positive integers.
A will denote a set of positive integers, and its counting function will be denoted
by A{zx) so that
Alz)=|{a: a <z, ac A}
while 4%99(z) will count the number of odd elements of A up to a:
A ) =|{a:a<x,ac A, aodd}|

‘We shall denote by @ mod b the remainder in the Euclidean division of ¢ by b.

If A = {a1,0z2,...} C N* {where a; < az < ...), then p(A,n) denotes the
number of partitions of n with parts in 4, that is the number of solutions of the
equation

a1%; tayry+-- =70
in non-negative integers 1,3, .... As usual, we shall set p(4,0) = 1. In the papers

[3] and [4] we have shown that if B = {b1,...,bk} 7 0 (where b; < --- < bg)is a
finite set of positive integers, N = by = max B, then there is a unique set A C N
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such that
An{L2,....N}=8
and
plA,n}=0(mod2) for neN,n>N.

We will denote this set A by Ap(B). The construction of the set Ag(B) is described
in {3] and in [4}; let us recall it below. The set A = Ag(B) will be defined by
recursion. We write A, = AN {1,2,...,n} so that

An = AN{1,2,... N} =B8.

Assume that n > N 4+ 1 and A,_; has been defined so that p{A,m) is even for
N+1<m<n—1. Then set

neA if and only if pl{Ad,—1,n) is odd. .
It follows from the construction that for n > N + 1 we have

ifne A plAn) =1+ p(Aa_s,n)

ifn ¢ A, p(A n) = p(An-1,m)

which shows that p(A,n) is even forn > N + 1.
We will use the following notation: If A C N, then x{A,n) denotes the char-
acteristic function of A, i.e.,

1 fneAd
x(A,n) = {o if n¢A
Moreover, we define for n > 1
(1) a(An)=> x4 dd= Y d
din dln, d&A

It was proved in [3] that for all sets ACN* andn > 1
n—1

(2 no(A,n) =Y p(A k)o(An— k).
k=0

As p(A,n) is even for n > N = max B, it follows from (2) that o{A,n) mod 2
satisfies a linear recurrence relation of order N (cf. (4.6) of [4]):

N
(3) (A n)y =3 plA k(A n—k) (mod2),
k=1
and so, that o(A, ») mod 2 is periodic, and its period (let us denote it by g = g(A)}
satisfies g < 2V,
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Let 4 denote the Mébius function. By abplying the Mébius inversion formula
to (1), it was proved in Lemma 1 of [4] that

() nx(An) = 3 u(d)o(An/d)

dln

which implies, if 7 is odd, that

(5) X(A,n) = pd)o(A,n/d) mod 2.

dln

In [3] and [4] we paid some attention to two particular sets of this form, the
sets A = Ag(B) when 5= {1,2,3} and B = {1,2,3,4,5}.

For the frst set A = Ap({1,2,3}), it was proved in [3] that the period g of
o(A,n) mod 2 is equal to 7. Further, in [4] (Theorem 1), by applying (5) and taking
into account the periodicity of (A4, n) mod 2, i was proved that the odd elements
of A are of the following form: n = 1, or n = p™ or n = 7p™ where p is a prime
= 3,5 or 6 (mod 7) and & > 1, so that

x

Alz) > A°M(z) = (; + 0(1)) og’ © ~ co.

Moreover, our calculations suggested that for any & = 1, the sequence
(6) o(A,2"n) mod 2"*! is periodicinn

with period 7, and more precisely we have formulated the following conjecture:

CONJECTURE. For h 2 1, we write up, = o(A,3-2%), v, = o(A4,2"). Ifn is
any positive integer, then

{7 oA 2%0) = up, vn,—3 (mod 21y g (;) = —1, 41,0, respectively.

This conjecture has been checked up to n = 10000 by computer. By assuming
this conjecture and using (4}, a precise description of even elements of A can be given

from which it follows that there exists a constant ¢; such that A(z) ~ ¢ N —
(logz)/4 " -
I hope to return to this topics in another paper.

