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Let A be a set of positive integers, p(A, n) be the number of partitions of n with
parts in A, and p(n)= p(N, n). It is proved that the number of n�N for which p(n)
is even is >>- N, while the number of n�N for which p(n) is odd is �N1�2+o(1).
Moreover, by using the theory of modular forms, it is proved (by J.-P. Serre) that,
for all a and m the number of n, such that n#a (mod m), and n�N for which
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is constructed with the properties that p(A, n) is even for all n�4 and its counting
function A(x) (the number of elements of A not exceeding x) satisfies A(x)>>
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1

Z and N denote the set of the integers, resp. positive integers. A, B, ...
will denote sets of positive integers, and their counting functions will be
denoted by A(x), B(x), ... so that, e.g.,

A(x)=|[a: a�x, a # A] |.

If a, b # N, [a, b) will denote the set of the integers n such that a�n<b.
If A=[a1 , a2 , ...]/N (where a1<a2< } } } ), then p(A, n) denotes the
number of solutions of the equation

a1x1+a2x2+ } } } =n

in non-negative integers x1 , x2 , ... and, in particular, p(n) (= p(N, n))
denotes the number of unrestricted partitions of n. Moreover, the number
of solutions of

ai+aj=n, i� j

will be denoted by r(A, n). Ramanujan initiated the study of the parity of
the numbers p(n). Kolberg [2] proved that p(n) assumes both even and odd
values infinitely often. Improving on an estimate of Mirsky [4], Nicolas
and Sa� rko� zy [5] proved that there are at least (log N)c (c>0) numbers n
such that n�N and p(n) is even, and there are at least (log N)c numbers
m�N such that p(m) is odd. Moreover, they extended the problems by
proposing the study of the parity of the functions p(A, n) and r(A, n) for
A/N. (See [5] and [6] for further references.)

In this paper first we will improve on the result of Nicolas and Sa� rko� zy
mentioned above:

Theorem 1. There are absolute constants c1 (>0), N0 such that if N>N0 ,
then there are at least c1N 1�2 integers n for which n�N and p(n) is even.

Theorem 2. For all =>0 there is a number N1=N1(=) such that if N>N1

then there are at least N1�2 exp(&(log 2+=) log N�log log N integers n for
which n�N and

p(n)�p(n&1) (mod 2)

(and consequently the same lower bound holds for the number of integers n
for which n�N and p(n) is odd).

Subbarao [11] conjectured that every infinite arithmetic progression
r, r+q, r+2q, ... of positive integers contains infinitely many integers m for
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which p(m) is odd, and it contains infinitely many integers n for which p(n)
is even. For special values of r and q, this conjecture has been proved by
Garvan, Kolberg, Hirschhorn, Stanton, and Subbarao. Ono [6] has proved
that for all r, q there are infinitely many integers n#r (mod q) for which
p(n) is even, moreover, in any arithmetic progression r, r+q, r+2q, ...
there are infinitely many integers m#r (mod q) for which p(m) is odd,
provided there is one such m. As pointed out by J.-P. Serre, it is possible
to prove the following quantitative version of the first half of Ono's theorem:

Theorem 3. If r is an integer and q # N, q�1 then, for any positive real
number c2 , there is a constant N2=N2(c2 , q)>0 such that for N>N2 there
are at least c2N 1�2 integers n for which n�N, n#r (mod q) and p(n) is even.

Note that Theorem 1 is weaker than Theorem 3, however, it can be
handled elementarily, while in order to prove Theorem 3 one needs a result
of Serre on modular forms ([8, 9]). Recently, Ahlgren ([1]) has given a
proof of a Theorem slightly weaker than Theorem 3, and has also proved
a quantitative version of Ono's Theorem about the odd values of the parti-
tion function. More precisely, Ahlgren has proved that, for all r and q, if
there exists an m#r (mod q) for which p(m) is odd, then

*[n�X, n#r (mod q), p(n) is odd]>>- (X)�log X.

In the Appendix, J.-P. Serre will give a proof of Theorem 3 in a larger
frame dealing with the parity of the coefficients of any modular form.

In the second half of this paper we will study the following problem:
As we pointed out in [5], there are infinitely many infinite sets A, B,

C and D such that p(A, n), resp. r(B, n) is even, while p(C, n), resp.
r(D, n) is odd from a certain point on; indeed, as the proof of Theorem 4
will show, any finite set E=[e1 , ..., ek]/N (where e1< } } } <ek) can be
extended to an infinite set A, B, C or D of the type described above so
that A & [1, ek]=E, B & [1, ek]=E, C & [1, ek]=E, resp. D & [1, ek]=E.
But what can one say on such a set A, B, C or D? In particular, how thin,
or how dense can be a set of this type?

