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Abstract

Let ¢(n) be the Euler function, o(n) = ), din d the sum of divisors function
and y = 0.577 ... the Euler constant. In 1982, Robin proved that, under the
Riemann hypothesis, o(n)/n < e’ loglogn holds for n > 5040 and that this
inequality is equivalent to the Riemann hypothesis. The aim of this paper is to
give a similar equivalence for n/@(n).
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1 Introduction

Let n be a positive integer, @(n) the Euler function (i.e. the number of integers m
satisfying 1 < m < n and coprime with n), o(n) = )] 412 4 the sum of divisors of n
and y = 0.577 ... the Euler constant.

When n — o0, Landau proved that

n/e(n) < (1+0(1))e’ loglogn (1.1)

(cf. [6] and [5, Theorem 328]), while in 1913, Gronwall proved that o(n)/n <
(1 + 0(1))e7 loglog n, (cf. [4] and [5, Theorem 323]). There are infinitely many #n’s
such that n/@(n) > e’ loglogn (cf. [8, 9]) but there are infinitely many »’s such that
o(n)/n > e’ loglog n only if the Riemann hypothesis fails (cf. [15, 14, 11]).
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In 1982, Robin proved that

& < e’loglogn for n > 5040, (1.2)
is equivalent to the Rlemann hypothesis (cf. [15, 14]. The inequality (1.2) is called
Robin inequality.

Let f(n) be an arithmetical function, i.e. a function defined on the positive inte-
gers with positive real values. The integer # is said to be a f-championif 1 <m < n
implies f(m) < f(n).

The champions for the number d(n) of divisors of n are called highly composite
numbers. They have been defined and studied by Ramanujan (cf. [12], [1, Sect. 4]
and [10]). The champions for o(n)/n are said to be superabundant (cf. [13, Sect.
59], [1, Sect. 4] and [11, Sect. 3.4]).

An integer M is called super f-champion if there exists € > 0 such that

fm _ fM)
ne . Me
Let p; denotes the jth prime and

for neN. (1.3)

ij =D1pr--- P
the jth primorial, i.e. the product of the first j primes. It is easy to see that, if
f(n) = n/@(n) then the f-champions are the numbers M » for j > 1. Indeed, if

n < M, then the standard factorization of n can be written n = ¢,'q,” ... ;" with
q, <q,<..<gq,r<jandg, > p;,for 1 <i < r. Therefore,
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(1.4)
It follows from (1.3) that a super champion is a champion. In Sect. 2, in the case
of f(n) = n/@(n), it is proved that all the f-champions are super f-champions, i.e.
that the set of super f-champions coincide with the set of primorials.

Let us set
o=¢e"(4+y—log(4n)) = 3.6444150964 ... (1.5)

and, if n is an integer > 2,

c(n) = <T — e’ loglog n> \logn. (1.6)

In [9, Theorem 1.1], it is proved that, under the Riemann hypothesis,

lim sup c(n) = 6.
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Theorem 1.1. Let

k= 120568, p, = 1591873, log M, = 1590171.635973 ... 1.7)
and
Pics1Prsa 1591883 x 1591901
A=M - M log A = 1590171.636107 ... (1.
s 1501873 x 1591697 08 A = 1990171.636107.... (1.8)
Then,

c(A) =3.6444151157 ... > 6 = 3.6444150964 ... (1.9)

and, under the Riemann hypothesis, for n > A,

c(n)<b6=¢€e"@l+y—logdn)) = 3.6444150964 ... (1.10)
In other words, A is the largest number n such that (1.10) holds.
Moreover,
e’(4+y —log(4r)
N <erloglogn + ( gén)) for n>A (1.11)
@(n) y/logn

is equivalent to the Riemann hypothesis.

In [9, cf. Theorem 1.1 and p. 320], it is proved that (1.10) holds for n > M

Pi+1’
but not for n = M, . So, to prove 1.10, it suffices to show that A is the largest

number satisfying ]\I} < A<M, andc(A)> 6. This will be done in Sect. 3 by
using the method of beneﬁts cf. below Sect. 2.1.
If the Riemann hypothesis does not hold, then (cf. [8, Theorem 3 (c)] and [9, p.
312))
lim sup c¢(n) = +o0 (1.12)
which contradicts (1.10) and proves the equivalence of (1.11) with the Riemann
hypothesis.

