
A Robin inequality for n∕'(n)
Jean-Louis Nicolas∗

January 10, 2023

Abstract

Let '(n) be the Euler function, �(n) = ∑

d∣n d the sum of divisors function
and 
 = 0.577… the Euler constant. In 1982, Robin proved that, under the
Riemann hypothesis, �(n)∕n < e
 log log n holds for n > 5040 and that this
inequality is equivalent to the Riemann hypothesis. The aim of this paper is to
give a similar equivalence for n∕'(n).

2010 Mathematics Subject Classification: Primary 11N56; Secondary 11N37.
Keywords: Euler function, Robin inequality, Riemann hypothesis.

1 Introduction
Let n be a positive integer, '(n) the Euler function (i.e. the number of integers m
satisfying 1 ⩽ m ⩽ n and coprime with n), �(n) = ∑

d∣n d the sum of divisors of n
and 
 = 0.577… the Euler constant.

When n→ ∞, Landau proved that
n∕'(n) ⩽

(

1 + o(1)
)

e
 log log n (1.1)
(cf. [6] and [5, Theorem 328]), while in 1913, Gronwall proved that �(n)∕n ⩽
(

1 + o(1)
)

e
 log log n, (cf. [4] and [5, Theorem 323]). There are infinitely many n’s
such that n∕'(n) > e
 log log n (cf. [8, 9]) but there are infinitely many n’s such that
�(n)∕n > e
 log log n only if the Riemann hypothesis fails (cf. [15, 14, 11]).
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In 1982, Robin proved that
�(n)
n

< e
 log log n for n > 5040, (1.2)
is equivalent to the Riemann hypothesis (cf. [15, 14]. The inequality (1.2) is called
Robin inequality.

Let f (n) be an arithmetical function, i.e. a function defined on the positive inte-
gers with positive real values. The integer n is said to be a f -champion if 1 ⩽ m < n
implies f (m) < f (n).

The champions for the number d(n) of divisors of n are called highly composite
numbers. They have been defined and studied by Ramanujan (cf. [12], [1, Sect. 4]
and [10]). The champions for �(n)∕n are said to be superabundant (cf. [13, Sect.
59], [1, Sect. 4] and [11, Sect. 3.4]).

An integerM is called super f -champion if there exists " > 0 such that
f (n)
n"

⩽ f (M)
M" for n ∈ ℕ. (1.3)

Let pj denotes the jth prime and
Mpj = p1p2… pj

the jth primorial, i.e. the product of the first j primes. It is easy to see that, if
f (n) = n∕'(n) then the f -champions are the numbers Mpj for j ⩾ 1. Indeed, if
n < Mpj then the standard factorization of n can be written n = q�11 q

�2
2 … q�rr with

q1 < q2 <… < qr, r < j and qi ⩾ pi for 1 ⩽ i ⩽ r. Therefore,
n

'(n)
=

r
∏

i=1

qi
qi − 1

⩽
r

∏

i=1

pi
pi − 1

<
j

∏

i=1

pi
pi − 1

=
Mpj

'
(

Mpj

) . (1.4)

It follows from (1.3) that a super champion is a champion. In Sect. 2, in the case
of f (n) = n∕'(n), it is proved that all the f -champions are super f -champions, i.e.
that the set of super f -champions coincide with the set of primorials.

Let us set
� = e
(4 + 
 − log(4�)) = 3.6444150964… (1.5)

and, if n is an integer ⩾ 2,
c(n) =

( n
'(n)

− e
 log log n
)

√

log n. (1.6)
In [9, Theorem 1.1], it is proved that, under the Riemann hypothesis,

lim sup
n→∞

c(n) = �.

2



Theorem 1.1. Let

k = 120568, pk = 1591873, logMpk = 1590171.635973… (1.7)
and

A =Mpk

pk+1pk+2
pkpk−10

=Mpk
1591883 × 1591901
1591873 × 1591697

, logA = 1590171.636107… (1.8)

Then,
c(A) = 3.6444151157… > � = 3.6444150964… (1.9)

and, under the Riemann hypothesis, for n > A,

c(n) < � = e
(4 + 
 − log(4�)) = 3.6444150964… (1.10)
In other words, A is the largest number n such that (1.10) holds.