In case of the function p(A, n), all we can show is that there is a set of
A for which A(x)>>x�log x and p(A, n) is even from a certain point on:

Theorem 4. There is an infinite set A/N such that

p(A, n) is even for n�4 (1.1)

and

lim inf
x � +�

A(x) log x
x

�
1
2

. (1.2)
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Studying the parity of the function r(A, n), one may start out from the
following observation: if r(A, n) is odd for n�n0 , then certainly

r(A, n){0 for n�n0 . (1.3)

This implies that A cannot be very thin. Indeed, a trivial counting argument
gives that if

lim inf
x � +�

A(x)
x1�2 <- 2

then

r(A, n)=0

infinitely often. On the other hand, it is known that there is an asymptotic
basis A of order 2 such that

lim sup
x � +�

A(x)
x1�2 <+�

(see Sto� hr [10]). Thus we may conclude relatively easily that if A is a set
of property (1.3) then A(x) must grow as fast as cx1�2, and this is the best
possible apart from the value of c.

We obtain a much more interesting question making the ``even analog''
of this observation. Indeed, if r(A, n) is even for n�n0 , then certainly

r(A, n){1 for n�n0 .

This implies that

lim inf
x � +�

A(x) log 2
log x

�1 (1.4)

since otherwise, writing A=[a1 , a2 , ...] (where a1<a2< } } } ) we had

2ak<ak+1

infinitely often, and for such a k we have

r(A, 2ak)=1.

So the question is whether (1.4) can be improved; how far is it from the
best possible? We shall be able to improve it to A(x)>>(log x)3�2&= and,
on the other hand, we will show that A(x)<<(log x)2 is possible:
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Theorem 5. If A is an infinite set of positive integers such that there is
a number n0 with

r(A, n){1 for n�n0 (1.5)

then we have

lim sup
x � +�

A(x)(log log x)3�2

(log x)3�2 �
1

20
. (1.6)

Theorem 6. There is an infinite set A/N such that

lim sup
x � +�

A(x)
(log x)2<+� (1.7)

and there is a number n0 with

r(A, n){1 for n�n0 . (1.8)

2

Proof of Theorem 1. Set p(0)=1 and p(&1)= p(&2)= } } } =0. As
in [5], we start out from Euler's identity

:
+�

j=0

=j p(n&u j)=0 (for all n # N) (2.1)

where

u2i=
i(3i+1)

2
(for i=0, 1, ...), u2i&1=

i(3i&1)
2

(for i=1, 2, ...)

and

=2i==2i&1=(&1) i.

Consider the set

Mn=[n&uj : 0�uj �n]. (2.2)

It follows from (2.1) that

:
m # Mn

p(m)#0 (mod 2)
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whence

|[m: m # Mn , p(m)#1 (mod 2)]|#0 (mod 2). (2.3)

Thus if |Mn | is odd, then there is at least one m # Mn for which p(m) is
even.

If k is definite by uk&1�n<uk , then we have |Mn |=k. Thus |Mn | is odd
if and only if n is in an interval of type

[u2 j , u2 j+1)=_ j(3 j+1)
2

,
( j+1)(3 j+3)

2 + .

For some n # N, the total length of intervals of this type contained in
[1, N] is c3N (indeed, their total length is (2�3+o(1)) N). Thus we have

|[(m, n): n�N, m # Mn , p(m)#0 (mod 2)] |>c4 N.

A number m is counted for those values of n that are of the form
n=m+uj . For m fixed, the number of such integers n is at most the
number of j 's satisfying uj�N which is, clearly, �c5N 1�2. Thus there at
least c4 N�c5N1�2=c6N1�2 distinct values of m�N for which p(m) is even
and this completes the proof of Theorem 1.

3

Proof of Theorem 2. Write f (n)= p(n)& p(n&1). By (2.1) we have

:
+�

j=0

=j f (n&u j)=0 (for all n # N).

Again, define Mn by (2.2). Then as in (2.3) we have

|[m: m # Mn , f (m)#1 (mod 2)]|#0 (mod 2). (3.1)

Consider now an integer n of the form n=uk . Then the number m=0=
n&uk is counted in (3.1) since we have

f (0)=1#1 (mod 2).

But then, by (3.1), the set [m: m # Mn , f (m)#1 (mod 2)] must have at
least one further element. Thus for any k # N, k�2 there is an integer j
such that 0� j�k&1 and, taking m=uk&uj , the number p(m)= p(uk&uj)
is odd.