The second set A = Ap({1,2,3,4,3}) was studied in [4]. The period ¢ of
(A, n) mod 2 is equal to 31, and it was proved (cf. Lemma 4 of [4]) that if g1 < ~
g2 < --+ < qi are primes congruent to 5 modulo 31, and k = 1,2 (mod 3) then
n = qigz - - - gr € A. The multiplicative structure of odd elements of 4 will be given
in Section 3, Theorem 1, from which it will follow (cf. Theorem 2) that

zloglogz

(8) Afa) 2 A (z) ~ 2 llog 21/5

for some constant cp.
It has been observed that (8) is satisfied with period 31 up to n = 10000, so
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that a conjecture looking like (7) can be formulated, from whicly, in principle, the
structure of even elements of A can be determined explicitly. But the calculation is
not simple and has not yet been carried out.

The proof of Theorem 1 is mainly based upon formula (5). The behaviour
of some sums involving binomial coefficients will also be needed and exposed in
Section 2.

2. Binomial ceefficients

For m > 0, a any integer, and s > 1, let us define

S(m;s,a) = Z (T) .

0<r<m
r=a (mod s}

The following lemmas hold:

LEMMA 1. For a fized, the function m v S(m;3,a) is periodic with period 3.

for m 2 1. More precisely, form > 1

0 {mod2) if m+a=0 {(mod3)

® S(m;3,0) = {1 (mod2) ¢f m+a=1 or 2 (mod 3).

ProoF. This is Lemma 3 of [4]. The proof is easy. Note that the function
m — 5{m; 3, a) is periodic from m = 1 but not from m = 0.

LEMMA 2. For a fized, the function m — S(m;6,a} is periodic with peﬁiod 6
form > 2. Move precisely, for m > 2
(10} ifmis even, S(m;6,¢} =1 {(mod 2)+<=m+a=2or4 (modB)
and
{11}y  4fmis odd, S(m;6,a)=0 (mod 2) &= m+a=1 or2 {(mod 6).

PRroOF. The classical relation
= +
T r r—1

S(m;6,a) = S(m —1;6,a) + S(m — 1;6,a — 1)

implies for m > 1

and for m > 2
S(m;6,a) = S(m — 2;6,a) + 28(m - 2;6,a — 1) + S(m — 2;6,a ~ 2).
By reduction module 2, we get

12) S(m;6,a) = S(m — 2;6,a) + S(m —2;6,a— 2} (meod 2).
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Substituthllg m —2 to m and @ — 2 to a in the above congruence yields for m > 4
(13) S{m —2;6,a—2)=5(m—4;6,a~2)+S5(m—4;6,a —4) (mod 2).
But, for m > 6, the right hand side of (13} is congruent to S(m — 4;6, e} modulo 2
since

S(m — 4;6,0) + S(m — 4;6,a — 2) + S(m — 4;6,a ~ 4) = S{m ~ 4;2,e) = 2™,
50 that, from {12) and (13}, it follows for m > 6
{14) S(m;6,a) = S(m — 2;6,a) + S(m — 4;6,a) (mod 2).

Let us set z, = S(2n;6,a) mod 2 and y, = S(2n + 1;6,a) mod 2. Then, from
{14), for any @, the sequences £, and y, satisfy a linear recurrence relation modulo
2, Zn+2 = Tnt1 + En a0d Ynpz = Ynt1 + Ya. There are exactly four such possible
sequences, they are all periodic of period 3, and so the function m — 5{(m; 6, 2} mod
2 is periodic with period 6 for m > 2. The following array completes the proof of
Lemma 2.

Table of S5(m;6,a) mod 2

a=0a=1la=2ia=3|la=4|la=>5
m=0 1 0 0 0 0 0
m=1| 1 1 0 0 0 0
m=2| 1 0 1 0 0 0
m=3[ 1 1 1 1 0 1]
m=4f 1 ¢] 0 0 1 0
m=>5| 1 1 0 0 1 1
m==6} 0 0 1 0 1 0
m=7T| 0 0 1 1 1 1

3. Odd elements of the set A= Ay({1,2,3,4,5})
In this section, .4 will be the set A = 4p({1,2,3,4,5}). By a simple compu-
tation, the period g = g{.A) of (A, n) mod 2 is shown to be 31 and
g(A,n)=0 (mod 2)
if and only if
(15} n=3,5,6,7,9,10,12,14,17,18,19,20,24,25,28 (mod 31).

