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ON TWO PARTITION PROBLEMS

1. L. NICOLAS (Villeurbanne) and A. SARKOZY* (Budapest)

1. Introduction

The set of the positive integers will be denoted by N and we shall write
|z] for the integral part of z. For n € N, z > 0, let 7(n,z) denote the num-
ber of partitions of n into parts 2 z, and let p{(n,x) denote the number of
partitions of n into distinct parts 2 2 so that we have

(1) p(n,z) = r(n,z)

for all n and =z,

‘The quantity p(n,z) has already been studied. In 7], and [6], the
asymptotic behaviour of p(n,z) is investigated for z = O(n!/%), and for
2 = O(n3/8%), respectively. In [9], G. Freiman and J. Pitman, by the saddle
point method, gave the following estimation for z = o{ n{log n)™®):

1
27 B2

(2) p(n,z}~ e I] (tte )

where ¢ = o(n,z) is the root of the equation

j
(3) n o Z p
iien 14 e7?
and
2 jzeaj
{4) B = e
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96 J. L. NICOLAS and A. SARKOZY

Dixmicr and Nicolas [1,2] etudied the function »(n,2} and, in particular,
in [2] they showed that for fixed A > 0 we have

(3) log r(n, )\\/E) ~g{XWn as - boo

where the function g(A) is analytic for A >0, ¢/(A) < 0 and g"(A) > 0 for
A > 0; g(A) satisfies the differential equation

29"(A)

2.0 ! — LA,
A g (A)-—{-)\g (A)HQ(A) l—e“g'()‘)

and we have

2log A —loglog A+ 1 - log 2 . loglog A + log 2

(6) 9\ = A 2Alog A
Y '
0 (%) as A — +oco.
Og

In this paper, first we will study the analogous problem with p(n,z) in place

of r(n,2) (note that in this case the methods used in {2] cannot be applied)
and, indeed, we will prove the following theorem:

THEOREM 1. Let us define

(7 Py = [

1+c“du

For all 2 0, there exists a unigue function H satisfying H(z) 2 0 and
{(8) H(z)’ = 2’ F(H(z)).
For A >0, and n tending to infinity, one has

() log (1, AVF) ~ RAW
where

(10) h(A) = %—)\](35(1 + e HOY

It would not be difficult to give a proof of Theorem 1 by using (2). In par-
ticular, for z = A/, one has first to deduce from (3) that o ~ II(A)/( /\\/’H) .

In Section 3, we shall prove the lower bound (that is logp(n, /\\/ﬁ)
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ON TWO PARTITION PROBLEMS 97

2 h(A)/n(1+o(1))) based on a method of combinatorial nature which is
certainly not so accurate as the saddle point method but which can be used
more widely when the generating function is not easy to deal with.

In the second half of this paper we shall consider the following problem
of Erdds: For each {unrestricted) partition Il of n, n =ny +ng + ... + ng
with »; € ng £ ... £ ng, we say that an integer a is represented by Il if
can be written as @ = €,n1 + ... + exng with ¢ = 0 or 1. For cach 1l denote
the set of these integers by 7T'(I1). We shall call it the set represented by
the partition lI. Yor fixed n, let p(n) denote the number of different sets
amongst the sets T(1I) (where Il varies over the p(n) partitions of n). From
[8] (see also [1]) we know that most of the partitions do represent all integers
between 1 and n so that p(n) is smaller than p(n). Erdés’ problem is to
estimate the function p(n) and indced we will prove:

THEOREM 2. There exist two constants 0 < ¢y £ ¢q < 1 such that for n
large enough one has

(11) p(”)m < ﬁi(n) < p(n)m

where p(n) is the number of unrestricted partitions of n. Morcover, one can
choose in (11}

(12) c1 = 0.361
and
(13) ¢y = (.948.

The proof of the lower bound in {11) with a small constant ¢; is nol
difficult: Let E = {e,€2,...,€;} be any set of integers between /n/2 and
\/E, and let us set

Ck-}-l:71*(€l+62+...+6k)>\/§.

The integers a represented by the partition n = €7 + €2 + ... + €341 and in-
cluded between /n/2 and \/n are exactly the elements of E and so p(n)

> 2V™? From the famous result of Hardy and Ramanujan [11], it is known
that

(14) p(n) ~

1 '
4n\/§exp ((\/ﬁ)

where _C‘ =m+/2/3=2565..., and thus any ¢ < 1%%2 = 0.135... can be
chosen in (11).
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98 J. L. NICOLAS and A. SARKOZY

Let us denote by pa(m) the number of partitions of n into distinct parts
belonging to the interval ] A/, ‘2)\\/5} IE A < +/2/3, the sum of all the in-
tegers of this interval is smaller than n, and therefore py(n) = 0. I[ I denotes
the partition

n=ny+nz+...+ 0k

with Ay < ny < ng < ... < ng S 24y/n, then the set T(IT) represented by
the partition II will satisfy

T(H) i ] 0,2)\\/5] = {nl, oy, ﬂk}
and thus

(15) P(n) 2 pa(n)

for any choice of A. In Section 5, we shall give a lower bound for p{n} not so
accurate as {15) (though it would be possible to show with some more effort
that imlog pa(n)/vn = Q (A, p(A)), where @ is given by (50) below). For a
good choice of A this lower bound will yield the value of ¢; as announced by
12).