297ADDITIVE REPRESENTATION FUNCTIONS



There are at least c7N1�2 numbers uk with uk�N, and to each of these
numbers uk , we assign a number m�N. Now we will estimate the multi-
plicity of these numbers m. To do this, observe that the numbers uk are of
the form

uk=
t(3t+1)

2

where t=i if k=2i, and t=&i if k=2i&1. Thus m=uk&uj is of the form

m=uk&u j=
t(3t+1)

2
&

s(3s+1)
2

=
(t&s)(3t+3s+1)

2
(3.2)

with certain integers t, s. Here t&s is a (positive or negative) divisor of m,
thus the total number of possible values of t&s is at most 2{(m) (where
{(m) is the divisor function). If t&s is given then it follows from (3.2) that

t+s=
1
3 \

2m
t&s

&1+
and t&s and t+s determine t and s, and thus also k and j uniquely. We
may conclude that the number m is counted with multiplicity at most
2{(m) which is, by Wigert's theorem [12],

2{(m)�2 max
m�N

{(m)<exp \(log 2+=�2)
log N

log log N+ (for N>N3(=)).

Thus the total number of the distinct m values counted is at least

c7N1�2�exp \(log 2+=�2)
log N

log log N+
>N1�2 exp \&(log 2+=)

log N
log log N+ (for N>N4(=))

which completes the proof of Theorem 2.

4

Proof of Theorem 4. The set A of the desired properties will be defined
by recursion. We write An=A & [1, 2, ..., n]. Let

A3=[1, 2, 3].
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Assume that n�4 and An&1 has been defined so that p(A, m) is even for
4�m�n&1. Then set

n # A if and only if p(An&1 , n) is odd. (4.1)

Note that p(A3 , 4)=4, so that 4 � A. We will show that the set A=[1, 2,
3, 5, 8, 9, 10, 13, 14, 16, ...]) obtained in this way satisfies (1.1) and (1.2).

It follows from the construction that for n�4 we have

if n # A, p(A, n)=1+ p(An&1 , n)

if n � A, p(A, n)= p(An&1 , n)

which, with (4.1), proves (1.1).
(Note that in the same way, any finite set B=[b1 , b2 , ..., bk] can be

extended to an infinite set A so that Abk=B and the parity of
p(A, bk+1), p(A, bk+2), ... is given. The difficulty is the estimate
of A(x).)

Next we will prove (1.2). Write

_(A, n)= :
d | n, d # A

d

and

f (A, x)= :
+�

n=0

p(A, n) xn;

by

p(A, n)�p(N, n)=exp(o(n)),

this power series is absolutely convergent for |x|<1. Moreover, by the
definition of p(A, n) for |x|<1 we have

f (A, x)= `
a # A

\ :
+�

k=0

xka+= `
a # A

1
1&xa .

Taking the logarithmic derivative of both sides we obtain for |x|<1 that

f $(A, x)
f (A, x)

= :
a # A

axa&1

1&xa

whence

xf $(A, x)= f (A, x) :
a # A

axa

1&xa . (4.2)
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Here we have

xf $(A, x)= :
+�

n=1

np(A, n) xn (4.3)

and

f (A, x) :
a # A

axa

1&xa= f (A, x) :
a # A

:
+�

k=1

axak

= f (A, x) :
+�

n=1
\ :

a | n, a # A

a+ xn

= :
+�

n=0

p(A, n) xn :
+�

n=1

_(A, n) xn

= :
+�

n=1
\ :

n&1

k=0

p(A, k) _(A, n&k)+ xn. (4.4)

It follows from (4.2), (4.3) and (4.4) that

np(A, n)= :
n&1

k=0

p(A, k) _(A, n&k) (for n=1, 2, ...). (4.5)

(This identity generalizes the well-known recursive formula

np(n)= :
n&1

k=0

p(k) _(n&k)

for p(n).)
By (1.1), it follows from (4.5) that for n�4 we have

0#np(A, n)

#_(A, n)+ p(A, 1) _(A, n&1)+ p(A, 2) _(A, n&2)

+p(A, 3) _(A, n&3)

#_(A, n)+_(A, n&1)+_(A, n&3) (mod 2)

whence

_(A, n)#_(A, n&1)+_(A, n&3) (mod 2) (for n�4). (4.6)
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A simple computation gives that

_(A, 1)=1#1 (mod 2), _(A, 2)=3#1 (mod 2) and

_(A, 3)=4#0 (mod 2). (4.7)

Combining (4.6) with (4.7), we obtain by an easy computation that

_(A, 4)#1 (mod 2), _(A, 5)#0 (mod 2),

_(A, 6)#0 (mod 2), _(A, 7)#1 (mod 2), (4.8)

_(A, 8)#1 (mod 2), _(A, 9)#1 (mod 2)

and

_(A, 10)#0 (mod 2),

so that

_(A, n+7)#_(A, n) (mod 2) for n=1, 2, 3. (4.9)

It follows from (4.6) and (4.9) that

_(A, n+7)#_(A, n) (mod 2) for all n # N. (4.10)

By (4.7), (4.8) and (4.10), for k=0, 1, 2, ... we have

_(A, 7k+i)#{0 (mod 2) if i=3, 5, 6
1 (mod 2) if i=1, 2, 4.