Fortunately, the set of the fifteen residue classes of {15) is not completely random.
1t is stable by multiplication by 2. This is a general phenomencn since, indeed, for
all A and n, we have

(16) o(Am)= Y d=o(An) (mod2).
din, d odd
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The order of 2 in (Z/31Z)* is 5, so that (15) can be reformulated as

(17} n=3-2%0r5-2%0r 7-2° (mod31l), 0<a<4.

The smallest primitive root modulo 31 is 3 that we shall choose as a generator of
(Z/31Z)*. For every integer n not divisible by 31, there is 2 unique residue class
logy(n) € (Z/30Z) such that

(18) n=3°8a) (ned 31).

Let us define the function ¢ : Z . 31Z — (Z/6Z) by

(19) #(n) = logz{n) mod 6.

Table of (n)

. n= 1 234 35 6 7 8910111213 1415
logy(n) =[3024 1 18 20 25 28 12 2 14 23 19 11 22 21
fn)y=]0 010 2 1 4 622515 4 3

n= |16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
log,(n)=|6 7 26 4 8 2017271310 5 3 16 9 15
Hn)= |0 1 2 4 2 55 314053 43 3

Since the discrete logarithm is completely additive, the funtion ¢ is also com-
pletely additive, which means £(rn) = £(m) + €(r) for all m, n coprime with 31. It
follows from the definition of ¢ that (15) or (17) are equivalent to

(20) o(An)=0.(mod 2) ifandonlyif #n)=ilor2or4 (mod6).

Now, let us split the odd primes (different from 31) in six classes according
to the value of £. More precisely, for 0 < < 5,

(21) peP; Handonlyif £(p)=:i.

Further, we define the functions w;{n) by

(22) W (TL} = Z 1.

pln, peP;

We shall prove
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THEOREM 1. (a) The odd elements of A = Ao({1,2,3,4,5}) which are primes
or powers of primes are of the form p®, a > 1, satisfying one of the following four
conditions:

peEP eand «=1,3,4,5 (mod G)
pePz and o=0,1 (mod3)
pePy and a=0,1 (mod 3}
p &Py and a=0,2,3,4 (mod 8).

(b) No odd element of A is a multiple of 31%. If m is odd, m # 1, and net a

multiple of 31, then

(23) me.A if and only if 31-meA

{c) An odd element n € A satisfies wo(n) = 0 and wz(n) = 0 or 1; in other
words, n is free of prime factors p € Py and has at most one prime factor in Ps.

{d} The odd elements of A different from 1, not divisible by 31, which are
notl primes or powers of primes are exactly the odd n's, n # 1, such that (where
7= [1,, P is the radical of n):

(i) woln)=0 end wa(n) =10 ori;
(i} Ifws(n) =1 then £(n) + £(7) =0 or 1 (mod 3}.
(i) Ifws(n)=0 and wi(n) + £(n) — £(R) is even then
| 20(n) —8m)=2 or 3 or 4 or 5 (mod6).
(iv) Ifws(n) =0 and wi(n) + €(n) — £(7) is odd then
2n)—ém) =0 or 4 (mod6).
PROOF OF {a). When n is a prime p, formula (5) writes
x(A,p) = (o(A,p) + 1) mod 2

so that p € A if and only if ¢(A,p) = 1 (mod 2) which, from (20}, is equivalent to
pEPIUPUP,.
For n = p%, & > 2, formula (5) writes

(24) X(A,p%) = (o(A,p%) + o(4,p°71)) mod 2.

If p e Py, £(p®) = £(p®~1) = 0, and, by (20), o(A,p*) = (A, p*" 1) =1
{mod 2) which implies, from (24}, that ™ ¢ A for all o

If p e Pa, {€(p®), £(p*~1)} = {0,3}, and, by (20), 0(A,p*)= o{A,p*> )= 1
{mod 2) which, as above, implies that p* ¢ A for all .