( )The prool of the upper bound of (11} with a constant ¢; close to 1 i
easy: Let us denote by R(n,a) the number of unrestricted partitions of n
which do not represent a. Clearly R(n,a) = B(n,n — a). Let us choose b,
1 £ 6 < n/2 and let Rp(n) denote the sct of partitions of n which represent
all integers a, with b < @ < n—b. The number of different sets represented by
the partltlons of ’R,b(n) is certamly at most 2%, while the number of partitions
of n which arc not in Ry(n) is

Z R(n,a)<n  max Iﬂ(n a).

b<a<n——b Rain=b

So we have proved that

(16} pn) <2 +n max R(n,a)
bladn-b

In [3], [4] and [5] different cstimations of R(n,a) are given. Specially,
Lemma 2.1 of [3] claims that for all € > 0, there exists 6 €10, 1] such that

evn<a<n—eyn= Rina) < p(n)‘g.

This lemma, and (16) allow us to choose ¢; <1in (11). In order to get a
constant ¢z as small as possible, we shall prove:
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ON TWO PARTITION PROBLEMS 9¢

THeOREM 3. (i) Let o X 0.54. When n tends lo infinity one has

(17} log (R(n, La\/ﬁj)) £ (9(e/2) + (a/2)(1 +log 2) + o(1)} /1

where g is defined by (5).
(ii} When n tends to infinily, one has for 018y S o = n — 0.18yn

(18) log R(n,a) £ (243 + o(1)) V.

The value of ¢ = 2.43/C £ 0.948 given by (13) follows immediately from
{16) (by choosing & = 0.18y/n}, (18) and (14).
We know from [2, Théoréme 2.15] that

o0
(19) glA) = Alog A+ Y g, A"

n=0

where this powe1 series expansion has a positive radius ol convergence and

go = C'=mwy/2/3, g =log(C/2)~ 1, go = ~C/8 ~ 1/(2C).
The result of [4 Théoréme 1, i} gives for & £ Ag (this Ag could be calcu-
lated)

(20) log R{n, |y} ) 2 (C + glog (ng) + 0(1)) V.

Neting that

A A A P CA
10g tootas+ (1+10g2) —10g(~é~)

and since gy is negative, (17) is a Little better than (20}.

The proof of Theorem 3 will be given in Section 7. It is similar to the
proof of Theorem 1(i) of [1]. Let A = {ay,aq,...,¢;} be a finite set of distinct
integers, and let us denote by #(n,.A) the number of partitions of n into parts
not belonging to A. In particular, one has r{n,m+ 1) = r(n, {1,2,.. .,-m}) .
In the first step, an upper bound of 7{n,.A) is needed and is obtained here,
in a different way as in [4], by an argument of convexity. The second step of
the proof of T'heorem 3 is exactly the same as in [4].

The argument of convexity is interesting in itself, and is made precise in
the following statement:

THEOREM 4. Let & be a positive real number, § < 0.133. There exists a
number ng depending only on 8 such that if A ={aj,ay,...,q;} is a set of
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100 J. L. NICOLAS and A. SARKOzZY

integers, 1 £ a) < ag < ... < qj, then
(1) the sequence z(n) = r(n, A) is conver for n 2 max(ng, s/8) where

{21) s=s8{A)=a; +ar+...+a;+4j+8.

Whenever § — 0.11, ng can be taken equal to 13000,
(it} For n 2 max(ng + a;,5/6), the inequality

(22) xn) = r(n, {dl,ag, . ..,aj}) < Hﬁj: air(n,j + 1)

holds.

We may ohserve that (22) does not hold unconditionally: for instance

3 1
r(10.41,3)) = 8 > Sr(10,3) = -2-?

The proof of Theorem 4 will be given in Section 6. It is similar to the proofs
used by A. Odlyzko in {13] to study the k-th difference of the partition func-
tion, hut it is not so deep: in terms of m we do not make precise the smallest
N for which the function »{n,m) is convex for n 2 N, and this is made
possible by the methods of [13].

At the end of the paper, a table of p(n) for n £ 121 can be found. It has

been calculated by Marc Deléglise by a method shortly explained in Section
8.
What is the good exponent in Theorem 27 From the table, one might

guess 0.7. Clearly, the upper bound given for R(n,|ay/n|) in Theorem 3
is not very sharp, unless ¢ is very small. So the counstant ¢z in (13} is too
large. On the other hand, since RB(n,a) 2 r(n, {1,2,..., [a/?J,a}) and we
may think that log r(n, {1,2,. ey La/ﬁj,a}) ~ gla/2)\/n for a ~ ay/n, we
cannot hope to deduce from {16) a better upper bound than

bij?én_) < (max (arlog2,g(c/2))).

