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GUY ROBIN robin@cict.fr
UPRES-A-6090, Th́eorie des nombres, calcul formel et optimisation, Université de Limoges,
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Abstract. In 1915, the London Mathematical Society published in its Proceedings a paper of Ramanujan entitled
“Highly Composite Numbers”. But it was not the whole work on the subject, and in “The lost notebook and other
unpublished papers”, one can find a manuscript, handwritten by Ramanujan, which is the continuation of the paper
published by the London Mathematical Society.

This paper is the typed version of the above mentioned manuscript with some notes, mainly explaining the link
between the work of Ramanujan and works published after 1915 on the subject.

A numberN is said highly composite ifM < N impliesd(M) < d(N), whered(N) is the number of divisors
of N. In this paper, Ramanujan extends the notion of highly composite number to other arithmetic functions,
mainly to Q2k(N) for 1 ≤ k ≤ 4 whereQ2k(N) is the number of representations ofN as a sum of 2k squares
andσ−s(N) whereσ−s(N) is the sum of the(−s)th powers of the divisors ofN. Moreover, the maximal orders
of these functions are given.
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1. Foreword

In 1915, the London Mathematical Society published in its Proceedings a paper of Srinivasa
Ramanujan entitled “Highly Composite Numbers”. (cf. [16]). In the “Collected Papers”
of Ramanujan, this article has number 15, and in the notes (cf. [17], p. 339), it is stated:
“The paper, long as it is, is not complete. The London Math. Soc. was in some financial
difficulty at the time and Ramanujan suppressed part of what he had written in order to save
expenses”. This suppressed part had been known to Hardy, who mentioned it in a letter to
Watson, in 1930 (cf. [18], p. 391). Most of this suppressed part can be now found in “the
lost notebook and other unpublished papers” (cf. [18], p. 280 to 312). An analysis of this
book has been done by Rankin, who has written several lines about the pages concerning
highly composite numbers (cf. [19], p. 361). Also, some information about this subject has
already been published in [12], pp. 238–239 and [13]. Robin (cf. [25]) has given detailed



           

120 NICOLAS AND ROBIN

proofs of some of the results dealing with complex variables, and Riemann zeta function,
since as usual, Ramanujan sometimes gives formulas which probably were obvious to him,
but not to most mathematicians.

The article below is essentially the end of the paper written by Ramanujan which was not
published in [16], but can be read in [18]. For convenience, we have kept on the numbering
both of paragraphs (which start from 52 to 75) and formulas (from (268) to (408)), so that
references to preceding paragraphs or formulas can easily be found in [16]. There is just
a small overlap: the last paragraph of [16] is numbered 52, and contains formulas (268)
and (269). This last paragraph was probably added by Ramanujan to the first part after
he had decided to suppress the second part. However this overlap does not imply any
misunderstanding.

There are two gaps in the manuscript of Ramanujan, as presented in “the lost notebook”.
The first one is just at the beginning, where the definition ofQ2(n) is missing. Probably
this definition was sent to the London Math. Soc. in 1915 with the manuscript of “Highly
Composite Numbers”. It has been reformulated in the same terms as the definition ofQ̄2(n)
given in Section 55. The second gap is more difficult to explain: Section 57 is complete
and appears on pp. 289 and 290 of [18]. But the lower half of p. 290 is empty, and p. 291
starts with the end of Section 58. We have completed Section 58 by giving the definition
of σs(N), and the proof of formula (301). All these completions are written in italics in the
text below. It should be noted that in [18] pp. 295–299 are not handwritten by Ramanujan,
and, as observed by Rankin (cf. [19], p. 361) were probably copied by Watson, but that
does not create any gap in the text. Pages 282 and 283 of [18] do not belong to number
theory, and clearly the text of p. 284 follows p. 281. On the other hand, pp. 309–312 deal
with highly composite numbers. With the notation of [16], Section 9, Ramanujan proves
in pp. 309–310 that

log pr

log(1+ 1/r )
= log p1

log 2
+ O(r )

holds, while on pp. 311–312, he attempts to extend the above formula by replacingp1 by
ps. More precise results can now be found in [7]. Pages 309–312 do not belong to the
paper Highly Composite Numbers and are not included in the paper below.

In the following paper, Ramanujan studies the maximal order of some classical functions,
which resemble the number, or the sum, of the divisors of an integer.

In Section 52–54,Q2(N), the number of representations ofN as a sum of two squares is
studied, and its maximal order is given under the Riemann hypothesis, or without assuming
the Riemann hypothesis. In Section 55–56, a similar work is done forQ̄2(N) the number
of representation ofN by the formm2 +mn+ n2. In Section 57, the number of ways of
writing N as a product of(1+ r ) factors is briefly investigated. Between Section 58 and
Section 71, there is a deep study of the maximal order of

σ−s(N) =
∑
d | N

d−s

under the Riemann hypothesis, by introducing generalised superior highly composite num-
bers. In Section 72–74,Q4(N), Q6(N) andQ8(N) the numbers of representations ofN as
a sum of 4, 6or 8 squares are studied, and also their maximal orders. In the last paragraph
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75, the number of representations ofN by some other quadratic forms is considered, but no
longer its maximal order. One feels that Ramanujan is ready to leave the subject of highly
composite numbers, and to come back to another favourite topic, identities.

The table on p. 150 occurs on p. 280 in [18]. It should be compared with the table of
largely composite numbers (p. 151), namely the numbersn such thatm≤ n⇒ d(m)≤ d(n).

Several results obtained by Ramanujan in 1915, but kept unpublished, have been redis-
covered and published by other mathematicians. The references for these works are given
in the notes at the end of this paper. However, there remain in the paper of Ramanujan,
some never published results, for instance, the maximal order ofQ̄2(N) (cf. Section 54) or
of σ−s(N) (cf. Section 71) whenevers 6= 1. (The cases = 1 has been studied by Robin,
cf. [22]).

A few misprints or mistakes were found in the manuscript of Ramanujan. Finally, it puts
one somewhat at ease that even Ramanujan could make mistakes. These mistakes have
been corrected in the text, but are also pointed out in the notes.

Hardy did not much like highly composite numbers. In the preface to the “Collected
Works” (cf. [17], p. XXXIV) he writes that “The long memoir [16] represents work,
perhaps, in a backwater of mathematics,” but a few lines later, he does recognize that “it
shews very clearly Ramanujan’s extraordinary mastery over the algebra of inequalities”.
One of us can remember Freeman Dyson in Urbana (in 1987) saying that when he was
a research student of Hardy, he wanted to do research on highly composite numbers but
Hardy dissuaded him as he thought the subject was not sufficiently interesting or important.
However, after Ramanujan, several authors have written about them, as can be seen in the
survey paper [12]. We think that the manuscript of Ramanujan should be published, since he
wrote it with this aim, and we hope that our notes will help readers to a better understanding.

We are indebted to Berndt, and Rankin for much valuable information, to Massias for
calculating largely composite numbers and finding the meaning of the table occurring in [18],
p. 280 and to Lydia Szyszko for typing this manuscript. We thank also Narosa Publishing
House, New Delhi, for granting permission to print in typed form the handwritten manuscript
on Highly Composite Numbers which can be found in pages 280–312 of [18].

2. The text of Ramanujan

52. Let Q2(N) denote the number of ways in which N can be expressed as m2 + n2. Let
us agree to consider m2 + n2 as two ways if m and n are unequal and as one way if they
are equal or one ofthem is zero. Then it can be shown that

(1+ 2q + 2q4+ 2q9+ 2q16+ · · ·)2

= 1+ 4

(
q

1− q
− q3

1− q3
+ q5

1− q5
− q7

1− q7
+ · · ·

)
= 1+ 4{Q2(1)q + Q2(2)q

2+ Q2(3)q
3+ · · ·} (268)

From this it easily follows that

ζ(s)ζ1(s) = Q2(1)

1s
+ Q2(2)

2s
+ Q2(3)

3s
+ · · · , (269)
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where

ζ1(s) = 1−s − 3−s + 5−s − 7−s + · · · .

Since

q

1− q
+ q2

1− q2
+ q3

1− q3
+ · · · = d(1)q + d(2)q2+ d(3)q3+ · · · ,

it follows from (268) that

Q2(N) ≤ d(N) (270)

for all values ofN. Let

N = 2a2.3a3.5a5 · · · pap,

whereaλ ≥ 0. Then we see that, if any one ofa3,a7,a11, . . ., be odd, where 3, 7, 11, . . .,
are the primes of the form 4n− 1, then

Q2(N) = 0. (271)

But, if a3,a7,a11, . . . be even or zero, then

Q2(N) = (1+ a5)(1+ a13)(1+ a17) · · · (272)

where 5, 13, 17,. . . are the primes of the form 4n+1. It is clear that (270) is a consequence
of (271) and (272).
53. From (272) it is easy to see that, in order thatQ2(N) should be of maximum order,N
must be of the form

5a5.13a13.17a17 · · · pap,

wherep is a prime of the form 4n+ 1, and

a5 ≥ a13 ≥ a17 ≥ · · · ≥ ap.

Let π1(x) denote the number of primes of the form 4n+ 1 which do not exceedx, and let

ϑ1(x) = log 5+ log 13+ log 17+ · · · + log p,

where p is the largest prime of the form 4n + 1, not greater thanx. Then by arguments
similar to those of Section 33 we can show that

Q2(N) ≤ N
1
x

2π1(2x)

e
1
x θ1(2x)

(
3
2

)π1(( 3
2 )

x)

e
1
x θ1(( 3

2 )
x)

(
4
3

)π1(( 4
3 )

x)

e
1
x θ1(( 4

3 )
x)
· · · (273)

for all values ofN andx. From this we can show by arguments similar to those of Section 38
that, in order thatQ2(N) should be of maximum order,N must be of the form

eϑ1(2x)+ϑ1(( 3
2 )

x)+ϑ1(( 4
3 )

x)+···
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andQ2(N) of the form

2π1(2x)

(
3

2

)π1(( 3
2 )

x)(4

3

)π1(( 4
3 )

x)
. . . .