1.1 Notation
- p; =2, p, =3,...,p, is the jth prime.

— P ={2,3,5,...} is the set of primes.



- 0(x) = Z log p is the Chebyshev function

PSX
— ij = PP, --- p; is the jth primorial. If p is the jth prime then M, = ij
— k and p, are defined in (1.7).

— We use the following constants: y is Euler constant, A is defined in (1.8), 6 in
(1.5) and A in (3.2).

— All the computation have been carried out in Maple, cf. [16].

2 The super-champions for n/p(n)

M is said to be a super champion (cf. (1.3)) for the function n — n/¢(n) if there
exists € > 0 such that

n{1-e < M-8
o(n) = @(M)
for all positive integer n. The number ¢ is said to be a parameter of M. From (1.1),
it follows that, for e > 0, lim,__ n''=® /@(n) = 0 so that n1=9 / (n) has a maximum
attained in one or several numbers, and all these numbers are super champions.
The study of these super champions is similar to the one of superior hignly com-
posite numbers (cf. [12], [1], [2, Sect. 6.3] and [10, Sect. 4]) or of CA numbers (cf.
[13, Sect. 59], [1], [3] or [11]), but much simpler. We consider the set of decreasing
numbers

2.1

~ [ . . log(3/2 . log(p/(pi =1
6’:{£0=00>£1=1>62=L/)>...>6-= (1 >>
0g p;

1

log3
(2.2)
where p; denotes the ith prime.

Proposition 2.1. Let M be a super champion for the function n — n/@(n) with
parameter €. One defines i > 1 by €, < € < &,_; (cf. (2.2)).

If € satisfies €, < € < €,_, then there is one and only one super champion for the
function n — n/q@(n) with parameter €. This super champion number M is equal
to the primorial defined by

M=M, =]]r (2.3)



(By convention, p, = 1 and the empty product M| = 1).
If € = €,, then there exist two super champions with parameter €, namely

M, =]]p and M, =]]pr (2.4)

PSPy PSP;

Proof. Letn = Hj>1 p;.l" (with only finitely many a;’s positive). We have to find the

maximum of
v o/(1=0
_ J
() (7}')

j>1 @

i.e. for each j > 1, to find the maximum on a ; of

p i if a,=0
= D; €—a.ce £—¢ . (25)
o (p") (p,-—ll)p‘?fE =p; " spy if a;,2 1.
J

So, this maximum is attained for a ;= Oora ;= 1.

~

Ifj<i—1,theng; > ¢

(2.5) the maximum on a; ofpj/((pj — l)pjjg) is attained for a; = 1.

i_1» &; — € is positive and pjj ~° > 1 holds so that from

If j > i+ 1, then §j < &, Ej — £ is negative and pjj ~ < 1 holds so that the

maximum on g; ofpj/((pj - l)pj’f) is attained for a; = 0.

Ifj=iand e # €, then €, = ¢, €, — € is negative and pf’_g < 1 holds so that
the maximum on a; of p;/((p; — l)pjj£> is still attained for a; = 0. Therefore, if
€ # £,, the maximum on n of n'~¢ /¢(n) is attained on n = Mpi_l.

If j = i and & = £, then the maximum of p,/((p; — l)pja.’f) is equal to 1 and is
attained on two points, namely a; = 0 and a; = 1 which implies that the maximum

on n of n'=¢ /¢(n) is attained on n = M, andn=M,. O

From now on, we shall replace the expression “super-champion for the function
n — n/@(n) with parameter €” by “primorial with parameter £” . The first primorial
numbers are given in Figure 1.



i| p & M=M, | M/p(M) |parameter
0] 1 ) 1 1 [€), &)
1] 2 1 2 2 [, ,€,]
213 log(3/2)/ log(3) = 0.369 6 3 (€5 ,8,]
315 log(5/4)/ log(5) = 0.138 30 15/4 (€, ,€5]
417 log(7/6)/ log(7) = 0.079 210 35/8 (€5 ,€,]
5111]|log(11/10)/log(11) =0.039 | 2310 77/16 (€6, E5]
6|13 | log(13/12)/log(13) = 0.031 | 30030 1001/192 (€5, &]
7117 | log(17/16)/log(17) = 0.021 | 510510 | 17017/3072 | [&,&,]
Figure 1: The first primorial numbers
2.1 Benefit

Definition 2.2. Let € be a positive real number and M a primorial of parameter €.
For a positive integer n, we introduce the benefit of n

M]—e nl—e (0( ) M
ben, (1) = lo ( )-10 < >=10 ( )+(l—£)lo ( ) 2.6)
=\oan) ™ o) = G g

Note that that, if M is another primorial of parameter €, then (2.1) yields M- / qo(]\7 ) <
M'=/p(M) and M'~* /(M) < < M- € /@(M), which implies M'~¢/p(M) =
M- / (p(M ) so that (2.6) returns the same value for ben,(n) if M is replaced by
M.