This right hand side is minimal for @ = 2.02, and is approximately 1.40, so

= 0.55 by this method.

We are pleased to warmly thank M';rc Deléglise for kindly computing the
table of p{n) and Paul Erd8s for valuable discussions about this paper.

that it is not possible to prove ¢; <
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ON TWO PARTITION PROBLEMS 101

2., The functions F, &y H and h

In this section we shall study the real functions introduced in the state-
ment of Thearem 1. Since these functions are closely related to the functions
studied and used in [14], [15], and [2], and they can be analyzed by using the
same tools, we will leave some details to the reader. For z 2 0, let

+oo U
: Flz) = d
(23) (2) /x o

:/ uz(ml)k—lcmkudu:Z( 1) 1k$+1 ——k:l:

P 1
so that
+co u r u
(24) P = [ - [
too x 2 r
1 i T U
= _1"“1—__/ d:———/ d
g( e Theatn ) Tra®™
and
(25) Flz)=(z+ De + O(ze™®) as z — +oc.

From the identity
wo 2u
et +1 er—1 -1
and from the definition of Bernoulli numbers

! b, 1 1 1
=1 —ut, b= b= b= —, L
G Tty =g =g b= g

one deduces from (24)

TR Ir ﬂ.?. ey — 1 e

(26) Fa) ==+ Z(z — Dby 2™/ m!
m§2

which for |2| < 7 can be used to get numerical values of F(2), and shows that
F(z)—x*/12 + 2*/4 is odd. The function F{x) is analytic, and it decreases
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102 1. L. NICOLAS and A. SARKOZY

2 0
from —115-2- to 0 on [0+ o0). For z > 0, set G{z) = 2 F(2)" /2. Then the func-

tion G(z) is analytic, and differentiating the equation G(m)_2 =272 F(2),
we obtaln
4dG _

dz

x
14 e”

—-2G(x)” —2e 3 F(g) — 2 ? = g3 (QF(.T) + ca ) <0

1+ e*

for & > 0. Tt follows that dG/dz > 0 whence the function G(&) is increasing
on [0, +oo) from G(0) = 0 to

lim G(z)= lim 9;1-’(9;)"1/2 = lim (1+ o(l)) Vzer!? = 400

T — F— ey Jr T Nty

{in view of (25)}. Thus the function G(z} has a unique analytic inverse H(z)
on {0, +o0) whose derivative H'(2) is positive. Moreover, by (25} we have

(27) G(z) = 2F(z)"? = 222 (1 4271 4 O(e™)) 77

. . 1
= g2/ (l - im_l + %m—z + O(m_3))

. 1 41 . o e .
= (3:1/2 - 53_1/2 4 gﬂ;_g’{‘)‘ + O(m_"/z)) a5 o +00.

When  tends to zcro, one deduces from (26}, with the help of MAPLE

23 33, V3 27V3 s V3(r? - 90)
(28) G(x) = —e + "?.T:rd - 7;{.154 + i z® + S0 2%+ O(x").

Clearly the inverse H(z) of the function G(z) satisfies the equation

: ) too
(29) e H (z) = fn( )7 .f.qu du = F(H(z)).

It can be derived easily from {27) that

loglog a + log2 + 1

: : - ¢ 1 . _
(30) H(z)= 2loga — loglogz — log 2 + Slops
+(1oglog 2)? 4 2log2loglogz + log? 2 — 3
8log?a
log log 2)°
log” x

Acta Mathematica Hungarica 77, 1537



ON TWO PARTITION PROBLEMS 103

and from (28)

T2 4+rf 5 r2(x? +120) L6

(31) H(z) = 23" lm togR 256 69120

+0(z%)

as o - 0.

The numerical calculation of H(z) can be carried out by solving (29) as
explained at the end of [2].

Further, it follows from (29) that

1 SILEAVIME
@) ) = -
whence
(32) (;E“JH(.’L')), — _ e H'(x)

31+ eH)
so that H{x) satisfies the differential equation

a3 H!