(4.11)

On the other hand, if p is a prime with p>2 then clearly we have

_(A, p)= :
a | p, a # A

a={1
1+ p#0 (mod 2)

if p � A

if p # A.
(4.12)

It follows from (4.11) and (4.12) that if p is a prime with ( p, 14)=1 then

p # A if p#3, 5 or 6 (mod 7)

and

p � A if p#1, 2 or 4 (mod 7).
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Thus by the prime number theorem of the arithmetic progressions of small
moduli, for x � +� we have

A(x)�|[ p: p prime, p�x, p#3, 5 or 6 (mod 7)]|

=\1
2

+o(1)+ x
log x

(4.13)

and

A(x)�[x]&|[ p: p prime, p�x, p#1, 2 or 4 (mod 7)]|

=x&\1
2

+o(1)+ x
log x

. (4.14)

(1.2) follows from (4.13) and this completes the proof of Theorem 4.
First we thought that, perhaps, even

A(x)=( 1
2+o(1)) x

holds. However, computing the elements of A up to 10.000, it turned out
that A(10.000)=2.204 so that, probably,

lim inf
x � +�

A(x)
x

<
1
2

.

5

Proof of Theorem 5. Assume that contrary to the assertion of the
theorem, A is an infinite set of positive integers such that (1.5) holds for
some n0 , however, we have

lim sup
x � +�

A(x)(log log x)3�2

(log x)3�2 <
1

20
. (5.1)

Denote the least integer a with a # A, a>n0 by a0 . Then first we will
show that we have

(x, 2x] & A{< for x>a0 . (5.2)

Indeed, assume that contrary to (5.2) there is a real number x such that

(x, 2x] & A=< (5.3)
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and

x>a0 . (5.4)

Let a� denote the greatest element of A with a� �x. Then by (5.4) and the
definition of a0 we have

a� �a0>n0 . (5.5)

Moreover

a� +a� =2a�

is a representation of n=2a� in form a+a$=n with a # A, a$ # A, and this
is the only representation of 2a� in this form since if a # A, a$ # A, then by
(5.3) and the definition of a� for max(a, a$)>a� we have

a+a$�max(a, a$)>2x�2a�

while for max(a, a$)�a� we have

a+a$<2a�

unless a=a$=a� . Thus we have

r(A, 2a� )=1. (5.6)

(5.5) and (5.6) contradict (1.5) and this completes the proof of (5.2).
Now define the infinite sequence B=[b1 , b2 , ...] (where b1<b2< } } } ) of

positive integers by the following recursion:
Let b1 denote the smallest element of A greater than 1010, so that

b1 # A, b1>1010.

Assume now that b1 , b2 , ..., bk have been defined. Then it follows from (5.1)
that there is at least one integer b such that

b>bk , [b&bk , b] & A=b

(since otherwise A had positive upper density contrary to (5.1)). Let bk+1

denote the smallest of these integers b:

bk+1=min[b: b>bk , [b&bk , b&1] & A=<, b # A]. (5.7)

Next we will prove

303ADDITIVE REPRESENTATION FUNCTIONS



Lemma 1. There is a number x1 such that for x>x1 we have

B(x)>
log x

2 log log x
( for x>x1). (5.8)

Proof of Lemma 1. First we will prove that there is a number k0 such
that

bk+1<bk \ log bk

log log bk+
3�2

for k>k0 . (5.9)

Assume that contrary to (5.9), we have

bk+1�bk \ log bk

log log bk+
3�2

(5.10)

for a large k. We have to show that this indirect assumption leads to a
contradiction for every large k.

If k is large enough, then by (5.2) there is a number a such that

a # _1
2

bk \ log bk

log log bk+
3�2

, bk \ log bk

log log bk +
3�2

+ (5.11)

so that, by (5.10), A<Bk+1 . It follows from (5.10), (5.11) and definition
(6.7) of bk+1 that

(a& jbk , a&( j&1) bk] & A{< (5.12)

for every j # N such that

a& jbk�bk

or, in equivalent form,

j+1�
a

bk
, j�_ a

bk&&1. (5.13)

Writing y=bk(log bk �log log bk)3�2, by (5.11), (5.12) and (5.13) for large
enough k we have

A( y)�A(a)� :
[a�bk]&1

j=1

(A(a&( j&1) bk)&A(a& jbk))� :
[a�bk]&1

j=1

1

=_ a
bk &&1�_1

2 \
log bk

log log bk+
3�2

&&1>
1
3 \

log bk

log log bk+
3�2

>
1
4 \

log y
log log y+

3�2

.
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For k large enough (note that y>bk) this contradicts (5.1), and this
completes the proof of (5.9).