Then, without assuming the prime number theorem, we can show that the maximum order
of Q2(N) is

2
log N{ 1

log logN+ O(1)
(log logN)2

}
. (274)

Assuming the prime number theorem we can show that the maximum order ofQ2(N) is

2
1
2 Li (2 logN)+O{log Ne−a

√
(log N)} (275)

wherea is a positive constant.
54. We shall now assume the Riemann Hypothesis and its analogue for the functionζ1(s).
Let ρ1 be a complex root ofζ1(s). Then it can be shown that∑ 1

ρ1
= γ − 3 logπ

2
+ log 2+ 4 log0

(
3

4

)
,

so that ∑ 1

ρ
+
∑ 1

ρ1
= 1+ γ − 2 logπ + 4 log0

(
3

4

)
. (276)

It can also be shown that{
2ϑ1(x) = x − 2

√
x −∑ xρ/ρ −∑ xρ1/ρ1+ O

(
x

1
3
)

2π1(x) = Li (x)− Li (
√

x)−∑ Li (xρ)−∑ Li (xρ1)+ O
(
x

1
3
) (277)

so that {
2ϑ1(x) = x + O(

√
x(logx)2)

2π1(x) = Li (x)+ O(
√

x logx).
(278)

Now

2π1(x) = Li (x)− 1

logx

(
2
√

x +
∑ xρ

ρ
+
∑ xρ1

ρ1

)
− 1

(logx)2

(
4
√

x +
∑ xρ

ρ2
+
∑ xρ1

ρ2
1

)
+ O(

√
x)

(logx)3
.

But by Taylor’s Theorem we have

Li {2ϑ1(x)} = Li (x)− 1

logx

(
2
√

x +
∑ xρ

ρ
+
∑ xρ1

ρ1

)
+ O{(logx)2}.
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Hence

2π1(x) = Li {2ϑ1(x)} − 2R1(x)+ O

{ √
x

(logx)3

}
(279)

where

R1(x) = 1

(logx)2

(
2
√

x + 1

2

∑ xρ

ρ2
+ 1

2

∑ xρ1

ρ2
1

)
.

It can easily be shown that

√
x

(
2+

∑ 1

ρ
+
∑ 1

ρ1

)
≥ R1(x)(logx)2 ≥ √x

(
2−

∑ 1

ρ
−
∑ 1

ρ1

)
and so from (276) we see that{

3+ γ − 2 logπ + 4 log0

(
3

4

)}√
x ≥ R1(x)(logx)2

≥
{

1− γ + 2 logπ − 4 log0

(
3

4

)}√
x. (280)

It can easily be verified that{
3+ γ − 2 logπ + 4 log0

(
3
4

) = 2.101,

1− γ + 2 logπ − 4 log0
(

3
4

) = 1.899,
(281)

approximately.
Proceeding as in Section 43 we can show that the maximun order ofQ2(N) is

2
1
2 Li (2 logN)+8(N) (282)

where

8(N) = log
(

3
2

)
2 log 2

Li

{
3

2
(log N)

log(3/2)
log 2

}
− 3(log N)

log(3/2)
log 2

4 log(2 logN)
− R1(2 logN)+ O

{ √
(log N)

(log logN)3

}
.

55. Let Q̄2(N) denote the number of ways in whichN can be expressed asm2+mn+n2.

Let us agree to considerm2+mn+ n2 as two ways ifm andn are unequal, and as one way
if they are equal or one of them is zero. Then it can be shown that

1

2

(
1+ 2q

1
4 + 2q

4
4 + 2q

9
4 + · · · )(1+ 2q

3
4 + 2q

13
4 + 2q

27
4 + · · · )

+ 1

2

(
1− 2q

1
4 + 2q

4
4 − 2q

9
4 + · · · )(1− 2q

3
4 + 2q

13
4 − 2q

27
4 + · · · )

= 1+ 6

(
q

1− q
− q2

1− q2
+ q4

1− q4
− q5

1− q5
+ · · ·

)
= 1+ 6{Q̄2(1)q + Q̄2(2)q

2+ Q̄2(3)q
3+ · · ·} (283)
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where 1, 2, 4, 5,. . . are the natural numbers without the multiples of 3. From this it follows
that

ζ(s)ζ2(s) = 1−sQ̄2(1)+ 2−sQ̄2(2)+ 3−sQ̄2(3)+ · · · (284)

where

ζ2(s) = 1−s − 2−s + 4−s − 5−s + · · ·
It also follows that

Q̄2(N) ≤ d(N) (285)

for all values ofN. Let

N = 2a2.3a3.5a5 · · · pap,

whereaλ ≥ 0. Then, if any one ofa2,a5,a11, . . . be odd, where 2, 5, 11,. . . are the primes
of the form 3n− 1, then

Q̄2(N) = 0. (286)

But, if a2,a5,a11 be even or zero, then

Q̄2(N) = (1+ a7)(1+ a13)(1+ a19)(1+ a31) · · · (287)

where 7, 13, 19,. . . are the primes of the form 6n+ 1. Let π2(x) be the number of primes
of the form 6n+ 1 which do not exceedx, and let

ϑ2(x) = log 7+ log 13+ log 19+ · · · + log p,

wherep is the largest prime of the form 6n+ 1 not greater thatx. Then we can show that,
in order thatQ̄2(N) should be of maximum order,N must be of the form

eϑ2(2x)+ϑ2(( 3
2 )

x)+ϑ2(( 4
3 )

x)+···

andQ̄2(N) of the form

2π2(3x)

(
3

2

)π2(( 3
2 )

x)(4

3

)π2(( 4
3 )

x)
. . . .

Without assuming the prime number theorem we can show that the maximum order of
Q̄2(N) is

2
log N{ 1

log logN+ O(1)
(log logN)2

}
. (288)

Assuming the prime number theorem we can show that the maximum order ofQ̄2(N) is

2
1
2 Li (2 logN)+O{log Ne−a

√
(log N)}. (289)
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56. We shall now assume the Riemann hypothesis and its analogue for the functionζ2(s).
Then we can show that

2π2(x) = Li {2ϑ2(x)} − 2R2(x)+ O{√x/(logx)3} (290)

where

R2(x) = 1

(logx)2

{
2
√

x + 1

2

∑ xρ

ρ2
+ 1

2

∑ xρ2

ρ2
2

}
whereρ2 is a complex root ofζ2(s). It can also be shown that

∑ 1

ρ
+
∑ 1

ρ2
= 1+ γ + 1

2
log 3+ 3 log

0
(

2
3

)
0
(

1
3

) (291)

and so{
3+ γ + 1

2
log 3+ 3 log

0
(

2
3

)
0
(

1
3

)}√x ≥ R2(x)(logx)2

≥
{

1− γ − 1

2
log 3− 3 log

0
(

2
3

)
0
(

1
3

)}√x. (292)

It can easily be verified that
3+ γ + 1

2
log 3+ 3 log

0
(

2
3

)
0
(

1
3

) = 2.080,

1− γ − 1

2
log 3− 3 log

0
(

2
3

)
0
(

1
3

) = 1.920,

(293)

approximately. Then we can show that the maximum order ofQ̄2(N) is

2
1
2 Li (2 logN)+8(N) (294)

where

8(N) = log(3/2)

2 log 2
Li

{
3

2
(log N)

log(3/2)
log 2

}
−3(log N)

log(3/2)
log 2

4 log(2 logN)
−R2(2 logN)+O

{ √
(log N)

(log logN)3

}
.

57. Let dr (N) denote the coefficient ofN−s in the expansion of{ζ(s)}1+r as a Dirichlet
series. Then since

{ζ(s)}−1 = (1− 2−s)(1− 3−s)(1− 5−s) · · · (1− p−s) . . . ,

it is easy to see that, if

N = pa1
1 pa2

2 pa3
3 . . . pan

n ,
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wherep1, p2, p3 . . . are any primes, then

dr (N) =
ν=n∏
ν=1

λ=aν∏
λ=1

(
1+ r

λ

)
(295)

provided thatr > −1. It is evident that

d−1(N) = 0, d0(N) = 1, d1(N) = d(N);
and that, if−1≤ r ≤ 0, then

dr (N) ≤ 1+ r (296)

for all values ofN. It is also evident that, ifN is a prime then

dr (N) = 1+ r

for all values ofr . It is easy to see from (295) that, ifr > 0, thendr (N) is not bounded
whenN becomes infinite. Now, ifr is positive, it can easily be shown that, in order that
dr (N) should be of maximum order,N must be of the form

eϑ(x1)+ϑ(x2)+ϑ(x3)+···,

and consequentlydr (N) of the form

(1+ r )π(x1)

(
1+ r

2

)π(x2)
(
1+ r

3

)π(x3)

. . .

and proceeding as in Section 46 we can show thatN must be of the form

eϑ(1+r )x+ϑ(1+ r
2 )

x+ϑ(1+ r
3 )

x+··· (297)

anddr (N) of the form

(1+ r )π((1+r )x)
(

1+ r

2

)π((1+ r
2 )

x)(
1+ r

3

)π((1+ r
3 )

x)
. . . (298)

From (297) and (298) we can easily find the maximum order ofdr (N) as in Section 43. It
may be interesting to note that numbers of the form (297) which may also be written in the
form

eϑ{x
1
r log(1+r )}+ϑ{x 1

r log(1+ r
2 )}+ϑ{x 1

r log(1+ r
3 )}+···

approach the form

eϑ(x)+ϑ(
√

x)+ϑ(x1/3)+···

asr → 0. That is to say, they approach the form of the least common multiple of the natural
numbers asr → 0.
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58. Let s be a non negative real number, and letσ−s(N) denote the sum of the inverses of
the sth powers of the divisors of N. If N denotes

N = pa1
1 pa2

2 pa3
3 . . . pan

n

where p1, p2, p3, . . . are any primes, then

σ−s(N) =
(
1+ p−s

1 + p−2s
1 + p−3s

1 + · · · + p−a1s
1

)(
1+ p−s

2 + p−2s
2 + p−3s

2 + · · · + p−a2s
2

)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(
1+ p−s

n + p−2s
n + p−3s

n + · · · + p−ans
n

)
.