¥pe P, for i # 0,3 it follows from the periodicity of £ that x(A4,p®) is
periodic in o, with period 6. So we have to examine the six possibilities 2 < a < 7.
For instance, when p € Py,
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o =
pt) =
(=) =
o{A,p*) mod 2 =
oA, p* Y mod 2 =
x(Ap*) =

[ I o [l S I ]
== O B |
L K= N VI N -
[l il =] T
Ll =T R

oD @ oS

The case p € Ps is similar. In the cases p € Pa or p € Py it suffices to consider
2< a<4.

Proor OF {b}. Let us suppose that some odd element of A is a multiple of
312, and let us choose n as the smallest integer having this property. Let us write
n = 31%2.m. From the choice of n, the only divisor of n such that 31%|d and d € A
is n, s0 that from (1),

(25) a(A,n) =o(A4,31-m) +n.

But, from (15), o(A,n) = (4,31 -m) = 1 (mod 2}, which contradicts (25).
Now, let m be an odd element of A, not divisible by 31, and let us set n =
31 - m. From (5), we have

(26) x(An) = 3 udo (g) +3 uldo (fﬁ) mod 2.
dim dlm

But, in (26), the second sum is, by (5}, congruent to x(.A, m} = 1 modulo 2, while,

since n/d is a multiple of 31, the first sum is, from (15), equal to Z u(d) = 0, for
dim

m # 1. Therefore, x(A,n) = x(A,m) = 1 which completes the proof of (b).

PrROOF OF (c}. First, we shall prove that no odd element of A is a multiple
of a prime p € Py. Let us suppose the contrary, and let us denote by n = pm
the smallest odd element of A which is a multiple of a prime p € Py. From our
minimality hypothesis, the only divisor of n which is a multiple of p and belongs to
A is n so that (1) becomes

(27) o{A,n) =oc(A4m)+n.

But &(n) = &(m) + £(p) = ¢(m) which implies by (20) that o(A4,n) = d(A,m)
{(mod 2), in contradiction with (27).

We shall now prove that, if n is odd and belongs to A, wa(n) < 1. Let us
assume that there is some odd integer in A divisible by two distinct primes p, ¢ € P,
and let us denote the smallest such element by n. We can write

(28) n=p*"m, (pgm)=1, ozl, =1
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The only divisor d of n which is a multiple of pg and belongs to A is n itself, and
from (1), we have

(29) a({A,n) = a(A p*m) + oA, ¢*m) — a(A,m) + n.

But, from (28), #(n) = £(m) + 3(a + B) {mod 6).
o If o = (mod 2), we have £(n) = {(m) and thus, from (15), o(A,n) =
o(A,m) (mod 2); moreover, £(p®m) = €{gPm} and thus

(A, pm) = o(A,¢°m)  (mod 2),

so that (29) leads to a contradiction.

o If o # 8 {mod 2), we can assume for instance that o is even and § is odd.
Then, from (28}, we have £(n) = £(¢°m), so that o(A,n) = oA, ¢°m) (mod 2) and
£(m) = £(p™m), which implies o(A, m) = (A4, p*m), which again contradicts (29).

ProoF of (d). Now, an odd element of n € A, n # 1, 31 { n, can bhe written
as

_ 1 1 ky k2,1 O, ko o5, 1 X5, kg
(30) =Py e Prgy P2l - oPagy oo Pl e Poge

with & = we{n), pr; € P (for L <7 <5and j > 1) and 0 < k3 = w3(n) < 1. The
radical 7 of n writes

T=P11--PLkP21- - Pohynrens P5,1-- - P5,ks = T T N3 Tig T,
with 7 = H P = Pri---Prk.. A divisor d of 7 can be written in one and
pln, pEP-

only one way as d = dydadadsds, with d,. dividing 727, so that, (5) can be written as

(31) A =3 > .. > (A, n'didadsdads) | mod 2,

dy |71 de | Az ds | 75

where n’ = n/fi. In (31), the value of &{A, n’d1d2d3d4d5) mod 2 depends only,
by (20), on £(x'), &(dy), ... ,#{ds), i.e. on the values of £(n') and of i, = w.(d,),
1 < r < 5. So, taking (20} into account, (31) can be rewritten as