Moreover,

n
'(n)

< e
 log log n +
e

(

4 + 
 − log(4�)
)

√

log n
for n > A (1.11)

is equivalent to the Riemann hypothesis.

In [9, cf. Theorem 1.1 and p. 320], it is proved that (1.10) holds for n ⩾ Mpk+1 ,but not for n = Mpk . So, to prove 1.10, it suffices to show that A is the largest
number satisfyingMpk ⩽ A < Mpk+1 and c(A) ⩾ �. This will be done in Sect. 3 by
using the method of benefits, cf. below, Sect. 2.1.

If the Riemann hypothesis does not hold, then (cf. [8, Theorem 3 (c)] and [9, p.
312])

lim sup
n→∞

c(n) = +∞ (1.12)
which contradicts (1.10) and proves the equivalence of (1.11) with the Riemann
hypothesis.

1.1 Notation
− p1 = 2, p2 = 3,… , pj is the jth prime.
−  = {2, 3, 5,…} is the set of primes.
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− �(x) =
∑

p⩽x
log p is the Chebyshev function

− Mpj = p1p2 … pj is the jth primorial. If p is the jth prime thenMp =Mpj

− k and pk are defined in (1.7).
− We use the following constants: 
 is Euler constant, A is defined in (1.8), � in

(1.5) and � in (3.2).
− All the computation have been carried out in Maple, cf. [16].

2 The super-champions for n∕'(n)
M is said to be a super champion (cf. (1.3)) for the function n ↦ n∕'(n) if there
exists " > 0 such that

n(1−")

'(n)
⩽ M (1−")

'(M)
(2.1)

for all positive integer n. The number " is said to be a parameter ofM . From (1.1),
it follows that, for " > 0, limn→∞ n(1−")∕'(n) = 0 so that n(1−")∕'(n) has a maximum
attained in one or several numbers, and all these numbers are super champions.

The study of these super champions is similar to the one of superior hignly com-
posite numbers (cf. [12], [1], [2, Sect. 6.3] and [10, Sect. 4]) or of CA numbers (cf.
[13, Sect. 59], [1], [3] or [11]), but much simpler. We consider the set of decreasing
numbers

̂ =
{

"̂0 = ∞ > "̂1 = 1 > "̂2 =
log(3∕2)
log 3

> … > "̂i =
log

(

pi∕(pi − 1)
)

log pi
>…

}

(2.2)
where pi denotes the ith prime.
Proposition 2.1. Let M be a super champion for the function n ↦ n∕'(n) with
parameter ". One defines i ⩾ 1 by "̂i ⩽ " < "̂i−1 (cf. (2.2)).

If " satisfies "̂i < " < "̂i−1 then there is one and only one super champion for the
function n ↦ n∕'(n) with parameter ". This super champion numberM is equal
to the primorial defined by

M =Mpi−1 =
∏

p⩽pi−1

p. (2.3)
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(By convention, p0 = 1 and the empty productM1 = 1).
If " = "̂i, then there exist two super champions with parameter ", namely

Mpi−1 =
∏

p⩽pi−1

p and Mpi =
∏

p⩽pi

p. (2.4)

Proof. Let n = ∏

j⩾1 p
aj
j (with only finitely many aj’s positive). We have to find the

maximum of
n1−"

'(n)
=
∏

j⩾1

paj (1−")j

'
(

pajj
)
,

i.e. for each j ⩾ 1, to find the maximum on aj of

paj (1−")j

'
(

paj
) =

⎧

⎪

⎨

⎪

⎩

1 if aj = 0
pj

(pj−1)p
aj "
j

= p"̂j−aj"j ⩽ p"̂j−"j if aj ⩾ 1. (2.5)

So, this maximum is attained for aj = 0 or aj = 1.
If j ⩽ i − 1, then "̂j ⩾ "̂i−1, "̂j − " is positive and p"̂j−"j > 1 holds so that from

(2.5) the maximum on aj of pj∕
(

(pj − 1)paj"j
) is attained for aj = 1.