It remains to derive (5.8) from (5.9). Assume that x is large, and define
the positive integer k by

bk�x<bk+1 . (5.14)

Then for x large enough, by (5.9) and (5.14) we have

x<bk+1 =b1 `
k+1

k=2

b i

bi&1

<O(1) `
k+1

i=k0+2
\ log b i&1

log log bi&1 +
3�2

<\\ log bk

log log bk+
3�2

+
k

�\\ log x
log log x+

3�2

+
k

whence, for x large enough,

k>
log x

2 log log x
. (5.15)

By (5.14) and (5.15) we have

B(x)�B(bk)=k>
log x

2 log log x

which completes the proof of Lemma 1.

Next we will prove

Lemma 2. If A is defined as above (in particular, (1.5) and (5.1) hold )
then there is a positive real number x2 such that writing z=z(x)=2x(log x�
log log x)3�2, for x>x2 we have

A(z)&A(x)>
1
3 \

log x
log log x+

1�2

. (5.16)

Proof of Lemma 2. If x is large enough then by (5.2) we have

(2x, z�2] & A{<. (5.17)

Let A=[a1 , a2 , ..., ] with a1<a2< } } } , and define Mx by

Mx= max
2x<ai�z�2

(ai&ai&1). (5.18)

(The set 2x<ai<z�2 is non-empty by (5.17).)
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Case 1. Assume first that

Mx�x. (5.19)

By (5.2), for x large enough there is an integer a$ with

z
4

<a$�
z
2

, a$ # A. (5.20)

Then by (5.20) and the definition of Mx , for every positive integer j with

a$& jx>x (5.21)

we have

(a$& jx, a$&( j&1)x] & A{<. (5.22)

(5.21) can be rewritten in the equivalent form

j<
a$
x

&1. (5.23)

By (5.20), (5.23) follows from

j<
z

4x
&1.

Thus by (5.20) and (5.22), for x large enough we have

A(z)&A(x)�A(a$)&A(x)

� :
[z�4x]&2

j=1

(A(a$&( j&1) x)&A(a$& jx))� :
[z�4x]&2

j=1

1

=_ z
4x&&2>

z
5x

>
1
3 \

log x
log log x+

3�2

so that (5.16) holds in this case.

Case 2. Assume now that

Mx>x. (5.24)

Assume that the maximum in (5.18) is attained for i=i0 :

Mx=ai0
&ai0&1 ,
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and write ai0
=a*. Consider all the sums

bi+a* with i=1, 2, ..., B(x).

Here we have bi # B/A so that

r(A, bi+a*)�1 for i=1, 2, ..., B(x).

By (1.5) and

bi+a*>a*>2x, (5.25)

this implies for x large enough that

r(A, bi+a*)�2 for i=1, 2, ..., B(x),

so that each of the numbers bi+a* must have at least one further represen-
tation in form a$+a" with a$ # A, a" # A. Let

bi+a*=a$i+ai" (for i=1, 2, ..., B(x)) (5.26)

with

a$i # A, ai" # A, a$i�ai" (5.27)

and

max(bi , a*){ai" . (5.28)

For 1�i�B(x) clearly we have

bi�bB(x)�x

so that by (5.25), (5.28) can be replaced by

a*{ai" .

Let I1 denote the set of the integers i with 1�i�B(x) and ai"<a* so
that

ai"<a* (for i # I1), (5.29)

and write I2=[1, 2, ..., B(x)]"I1 (so that ai">a* for i # I2).
If i # I1 then by (5.24), (5.26), (5.29) and the definition of a* we have

a$i=a*+bi&ai">a*&ai"=ai0
&ai"�ai0

&ai0&1=Mx>x. (5.30)
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It follows from (5.27), (5.29), (5.30) and

a*=ai0
�z�2<z (5.31)

that a$i # A, a" # A and

x<a$i�ai"<a*<z. (5.32)

Clearly, the number of pairs (a$i , ai") with these properties is at most
(A(z)&A(x))2 so that

|I1 |�(A(z)&A(x))2. (5.33)

Assume now that

|I2 |�2,

and let i # I2 , j # I2 , i< j (�B(x)). Then by the definition of I2 we have

ai">a*, aj">a*. (5.34)

Now we will show that

ai"<a j". (5.35)

We will prove this by showing that the opposite inequality

ai"�a j" (5.36)

leads to a contradiction.
By (5.26) we have

ai"=a*+bi&a$i<a*+bi . (5.37)

It follows from (5.26) (with j in place of i), (5.36) and (5.37) that

a$j =a*+bj&a j"�a*+bj&ai">a*+bj&(a*+bi)