@ =3 (4) 5 (%) . 3 () moaz

i1 =0 t2=0 i ig=0 25
i1+ 2igd-+5ig+&{n’)=1,2,4{mod &)
By defining
(33)
ky k]_ ko ’\72 ks k5 .
Sk, ka, ks, ka, ks, ) = izo (%1) iz:r, (22) Z (35) mod 2,
1= 2=

ig=0
i) +2ig4 o +Big +4=1,2,4(mod 6}
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formula (32) becomes
(34) x(A,n} = fka, ka, k3, ka, ks, 2(r")).

For 4,49, 43,14, b fixed, the last summation of (33) can be evaluated in terms
of sums 5(m; 6, a) introduced in Section 2. We have

ks i
5
(35) 3 ( ; ) =
im0 5
5
i) 4+2ig4--45ig+b=1,2,4 (mod G)

(36) S(ks;6,a— 1) + S(ks; 6,0 — 2) + S(ks; 6,a — 4} (meod 2),

where a = ¢1 + 2ia-} 343 + 444 + b, and, from Lemma 2, the sum in {35) is periodic of
period 6 for all quintuplets (i1, 12, 3,%4,b). Therefore, f(kx, ks, ks, ka, ks, b) is peri-
odic in kg with peried 6 for &5 > 2. Similarly, by changing the order of summation
in (33), it is possible to show that f is periodic in k; > 2 with period 6, and on
ka, k4 = 1 with period 3. Clearly f is also periodic in b with period 6.

FIrsT PROOF OF (i), (iii) AND {(iv). From (34) and the periodicity of f, it
follows that x(.A,n) is periodic in ky,k2, ky, k5 and &n'), so that, it suffices to
caleulate f{k1, ks, ks, ky, ks, b) for

(37) 0<ky, ks <7, 0<ko,ku<3, 0<ky<1, 0<b<5,

that is 12288 values of f.

Simultaneously, the conditions in (ii), (iii), (iv) bearing on wy(n) = k1, £(R) =
ky +2ks 4 3k3 4+ 4k, + 5ks mod 6, &(n) = £(n’) + £(7) are also periodic with period 6
on ky, ks, é(n') and with period 3 on kg, ky so that, to prove {ii), it suffices to check
that, in the ranges (37), (38) is equivalent to (39), with

(38) .f(kl,k%l:ktlak\’nb): 1:

(39) b+ 2(ky + 2k + 3+ 4ky -+ 5k5) = 0,1 {mod 3).

Similarly, to prove (iii} and (iv), it suffices to check that, in the ranges (37), (40} is
equivalent to (41) or (42}, with

(40) Flk1, k2,0, ks, s, B) =1,

(41) k1+ b is odd and 2b+ (ky + 2k2 + 4kg + 5ks) = 2,3,4,5 (mod 6),
or
(42) k1 4+ b is even and 2b 4 (k) + 2ks + 4ks + 5k5) = 0,4 (mod 6).

By computer, these equivalences have been checked for all the values of (37) ex-
cept the cases where one of the k; is equal to 1 and the four others vanish, which
correspond to those n's that are primes or powers of primes.
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A THEORETICAL PROOF FOR (ii). In the case ks = 1, and k; > 1 for ¢ =
1,2,4, 5, we shall give a theoretical proof of (ii}; it would be also possible to extend
this proof to the case k3 = 0, but then we should have to use Lemma 2 instead of
Lemma 1, and it is more complicated. ’

Let us start with the value of f given by (33), and let us permute the sum-
mations so that to finish by the summation on #3. So, the last sum writes, for

il,ig,‘i(;,%'s,b fixed

kg
k
(43) Wi = Z (23) mod 2.
3

ig=0

i +2ig+3ig+4ig+5ig+b=1,2, or 2 {mod §)

Let us define

kg
k
(44) Thsw=| 3 () mod 2.
dig=e -(mod 6)

As in (35) and (36), the sum W3 in (43) satisfies
(45) Wy = T(ks,vs — 1} + T'(ks, vs — 2} + T(ks, v —4) (mod 2),

with v3 = ) + 23 + 4és + 5i5 + b.
Note that the congruence

(46) _ 3ig=w (mod6)

either has no solution, or has i3 = 0 or 1 (mod 2) as solution, so that, if in (44}, k3
were larger than 1, T3(k, u) would be either the empty sum, or equal to S(ka; 2, a)
for a = 0 or a = 1. In any case, T3(k, v} would vanish; so would do W3 from (45), f
from (33) and x{A4,n) irom (32), and we find again a proof that k3 = w3(n) should
be at most 1 for an odd element n € A.