If j ⩾ i + 1, then "̂j < "̂i, "̂j − " is negative and p"̂j−"j < 1 holds so that the
maximum on aj of pj∕

(

(pj − 1)paj"j
) is attained for aj = 0.

If j = i and " ≠ "̂i, then "̂j = "̂i, "̂j − " is negative and p"̂j−"j < 1 holds so that
the maximum on aj of pj∕

(

(pj − 1)paj"j
) is still attained for aj = 0. Therefore, if

" ≠ "̂i, the maximum on n of n1−"∕'(n) is attained on n =Mpi−1 .
If j = i and " = "̂i, then the maximum of pj∕

(

(pj − 1)paj"j
) is equal to 1 and is

attained on two points, namely aj = 0 and aj = 1 which implies that the maximum
on n of n1−"∕'(n) is attained on n =Mpi−1 and n =Mpi .

From now on, we shall replace the expression “super-champion for the function
n ↦ n∕'(n)with parameter "” by “primorial with parameter "” . The first primorial
numbers are given in Figure 1.
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i pi "̂i M =Mpi M∕'(M) parameter
0 1 ∞ 1 1 ["̂1, "̂0)
1 2 1 2 2 ["̂2 , "̂1]
2 3 log(3∕2)∕ log(3) = 0.369 6 3 ["̂3 , "̂2]
3 5 log(5∕4)∕ log(5) = 0.138 30 15∕4 ["̂4 , "̂3]
4 7 log(7∕6)∕ log(7) = 0.079 210 35∕8 ["̂5 , "̂4]
5 11 log(11∕10)∕ log(11) = 0.039 2310 77∕16 ["̂6 , "̂5]
6 13 log(13∕12)∕ log(13) = 0.031 30030 1001∕192 ["̂7, "̂6]
7 17 log(17∕16)∕ log(17) = 0.021 510510 17017∕3072 ["̂8, "̂7]

Figure 1: The first primorial numbers

2.1 Benefit
Definition 2.2. Let " be a positive real number andM a primorial of parameter ".
For a positive integer n, we introduce the benefit of n

ben"(n) = log
(M1−"

'(M)

)

− log
( n1−"

'(n)

)

= log
( '(n)
'(M)

)

+ (1 − ") log
(M
n

)

. (2.6)

Note that that, if M̃ is another primorial of parameter ", then (2.1) yields M̃1−"∕'(M̃) ⩽
M1−"∕'(M) and M1−"∕'(M) ⩽ M̃1−"∕'(M̃), which implies M1−"∕'(M) =
M̃1−"∕'(M̃) so that (2.6) returns the same value for ben"(n) if M is replaced by
M̃ .

This notion of benefit has been used in [7, 3] for theoretical results and, for
computation, in [10, Sect. 3.5] and [11, Sect. 4.6].

From (2.1), it follows that, for any n,
ben"(n) ⩾ 0 (2.7)

holds. LetM be a primorial of parameter ". Let us write
M =

∏

p∈
pap and n =

∏

p∈
pbp , (2.8)

(with only finitely many bp’s positive). For p ∈  , (2.6) yields

ben"
(

Mpbp−ap
)

= log
('

(

pbp
)

'
(

pap
)

)

+ (1 − ")
(

ap − bp
)

log p ⩾ 0. (2.9)
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As '(n) is multiplicative, (2.6) and (2.9) give
ben"(n) =

∑

p∈
ben"

(

Mpbp−ap
) (2.10)

and, from (2.9),

ben"
(

Mpbp−ap
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if ap = bp
log

(

p∕(p − 1)
)

− " log p if ap = 1, bp = 0
log

(

(p − 1)∕p
)

+ "bp log p if ap = 0, bp ⩾ 1
(

bp − 1
)

" log p if ap = 1, bp ⩾ 1.