For s= 0, σ0(N) = d(N) is the number of divisors of N. For s> 0, we have:

σ−s(N) =
(

1− p−(a1+1)s
1

1− p−s
1

)(
1− p−(a2+1)s

2

1− p−s
2

)
· · ·
(

1− p−(an+1)s
n

1− p−s
n

)
. (299)

Now, from the concavity of the functionlog(1− e−t ), we see that

1

n
{log(1− e−t1)+ log(1− e−t2)+ · · · + log(1− e−tn)}

≤ log

{
1− exp

(
− t1+ t2+ · · · + tn

n

)}
. (300)

Choosing t1 = (a1+1)s log p1, t2 = (a2+1)s log p2, . . . , tn = (an+1)s log pn in (300),
formula(299) gives

σ−s(N) <

{
1− (p1 p2 p3 · · · pnN)−s/n

}n(
1− p−s

1

)(
1− p−s

2

) · · · (1− p−s
n
) . (301)

By arguments similar to those of Section 2 we can show that it is possible to choose the
indicesa1,a2,a3, . . . ,an so that

σ−s(N) = {1− (p1 p2 p3 · · · pnN)−s/n}n(
1− p−s

1

)(
1− p−s

2

) · · · (1− p−s
n
) {1− O{N−s/n(log N)−2/(n−1)}}. (302)

There are of course results corresponding to (14) and (15) also.
59. A numberN may be said to be a generalised highly composite number ifσ−s(N) >
σ−s(N ′) for all values ofN ′ less thanN. We can easily show that, in order thatN should
be a generalised highly composite number,N must be the form

2a23a35a5 · · · pap (303)
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where

a2 ≥ a3 ≥ a5 ≥ · · · ≥ ap = 1,

the exceptional numbers being 36, for the values ofs which satisfy the inequality 2s+4s+
8s > 3s + 9s, and 4 in all cases.

A numberN may be said to be a generalised superior highly composite number if there
is a positive numberε such that

σ−s(N)

Nε
≥ σ−s(N ′)

(N ′)ε
(304)

for all values ofN ′ less thanN, and

σ−s(N)

Nε
>
σ−s(N ′)
(N ′)ε

(305)

for all values ofN ′ greater thanN. It is easily seen that all generalised superior highly
composite numbers are generalised highly composite numbers. We shall use the expression

2a23a35a5 · · · pap1
1

and the expression

2 · 3 · 5 . 7 . . . . . . p1

× 2 · 3 · 5 . . . . . . p2

× 2 · 3 · 5 . . . p3

× . . .
...

as the standard forms of a generalised superior highly composite number.
60. Let

N ′ = N

λ

whereλ ≤ p1. Then from (304) it follows that

1− λ−s(1+aλ) ≥ (1− λ−saλ )λε,

or

λε ≤ 1− λ−s(1+aλ)

1− λ−saλ
. (306)

Again let N ′ = Nλ. Then from (305) we see that

1− λ−s(1+aλ) >
{
1− λ−s(2+aλ)

}
λ−ε
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or

λε >
1− λ−s(2+aλ)

1− λ−s(1+aλ)
. (307)

Now let us suppose thatλ = p1, in (306) andλ = P1 in (307). Then we see that

log
(
1+ p−s

1

)
log p1

≥ ε > log
(
1+ P−s

1

)
log P1

. (308)

From this it follows that, if

0< ε ≤ log(1+ 2−s)

log 2
,

then there is a unique value ofp1 corresponding to each value ofε. It follows from (306)
that

aλ ≤
log

(
λε−λ−s

λε−1

)
s logλ

, (309)

and from (307) that

1+ aλ >
log

(
λε−λ−s

λε−1

)
s logλ

. (310)

From (309) and (310) it is clear that

aλ =
[

log
(
λε−λ−s

λε−1

)
s logλ

]
. (311)

HenceN is of the form

2[
log( 2ε−2−s

2ε−1 )

s log 2 ]3[
log( 3ε−3−s

3ε−1 )

s log 3 ]
. . . . . . . . . . . . . . . p1 (312)

wherep1 is the prime defined by the inequalities (308).
61. Let us consider the nature ofpr . Puttingλ = pr in (306), and remembering that
apr ≥ r , we obtain

pεr ≤
1− p

−s(1+apr )
r

1− p
−sapr
r

≤ 1− p−s(r+1)
r

1− p−sr
r

. (313)

Again, puttingλ = Pr in (307), and remembering thataPr ≤ r − 1, we obtain

Pε
r >

1− P−s(2+aPr )
r

1− P−s(1+aPr )
r

≥ 1− P−s(r+1)
r

1− P−sr
r

. (314)
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It follows from (313) and (314) that, ifxr be the value ofx satisfying the equation

xε = 1− x−s(r+1)

1− x−sr
(315)

then pr is the largest prime not greater thanxr . HenceN is of the form

eϑ(x1)+ϑ(x2)+ϑ(x3)+··· (316)

wherexr is defined in (315); andσ−s(N) is of the form

51(x1)52(x2)53(x3) · · ·5a2(xa2) (317)

where

5r (x) = 1− 2−s(r+1)

1− 2−sr

1− 3−s(r+1)

1− 3−sr
· · · 1− p−s(r+1)

1− p−sr
.

and p is the largest prime not greater thanx. It follows from (304) and (305) that

σ−s(N) ≤ Nε 51(x1)

eεϑ(x1)

52(x2)

eεϑ(x2)

53(x3)

eεϑ(x3)
· · · (318)

for all values ofN, wherex1, x2, x3, . . . are functions ofε defined by the equation

xεr =
1− x−s(r+1)

r

1− x−sr
r

, (319)

andσ−s(N) is equal to the right hand side of (318) when

N = eϑ(x1)+ϑ(x2)+ϑ(x3)+···

62. In (16) let us suppose that

8(x) = log
1− x−s(r+1)

1− x−sr
.

Then we see that

log5r (xr ) = π(xr ) log
1− x−s(r+1)

r

1− x−sr
r

−
∫
π(xr )d

(
log

1− x−s(r+1)
r

1− x−sr
r

)
= π(xr ) log

(
xεr
)− ∫ π(xr )d

(
logxεr

)
= επ(xr ) logxr −

∫
π(xr ) logxr dε −

∫
επ(xr )

xr
dxr
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in virtue of (319). Hence

log5r (xr )− εϑ(xr ) = ε{π(xr ) logxr − ϑ(xr )} −
∫
π(xr ) logxr dε −

∫
επ(xr )

xr
dxr

= ε
∫
π(xr )

xr
dxr −

∫
π(xr ) logxr dε −

∫
επ(xr )

xr
dxr

=
∫

dε
∫
π(xr )

xr
dxr −

∫
π(xr ) logxr dε

=
∫ { ∫

π(xr )

xr
dxr − π(xr ) logxr

}
dε

= −
∫
ϑ(xr ) dε. (320)

It follows from (318) and (320) that

σ−s(N) ≤ Nεe−
∫ {ϑ(x1)+ϑ(x2)+ϑ(x3)+···}dε (321)

for all values ofN. By arguments similar to those of Section 38 we can show that the right
hand side of (321) is a minimum whenε is a function ofN defined by the equation

N = eϑ(x1)+ϑ(x2)+ϑ(x3)+···. (322)

Now let
∑
−s(N) be a function ofN defined by the equation∑

−s
(N) = 51(x1)52(x2)53(x3)· (323)

whereε is a function ofN defined by the Eq. (322). Then it follows from (318) that the
order of

σ−s(N) ≤
∑
−s
(N)

for all values ofN andσ−s(N) =
∑
−s(N) for all generalised superior highly composite

values ofN. In other wordsσ−s(N) is of maximum order whenN is of the form of a
generalised superior highly composite number.
63. We shall now consider some important series which are not only useful in finding the
maximum order ofσ−s(N) but also interesting in themselves. Proceeding as in (16) we can
easily show that, if8′(x) be continuous, then

8(2) log 2+8(3) log 3+8(5) log 5+ · · · +8(p) log p

= 8(x) θ(x)−
∫ x

2
8′(t)θ(t) dt (324)

wherep is the largest prime not exceedingx. Since
∫
8(x) dx = x8(x) − ∫ x8′(x) dx,

we have

8(x)ϑ(x)−
∫
8′(x)ϑ(x) dx =

∫
8(x) dx− {x − ϑ(x)}8(x)

+
∫
8′(x){x − ϑ(x)} dx. (325)
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Remembering thatx − ϑ(x) = O{√x(logx)2}, we have by Taylor’s Theorem∫ θ(x)

8(t) dt =
∫
8(x) dx− {x − ϑ(x)}8(x)+ 1

2
{x − ϑ(x)}28′{x + O(

√
x(logx)2)}.