(33) 20l - 2H = — P

From (30) it is casy to find the asymptotic expansion of h(X) defined by {(10)
as A — +oc. [t turns out that this asymptotic expansion does coincide with
the one of g{\) as given in (6). In fact it is possible to prove that

GA) = R(A) ~ (Iog A)/A? as A — +oo

and we shall return to this question in an other paper. From (10} and (32},
one has

(A)y=—log (1 + e"H{'\))
whicli together with (10) yiclds

(34} M A) — MARI(D) = 2H ()

and
R(A) — AR(X) = AR (A) = 2H'(X).
Substituting these values of H{A) and H’(A) in (33) gives

(35) MR 4 AR — h = 2R (} + exp (%)\h = %Azh')) :

Acta Mathematica Hungarica 77, 1987



104 J. L. NICOLAS and A. SARKOZY

From (10) and (31) one gets the asymptotic expansion

T V3 . w31, s
#) = —= o~ (log ) 4+ wtp? L8 M9,
hz) 7 (log 2)& + 54 ¢ T 3" 384’5 + O{2)

as 2 — 0. Due to (34) this can be written as

2H(N) i(h(/\)))

AT dA A

for n 2 2 the coefficient of 2” in h(z) is equal to

of &"+1 in H{z). Note that £ is analytic for x = 0, while, from (19), g(z) is
not.

Limnes the coefficient

3. Proof of Theorem 1; ihe lower bound
Throughout the proof, I will denote a large but fixed positive integer;
k is a positive integer large in terms of L; fixing L and k&, n will denote

a positive integer with » — 4-00. Let y1,92,...,y.s be non-negative real
numbers satisfying the inequality

Lk .
E : ) I e _ .
(36) j=t b (A * k) = ¢ 1,

these numbers will be defined later optimally (by using the Lagrange multi-
plier method). For j = {,2,..., Lk, wrile

Iy = {Lf\\/ﬁj CADIECIES?

VAL G- D5+ 2 vl +J[—‘f~”

Let I' denote the family of the sets § of the form § = UJLL S;, where 5; C I;
and

1= (0] =1y

Acta Mathematica Hungarica 77, 1987



ON TWO PARTITION PROBLEMS 1056

Then by (36), for all & € T we have

soeBires £ ] (el o )

seS 7=1 5e8, 7=1

Z Y; ()\ + ) n— 74:-
Tt follows that if n is large enough, then the number

def T
g = N — Z 8 (Z "};)
seS
is greater than the greatest element of S. Thus the elements of SU {so}

determine a partition of n into distinct parts > Ay/n; morcover, distinet sets
§ ¢ T" determine distinct partitions. It follows that we have

(37) 1] € p(m,AVR).

Clearly, by Stirling’s formula we have

(38) I :ﬁl (([gﬁ;’h))

Lk
= exp ((1-}-0(1))(—2(%1‘38%‘1” 1 —y;)log(1 — ;) ))?)

It remains to maximize the lower bound given by (37) and (38) for p(n, ,\\/171_);
this can be done by computing

Lk
min Z (yilogy; + (1 — y;) log(t — y;))

i=1

under the constraint (36). The Lagrange multiplier method gives that the
optimal choice of the parameters y; is

y; = (14 el+i/Re) !

Acta Mathematica Hungarica 77, 1997
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where p is a parameter independent of j, whose value can be determined by
substituting into the constraint (36):

Lk

Z (/\+%) (1+€(,\+J’/k).u)“1 <k-1.

i=1

We are looking for a u independent of both &£ and L: Dividing by & and
taking the limit when & — oo on both sides we obtain

A+L z
/ dr £ 1.
L ltew

Taking the limit as I — 400 we obtain

+oo o
/ - . dr
N Lt

+oo !
;1_2/‘ -dt £ 1.
Au 1 + e

A
—

or, in equivalent form,

Using the notation introduced in Section 2, this can be rewritten as

HEFOW) ST, GOwW) = Me(FOw) T 2
whence

wzae), wz i

For u= _Ll we have fA"'L Teers dz < 1 which implies (36) for large
k2 ko(L, /\) Substituting this value of x4 in the definition of y;, and taking
the limit first as £ — 400 and then L — 400, we obtain that
1 Lk
2 (yilogy; + (1 — y;) log(1 - y)))
i=1

lug 1 + A/ )

k Z ( 1+ elrtifk)u

ux+ﬂm#—mgﬁ+w“““wn)

e()“i'jfk).“
14 e(ifRu
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ON TWO PARTITION PROBLEMS 107

& . (A + 5/ k) et
- = (A+ifRmy _ JIRIH
- kz(log(“re ) 1+ csiThm )

AL Hr
zpe
I HEY e d
_9/)‘ (og(l-l—e ) 1+e“f-) T
+o0 et
[e
— log(1 HEY — d
/,\ (og( ) l+e“”‘) :

1 +o0 uet
= — 1 By d
u/’\# (og(l-{—e) l-{-e“) U

Y +o0 N we
T HN) Juey (k)g(l-]-e )3 +ev) du
_ A [T
—H(X) Juw

=1

U
14 e

(log(l +e ")+ ) du = h{A),

by integrating by parts the logarithm and by (29). Since all the functions
above are continuous, and the improper integrals are convergent, it follows
from {37) and (38) that

(39) liminflog (p(n, A/R)) /v 2 A{}).

