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On a class of 03C8-convolutions characterized

by the identical equation

par JEAN-LOUIS NICOLAS et VARANASI SITARAMAIAH*

dedicated to Michel Mend6s F’rance for his 60th birthday

RÉSUMÉ. Dans le cadre de la convolution de Dirichlet des fonc-
tions arithmétiques, R. Vaidyanathaswamy a obtenu en 1931 une
formule de calcul de f(mn) valable pour toute fonction multi-
plicative f et tout couple d’entiers positifs m et n. Dans [7],
cette formule a été généralisée aux 03C8-convolutions appelées con-
volutions de Lehmer-Narkiewicz, qui, entre autres, conservent la
multiplicativité. Dans cet article, nous démontrons la réciproque.

ABSTRACT. The identical equation for multiplicative functions es-
tablished by R. Vaidyanathaswamy in the case of Dirichlet convo-
lution in 1931 has been generalized to multiplicativity preserving
03C8-convolutions satisfying certain conditions (cf. [7]) which can be
called as Lehmer-Narkiewicz convolutions for some reasons. In

this paper we prove the converse.

1. Introduction

In 1930, R. Vaidyanathaswamy (see [9] and [10, Section VI]) established
the following remarkable identity valid for any multiplicative function and
known as the identical equation for multiplicative functions. If f is any
multiplicative function, then for any positive integers m and n, we have

where f -1 is the inverse of f with respect to the familiar Dirichlet convo-
lution so that

Manuscrit reçu le 11 mai 2000.
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for all positive integers m, where

and

w(a) being the number of distinct prime factors of a and r(a) the product
of distinct prime factors of a with w(1) = 0 and r(l) = 1.

In [7] the identical equation (1.1) has been generalized to a class of 0-
convolutions (which are certain binary operations in the set of arithmetic
functions introduced by D.H. Lehmer [2]): if (m, n) E T, where T is the
domain of 1/1, then for any multiplicative function f,

f -1 being the inverse of f with respect to 0 (Section 2 contains undefined
notions used in this section); this class of 0-convolutions in which (1.4) has
been established is contained in the class of 0-convolutions preserving mul-
tiplicativity and satisfying ~(x, y) &#x3E; max{x, y} for x, y E T, as subclass:
in addition to these, they satisfy certain other properties similar to those
of regular A-convolutions [3]. It is interesting to note that these convolu-
tions have been subsequently characterized (see [8], Corollary 4.1; also see
§2 of the present paper) and have been named [8] as Lehmer-Narkiewicz
convolutions. Thus (1.4) holds when 1b is a Lehmer-Narkiewicz convolution.
The object of the present paper is to prove the converse. We show that

(see Sections 3, 4 and 5) if o preserves max{x, y}
for all x, y E T and the identity (1.4) holds for all multiplicative functions,
then 1b is a Lehmer-Narkiewicz convolution; in particular, if T = Z+ x Z+,
Z+ being the set of positive integers, it follows from Corollary 4.1 in [8]
(also, see Section 2, Lemma 2.16) that o is a Dirichlet convolution. Thus the
only 1b-convolution with domain T = Z+ x 7G+, preserving multiplicativity,
satisfying for all E T and with respect to which
(1.4) holds for all multiplicative functions, is the Dirichlet convolution.

§2 deals with preliminaries. Sections 3-5 contain the main results.
For a brief discussion on different proofs and generalizations of the iden-

tical equation (1.1) and for certain special cases of (1.4), we refer to [7].
We are pleased to thank the referee for suggesting several improvements

on the presentation of our paper.
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2. Preliminaries

Let : T 2013~ Z+ be a mapping satisfying the
following conditions (here Z+ denotes the set of positive integers):

(2.1) For each n E Z+, y) = n has a finite number of solutions.

The statements " (X 7 Y) E T, (~(~, y), z) E T"
(2.3) and "(y, z) E T, (x, V) (y, z)) E T" are equivalent; if one of theseI conditions holds, we have ~(~(x, y), z) _ ~(~, ~(y, z)).

Let F denote the set of arithmetic functions (i.e. complex valued func-
tions defined on 7L+). If f, 9 E F then the q#-product of f and g denoted
by fog is defined by

for all n E 7G+.
The concept of 1/J-convolution given in (2.4) is due to D.H. Lehmer [2].

It is easily seen that (F, +, 1/J) is a commutative ring. Let y) = xy for
all (x, y) E T. If T = Z+ x Z+ then o in (2.4) reduces to the Dirichlet
convolution. If T = {(x, y) E Z+ x Z+ : (x, y) = 11, then 0 reduces to the
unitary convolution [1]. More generally, if T = A(n)~,
where A is Narkiewicz’s regular convolution [3], then 0 reduces to the A-
convolution. Thus the binary operation in (2.4) is more general than that
of Narkiewicz’s A-convolution.
The following results (Lemmas 2.5 and 2.6) describe necessary and su%-

cient conditions concerning the existence of unity and inverses in (F, +, 1/J).