(2.11)

Note that, if ap = 1 and bp = 0, then
ben"(M∕p) = log

(

p∕(p − 1)
)

− " log p is decreasing on p (2.12)
while, if ap = 0 and bp = 1 then, from (2.11),

ben"(Mp) = log
(

(p − 1)∕p
)

+ " log p is increasing on p. (2.13)

3 Proof of Theorem 1.1
In this section, k and pk are defined by (1.7). The benefit (cf. Sect. 2.1) is defined
relatively to the primorialMpk with the parameter (cf. (2.2))

" = "̂k+1 =
log

(

pk+1∕(pk+1 − 1)
)

log pk+1
= 4.39893721125… × 10−8, (3.1)

which is the common parameter of the primorialsMpk andMpk+1 . Note that
logMpk = �

(

pk
)

= 1590171.6359… , Mpk∕'
(

Mpk

)

= 25.43545096…

and
logMpk+1 = �

(

pk+1
)

= 1590185.9164… ,Mpk+1∕'
(

Mpk+1

)

= 25.43546694…

From (1.5), we also introduce the notation
� = �e−
 = 4 + 
 − log(4�) = 2.046191417932… (3.2)
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Lemma 3.1. The function

g(t) = "t − log
(

log t + �∕
√

t
)

, (3.3)
with " defined by (3.1) and � by (3.2), is convex for t > 2.36. Moreover, g is de-
creasing on t for logMpk ⩽ t ⩽ logMpk+1 .

Proof. We have
g′(t) = " −

1∕t − �∕
(

2t3∕2
)

log t + �∕
√

t
, (3.4)

g′′(t) =
1∕t2 − 3�∕

(

4t5∕2
)

log t + �∕
√

t
+

(

1∕t − �∕(2t3∕2)
)2

(log t + �∕
√

t)2
. (3.5)

The second fraction of (3.5) is clearly non-negative while the first one is positive
for t > 9�2∕16 = 2.35513…, which proves the convexity of g. Therefore, g′(t) is
increasing on t for t > 2.36. As

g′
(

logMpk+1

)

= −9.49208… × 10−12 < 0 and lim
t→+∞

g′(t) = " > 0,

g(t) is decreasing for 2.36 ⩽ t ⩽ logMpk+1 and since logMpk > 2.36 holds, g(t) is
decreasing for logMpk ⩽ t ⩽ logMpk+1 . In fact, the minimum of g(t) is attained for
t = 1590506.7305… (cf. [16]).
Lemma 3.2. Let n satisfyMpk < n < Mpk+1 and

c(n) ⩾ � = �e
 , (3.6)
where c(n) is defined by (1.6), � by (1.5) and � by (3.2). If " is defined by (3.1), then

ben"(n) ⩽ � = 9.1 × 10−11. (3.7)
Proof. As " is a parameter of the primorialMpk , from (2.6) and (1.6),

ben"(n) = − log n
'(n)

+ " log n + log
Mpk

'(Mpk)
− " logMpk

= − log

(

e

(

log log n +
c(n)∕e

√

log n

)

)

+ " log n + log
Mpk

'(Mpk)
− " logMpk ,
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which, from (3.6) and Lemma 3.1, implies

ben"(n) ⩽ g(log n) − 
 + log
Mpk

'(Mpk)
− " logMpk

⩽ g
(

logMpk

)

− 
 + log
Mpk

'(Mpk)
− " logMpk = 9.0974000017… × 10−11, (3.8)

which proves (3.7).
Lemma 3.3. Let n be an integer satisfying Mpk < n < Mpk+1 and ben"(n) ⩽ � =
9.1 × 10−11. Then there there exist primes q1, q2,… , qr, q′1, q

′
2,… , q′r such that

n =
q1q2… qr
q′1q

′
2… q′r

Mpk with 1 ⩽ r ⩽ 4, (3.9)

pk+1 ⩽ q1 < q2 <… < qr ⩽ pk+14 = 1592081

and
pk ⩾ q′1 > q

′
2 >… > q′r ⩾ pk−10 = 1591697.