=00

4. Proof of Theorem 1: the upper bound

Clearly, the proof of Theorem 1 will follow from (39) and from the fol-
lowing proposition:

PrOPOSITION 1. Let A be a real positive number and define h(A) by (10).
Forn 2 1/)? the following inequality holds:

log p(n, Av/n) £ h(A)Vn+ 1.

ProOF. From the generating function

(40) 3 p(n 2= [L(1+27)

m2x

Acta Mathematica Hungarica 77, 1587
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one deduces foy 0 < B < 1 thal

(41) p(mavi) S B T] (14 R™).
mZi/r

Minimizing the right hand side of (41) would drive us to choose R = ¢~ 7,
where o is defined by (3). But (41) holds for any R <1, and, with the
notation of Section 2, we shall choose

(42) R=¢"° s=H())/(A/n)
so that (41) yields

H ,\)

log p(n, \vm) < Vn + Z log 1+exp(-—ms))

mZ/n

Since the function 2 ~ log (1 + exp (—ax)) is decreasing for any positive a,
it follows

Af/n—1

(43) logp(n, )\\/ﬁ) < %A)\/h‘-}- /j_ log(1+ 7% ) dx.

Now, one has for n 2 1/A? (that is Ay/n 2 1)

v
log(l+ ¢ % )dx <1 1 —-s{Ayn—1
/f\\/r_&"log( +e ):r_og( +exp( s{Avn )))

Sexp(—s(Avn~1)) =exp(s— H(N) £ 1.

Further, observing that from (42)

- TaE —M - 0 e ) du
/;\/T_Llog(1+e )ria:—H(/\) H(A)l g(l+e *)d
= %-(‘/;’%(— H(M\)log (14 H) 4 F(H()\))),

one easily completes from (43) the proof of Proposition 1 with the help of
(29).

Acta Mathematica Hungarica 77, 1997
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4

5. The lower bound in Theorem 2

First we will prove the lower bound in (11) with the value of ¢{ given by
(12) by modifying the method used in Section 3 clightly. Thronghont the
proof, z will denote a fixed positive number to be chosen optimally; & is a
large positive integer; fixing k, n will denote a positive integer with n — +oc.
Since the method will be similar to the one used in Section 3, some details
will be left to the reader. Let y;,ys,..., ¥k be non-negative real numbers
satisfying the inequality

—

kz]

(41) yj(wil) <kt

g=1

Yor j =1,2,...,|kz], write

I; = {[z\/ﬁj +(J'—1)[\/TEJ +1,

k

(v + G- 1| %] 2, vl -H-[-@j}.

Let T’ denote the family of the sets &5 of the form § = U;L;I:lj S;, where §; C I;

and |5;] = [yj%ij for j = 1,2,..., | kz]. It follows from (44) that

def ~
S = 1~ § Z

3€S

Cal P

so that for sufficiently large n we have sg > 2zy/n(Z the clements of §). Thus
the elements of S U {so} determine a partition II{S) of n into distinct parts
> zy/n, and clearly, for this partition II{.5}) we have

T(1(5)) n]0,22v/n] = 8.
Thus for § € T, 57 € [, 5 # §' we have T(II(S)) # T(H(5")). It follows that
(45) p(n) 2 1T,

Clearly, by Stirling’s formula we have

o)

Aeta Mathematica Hungarica 77, 1937



110 J. L. NICOLAS and A, SARKOZY

k2]
= exp ((1 +0(1}) ( - Z (y;logy; + (1 - y;)log(l — yj))) _?)

=t

Next, we maximize the lower bound for p(n), given by (45) and (46), under
the constraint (44). By using the Lagrange multiplier method as in Section
3, finally we obtain the estimate

log p(n) ]22 preHs
—_2t > pEY _ 7
il = 2 /. log(1 4 %) g dzx

(47) lim inf
2zp oy pth
- &/m (10g(1+e”)— 1186“) dud—_‘irQ(z.u)

where g = p(z) is defined by

2z z
(48) f T = 1

or, in equivalent form,

. Dz i _
(49) p 2/ T dt = 7 (Flap) - F2ap)) = 1.
E

Clearly the integral in (48) is a decreasing function of u which is equal to
32%/2 for p = —oo0, and tends to 0 when p tends to +oo. Thus, (48) defines

p(z) for z > /2/3 (u(z) > 0 for z > 2/+/3). Moreover, by integrating by
parts the logarithm, and by using (49), (47) yields

(50)  Q{z,u(z)) = 2u(z) — zlog (1 + e""’“("’)) + 2zlog (1 + e“gz“{z)) .

Now, in view of {(47), to choose ¢; in (11) optimally, we have to find an
approximate value of the maximum of Q(z, u(z)) as given in (50). This can
be done: for different values of z, one calculates p(z) from (49) and then
Q(z,1(z)) by (50). A slightly better method is to set z = pz: we select
several (positive) values of z. For each of them we compute the function
K(z) = F(z)— F(2z) {by using the series expansion of F(z) given in Section
2). Then we compute u = K(z)"/? from (49), z = /4, and, from (50)

Q=2p— E( log(1+4 €™} — 2log({1 + e™**)}.