=bj&bi�bj&bj&1 . (5.38)

On the other hand, by (5.26) (with j in place of i) and (5.34) we have

a$j=a*+bj&aj"<a*+bj&a*=bj . (5.39)

It follows from (5.38) and (5.39) that

[bj&bj&1 , b j) & A{<

which contradicts definition (5.7) of bj , and this proves (5.35).
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Thus if we write |I2 |=t and I2=[i1 , i2 , ..., it] where i1<i2< } } } <it ,
and t�2, then by (5.34), (5.35) and (5.37) we have

a*<a"i1<a"i2< } } } <a"it<a$+b it
�a*+bB(x)�a*+x. (5.40)

It follows from (5.25), (5.31) and (5.40) that

x<a"i1<a"i2
< } } } <a"it<a*+x�

z
2

+x<z

where a"i1 # A, ..., a"it # A. Thus |I2 |=t�2 implies

|I2 |=t�|[a: x<a<z, a # A]|�A(z)&A(x)

so that

|I2 |�(A(z)&A(x))+1. (5.41)

It follows from (5.33), (5.41) and the definition of I1 and I2 that

B(x)=|I1 |+|I2 |�(A(z)&A(x))2+(A(z)&A(x))+1

�2(A(z)&A(x))2+1.

By Lemma 1, this implies that

A(z)&A(x)�\1
2

(B(x)&1)+
1�2

>
1
3 \

log x
log log x+

1�2

so that (5.16) holds also in Case 2 and this completes the proof of
Lemma 2.

Completion of the Proof of Theorem 5. It remains to derive a contra-
diction with (1.6) from Lemma 2.

Let x be a large number, and define the numbers y0> y1> } } } > yu with
u=u(x) in the following way: let y0=x,

yj&1=2yj \ log yj

log log yj+
3�2

for j=1, 2, ...,

and define the positive integer u by

yu&1�x1�2> yu . (5.42)
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Then we have

x1�2<
x
yu

=
y0

yu
= `

u

j=1

y j&1

yj
= `

u

j=1

2 \ log y j

log log y j+
3�2

<\2 \ log y0

log log y0+
3�2

+
u

=\2 \ log x
log log x+

3�2

+
u

.

For x large enough it follows that

u>
1
4

log x
log log x

. (5.43)

By (5.42), (5.43) and Lemma 2, we have

A(x)�A(x)&A( yt)= :
u

j=1

(A( yj&1)&A( yj))> :
u&1

j=1

1
3 \

log yj

log log yj +
1�2

�
1
3

(u&1) \ log yu&1

log log yu&1+
1�2

>
1
5

u \ log x
log log x+

1�2

>
1
20 \

log x
log log x+

3�2

for all x large enough which contradicts (5.1) and this completes the proof
of Theorem 5.

6

Proof of Theorem 6. For n # N, let g(n) denote the number of 2-powers
used in the binary representation of n, i.e., if

n= :
t

i=0

=i2
i with =i=0 or 1 (for i=0, 1, ..., t),

then let

g(n)= :
t

i=0

=i .

Define the set A by

A=[n: n # N, g(n)=1 or 2].

We will show that this set A has the desired properties.
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In order to show (1.7), observe that if n # A, n�x then

n # [2u: u # Z, 0�u, 2u�x] _ [2u+2v: u, v # Z, 0�u<v, 2v�x].

Clearly we have

|[2u: u # Z, 0�u, 2u�x] |=_log x
log 2&+1

and

|[2u+2v: u, v # Z, 0�u<v, 2v�x] |

� }{u: u # Z, 0�u<_log x
log 2&=} }{v: v # N, v�_log x

log 2&=}
=_log x

log 2&
2

.

It follows that

A(x)�_log x
log 2&+1+_log x

log 2&
2

whence

lim sup
x � +�

A(x)(log x)&2�(log 2)&2

which proves (1.7).

In order to prove (1.8) first we prove

Lemma 3. If n # N and n is the sum of t 2-powers, i.e.,

n=2i1+2i2+ } } } +2it (6.1)

where t # N, i1 , i2 , ..., it # Z and 0�i1�i2� } } } �it , then we have

g(n)�t. (6.2)

Proof of Lemma 3. We prove the assertion of the lemma by induction
on t. If t=1 then (6.2) holds trivially with equality sign. Assume now that
t�2 and (6.2) holds with t&1 in place of t. Consider now a positive
integer n of the form (6.1). If ij<ij+1 for each of j=1, 2, ..., t&1, then
again (6.2) holds with equality sign. If there is a j with ij=ij+1 , then
replacing 2ij+2ij+1 by 2ij+1 on the right hand side of (6.1) we obtain the
representation of n as the sum of t&1 2-powers, and thus by our induction
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hypothesis we have g(n)�t&1 which implies (6.2), and this completes the
proof of Lemma 3.