(326)

It follows from (324)–(326) that

8(2) log 2+8(3) log 3+8(5) log 5+ · · · +8(p) log p

= C +
∫ θ(x)

8(t) dt +
∫
8′(x){x − ϑ(x)} dx

− 1

2
{x − ϑ(x)}28′{x + O

√
x(logx)2} (327)

whereC is a constant andp is the largest prime not exceedingx.
64. Now let us assume that8(x) = 1

xs−1 wheres > 0. Then from (327) we see that, ifp
is the largest prime not greater thanx, then

log 2

2s − 1
+ log 3

3s − 1
+ log 5

5s − 1
+ · · · + log p

ps − 1

= C +
∫ θ(x) dx

xs − 1
− s

∫
x − ϑ(x)

x1−s(xs − 1)2
dx+ O{x−s(logx)4}. (328)

But it is known that

x − θ(x) = √x + x
1
3 +

∑ xρ

ρ
−
∑ x

1
2ρ

ρ
+ O

(
x

1
5
)

(329)

whereρ is a complex root ofζ(s). By arguments similar to those of Section 42 we can
show that

∑ x
1
2ρ−s

ρ
(

1
2ρ−s

) = ∫ x−1−s
∑ x

1
2ρ

ρ
dx.

Hence

∫ ∑ x
1
2 ρ

ρ

x1−s(xs − 1)2
dx =

∫
O

{
x−1−s

∑ x
1
2ρ

ρ

}
dx = O

{∑ x
1
2ρ−s

ρ
(

1
2ρ − s

)} = O
(
x

1
4−s
)
.

Similarly

∫ ∑ xρ

ρ

x1−s(xs − 1)2
dx =

∑ xρ−s

ρ(ρ − s)
+O

(∑ xρ−2s

ρ(ρ − 2s)

)
=
∑ xρ−s

ρ(ρ − s)
+O

(
x

1
2−2s

)
.
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Hence (328) may be replaced by

log 2

2s − 1
+ log 3

3s − 1
+ log 5

5s − 1
+ · · · + log p

ps − 1

= C +
∫ θ(x) dt

ts − 1
− s

∫
x

1
2 + x

1
3

x1−s(xs − 1)2
dx

− s
∑ xρ−s

ρ(ρ − s)
+ O

(
x

1
2−2s + x

1
4−s
)
. (330)

It can easily be shown that

C = −ζ
′(s)
ζ(s)

(331)

when the error term iso(1).
65. Let

Ss(x) = −s
∑ xρ−s

ρ(ρ − s)
.

Then

|Ss(x)| ≤ s
∑∣∣∣∣ xρ−s

ρ(ρ − s)

∣∣∣∣ = s · x 1
2−s

∑ 1√{ρ(1− ρ)(ρ − s)(1− ρ − s)} . (332)

If m andn are any two positive numbers, then it is evident that 1/
√

mn lies between1
m

and 1
n .

Hence
∑ 1√{ρ(1−ρ)(ρ−s)(1−ρ−s)} lies betweenχ(1) andχ(s) where

χ(s) =
∑ 1

(ρ − s)(1− ρ − s)
=
∑ 1

ρ(1− ρ)+ s2− s

= 1

1− 2s

(∑ 1

ρ − s
+
∑ 1

1− ρ − s

)
=
∑ 1

s−ρ
s− 1/2

. (333)

We can show as in Section 41 that∑ 1

s− ρ =
2s− 1

s2− s
− 1

2
logπ + 1

2

0′
(

s
2

)
0
(

s
2

) + ζ ′(s)
ζ(s)

. (334)

Hence

χ(s) = 2

s2− s
+ 1

2s− 1

{
0′
(

s
2

)
0
(

s
2

) + 2
ζ ′(s)
ζ(s)

− logπ

}
(335)

so that

χ(0) = χ(1) = 2+ γ − log 4π. (336)
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By elementary algebra, it can easily be shown that ifmr andnr be not negative andGr be
the geometric mean betweenmr andnr then

G1+ G2+ G3+ · · · <
√
{m1+m2+m3+ · · ·}{n1+ n2+ · · ·} (337)

unlessm1
n1
= m2

n2
= m3

n3
= · · ·

From this it follows that∑ 1√{ρ(1− ρ)(ρ − s)(1− ρ − s)} <
√
{χ(1)χ(s)}. (338)

The following method leads to still closer approximation. It is easy to see that ifm andn
are positive, then 1/

√
mn is the geometric mean between

1

3m
+ 8

3(m+ 3n)
and

1

3n
+ 8

3(3m+ n)
(339)

and so 1√
mn

lies between both. Hence

∑ 1√{ρ(1− ρ)(ρ − s)(1− ρ − s)} lies between

1

3

∑ 1

ρ(1− ρ) +
2

3

∑ 1

ρ(1− ρ)+ 3
4(s

2− s)
and

1

3

∑ 1

(ρ − s)(1− ρ − s)
+ 2

3

∑ 1

ρ(1− ρ)+ 1
4(s

2− s)
(340)

and is also less than the geometric mean1 between these two in virtue of (337)

∑ 1

ρ(1− ρ)+ 1
4(s

2− s)
= χ

{
1+

√
(1− s+ s2)

2

}
and

∑ 1

ρ(1− ρ)+ 3
4(s

2− s)
= χ

{
1+

√
(1− 3s+ 3s2)

2

}

1.

1√{ρ(1− ρ)(ρ − s)(1− ρ − s)} =
1

ρ(1− ρ) −
1

2

s2 − s

ρ(1− ρ) +
3

8

{
s2 − s

ρ(1− ρ)

}2

− 10

32

{
s2 − s

ρ(1− ρ)

}3

+ · · ·

1

3

1

ρ(1− ρ) +
2

3

1

ρ(1− ρ)+ 3
4 (s

2 − s)
= 1

ρ(1− ρ) −
1

2

s2 − s

ρ(1− ρ) +
3

8

{
s2 − s

ρ(1− ρ)

}2

− 9

32

{
s2 − s

ρ(1− ρ)

}3

+ · · ·

1

3

1

ρ(1− ρ)+ s2 − s
+ 2

3

1

ρ(1− ρ)+ 1
4 (s

2 − s)
= 1

ρ(1− ρ) −
1

2

s2 − s

ρ(1− ρ) +
3

8

{
s2 − s

ρ(1− ρ)

}2

− 11

32

{
s2 − s

ρ(1− ρ)

}3

+ · · ·

Since the first value ofρ(1− ρ) is about 200 we see that the geometric mean is a much closer approximation than
either.
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Hence ∑ 1√{ρ(1− ρ)(ρ − s)(1− ρ − s)} lies between

1

3
χ(1)+ 2

3
χ

{
1+

√
(1− 3s+ 3s2)

2

}
and

1

3
χ(s)+ 2

3
χ

{
1+

√
(1− s+ s2)

2

}
(341)

and is also less than the geometric mean between these two.
66. In this and the following few sections it is always understood thatp is the largest prime
not greater thanx. It can easily be shown that∫ θ(x) dt

ts − 1
− s

∫
x

1
2 + x

1
3

x1−s(xs − 1)2
dx = {θ(x)}

1−s

1− s
+ {θ(x)}

1−2s

1− 2s

+ x1−3s

1− 3s
+ x1−4s

1− 4s
+ · · · + x1−ns

1− ns

− 2sx
1
2−s

1− 2s
− 3sx

1
3−s

1− 3s
− 4sx

1
2−2s

1− 4s
+ O

(
x

1
2−2s

)
(342)

wheren = [2+ 1
2s ].

It follows from (330) and (342) that ifs> 0, then

log 2

2s − 1
+ log 3

3s − 1
+ log 5

5s − 1
+ · · · + log p

ps − 1

= −ζ
′(s)
ζ(s)

+ {ϑ(x)}
1−s

1− s
+ {ϑ(x)}

1−2s

1− 2s
+ x1−3s

1− 3s
+ x1−4s

1− 4s
+ · · · + x1−ns

1− ns

− 2sx
1
2−s

1− 2s
− 3sx

1
3−s

1− 3s
− 4sx

1
2−2s

1− 4s
+ Ss(x)+ O

(
x

1
2−2s + x

1
4−s
)

(343)

wheren = [2+ 1
2s ].

Whens = 1, 1
2,

1
3 or 1

4 we must take the limit of the right hand side whens approaches
1, 1

2,
1
3 or 1

4. We shall consider the following cases:

Case I. 0< s< 1
4

log 2

2s − 1
+ log 3

3s − 1
+ log 5

5s − 1
+ · · · + log p

ps − 1

= {ϑ(x)}
1−s

1− s
+ {ϑ(x)}

1−2s

1− 2s
+ x1−3s

1− 3s
+ x1−4s

1− 4s
+ · · ·

+ x1−ns

1− ns
− 2sx

1
2−s

1− 2s
− 3sx

1
3−s

1− 3s
+ Ss(x)+ O

(
x

1
2−2s

)
, (344)

wheren = [2+ 1
2s ].
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Case II.s= 1
4

log 2

2
1
4−1
+ log 3

3
1
4−1
+ log 5

5
1
4−1
+ · · · + log p

p
1
4−1

= 4

3
{ϑ(x)} 3

4 + 2
√
{ϑ(x)} + 3x

1
4 − 3x

1
12 + 1

2
logx + S1

4
(x)+ O(1). (345)

Case III.s> 1
4

log 2

2s − 1
+ log 3

3s − 1
+ log 5

5s − 1
+ · · · + log p

ps − 1

= −ζ
′(s)
ζ(s)

+ {ϑ(x)}
1−s

1− s
+ x1−2s − 2sx

1
2−s

1− 2s
+ x1−3s − 3sx

1
3−s

1− 3s
+ Ss(x)+ O

(
x

1
4−s
)
.