Choosing = = 0.791 yields g = 0.463..., z = 1.708..., Q = 0.92614... and
c1 = @/C = 0.361 as announced in (12).
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6. Proof of Theorem 4

The proof is similar to the proof of Theorem 1 of [1] or of the Proposi-
tion of [4]. We shall use the same notation. If f is any real function, and

Uy, Ug..., Uy are positive real numbers, the operator DU is defined by
induction:

DW(uy; fy2) = f(z) = f(z = w),
D(m)(ul,...,um; f.z) = D(m_”(m, ey Ume1: £o2)
—DO g, s f, @ — )
and it follows from the generating functions that
2(n) = r(n, A) = DD(a,,a9....,a;;p,1)
and
(51) w(n) = z(n) ~2z(n — 1)+ 2(n — 2) = DY (ay,a,...,a;,1,1;p,n).

Now, writing P(z) = exp (\/5) [z, the classical result of Hardy and Ra-
manujan can be written as (cf. [1, (1)])

(52) pn) = S (CH0 = 1/28) + i)
with C = 74/2/3 — 2.56... and

(53) | fi(n)] < -Q%exp (C;/’_z) w1,

Furthermore, using Lemma 3 of [1], (51), (52) and (53) give

(54) w(ny =M, + R,

where
1 2747

(55) (H a‘) CH pii+a) (C2(€ —1/24))
=1

with

{56) n—{a1+...+a;+2)SE<n
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and
42
(57) |R.| £ %011-2-~—exp (C\/_)

Let us observe here that, from (21), (56) implies

(58) n—s<€f-1/24%n
and also from (21}, one has
(59) SZ1+24 . i +47+8= G+ 95+ 16)/2> (5 +4)%/2.

Now, it is known that

oy 2L (1)

2m‘x(m+1)/2y7n ﬁ

where ¥, is the m™ Bessel polynomial. So, (55) becomes

(60) an(ﬁﬂ,)w/z)”‘*exp(cx/f“1/24J ( -1 )

212 (6~ 1/2a) 002 N\ 0 ET T

To get a lower bound for y;,5, we shall apply Lemma. 3 of [4] which asserts
that, for 0 £ mz £ 1/v/2, the inequality

(61) ym(—=2) 2 (1 - ﬂ(%ﬂzz) exp (--’-”(i;ﬁx)

holds. We set & =1/C\/€ ~1/24, and m = j + 3. From (58) and (59) we

have

it3 . 2s . V2%
CE-1/24 " Cyn—s~ CV/I-¢

since, from the hypothesis, we know that s £ én which implies

(62)  mz= <0216 < 1/v2

8 é 0.133
63 < < < 0.154.
(63) n— —1—6“1—0133 >
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In view of (62), (61) may be applied and with (58), (59) and (63) yields:

(64) yivs(—2) 2 (1 _ Q_-jﬁﬂ) exp (— Ut ‘”Qm)

2

2 (1-em=n) o (vs)
2 (1-Aexp (~ACVR=8n) = (1 - Ayexp ( — AC(VT = &) /)
with

) 0.154
(65) A= o Uy < I < 0.024.

ex (V)
. EERYE
is increasing for t > (j + 4)?, and since one has from (58), (59) and (63)

To gct a lower bound for M,,, we first observe that the function ¢t —

(G +4) £ 25 S 260 £ CH(1 - )n < C¥n—s) £ C¥E — 1/24),
tt follows that

exp (C/E—1/24 S xp (CVT=8\/n)
(€~ 1/24)U0/2 = ((1-6)n) G+4)/2

(66)

Now, from (64), {66) and the inequality Hf=1ai > j12 (j/eY, (60) yields

, C31 - A) Cj i
(67) M, = 16#\/5(1-.-5)%2(2;3\/1‘;—5\/5) exp ({1 -~ XCVI—8/n).

We want to prove the convexily of z(n), that is to prove that w(n) is positive.
From (54), it suffices to show that M,, > |R,|. From (57) and (67), one has

My C3H1- 1) Cj J
(%) | Rr| 2 (0.44)167v2(1 — 6)*n (%ﬂﬁ)
cexp (C{(1=A)V1-16-1/2)/n).