Proof. Let us write n =
∏

p∈ p
bp andMpk =

∏

p∈ p
ap with ap = 1 if p ⩽ pk and

ap = 0 if p > pk. From (2.10),
ben"(n) =

∑

p∈
ben"

(

Mpkp
bp−ap

)

. (3.10)

From (2.7), each term of the above sum is non-negative and our hypothesis, ben"(n) ⩽
�, implies

0 ⩽ ben"
(

Mpkp
bp−ap

)

⩽ � for p ∈  . (3.11)
∙ If ap = 1 and bp = 0, then, p ⩽ pk and from (2.11) and (2.12),

ben"
(

Mpk∕p
)

= log
(

p∕(p − 1)
)

− " log p

is decreasing on p. From (2.11)
ben"

(

Mpk∕pk−11
)

= ben"
(

Mpk∕1591663
)

= 9.29… × 10−11 > �,

so that
p ∈ {pk−10, pk−9,… , pk}. (3.12)
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∙ If ap = 1 and bp ⩾ 2, then, from (2.11),
ben"

(

Mpkp
bp−ap

)

= (bp − 1)" log p ⩾ " log p
⩾ " log 2 = 3.049… × 10−8 > �. (3.13)

Consequently, from (3.11), such a p does not divide n.
∙ If ap = 0 and bp ⩾ 2, then p ⩾ pk+1 holds and from (2.11),

ben"(Mpkp
bp) = log

(

(p − 1)∕p
)

+ "bp log p
⩾ log

(

(pk+1 − 1)∕pk+1
)

+ 2" log pk+1
= 6.28… × 10−7 > � (3.14)

so that such a p does not divide n.
∙ If ap = 0 and bp = 1 then p ⩾ pk+1 holds and, from (2.11) and (2.13),

ben"
(

Mpkp
bp−ap

)

= ben"
(

pMpk

)

= log
(

(p − 1)∕p
)

+ " log p

is increasing on p. From (2.11),
ben"

(

pk+15Mpk

)

= log
(

(pk+15 − 1)∕pk+15
)

+ " log pk+15 = 9.119… × 10−11 > �,

so that
p ∈ {pk+1, pk+2,… , pk+14}. (3.15)

From (3.12) – (3.15), it follows that n should be equal to
n =

q1q2 … qr
q′1q

′
2… q′s

Mpk (3.16)

with r ⩾ 0, s ⩾ 0, pk+1 ⩽ q1 < q2 <… < qr ⩽ pk+14 and pk ⩾ q′1 > q
′
2 >… > q′s ⩾

pk−10. Let us prove that r = s. Ad absurdum, if r > s, then, from (3.16), we would
have

n ⩾Mpk

prk+1
psk

⩾Mpkp
r−s
k+1 ⩾Mpkpk+1 =Mpk+1 ,

which contradicts our hypothesis n < Mpk+1 . Similarly, if s > r, then we would have
n
Mpk

⩽
prk+14
psk−10

=
(pk+14
pk−10

)r 1
ps−rk−10

⩽
(pk+14
pk−10

)14 1
pk−10

= 1.00183…
1591697

< 1,

which contradicts n > Mpk .
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It remains to show that 1 ⩽ r ⩽ 4. If r = 0, n = Mpk and we have supposed
n > Mpk . If r ⩾ 5, (2.10), (2.12), (2.13) and (2.11) imply

ben"(n) = ben"
(q1q2 … qr
q′1q

′
2 … q′r

Mpk

)

=
r
∑

i=1

(

ben"
(

qiMpk

)

+ ben"
(Mpk

q′i

)

)

⩾
5
∑

i=1

(

ben"
(

pk+iMpk

)

+ ben"
( Mpk

pk−i+1

)

)

= 1.21…10−10 > �,

which completes the proof of Lemma 3.3.
After the statement of Theorem 1.1, we have seen that, to prove it, it suffices

to show that A is the largest number satisfying Mpk < A < Mpk+1 and c(A) ⩾
�. Let n be an integer satisfying Mpk < n < Mpk+1 and c(n) > �. Lemma 3.2
implies ben"(n) ⩽ � defined by (3.7). From Lemma 3.3, we compute the numbers n
described in (3.9) and satisfying ben"(n) ⩽ �, cf. [16]. There are 882 such numbers
and all of them satisfy c(n) > � and Mpk < n < Mpk+1 . Moreover, if we order
these 882 numbers in a decreasing sequence n1 > n2 >… > n882 then the sequence
ben"(ni) is decreasing while the sequences ni∕'(ni) and c(ni) are increasing. The
largest number is n1 = A (defined in (1.8)), which completes the proof of Theorem
1.1.
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