(346)

67. Makings→ 1 in (346), and remembering that

lim
s→1

{
v1−s

1− s
− ζ

′(s)
ζ(s)

}
= logv − γ

whereγ is the Eulerian constant, we have

log 2

2− 1
+ log 3

3− 1
+ log 5

5− 1
+ · · · + log p

p− 1

= logϑ(x)− γ + 2x−
1
2 + 3

2
x−

2
3 + S1(x)+ O

(
x−

3
4
)
. (347)

From (332) we know that
√

x |S1(x)| ≤ 2+ γ − log(4π) = .046· · · (348)

approximately, for all positive values ofx.
Whens> 1, (346) reduces to

log 2

2s − 1
+ log 3

3s − 1
+ log 5

5s − 1
+ · · · + log p

ps − 1

= −ζ
′(s)
ζ(s)

+ {ϑ(x)}
1−s

1− s
+ 2sx

1
2−s

2s− 1
+ 3sx

1
3−s

3s− 1
+ Ss(x)+ O

(
x

1
4−s
)

(349)

Writing O(x
1
2−s) for Ss(x) in (343), we see that, ifs> 0, then

log 2

2s − 1
+ log 3

3s − 1
+ log 5

5s − 1
+ · · · + log p

ps − 1

= −ζ
′(s)
ζ(s)

+ {ϑ(x)}
1−s

1− s
+ x1−2s

1− 2s
+ x1−3s

1− 3s
+ · · ·

+ x1−ns

1− ns
− 2sx

1
2−s

1− 2s
+ O

(
x

1
2−s
)

(350)

whenn = [1+ 1
2s ].
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Now the following three cases arise:

Case I. 0< s< 1
2

log 2

2s − 1
+ log 3

3s − 1
+ log 5

5s − 1
+ · · · + log p

ps − 1

= {ϑ(x)}
1−s

1− s
+ x1−2s

1− 2s
+ x1−3s

1− 3s
+ · · · + x1−ns

1− ns
+ O

(
x

1
2−s
)

(351)

wheren = [1+ 1
2s ].

Case II.s= 1
2

log 2√
2− 1

+ log 3√
3− 1

+ log 5√
5− 1

+ · · · + log p√
p− 1

= 2
√
{ϑ(x)} + 1

2
logx+ O(1).

(352)

Case III.s> 1
2

log 2

2s − 1
+ log 3

3s − 1
+ log 5

5s − 1
+ · · · + log p

ps − 1
= −ζ

′(s)
ζ(s)
+ {ϑ(x)}

1−s

1− s
+O

(
x

1
2−s
)
.

(353)

68. We shall now consider the product

(1− 2−s)(1− 3−s)(1− 5−s) · · · (1− p−s).

It can easily be shown that∫
xa+bs

a+ bs
ds= 1

b
Li (xa+bs) (354)

whereLi (x) is the principal value of
∫ x

0
dt

log t ; and that

∫
Ss(x) ds= −Ss(x)

logx
+ O

{
x

1
2−s

(logx)2

}
. (355)

Now remembering (354) and (355) and integrating (343) with respect tos, we see that if
s> 0, then

log{(1− 2−s)(1− 3−s)(1− 5−s) · · · (1− p−s)}
= − log |ζ(s)| − Li {ϑ(x)}1−s − 1

2
Li (x1−2s)− 1

3
Li (x1−3s)− · · ·

− 1

n
Li (x1−ns)+ 1

2
Li
(
x

1
2−s
)− x

1
2−s + Ss(x)

logx
+ O

{
x

1
2−s

(logx)2

}
(356)

wheren = [1+ 1
2s ].
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Now the following three cases arise.

Case I. 0< s< 1
2

log{(1− 2−s)(1− 3−s)(1− 5−s) · · · (1− ps)}
= −Li {ϑ(x)}1−s − 1

2
Li (x1−2s)− 1

3
Li (x1−3s)− · · ·

− 1

n
Li (x1−ns)+ 2sx

1
2−s

(1− 2s) logx
− Ss(x)

logx
+ O

{
x

1
2−s/(logx)2

}
(357)

wheren = [1+ 1
2s ]. Making s→ 1

2 in (356) and remembering that

lim
h→0
{Li (1+ h)− log |h| } = γ (358)

whereγ is the Eulerian constant, we have
Case II.s= 1

2

1(
1− 1√

2

)(
1− 1√

3

)(
1− 1√

5

) · · · (1− 1√
p

)
= −
√

2ζ

(
1

2

)
exp

{
Li
(√
θ(x)

)+ 1+ S1
2
(x)

logx
+ O(1)

(logx)2

}
. (359)

It may be observed that

− (
√

2− 1)ζ

(
1

2

)
= 1√

1
− 1√

2
+ 1√

3
− 1√

4
+ · · · . (360)

Case III.s> 1
2

1

(1− 2−s)(1− 3−s)(1− 5−s) · · · (1− p−s)

= |ζ(s)|exp

[
Li {(θ(x))1−s} + 2sx

1
2−s

(2s− 1) logx
+ Ss(x)

logx
+ O

{
x

1
2−s

(logx)2

}]
. (361)

Remembering (358) and makings→ 1 in (361) we obtain

1(
1− 1

2

)(
1− 1

3

)(
1− 1

5

) · · · (1− 1
p

) = eγ
{

logϑ(x)+ 2√
x
+ S1(x)+ O(1)√

x logx

}
.

(362)

It follows from this and (347) that

e−γ(
1− 1

2

)(
1− 1

3

)(
1− 1

5

) · · · (1− 1
p

)
= γ + log 2

2− 1
+ log 3

3− 1
+ · · · + log p

p− 1
+ O

(
1√

p log p

)
. (363)
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69. We shall consider the order ofxr . Puttingr = 1 in (319) we have

ε = log
(
1+ x−s

1

)
logx1

;

and so

x
log(1+x−s

1 )

logx1
r = 1− x−s(r+1)

r

1− x−sr
r

. (364)

Let

xr = xtr /r
1 .

Then we have

(
1+ x−s

1

)tr /r = 1− x
−str (1+ 1

r )

1

1− x−str
1

.

From this we can easily deduce that

tr = 1+ logr

s logx1
+ O

{
1

(logx1)2

}
.

Hence

xr = x1/r
1

{
r 1/(rs) + O

(
1

logx1

)}
; (365)

and so

xr ∼
(
r 1/sx1

)1/r
. (366)

Puttingλ = 2 in (311) we see that the greatest possible value ofr is

a2 =
log 1

ε

s log 2
+ O(1) = logx1

log 2
+ log logx1

s log 2
+ O(1). (367)

Again

log N = ϑ(x1)+ ϑ(x2)+ ϑ(x3)+ · · · = ϑ(x1)+ x2+ O
(
x1/3

1

)
(368)

in virtue of (366). It follows from Section 68 and the definition of5r (x), that, if sr and
s(r + 1) are not equal to 1, then

5r (x) =
∣∣∣∣ ζ(sr)

ζ {s(r + 1)}
∣∣∣∣eO(x1−sr);

and consequently

5r (xr ) =
∣∣∣∣ ζ(sr)

ζ {s(r + 1)}
∣∣∣∣eO

(
x

1
r −s

1

)
(369)
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in virtue of (366). But ifsr or s(r + 1) is unity, it can easily be shown that

5r−1(xr−1)5r (xr )5r+1(xr+1) =
∣∣∣∣ζ {s(r − 1)}
ζ {s(r + 2)}

∣∣∣∣eO(x
1

r−1−s

1 ). (370)

70. We shall now consider the order of
∑
−s(N) i.e., the maximum order ofσ−s(N). It

follows from (317) that if 3s 6= 1, then

∑
−s
(N) = 51(x1)52(x2) |ζ(3s)|eO(x

1
3−s

1 ) (371)

in virtue of (367), (369) and (370). But if 3s= 1, we can easily show, by using (362), that∑
−s
(N) = 51(x1)52(x2)e

O(log logx1). (372)

It follows from Section 68 that

log51(x1) = log

∣∣∣∣ ζ(s)ζ(2s)

∣∣∣∣+ Li {θ(x1)}1−s − 1

2
Li {ϑ(x1)}1−2s

+ 1

3
Li {ϑ(x1)}1−3s − · · · − (−1)n

n
Li {ϑ(x1)}1−ns

− 1

2
Li
(
x

1
2−s
1

)+ x
1
2−s
1 + Ss(x1)

logx1
+ O

{
x

1
2−s
1

(logx1)2

}
(373)

wheren = [1+ 1
2s ]; and also that, if 3s 6= 1, then,

log52(x2) = log

∣∣∣∣ζ(2s)

ζ(3s)

∣∣∣∣+ Li
(
x1−2s

2

)+ O

{
x

1
2−s
1

(logx1)2

}
; (374)

and when 3s= 1

log52(x2) = Li
(
x1−2s

2

)+ O

{
x

1
2−s
1

(logx1)2

}
. (375)

It follows from (371)–(375) that

log
∑
−s
(N) = log |ζ(s)| + Li {ϑ(x1)}1−s − 1

2
Li {ϑ(x1)}1−2s

+ 1

3
Li {ϑ(x1)}1−3s · · · − (−1)n

n
Li {ϑ(x1)}1−ns

− 1

2
Li
(

x
1
2−s
1

)
+ Li

(
x1−2s

2

)+ x
1
2−s
1 + Ss(x1)

logx1
+ O

{
x

1
2−s
1

(logx1)2

}
(376)
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wheren = [1+ 1
2s ]. But from (368) it is clear that, ifm> 0 then

Li {ϑ(x1)}1−ms = Li
{

log N − x2+ O
(
x1/3

1

)}1−ms

= Li
{
(log N)1−ms− (1−ms)x2(log N)−ms+ O

(
x

1
3−ms
1

)}
= Li (log N)1−ms− x2(log N)−ms

log logN
+ O

(
x

1
3−ms
1

)
.