It follows trivially from Lemma 3 that

g(u+v)�g(u)+ g(v) for all u, v # N.

Consequently, if n can be represented in the form n=a+a$ with a # A,
a$ # A then we have

g(n)�g(a)+ g(a$)�2+2=4.

Thus to prove (1.8), it suffices to show that if

g(n)�4

and

n�4, (6.3)

then r(A, n)�2, i.e., n has at least two representations in the form

n=a+a$ with a�a$ (6.4)

and a, a$ # A, i.e.,

1�g(a), g(a$)�2. (6.5)

To show this, we have to distinguish four cases.

Case 1. Assume first that g(n)=4, i.e.,

n=2u+2v+2z+2w with u<v<z<w.

Then choosing first a=2u+2v, a$=2z+2w and then a=2u+2z,
a$=2v+2w, we obtain two different representations of n satisfying (6.4)
and (6.5).

Case 2. Assume now that g(n)=3, i.e.,

n=2u+2v+2z with u<v<z.

Then clearly 2u+(2v+2z) and (2u+2v)+2z are two different representa-
tions of n in the form (6.4) with a, a$ # A and (6.5).

Case 3. Assume that g(n)=2, i.e.,

n=2u+2v with u<v.

Then (6.4) and (6.5) hold with a=2u and a$=2v, so that it suffices to find
a second representation of n in the form a+a$. By (6.3), at least one of the
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inequalities u�1, v�u+2 holds. In the first case a=2u&1, a$=2u&1+2v,
while in the second case a=2v&1, a$=2u+2v&1 provides a second
representation of the desired form.

Case 4. Assume finally that g(n)=1, i.e., n=2u. Then by (6.3), the
pairs a=2u&1, a$=2u&1, resp. a=2u&2, a$=2u&2+2u&1 provide two
different representations of n in the desired form, and this completes the
proof of Theorem 6.

7

Define the sequence E=[e1 , e2 , ...] # [&1, +1]� in the following way:
let

en={+1 if p(n)#1 (mod 2)
&1 if p(n)#0 (mod 2).

(7.1)

From the computations of Parkin and Shanks ([7]), the study of the
parity of p(n) leads quite naturally to the guess that the binary sequence E
is ``of random type'', or, more exactly, it is a ``pseudorandom'' sequence.
However, it seems to be hopeless to prove any strict mathematical theorem
in this direction. At the present, even the proof of the weakest ``random
type'' property

lim
N � +�

|[n: n�N, en=+1]|
|[n: n�N, en=&1] |

=1

seems to be beyond our reach. Thus the best that we can do is to gather
some numerical evidence by testing the finite sequence

EN=[e1 , e2 , ..., en]

for pseudorandomness for a possibly large N.
As measures of pseudorandomness of finite binary sequences, Mauduit

and Sa� rko� zy [3] propose to use the ``well-distribution measure'' and
``correlation measure''. The well-distribution measure and correlation
measure of order 2 of the sequence EN=[e1 , e2 , ..., eN] with ei=\1 are
defined as

W(EN)= max
1�a<a+kb�N

|ea+ea+b+ } } } +ea+kb | (7.2)
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and

C2(EN)= max
1�k�N&1

max
1�d�N&k \ :

N&k&d

i=0

ek+i ek+d+i+ (7.3)

respectively; if these measures are ``much smaller'' than N, then the
sequence EN can be considered to be pseudorandom. (One might light to
study (auto)correlation of higher order, too, but this would restrict the size
of N considerably.)

We are pleased to thank Marc Dele� glise who has computed these
measures for the sequence En=[e1 , e2 , ..., eN] (where eN is defined by (7.1)
and has obtained:

N W(EN) a max b max

100 16 1 2
1000 55 1 1
5000 81 1 1

12000 91 146 10
20000 90 6663 13

100000 641 21017 1

where a max and b max give one value of a and b for which the maximum
in (7.2) is attained. For C2(EN) M. Dele� glise has found:

N C2(EN) k max d max

100 20 2 20
1000 85 69 74

10000 374 2501 451

where k max and d max give a value of k and d for which the maximum
in (7.3) is attained. The values of W(EN) and C2(EN) displayed above are
much smaller than N, so that, indeed, one expects the infinite sequence E
to be pseudorandom.

APPENDIX

J.-P. Serre1

Le The� ore� me 3 ci-dessus peut être ge� ne� ralise� de la fac� on suivante:
Soit f =� anqn une se� rie a� coefficients (mod 2), que je suppose ``modulaire''

(au sens pre� cise� ci-dessous), de poids entier (positif ou ne� gatif, mais c'est
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le cas ne� gatif qui nous inte� resse). Soit L une progression arithme� tique.
Notons ZL, f (N) le nombre des entiers n # L avec 0<n�N tels que an=0.