Lemma 2.5 (cf. [5, Theorem 2.2]). Let (F, +, 1/J) be a commutative ring
and ~(x, y) &#x3E; for all E T. Then (F, +, 0) possesses the
unity if and only if for each k E Z+, ~(~, k) = k has a solution. In such a
case if g stands for the unity, then for each k E Z+,

Lemma 2.6 (cf. [4], also see [10, Remark 1.1). Let o satisfy (2.1) -
(2.3) and &#x3E; for all E T. For each k E Z+, let the
equation k) = k have a solution so that the unity exists in (F, +, 1/J).
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Let g denote the unity. Then f E F is invertible with respect to 0 if and
only if

for all k E 7G+. In such a case, this inverse denoted by can be

computed by 
..

and for lc &#x3E; 1,

The binary operation 1/; in (2.4) is called multiplicativity preserving
(cf. [6]) if is multiplicative whenever f and g are ; as usual, f E F
is called multiplicative if f (1) = 1 and f (mn) = f (m) f (n) whenever
(~n,, n) = 1.
The following results (Lemmas 2.7 and 2.9) give a characterization of

multiplicativity preserving 1/;-functions satisfying (i) &#x3E; 

for all x, y E T and (ii) ~(1, k) = k for all k E Z+:
Lemma 2.7 (cf. [6, Theorem 3.1~). Let o satisfy (2.1) - (2.3), 1b(z, y) &#x3E;

max{x, y} for all x, y E T k) = k for all k E 7G+. Suppose that the
binary operation 0 in (2.4) is multiplicativity preserving . If x = flr cti
and y = fli where PI, P2, Pr are distinct primes, ai and ~3~ are
non-negative integers, we have
(a) (x, y) E T if and only if E T for i = 1, 2, ... , r.
(b) For each prime p and non-negative integers 0:, f3 such that (PQ, PP) E
T, there is a unique non-negative integers Bp(a, ~3) 2:: max{a"Q} such that-

(c) If (x, y) E T, then

Lemma 2.9 (cf. [6, Theorem 3.2]). Let T C Z+ x Z+ be such that
(a) (1, x) e T for every x E 7L+.
(b) (x, y) e T if and only if (y, x) E T.
(c) If x and y are as Lemma 2.7, then (x, y) E T if and only if

Further, for each prime p and non-negcative integers 0:, (3 such that
E T, let 6~,(a"C3) be a non-negative integer satisfying
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(h) For non-negative integers a, ,8, ’Y and for any prime p, the statements
«( p~e ~ p-y ) E T, E T " and (pO:, pp) E T and E T"

are equivalent; zuhen one of these conditions holds, we have

If for (x, y) E T, y) is defined by (2.8), then (F, +, 1/J) is a commutative
ring with unity e, where e is given by (1.2). Also, is multiplicative
whenever f and g are.

Theorem 2.10 (cf. [7, Theorem]). Let T, 1/J and 8p be as in Lemma 2.9.
Further we assume that for each prime p, we have

If f is multiplicative, then the identity in (1.4) holds.

Definition 2.13. Let 0 be multiplicativity preserving with y) &#x3E;
max{x, y} for all (x, y) E T and = k for all k E Z+. Let T and

Op as in Lemma 2.9. Then w is called a Lehmer-Narkiewicz convolution or
simply an L-N convolution if 8p satisfies (2.11) and (2.12) for all primes p.
Definition 2.14 (see [3]). A binary operation B in the set of arithmetic
functions F is called a regular convolution if
(a) (F, +, B) is a commutative ring with unity.
(b) B is multiplicativity preserving i.e. f Bg is multiplicative whenever f
and g are.
(c) The constant function 1 E F has an inverse which is 0 or -1 at prime
powers.

For each positive integer n, if A(n) is a non-empty subset of divisors
of ~, Narkiewicz [3] defines the binary operation A in F (called the A-
convolution) by

for all n E Z+. He then calls the convolution A given in (2.15) as regular
if A satisfies the definition (2.14). To make a distinction between a general
regular convolution as defined in (2.14) and that of the special operation
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A defined in (2.15) which is regular, we call the later as regular Narkiewicz
convolution.
The following result gives a characterization of L-N convolutions :

Lemma 2.16 (cf. [8, Corollary 4.1]). For each prime p, let ~rP denote a
class of subsets of non-negative integers such that
(i) the union of all members of 7rp is the set of non-negative integers.
(ii) each members of 7rp contains zero.
(iii) no two members of 7rp contains a positive integer in common.

If S E xp and S = {ao, al, az, ... ~ with 0 = ao  al  a2  ...,

we define 8p(ai,aj) = ai+j, if ai, aj and ai+j E S (i and j need not to
be distinct). If 1/J and T are as given in Lemma 2.9 then 0 is an L-N
convodution and is also a regular convolutions. Also, every L-N convolution
can be obtained in this way.

It is clear from the above result that there are infinitely many L-N con-
volutions. If 8p(x,y) = x + y, for all x, y such that E T, then ~~
should consist of arithmetic progressions. Thus, Lemma 2.16 reduces to
the characterization Theorem on regular Narkiewicz’s convolutions (cf. [3],
Theorem II).