From (59), it follows that j < j +4 < v2s £ +/26n, and since the function
t — (at)’ is decreasing for 0 < t < 1/(ae) and V28 < 4/1—8/C, it follows
from (68) that

3
M, 31— )

(69) |Bal = (0.44)167v/2(1 - 6)*n
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dey/1 -6

With A given by (65), it is easy to see that the coefficient of /n inside the
exponential is positive for & £ 0.133. So the right hand side of (68) tends to
infinity with #. For n large enough, M, /|Rx| is greater than 1. This implies
from (54) that w(n) is positive, and from (51) that z(n) = #(n, A) is convex.
Choosing § = 0.11 yields ny = 13000 in Theorem 4. In order to prove
(i1} in Theorem 4, let us define '

PRP(mlog OV +C((1 - )\)\/lw(‘i_l/z)\/ﬁ).

ry(m) = r(m, {as,aa,.. .,aj})
for 7 2 2, and ri(m) = p(m) if § = 1. Similarly, for 2 £{ < j, let us set
r(m)=r{m,{1,2,...,i = L,aiy1,...,0;5}).

We shall prove that for 1 £7 £ 4, ri(m) is convex for m 2 n — a;, where
n 2 max(np + a;,s/6). This point will follow from (i), since

mzn—a; 2ny+a;—a; 2 ng
and
mzn—e 2 s(A)/6—q
> (s{{1L,2,...,i~ La1,. .. a;}) +ai) /6 —a;
= s({l,?,...,i— 1,(1;“,...,&_,-_}) /8.
Note that the above proof works also whenever j = 1, since the proof of (i)
is still valid for A =0, 7 = 0. Anyway, it is known that p(n) is convex for
n 2 2 (cf.[10]).
From the convexity of ri{m) for m 2 n — aq, it follows
r(n, A) = ri(n)—ri(n—ay)
Sa{r(n) ~ri(n—1)) = arr(n, {l,ag,...,aj}) .

Similarly, for ¢ 2 2, from the convexity of r;(m), one has

r(n, {1,2,.. 0= La,aiq,...,0;)) =r(n) - rin —a;)

< %i(r,-(n) —ri{n— z)) = giif‘(n, {1,2,...,1,ai41,. ..,aj})
and applying this inequality for 2 £ ¢ £ j completes the proof of Theorem 4.

Acta Mathematica Hungarica 77, 19897



ON TWO PARTITION PROBLEMS 115
7. Proof of Theorem 3

First we shall prove:

LEMMA 1. For a large enough and n 2 3a® + 112a, the number H(n,a)
of partitions of n which do not represent a satisfies

alet1)/2 @3
((a+1)/2) !r(n, 2 ) (for a odd)

$+1
({3 (3309 e

Proor. It follows the proof of Theorem 1 in [4, p.162]. Let us suppose
a 15 odd. If a partition of » does not represent u, its parts cannot include
simultancously 7 and e — ¢, so that,

R(n,a) £

la/2] _
R(n,a) & Z ?‘(n, ( U {is'(a ) R }) U {a])
£110E{a sz i=1

where, in the summation, ¢; € {0,1}. We apply Theorem 4(ii), with 6 = 1/8

1
and j = -(-L-g—-»— For any choice of ¢;, onte has

v 3+ 4a+1
a1+a2+...+aj§_z i=
i=2tl
2
and so,
3062+ 4a + 1 3a?

a1+ ... +a;+45+8<

Moreover, for a large enough, n — a; = n — a will certainly be greater than
ng. S0 Theorem 4 yields

La/2] -
11 i(a— i)

B 3 e (n )

£1yElaj2)
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Whenever « is even, the part a/2 can occur but only once. So we have

Rma)< Y (n,(u{a(a §=}) u{5ua)

Elinf gy

5 o B (U ) o{gvia)

Elyenf gy

and the rest of the proof runs in the same way as for a odd.

ProoF oF THEOREM 3(i). Let us set @ = | ay/n]. Since o < 0.54, for

n large enough, the inequality n 2 3a? + 112a holds, and Lemma 1 may be
applied. Further, it follows from the definition of ¢, and of its continuity that,
if m, ~ A/n, then log r{n,m,) ~ g(A)v/n (see [2], remark 2.17). So, when a
is odd, one has log7{n, (e +3)/2) ~ g{a/2)+/n, and a classical estimation of
a*t/2/((a +1)/2)! by Stirling’s formula completes the proof of (i). When
i is even, the proof is similar.

Proor or THrEorREM 3(ii). We shall need the following lemma (ct.
Lemma 2.1 of [3]):

LEMMA 2. Lct us suppose that for some € > 0, onc has when n tends to
infinity

evn < a < 3ev/n = R(n,a) < exp ((n+0(1)) /)

with n > 7/v3. Then for all a such that ey/n S a £ n - e/T one has R(n, )
< exp ( (4 o(1)) \/E) .

In fact, the above lemma is not exactly Lemma 2.1 of [3], but the proof
of [3] is valid for our Lemma 2 here.
Now, let us observe that the function § defined by

§(a) = g(a/2) + (a/2)(1 +log 2)

is convex and has a minimum for o = «y. This follows from the facts that
g'(a) < 0, ¢"(a) > 0 (cf. [2], Théordme 2.5) and limy .o g{a) = 0 (cf. (6))
which imply lim,_,o ¢'(a) = 0.