The� ore� me. On a ZL, f (N)�N 1�2 � � pour N � �.

Voici ce que j'entends par ``modulaire'': re� duction mod 2 d'une fonction
modulaire de poids k, avec k # Z, sur un sous-groupe de congruence de
SL2(Z), cette fonction e� tant holomorphe dans le demi-plan de Poincare� , et
me� romorphe aux pointes. Une autre fac� on d'e� noncer ces proprie� te� s est de
dire qu'il existe une puissance 2m de 2 (de� finie par 2(q)=q >�

n=1 (1&qn)24)
telle que le produit f } 2m soit une forme modulaire de poids entier >0 sur
un groupe de congruence.

Pour appliquer ceci a� la fonction de partition, on peut par exemple
prendre pour f la fonction

f (z)='(3z)&8= :
�

n=0

p(n) q24n&1 mod 2,

qui est de poids &4, et le The� ore� me 3 de� coule alors du the� ore� me ci-dessus.

De� monstration du The� ore� me. Si f =� anqn est une se� rie de Laurent, je
note Pf (N) le nombre des entiers n, avec 0<n�N, tels que an {0). Si c
et a sont des nombres re� els �0, je dirai que

f est de type (c, a) si Pf (N)=cN a(1+o(1)) pour N � �,

f est de type (c, a)+ si Pf (N)�cN a(1+o(1)) pour N � �,

f est de type (c, a)& si Pf (N)�cN a(1+o(1)) pour N � �.

Lemme 0. Soient f et f $ deux se� ries, et c$ un nombre re� el >0. Si ff $ est
de type (cc$, a+a$)+ et f $ de type (c$, a$)&, alors f est de type (c, a)+.

C'est facile.
Rappelons maintenant que la se� rie 2 ve� rifie:

2(q)=q :
�

n=1

(1&qn)24= :
�

n=0

q(2n+1)2
mod 2.

Lemme 1. Si d est un entier �0, la se� rie 22d est de type (c, 1�2),
avec c=2&1&d�2.

Si d=0, cela se voit sur la formule ci-dessus. Le cas ge� ne� ral se rame� ne
au cas d=0.

Lemme 2. La se� rie 22d�(1+q) est de type (1�2,1).
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De fac� on plus pre� cise, un calcul e� le� mentaire montre que, si F est cette
se� rie, on a PF (N)=N�2+O(N 1�2) pour N � �.

Lemme 3. Soient a et m des entiers �0, avec m>0. Soit g=qa�(1+qm).
La se� rie f =g } 22d est de type (1�2m, 1)+.

On peut e� videmment supposer que a=0. Dans ce cas, si l'on pose
h=1+q+ } } } +qm&1, le produit fh est e� gal a� la se� rie du Lemme 2, donc
est de type (1�2, 1). Or h est de type (m, 0). En appliquant le Lemme 0 on
en de� duit le re� sultat voulu.

Revenons maintenant a� la se� rie f du the� ore� me ci-dessus. Notons fL

la se� rie de� duite de f en conservant les termes anqn si n # L, et en les
remplac� ant par 0 sinon. Un argument modulaire standard montre que fL

ve� rifie les mêmes hypothe� ses que f: c'est aussi une fonction ``modulaire''
(sur un sous-groupe de congruence plus petit, mais peu importe). Quitte a�
remplacer f par fL , on peut donc supposer que an=0 si n � L. Supposons
que la progression arithme� tique soit forme� e des entiers n tels que n#a
(mod m), et posons g=qa�(1+qm), h= f + g. Il est clair que, pour n�a,
on a:

le n-e� me coeff. de h est{0 � n # L et le n-e� me coeff. de f est 0.

Tout revient donc a� prouver que h est de type (C, 1�2)+ quelle que soit
la constante C.

Pour cela, on multiplie l'e� quation f +g=h par 22d
, pour d tendant vers

l'infini. Si d est assez grand, le produit f } 22d
est une forme modulaire de

poids >0, donc est lacunaire d'apre� s [9]), c'est-a� -dire de type (=, 1)& pour
tout =>0. D'autre part, le Lemme 3 montre que g } 22d

est de type (1�2m, 1)+.
Il en re� sulte que h } 22 d

est de type (1�2m&=, 1)+ pour tout =>0. En
combinant les Lemmes 0 et 1, on en de� duit que h est de type (C, 1�2)+,
avec C=(1�2m&=) 21+d�2 pour tout =>0 et tout d assez grand. D'ou� le
re� sultat voulu.
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