By arguments similar to those of Section 42 we can show that

Ss(x1) = Ss
{

log N + O
(√

x1(logx1)
2
)} = Ss(log N)+ O

{
x−s

1 (logx1)
4
}
.

Hence

log
∑
−s
(N) = log |ζ(s)| + Li (log N)1−s − 1

2
Li (log N)1−2s + 1

3
Li (log N)1−3s

− · · · − (−1)n

n
Li (log N)1−ns− 1

2
Li (log N)

1
2−s

+ (log N)
1
2−s + Ss(log N)

log logN
+ Li

(
x1−2s

2

)
− x2(log N)−s

log logN
+ O

{
(log N)

1
2−s

(log logN)2

}
(377)

wheren = [1+ 1
2s ] and

x2 = 21/(2s)√x1+ O

( √
x1

logx1

)
= 21/(2s)

√
(log N)+ O

{√
(log N)

log logN

}
(378)

in virtue of (365).
71. Let us consider the order of

∑
−s(N) in the following three cases.

Case I. 0< s< 1
2.

Here we have

Li (log N)
1
2−s = (log N)

1
2−s(

1
2 − s

)
log logN

+ O

{
(log N)

1
2−s

(log logN)2

}
.

Li
(
x1−2s

2

) = x1−2s
2

(1− 2s) logx2
+ O

{
x1−2s

2

(logx2)2

}
= 21/(2s)(log N)

1
2−s

(1− 2s) log logN
+ O

{
(log N)

1
2−s

(log logN)2

}
.

x2(log N)−s

log logN
= 21/(2s)(log N)

1
2−s

log logN
+ O

{
(log N)

1
2−s

(log logN)2

}
.
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It follows from these and (377) that

log
∑
−s
(N)= Li (log N)1−s − 1

2
Li (log N)1−2s + 1

3
Li (log N)1−3s

− · · · − (−1)n

n
Li (log N)1−ns

+ 2s(21/(2s) − 1)(log N)
1
2−s

(1− 2s) log logN
+ Ss(log N)

log logN
+ O

{
(log N)

1
2−s

(log logN)2

}
(379)

wheren = [1+ 1
2s ]. Remembering (358) and (378) and makings→ 1

2 in (377) we have
Case II.s= 1

2.

∑
− 1

2

(N)= −
√

2

2
ζ

(
1

2

)
exp

{
Li
√
(log N)+

2 log 2− 1+ S1
2
(log N)

log logN
+ O(1)

(log logN)2

}
(380)

Case III.s> 1
2.∑
−s
(N) = |ζ(s)| exp

{
Li (log N)1−s − 2s(21/(2s) − 1)

2s− 1

(log N)
1
2−s

log logN

}
+ Ss(log N)

log logN
+ O

{
(log N)

1
2−s

(log logN)2

}
. (381)

Now makings→ 1 in this we have

∑
−1
(N) = eγ

{
log logN − 2(

√
2− 1)√
(log N)

+ S1(log N)+ O(1)√
(log N) log logN

}
. (382)

Hence

Lim

{∑
−1
(N)− eγ log logN

}√
(log N) ≥ −eγ (2

√
2+ γ − log 4π) = −1.558

approximately and

Lim

{∑
−1
(N)− eγ log logN

}√
(log N) ≤ −eγ (2

√
2− 4− γ + log 4π) = −1.393

approximately.
The maximum order ofσs(N) is easily obtained by multiplying the values of

∑
−s(N)

by Ns. It may be interesting to see thatxr → x1/r
1 ass→ ∞; and ultimatelyN assumes

the form

eϑ(x1)+ϑ(√x1)+ϑ(x1/3
1 )+···
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that is to say the form of a generalised superior highly composite number approaches that
of the least common multiple of the natural numbers whens becomes infinitely large.

The maximum order ofσ−s(N)without assuming the prime number theorem is obtained
by changing logN to logNeO(1) in all the preceding results. In particular∑

−1
(N) = eγ {log logN + O(1)}. (383)

72. Let

(1+ 2q + 2q4+ 2q9+ · · ·)4 = 1+ 8{Q4(1)q + Q4(2)q
2+ Q4(3)q

3+ · · ·}.
Then, by means of elliptic functions, we can show that

Q4(1)q + Q4(2)q
2+ Q4(3)q

3+ · · · (384)

= q

1− q
+ 2q2

1+ q2
+ 3q3

1− q3
+ 4q4

1+ q4
+ · · ·

= q

1− q
+ 2q2

1− q2
+ 3q3

1− q3
+ 4q4

1+ q4
+ · · ·

−
(

4q4

1− q4
+ 8q8

1− q8
+ 12q12

1− q12
+ · · ·

)
.

But

q

1− q
+ 2q2

1− q2
+ 3q3

1− q3
+ · · · = σ1(1)q + σ1(2)q

2+ σ1(3)q
3+ · · · .

It follows that

Q4(N) ≤ σ1(N) (385)

for all values ofN. It also follows from (384) that

(1− 41−s)ζ(s)ζ(s− 1) = 1−sQ4(1)+ 2−sQ4(2)+ 3−sQ4(3)+ · · · . (386)

Let

N = 2a23a35a5 · · · pap

whereaλ ≥ 0. Then, the coefficient ofqN in

q

1− q
+ 2q2

1− q2
+ 3q3

1− q3
+ · · ·

is

N
1− 2−a2−1

1− 2−1

1− 3−a3−1

1− 3−1

1− 5−a5−1

1− 5−1
· · · 1− p−ap−1

1− p−1
;

and that in

4q4

1− q4
+ 8q8

1− q8
+ 12q12

1− q12
+ · · ·
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is 0 whenN is not a multiple of 4 and

N
1− 2−a2−1

1− 2−1

1− 3−a3−1

1− 3−1

1− 5−a5−1

1− 5−1
· · · 1− p−ap−1

1− p−1

whenN is a multiple of 4. From this and (384) it follows that, ifN is not a multiple of 4,
then

Q4(N) = N
1− 2−a2−1

1− 2−1

1− 3−a3−1

1− 3−1

1− 5−a5−1

1− 5−1
· · · 1− p−ap−1

1− p−1
; (387)

and if N is a multiple of 4, then

Q4(N) = 3N
1− 2−a2−1

1− 2−1

1− 3a3−1

1− 3−1

1− 5−a5−1

1− 5−1
· · · 1− p−ap−1

1− p−1
. (388)

It is easy to see from (387) and (388) that, in order thatQ4(N) should be of maximum
order,a2 must be 1. From (382) we see that the maximum order ofQ4(N) is

3

4
eγ
{

log logN − 2(
√

2− 1)√
(log N)

+ S1(log N)+ O(1)√
(log N) log logN

}
(389)

= 3

4
eγ
{

log logN + O(1)√
(log N)

}
.

It may be observed that, ifN is not a multiple of 4, then

Q4(N) = σ1(N);
and if N is a multiple of 4, then

Q4(N) = 3σ1(N)

2a2+1− 1
.

73. Let

(1+ 2q + 2q4+ 2q9+ · · ·)6 = 1+ 12{Q6(1)q + Q6(2)q
2+ Q6(3)q

3+ · · ·}.
Then, by means of elliptic functions, we can show that

Q6(1)q + Q6(2)q
2+ Q6(3)q

3+ · · ·
= 4

3

(
12q

1+ q2
+ 22q2

1+ q4
+ 32q3

1+ q6
+ · · ·

)
− 1

3

(
12q

1− q
− 32q3

1− q3
+ 52q5

1− q5
− · · ·

)
.

(390)

But

5

3
{σ2(1)q + σ2(2)q

2+ σ2(3)q
3+ · · ·}

= 4

3

{
12q

1− q
+ 22q2

1− q2
+ 32q3

1− q3
+ · · ·

}
+ 1

3

{
12q

1− q
+ 22q2

1− q2
+ 32q3

1− q3
+ · · ·

}
.



              

146 NICOLAS AND ROBIN

It follows that

Q6(N) ≤ 5σ2(N)− 2

3
(391)

for all values ofN. It also follows from (390) that

4

3
ζ(s− 2)ζ1(s)− 1

3
ζ(s)ζ1(s− 2) = 1−sQ6(1)+ 2−sQ6(2)+ 3−sQ6(3)+ · · · .

(392)

Let

N = 2a23a35a5 · · · pap,

whereaλ ≥ 0. Then from (390) we can show, as in the previous section, that if 2−a2 N be
of the form 4n+ 1, then

Q6(N) = N2 1− (22)−a2−1

1− 2−2

1− (−32)−a3−1

1+ 3−2

1− (52)−a5−1

1− 5−2
· · · 1−

{
(−1)

p−1
2 p2

}−ap−1

1− (−1)
p−1

2 p−2
;

(393)

and if 2−a2 N be of the form 4n− 1, then

Q6(N) = N2 1+ (22)−a2−1

1− 2−2

1− (−32)−a3−1

1+ 3−2

1− (52)−a5−1

1− 5−2
· · · 1−

{
(−1)

p−1
2 p2

}−ap−1

1− (−1)
p−1

2 p−2
.