This notion of benefit has been used in [7, 3] for theoretical results and, for
computation, in [10, Sect. 3.5] and [11, Sect. 4.6].

From (2.1), it follows that, for any n,

ben,(n) > 0 2.7)

holds. Let M be a primorial of parameter €. Let us write

M = Hp% and n= Hpbl’, (2.8)

PEP PEP
(with only finitely many b,’s positive). For p € P, (2.6) yields

»(p")

@ (p*)

ben, (M p) = log ( )+ =e)a,—b,)logp>0. (29
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As @(n) is multiplicative, (2.6) and (2.9) give

ben, (m) = ) ben, (Mp"~) (2.10)
pPEP
and, from (2.9),
0 if a,= bp
1 - 1) —e¢l if =1,b,=0
ben, (Mph) =4 °% (p/(p=1) ~elogp b » @.11)
log ((p— 1)/p) +€b,logp if a,=0,b,>1
(b, —1)elogp if a,=1,b,>1.

Note that, if a,= 1 and b,= 0, then
ben, (M /p) = log (p/(p - 1)) —elogp isdecreasing on p (2.12)
while, if a, = 0 and b, = 1 then, from (2.11),

ben, (M p) = log ((p - 1)/p) +elogp isincreasing on p. (2.13)

3 Proof of Theorem 1.1

In this section, k and p, are defined by (1.7). The benefit (cf. Sect. 2.1) is defined
relatively to the primorial M|, with the parameter (cf. (2.2))

10g (Pys1/Prsr = D)

=4.39893721125 ... x 1078, (3.1
log py4,

E=E =
which is the common parameter of the primorials M, and M,, . Note that

log M, =6(p,)=1590171.6359..., M, /@(M, ) = 25.43545096 ...
and
log M, ~=0(p, ) =15901859164....M, [p(M, )=2543546694...
From (1.5), we also introduce the notation

A=6e" =4+y—log(dr) =2.046191417932 ... (3.2)
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Lemma 3.1. The function

g(t) = et —log (logt + A//1), (3.3)

with € defined by (3.1) and A by (3.2), is convex fort > 2.36. Moreover, g is de-
creasing on t for log Mpk <t <log Mpk+ .

1

Proof. We have
1/t = 4/ (263/%)

logt+ A/ \/; ’
1/2 =34/(462) (1)t = 2)(25%))
g = / /(47) + (/1= 4/@e) . (3.5)
logt+/l/\/; (logt+}»/\/;)2
The second fraction of (3.5) is clearly non-negative while the first one is positive
fort > 942 /16 = 2.35513 ..., which proves the convexity of g. Therefore, g’(¢) is
increasing on ¢ for t > 2.36. As

g =e- (3.4)

¢ (log M, ) =—949208...x 102 <0 and lim ¢'t)=¢ >0,
+ t—+o00

g(1) is decreasing for 2.36 < t < log Mpk+1 and since log Mpk > 2.36 holds, g(¢) is
decreasing for log M, <7 <logM, . Infact, the minimum of g(r) is attained for
t = 1590506.7305 ... (cf. [16]). [

Lemma 3.2. Let n satisfy M, <n<M, and
c(n) > 6 = Ae’, (3.6)
where c(n) is defined by (1.6), 6 by (1.5) and A by (3.2). If € is defined by (3.1), then
ben,(n) < f=9.1 x 107", (3.7)

Proof. As € is a parameter of the primorial M, , from (2.6) and (1.6),

n P
ben,(n) = —log —— + elogn + log —elogM
@(n) oM, ) P
Y M
= —log ey<loglogn+c(n)/e ) +elogn + log ——= —elogM, ,
log n »(M, )



which, from (3.6) and Lemma 3.1, implies

Pk

o(M,)

ben,(n) < g(logn) —y + log —elog Mpk

P

»M,)

< g(logM, ) -y +log —elog M, =9.0974000017 ... x 107!, (3.8)

[

which proves (3.7).