For kg = 1, we have T(1,u) = 1 if and only if © = 0 (mod 3), so that, in (45),
T(ky,vs — 1) = T{ks,vs — 4) and Wy == T'(k3, v3 — 2), whence W3 = 1 if and only if
v3 =2 (mod 3).

Further, to evaluate f, we have to calculate

(47) ' Wy = (i (:5) Ws ) mod 2 = i (f:) mod 2,

is=0 5 ig=0
va=2 (mod 3)

and, since vs = 2 (mod 3) can be written as 45 = v5 (mod 3), with w5 = i3 + 2iz +
434 + b+ 1, it follows from (47) that

ks
k
Wy = 3 (z:) mod 2 = S(ks; 3, vs) mod 2.

ig=0
ig=vg (mod 3}

From Lemma 1, since ks > 1, Wy =1ifandonly f ks +vs = 1,2 {mod 3).
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Then, we have to calculate

k4 Ky
i ,
W, = (Z (z:) Wy ) mod 2 = Z 7 (k‘l) mod 2,

ia=0 =0 24
gtk 1,2 (mod 8)

and we find, with vg = —(ky + 4 4+ 2iz + b+ 1)
Wy = (S(ka; 3,04 + 1) + S{kg; 3,04 +2)) mod 2 = S(kq; 3, v4) mod 2,

since we have assumed ky > 1.
Similarly, the next sum is

ka ' ko
T 2
Ws = Z ,2 W, | mod 2 Z ’?2 mod 2
@9 - %2

ia=0 ig=0
uq+ky=1,2 {mod 3)

= S(k2;3,v2) mod 2,

i

with vo = —ky + ks +4; + 6+ 1.
The last sum is

k k

1 k 1 -

Wi={3 ("')W, Jmod2 = S FY ) mod 2

21 21
i1=0 i1 =0

vo+ky=1,2 (mad 3)

= 5(k1;3,v1) mod 2,

with vy = —ky + kg — ks — b — 1. From Lemma 1, it follows that (38), ie.
fky, ko, 1 ka, ks, b) = Wy = 1 is equivalent to & -+ v; = 1,2 (mod 3), which is
exactly (39).

THEOREM 2. Let A = Ap({1,2,3,4,5}). The number A*(z) of odd elements
of A up to x satisfies the following asymptotic estimate:

loglogz

(48) AOdd(:l:) = (Cg + O(l))mw,

for some positive constant cp.

SKETCH OF THE PROOF OF THEOREM 2. Let £ be the set of odd integers free
of primes p € Py U P;. By classical sieve methods (cf., for instance, [2], Theorem
3.5), it is easy to see that - '

T

(49) E(f) <& W .
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The number of n € 4, not multiple of 31, with wa(n) = 1 is, from Theorem 1,
smaller than

z
(50) > E (5;) )
pegz, pEP;
By usual methods in prime number theory, the sum in (50) can be, from (49),

loglog x
bounded above by Cz Tog )73’
Theorem 1, an upper bound for A°44(2) can be given which is of the same order of
magnitude as the right hand side of (48).
" It is possible to prove (48) by using a Selberg-Delange type formula (cf. [3],
I1.5} to estimate the sum

{51) Ulz,y,z) = 3 pln)y e 200+

n<z

where C is a large enough constant. So, from

where p(n) is the completely multiplicative function defined by p{p) =0if p e Py
and p(p} = 1 if p ¢ Po, and z is a cubic root of unity. A similar evaluation was
outlined in [4]. The full proof will appear in [1].
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