(394)

It follows from (393) and (394) that, in order thatQ6(N) should be of maximum order,
2−a2 N must be of the form 4n − 1 anda2,a3,a7,a11, . . . must be 0; 3, 7, 11, . . . being
primes of the form 4n− 1. But all these cannot be satisfied at the same time since 2−a2 N
cannot be of the form 4n − 1, whena3,a7,a11, . . . are all zeros. So let us retain a single
prime of the form 4n− 1 in the end, that is to say, the largest prime of the form 4n− 1 not
exceedingp. Thus we see that, in order thatQ6(N) should be of maximum order,N must
be of the form

5a5.13a13.17a17 · · · pap .p′

wherep is a prime of the form 4n+ 1 andp′ is the prime of the form 4n− 1 next above or
below p; and consequently

Q6(N) = 5

3
N2 1− 5−2(a5+1)

1− 5−2

1− 13−2(a13+1)

1− 13−2
· · · 1− p−2(ap+1)

1− p−2
{1− (p′)−2}.
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From this we can show that the maximum order ofQ6(N) is

5N2e
1
2 Li
(

1
2 logN

)
+O
{

log logN

log N
√
(log N)

}
3
(
1− 1

52

)(
1− 1

132

)(
1− 1

172

)(
1− 1

292

) · · · =
5N2

{
1+ 1

2 Li
(

1
2 logN

)+ O(log logN)

log N
√
(log N)

}
3
(
1− 1

52

)(
1− 1

132

)(
1− 1

172

)(
1− 1

292

) · · ·
(395)

where 5, 13, 17,. . . are the primes of the form 4n+ 1
74. Let

(1+ 2q + 2q4+ 2q9+ · · ·)8
= 1+ 16{Q8(1)q + Q8(2)q

2+ Q8(3)q
3+ · · ·}.

Then, by means of elliptic functions, we can show that

Q8(1)q + Q8(2)q
2+ Q8(3)q

3+ · · · (396)

= 13q

1+ q
+ 23q2

1− q2
+ 33q3

1+ q3
+ 43q4

1− q4
+ · · · .

But

σ3(1)q + σ3(2)q
2+ σ3(3)q

3+ · · ·
= 13q

1− q
+ 23q2

1− q2
+ 33q3

1− q3
+ · · · .

It follows that

Q8(N) ≤ σ3(N) (397)

for all values ofN. It can also be shown from (396) that

(1− 21−s + 42−s)ζ(s)ζ(s− 3) = Q8(1)1
−s + Q8(2)2

−s + Q8(3)3
−s + · · · . (398)

Let

N = 2a2.3a3.5a5 · · · pap,

whereaλ ≥ 0. Then from (396) we can easily show that, ifN is odd, then

Q8(N) = N3 1− 2−3(a2+1)

1− 2−3

1− 3−3(a3+1)

1− 3−3
· · · 1− p−3(ap+1)

1− p−3
; (399)

and if N is even then

Q8(N) = N3 1− 15.2−3(a2+1)

1− 2−3

1− 3−3(a3+1)

1− 3−3
· · · 1− p−3(ap+1)

1− p−3
. (400)
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Hence the maximum order ofQ8(N) is

ζ(3)N3e
Li (log N)−2+O

(
(log N)−5/2

log logN

)

= ζ(3)N3

{
1+ Li (log N)−2+ O

(
(log N)−5/2

log logN

)}
or more precisely

ζ(3)N3

{
1+ Li (log N)−2− 6(21/6− 1)(log N)−5/2

5 log logN
+ S3(log N)

log logN
+ O

(
(log N)−5/2

(log logN)2

)}
.

(401)

75. There are of course results corresponding to those of Sections 72–74 for the various
powers ofQ̄ where

Q̄ = 1+ 6

(
q

1− q
− q2

1− q2
+ q4

1− q4
− q5

1− q5
+ · · ·

)
.

Thus for example

(Q̄)2 = 1+ 12

(
q

1− q
+ 2q2

1− q2
+ 4q4

1− q4
+ 5q5

1− q5
+ · · ·

)
, (402)

(Q̄)3 = 1− q

(
12q

1− q
− 22q2

1− q2
+ 42q4

1− q4
− 52q5

1− q5
+ · · ·

)
+ 27

(
12q

1+ q + q2
+ 22q2

1+ q2+ q4
+ 33q3

1+ q3+ q6
+ · · ·

)
, (403)

(Q̄)4 = 1+ 24

(
13q

1− q
+ 23q2

1− q2
+ 33q3

1− q3
+ · · ·

)
+ 8

(
33q3

1− q3
+ 63q6

1− q6
+ 93q9

1− q9
+ · · ·

)
. (404)

The number of ways in which a number can be expressed in the formsm2+2n2, k2+ l 2+
2m2+ 2n2,m2+ 3n2, andk2+ l 2+ 3m2+ 3n2 can be found from the following formulae.

(1+ 2q + 2q4+ 2q9+ · · ·)(1+ 2q2+ 2q8+ 2q18+ · · ·)
= 1+ 2

(
q

1− q
+ q3

1− q3
− q5

1− q5
− q7

1− q7
+ · · ·

)
, (405)

(1+ 2q + 2q4+ 2q9+ · · ·)2(1+ 2q2+ 2q8+ 2q18+ · · ·)2

= 1+ 4

(
q

1− q2
+ 2q2

1− q4
+ 3q3

1− q6
+ 4q4

1− q8
+ · · ·

)
, (406)

(1+ 2q + 2q4+ 2q9+ · · ·)(1+ 2q3+ 2q12+ 2q27+ · · ·)
= 1+ 2

(
q

1− q
− q2

1+ q2
+ q4

1+ q4
− q5

1− q5
+ q7

1− q7
− · · ·

)
, (407)



                      

HIGHLY COMPOSITE NUMBERS 149

(1+ 2q + 2q4+ 2q9+ · · ·)2(1+ 2q3+ 2q12+ 2q27+ · · ·)2

= 1+ 4

(
q

1+ q
+ 2q2

1− q2
+ 4q4

1− q4
+ 5q5

1+ q5
+ 7q7

1+ q7
+ · · ·

)
(408)

where 1, 2, 4, 5. . . are the natural numbers without the multiples of 3.

Notes

52. The definition ofQ2(N) given in italics is missing in [18]. It has been formulated in the same terms as
the definition ofQ̄2(N) given in Section 55. ForN 6= 0, 4Q2(N) is the number of pairs(x, y)εZ2 such that
x2 + y2 = N.

Formula (269) links together Dirichlet’s series and Lambert’s series (see [5], p. 258).
53. Effective upper bounds forQ2(N) can be found in [21], p. 50 for instance:

log Q2(N) ≤ (log 2)(log N)

log logN

(
1+ 1− log 2

log logN
+ 2.40104

(log logN)2

)
.

The maximal order ofQ2(N) is studied in [8], but not so deeply as here. See also [12], pp. 218–219.
54. For a proof of (276), see [25], p. 22. In (276), we remind the reader thatρ is a zero of the Riemann zeta-function.
Formula (279) has been rediscovered and extended to all arithmetical progressions [23].
56. For a proof of (291), see [25], p. 22. In the definition ofR2(x), between formulas (290) and (291), and in the
definition of8(N), after formula (294), three misprints in [18] have been corrected, namely

∑ xρ

ρ2 and
∑ xρ2

ρ2
2have been written instead of

∑ xρ
ρ

and
∑ xρ2

ρ2
, andR2(2 logN) instead ofR2(log N).

57. Effective upper bounds ford2(N) can be found in [21], p. 51, for instance:

logd2(N) ≤ (log 3)(log N)

log logN

(
1+ 1

log logN
+ 5.5546

(log logN)2

)
.

For a more general study ofdk(n), whenk andn go to infinity, see [3] and [14].
58. The words in italics do not occur in [18] where the definition ofσ−s(N) and the proof of (301) were missing.
It is not clear why Ramanujan consideredσ−s(N) only with s ≥ 0. Of course he knew that

σs(N) = Nsσ−s(N),

(cf. for instance Section 71, after formula (382)), but fors > 0 the generalised highly composite numbers for
σs(N) are quite different, and for instance property (303) does not hold for them.
59. It would be better to call these numberss-generalised highly composite numbers, because their definition
depends ons. For s = 1, these numbers have been called superabundant by Alaoglu and Erd¨os (cf. [1, 4])
and the generalised superior highly composite numbers have been called colossally abundant. The solution of
2s + 4s + 8s = 3s + 9s is approximately 1.6741.
60–61. Fors= 1, the results of these sections are in [1] and [4].
62. The references given here, formula (16) and Section 38 are from [16]. For a geometrical interpretation of∑
−s(N), see [12], p. 230. Consider the piecewise linear functionu 7→ f (u) such that for all generalised superior

highly composite numbersN, f (log N) = logσ−s(N), then for allN,∑
−s
(N) = exp( f (log N)).