A numerical calculamon yields ap = 0.33740.

We choose in Lemma 2, £ = 0.17779, 3e = 0. 533?7 so that g(e) = 7(3¢)
= 2.42971. and from Theorem 3(i), one can take n = 2.43, since for ¢ S a
< 3¢, o) £ §(e). Applying Lemma 2 completes the proof of Theorem 3(ii).
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8. A numerical table

The table below has been built by Marc Deléglise and we thank him very
much for allowing us to include it here.
Any integer B, written in base 2 as

B=by+2b +4b,14...127%,,

defines a set £ = E(B) of non negative integers: i € E ¢ b; = 1. The union
ur intersection of sets can be easily carried out with operators OR and AN D.
The partitions of n are generated by backtracking. For each partition

IM:n=mny 41+ ...+ 1y,
the set T(II) is represented as explained above by an integer B:
1) initialisation: B := 1; (T = {0}).
2)For1£:<kdoB:=BOR2%B;

To improve the running-time, the practical partitions (that is the parti-
tions which represent all integers between 1 and n) are not generated.

n P p(n)  log (p™)/log (p(n))

3 2 3 0.631
4 4 5 0.361
5 4 7 0.712
6 6 11 0.747
7 8 15 0.768
8 11 22 0.776
9 12 30 0.731
10 17 42 0.758
11 21 56 0.756
12 27 77 0.759
13 32 101 0.751
14 41 135 0.757
15 47 176 0.745
16 60 231 0.752
17 69 297 0.744
18 37 385 0.750
19 102 490 0.747
20 126 627 0.751
21 143 792 0.744
22 174 1002 0.747
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n

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
3%
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
38
59
60
61
G2
63

f)(n)

201
245
276
330
376
446
G
604
674
90
292
1040
1169
1362
1519
1757
1965
2273
2510
2900
3202
3683
4071
4640
35096
5839
6423
7324
7991
9066
9907
11254
12274
13851
15079
17031
18404
20845
22535
25395
27484

J L NICOLAS and A. SARKOZY

p(n)

1255
1575
1958
2436
3010
3718
4565
5604
6842
8349
10143
12310
14883
17977
21637
26015
31185
37338
44583
53174
63261
75175
89134
105558
124754
147273
173325
204226
239943
281589
329931
386155
451276
526823
614154
715220
831820
966467
1121505
1300156
1505499
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log (™)) [ log (p(n))

0.743
0.747
0.742
0.744
0.740
0.742
0.739
0.742
0.738
0.739
0.736
0.738
0.735
0.737
0.734
0.735
0.733
0.734
0.731
0.733
0.730
0.731
0.729
0.730
0.727
0.729
0.727
0.728
0.725
0.726
0.724
0.725
0.723
0.724
0.722
0.723
0.721
0.722
0.720
0.720
0.719



n

64
65
66
67
68
69
70
71
72
73
74
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
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Hm

30781
33313
37325
40228
44908
48502
54217
58141
64950
69700
77656
83109
92436
a9100
110143
117749
130631
139523
154585
164788
182200
194386
215091
228382
252396
268200
296210
314451
346085
366990
404647
427890
470379
498771
548306
579191
635657
671494
736462
777633
851930
897631

p(n)

1741630
2012558
2323520
2679689
3087735
3554345
4087968
4697205
5392783
6185689
7089500
8118264
9285091
10619863
12132164
13848650
15796476
18004327
20506255
23338469
26543660
30167357
34262962
38887673
44108109
49995925
56634173
64112359
72533807
82010177
926649720
104651419
118114304
133230930
150198136
169229875
190569292
214481126
241265379
271248950
304801365
342325709

log (p(™) /log (p(n))

0.719
0.717
0.718
0.716
0.717
0.715
0.716
0.714
0.715
0.713
0.714
0.712
0.713
0.711
0.712
0.710
0.711
0.709
0.71¢
0.708
0.709
0.707
0.708
0.706
0.707
0.705
0.706
0.704
0.705
0.703
0.704
0.702
0.703
0.701
0.702
0.700
0.701
0.699
.700
0.699
0.699
0.698
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n P p(n)  log (p)/log (p(n))
106 084866 384276336 0.608
107 1036224 431149389 0.697
108 1132926 483502844 0.697
109 1194496 541946240 0.696
110 1306138 607163746 0.696
111 1371450 679903203 0.695
112 1500266 761002156 0.695
113 1576460 851376628 0.694
114 1720941 952350665 0.695
115 1806268 1064144451 0.693
116 1971049 11880608248 0.694
117 2068577 1327710076 0.692
118 2257942 1482074143 0.693
119 2365295 1653668665 0.691
120 2573572 1844349560 0.692
121 2702926 2056148051 0.691
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