Lemma 3.3. Let n be an integer satisfying M, <n < M, andben,(n) < f =
9.1 X 107!, Then there there exist primes q,, q,, ... » q,, q,- 4y --- - q. such that

4,4 --- 4,
n=———

qlql q,M With 1 < r < 47 (3.9)
112 =" 1p

Pk

Prer1 $41 < gy < ... <q, < pryyg = 1592081

and
=4, >q,> ... >4 = p = 1591697.

Proof. Letus write n = [] ., p’ and M, = [],p p% with a, = 1if p < p, and
a,=0if p > p,. From (2.10),

ben, (n) = ) ben, (M, p'~). (3.10)

peEP

From (2.7), each term of the above sum is non-negative and our hypothesis, ben, (n) <
f, implies
0 < ben, (M, p"~%) <p forpeP. (3.11)

«Ifa,=1andb, =0, then, p < p, and from (2.11) and (2.12),
ben, (M, /p) =log (p/(p— 1)) — elogp
is decreasing on p. From (2.11)
ben, (M, /p,_;,) =ben, (M, /1591663) =9.29 ... x 107" > B,

so that
P € {Pi_10» Pi—os -+ » Dy }- (3.12)



o If a,= 1 and bp > 2, then, from (2.11),

ben (M, p’~%) = (b,— elogp > elogp
> £log2=3.049...x 1078 > p. (3.13)

Consequently, from (3.11), such a p does not divide n.
o If a,= 0 and bp > 2, then p > p, ., holds and from (2.11),

ben (M, p) = log((p—1)/p) +€b,logp

log <(Pk+1 - 1)/Pk+1> + 2elog pyy
6.28...x 107" > p (3.14)

WV

so that such a p does not divide n.
eIfa,=0and b, =1 then p > p;, holds and, from (2.11) and (2.13),

bene(Mpkpbﬂ'”ﬂ) = bene(pMpk) = log ((p - 1)/p) +elogp

is increasing on p. From (2.11),

ben, (piyisM,, ) =108 ((y1s — 1)/ Piyis) +€10g pyys = 9.119 .. x 107! > B,

so that
P € {Dis1> Prsns -+ > Prsral- (3.15)
From (3.12) — (3.15), it follows that n should be equal to

4,4 --- 4,
n= ———

(3.16)
q;qé o q

P

withr 20,5 20,p,, <q <q<...<q, <pypandp, 2q,>q,>...>q >
Di_10- Let us prove that r = 5. Ad absurdum, if r > s, then, from (3.16), we would
have .
p
n>M, k+1
k pS
k

which contradicts our hypothesis n < M, . Similarly, if s > r, then we would have

r—s _
Z Mpkpk+1 Z Ml’kpk"'l =M

Pi+1’

n <p2+14:<pk+14>r 1 S(p,ﬁm)” 1 1.00183...

= <
= os S—r )
M, ~p,_ o Pero 1591697

P Pi-10 DPi-10

which contradicts n > M e
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It remains to show that 1 < r < 4. If r = 0, n = M, and we have supposed
n>M,. Ifr>5,(2.10), (2.12), (2.13) and (2.11) imply

oo r M
ben, (n) = ben£<MMpk> = Z <beng<ql'Mpk) +ben8< /pk ))

449 -4, pay q

5

M
> (bene(pk+iMpk) +beng( & )) =121...107 > g,

i=1 Di—i+1
which completes the proof of Lemma 3.3. [

After the statement of Theorem 1.1, we have seen that, to prove it, it suffices
to show that A is the largest number satisfying M, < A < M, and c(4) >
6. Let n be an integer satisfying M, < n < M, andc(n) > 6. Lemma 3.2
implies ben, (n) < f defined by (3.7). From Lemma 3.3, we compute the numbers n
described in (3.9) and satisfying ben,(n) < B, cf. [16]. There are 882 such numbers
and all of them satisfy c¢(n) > 6 and M s << M Pent’ Moreover, if we order
these 882 numbers in a decreasing sequence n; > n, > ... > ngq, then the sequence
ben, (n;) is decreasing while the sequences n;/@(n;) and c(n,) are increasing. The
largest number is n; = A (defined in (1.8)), which completes the proof of Theorem
1.1.
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