Infinite integrals mean in fact definite integrals. For instance, in formula (320),
∫
επ(xr )

xr
dxr should be read∫ xr

2
επ(t)

t dt.
64. Formula (329) is proved in [25] p. 29 from the classical explicit formula in prime number theory.
65. There is a misprint in the last term of formula (340) in [18], but, may be it is only a mistake of copying,
since the next formula is correct. This section belongs to the part of the manuscript which is not handwritten by
Ramanujan in [18].
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Table of largely composite numbers.

n d n d n d

1 1 7560 64 23.33.5.7 942480 240 24.32.5.7.11.17
*2 2 2 9240 64 23.3.5.7.11 982800 240 24.33.52.7.13
3 2 3 10080 72 25.32.5.7 997920 240 25.34.5.7.11
4 3 22 12600 72 23.32.52.7 1053360 240 24.32.5.7.11.19

*6 4 2.3 13860 72 22.32.5.7.11 1081080 256 23.33.5.7.11.13
8 4 23 15120 80 24.33.5.7 1330560 256 27.33.5.7.11

10 4 2.5 18480 80 24.3.5.7.11 1413720 256 23.33.5.7.11.17
*12 6 22.3 20160 84 26.32.5.7 *1441440 288 25.32.5.7.11.13
18 6 2.32 25200 90 24.32.52.7 1663200 288 25.33.52.7.11
20 6 22.5 27720 96 23.32.5.7.11 1801800 288 23.32.52.7.11.13
24 8 23.3 30240 96 25.33.5.7 1884960 288 25.32.5.7.11.17
30 8 2.3.5 32760 96 23.32.5.7.13 1965600 288 25.33.52.7.13
36 9 22.32 36960 96 25.3.5.7.11 2106720 288 25.32.5.7.11.19
48 10 24.3 37800 96 23.33.52.7 2162160 320 24.33.5.7.11.13

*60 12 22.3.5 40320 96 27.32.5.7 2827440 320 24.33.5.7.11.17
72 12 23.32 41580 96 22.33.5.7.11 2882880 336 26.32.5.7.11.13
84 12 22.3.7 42840 96 23.32.5.7.17 3326400 336 26.33.52.7.11
90 12 2.32.5 43680 96 25.3.5.7.13 3603600 360 24.32.52.7.11.13
96 12 25.3 45360 100 24.34.5.7 *4324320 384 25.33.5.7.11.13

108 12 22.33 50400 108 25.32.52.7 5405400 384 23.33.52.7.11.13
*120 16 23.3.5 *55440 120 24.32.5.7.11 5654880 384 25.33.5.7.11.17
168 16 23.3.7 65520 120 24.32.5.7.13 5765760 384 27.32.5.7.11.13
180 18 22.32.5 75600 120 24.33.52.7 6126120 384 23.32.5.7.11.13.17
240 20 24.3.5 83160 128 23.33.5.7.11 6320160 384 25.33.5.7.11.19
336 20 24.3.7 98280 128 23.33.5.7.13 6486480 400 24.34.5.7.11.13

*360 24 23.32.5 110880 144 25.32.5.7.11 7207200 432 25.32.52.7.11.13
420 24 22.3.5.7 131040 144 25.32.5.7.13 8648640 448 26.33.5.7.11.13
480 24 25.3.5 138600 144 23.32.52.7.11 10810800 480 24.33.52.7.11.13
504 24 23.32.7 151200 144 25.33.52.7 12252240 480 24.32.5.7.11.13.17
540 24 22.33.5 163800 144 23.32.52.7.13 12972960 480 25.34.5.7.11.13
600 24 23.3.52 166320 160 24.33.5.7.11 13693680 480 24.32.5.7.11.13.19
630 24 2.32.5.7 196560 160 24.33.5.7.13 14137200 480 24.33.52.7.11.17
660 24 22.3.5.11 221760 168 26.32.5.7.11 14414400 504 26.32.52.7.11.13
672 24 25.3.7 262080 168 26.32.5.7.13 17297280 512 27.33.5.7.11.13
720 30 24.32.5 277200 180 24.32.52.7.11 18378360 512 23.33.5.7.11.13.17
840 32 23.3.5.7 327600 180 24.32.52.7.13 20540520 512 23.33.5.7.11.13.19

1080 32 23.33.5 332640 192 25.33.5.7.11 *21621600 576 25.33.52.7.11.13
1260 36 22.32.5.7 360360 192 23.32.5.7.11.13 24504480 576 25.32.5.7.11.13.17
1440 36 25.32.5 393120 192 25.33.5.7.13 27387360 576 25.32.5.7.11.13.19
1680 40 24.3.5.7 415800 192 23.33.52.7.11 28274400 576 25.33.52.7.11.17
2160 40 24.33.5 443520 192 27.32.5.7.11 28828800 576 27.32.52.7.11.13

*2520 48 23.32.5.7 471240 192 23.32.5.7.11.17 30270240 576 25.33.5.72.11.13
3360 48 25.3.5.7 480480 192 25.3.5.7.11.13 30630600 576 23.32.52.7.11.13.17
3780 48 22.33.5.7 491400 192 23.33.52.7.13 31600800 576 25.33.52.7.11.19
3960 48 23.32.5.11 498960 200 24.34.5.7.11 32432400 600 24.34.52.7.11.13
4200 48 23.3.52.7 554400 216 25.32.52.7.11 36756720 640 24.33.5.7.11.13.17
4320 48 25.33.5 655200 216 25.32.52.7.13 41081040 640 24.33.5.7.11.13.19
4620 48 22.3.5.7.11 665280 224 26.33.5.7.11 43243200 672 26.33.52.7.11.13
4680 48 23.32.5.13 *720720 240 24.32.5.7.11.13 49008960 672 26.32.5.7.11.13.17

*5040 60 24.32.5.7 831600 240 24.33.52.7.11 54774720 672 26.32.5.7.11.13.19
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n d n d

56548800 672 26.33.52.7.11.17 232792560 960 24.32.5.7.11.13.17.19
60540480 672 26.33.5.72.11.13 245044800 1008 26.32.52.7.11.13.17
61261200 720 24.32.52.7.11.13.17 273873600 1008 26.32.52.7.11.13.19
64864800 720 25.34.52.7.11.13 294053760 1024 27.33.5.7.11.13.17
68468400 720 24.32.52.7.11.13.19 328648320 1024 27.33.5.7.11.13.19
73513440 768 25.33.5.7.11.13.17 349188840 1024 23.33.5.7.11.13.17.19
82162080 768 25.33.5.7.11.13.19 *367567200 1152 25.33.52.7.11.13.17
86486400 768 27.33.52.7.11.13 410810400 1152 25.33.52.7.11.13.19
91891800 768 23.33.52.7.11.13.17 465585120 1152 25.32.5.7.11.13.17.19
98017920 768 27.32.5.7.11.13.17 490089600 1152 27.32.52.7.11.13.17
99459360 768 25.33.5.7.11.13.23 497296800 1152 25.33.52.7.11.13.23

102702600 768 23.33.52.7.11.13.19 514594080 1152 25.33.5.72.11.13.17
107442720 768 25.33.5.7.11.17.19 537213600 1152 25.33.52.7.11.17.19
108108000 768 25.33.53.7.11.13 547747200 1152 27.32.52.7.11.13.19
109549440 768 27.32.5.7.11.13.19 551350800 1200 24.34.52.7.11.13.17
110270160 800 24.34.5.7.11.13.17 616215600 1200 24.34.52.7.11.13.19
122522400 864 25.32.52.7.11.13.17 698377680 1280 24.33.5.7.11.13.17.19
136936800 864 25.32.52.7.11.13.19 735134400 1344 26.33.52.7.11.13.17
147026880 896 26.33.5.7.11.13.17 821620800 1344 26.33.52.7.11.13.19
164324160 896 26.33.5.7.11.13.19 931170240 1344 26.32.5.7.11.13.17.19
183783600 960 24.33.52.7.11.13.17 994593600 1344 26.33.52.7.11.13.23
205405200 960 24.33.52.7.11.13.19 1029188160 1344 26.33.5.72.11.13.17
220540320 960 25.34.5.7.11.13.17 1074427200 1344 26.33.52.7.11.17.19

This table has been built to explain the table handwritten by S. Ramanujan which is displayed on p. 150. An
integern is said largely composite ifm ≤ n ⇒ d(m) ≤ d(n). The numbers marked with one asterisk are
superior highly composite numbers.

Notes (Continued)

The approximations given for 1/
√

mn comes from the Pad´e approximant of
√

t in the neighborhood oft = 1:
3t+1
t+3 = 1/( 1

3 + 8
3(3t+1) ).

68. There are two formulas (362) in [18], p. 299. Formula (362) can be found in [11]. As observed by Birch (cf.
[2], p. 74), there is some similarity between the calculation of Section 63 to Section 68, and those appearing in [18],
pp. 228–232. In formulas (356) and (357)Li {θ(x)}1−s should be readLi ({θ(x)}1−s), the same forLi

√
log N in

(380) and for several other formulas.
71. There is a wrong sign in formula (379) of [18], and also in formulas (381) and (382). The two inequalities

following formula (382) were also wrong. In formula (380), the right coefficient in the right hand side is−
√

2
2 ζ(1/2)

instead of−√2ζ(1/2) in [18]. It follows from (382) that under the Riemann hypothesis, and forn0 large enough,

n > n0⇒ σ(n)/n ≤ eγ log logn.

It has been shown in [22] that the above relation withn0 = 5040 is equivalent to the Riemann hypothesis.
72. Formula (384) is due to Jacobi. For a proof see [5] p. 311. See also [6], pp. 132–160. In formula (389) of
[18], the sign of the second term in the curly bracket was wrong.
73. Formula (390) is proved in [15], p. 198 (90.3). It is true that if

N = 5a513a1317a17 · · · pap p′

with p′ ∼ p, thenQ6(N) will have the maximal order (395). But, if we define a superior champion forQ6, that

is to say anN which maximisesQ6(N)N−2−ε for anε > 0, it will be of the above form, withp′ ∼ p
√

log p
2 . In

(395), the error term was writtenO( 1
(log N)3/2 log logN

) in [18], cf. [25].
74. Formula (396) is proved in [15], p. 198 (90.4). In formula (401) the sign of the third term in the curly bracket
was wrong in [18]. In [18], the right hand side of (398) was written as the left hand side of (396).
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Table, p. 150: This table calculated by Ramanujan occurs on p. 280 in [18]. It should be compared to the
table of largely composite numbers, p. 151–152. The entry 150840 is not a largely composite number:

150840= 23.32.5.419 and d(150840) = 48

while the four numbers 4200, 151200, 415800, 491400 are largely composite and do not appear in the table of
Ramanujan. Largely composite numbers are studied in [9].
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