It is interesting to note that a Lehmer-Narkiewicz convolution 0 with
domain T = Z+ x Z+ is the Dirichlet convolution. For, if T = Z+ x Z+,
the domain of 8p in Lemma 2.16 is (Z+ U 101) x (Z+ U {0}). Hence there
can be only one member S of 7rp viz: S = {0,1, 2, ... } and 8p(i,j) = i + j
for all non-negative integers i and j. Hence y) = xy for all positive
integers x and y so that w is the Dirichlet convolution.

Lemma 2.17. Let 1b be as in Lemma 2.6. Then the following statements
are equivalent:
(a) Every multiplicative junction is invertible with respect to 1/J.
(b) For each k E Z+, k) = k if and only if x = 1.
(Thus, if (a) holds e is the unity in (F, +, ~)).
Proof. We assume (a). Since e (given in (1.2)) is multiplicative and is
invertible with respect to o by hypothesis, 0 for all k E Z+ by
Lemma 2.6. Since

it is clear that (1, k) E T and = k. We now show that = k

implies x = 1. This being true when k = 1, we may assume that k &#x3E; 1.
Assume that we can find xo &#x3E; 1 such that k) = k. Let 1  Xo 

xl  ...  zr be all the solutions of k) = k (from (2.1), there are only
finitely many solutions). Let
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where pi , ... , pt are distinct primes, al, a2, ... , at are positive integers and,
since xo &#x3E; 1, t is positive. Let S’ denote the set of prime powers pi 1, ... , 
We define the multiplicative function f by f ( 1 ) = 1, f (prl) = -1 and

Clearly f (~o) _ -1. Fix j, 1  j  r. We can find a prime power
q~ &#x3E; 1 such that q,8l1xj S. Hence = 0. This is true for

j = 1, 2, ... , r. Thus

so that f is not invertible by Lemma 2.2. This contradiction proves that
k) = k implies x = 1.

If we assume (b), then for any multiplicative function f,

so that f is invertible, again by Lemma 2.2. 0

Lemma 2.18. Let T,1/1 and 8p be as in Lemma 2.9. We assume that

each multiplicative functions is invertible with respect to 1/1 and that (1.4) is
valid. We fix a prime p and write 0 = Op. If (p~,~‘) E T, then for any
multiplicative function f,

wherE

Proof. Taking m = p~ and n = p’ in (1.4), we obtain

From the definition of G given in (1.3), in the above sum either a = b = 0
or a &#x3E; 0 and b &#x3E; 0. Hence
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By Lemma 2.17, k) = k if and only if x = 1 for each positive integer k.
It follows that O(x, y) = x if and only if y = 0. Hence the conditions a &#x3E; 0
and b &#x3E; 0 in the sum on the right of (2.20) can be replaced A and

In this sum the term corresponding to (x, y) = (0, 0) is f -1 
We separate this term from this sum and we obtain (2.19). This completes
the proof of Lemma 2.18. 0

Remark 2.21. If each multiplicative function is invertible with respect to
1/1, as observed in the proof of Lemma 2.18, we have

(2.22) 9(x, y) = x if and only if y = 0.
Let us recall also Property (e) of Lemma 2.9:

(2.23) B(x, y) = 0 if and only if x = y = 0.

Moreover, from Lemma 2.9 (g) and (h), the law A, p H 9(À, is commu-
tative and associative so that we can define by induction for k &#x3E; 3,

and for any k} 2013~ {1,2,... , k} we have

By Lemma 2.6, for any prime power pt, t &#x3E; 0, we have

We frequently make use of (2.19) to (2.26) in the subsequent sections.

3. Theorem 3.1

In this section we prove

Theorem 3.l. Fix a prime p. Let T,1/1 and 0 = Bp be as in Lemma 2.9.
Assume that the identical equation (1.4) holds for all multiplicative func-
tions f . Then for any non-negative irttegers a, /3 and ~y,

Proof. First we prove that if a and ,8 are non-negative integers with
0(a, a) = 0(a, ~3), then a = (3. If a = 0 then from (2.22) and (2.23)

while, = 0
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so that a = 0 = ~3 from (2.22).
Suppose that a and (3 are positive integers with 0(a, a) = 0(a,,B) - Let

we deduce a contradiction. We define the multiplicative function f
by

Since a # 0, it follows from (2.22) and (2.23) that 0(a, a) ~ {0, a} so that
f(Pe(a,a)) = 0. Taking A = J-L = a in (2.19) and with f as in (3.2), we
obtain

where

From the definition of f given in (3.2), in the sum defining :E(a,o:), the
non-zero terms correspond to the values of x and y, where x E 10, a} and
y E {0, a}, x ~ a, y # a and (~,~/) 7~ (0, 0). Since no such choice of (x, y)
is possible, it follows that :E( 0:,0:) is zero. Hence from (3.3),

From (3.2), f W) = 0. Again by (2.19),

where

But, from (3.2), in order that f (p-r)f (py) 54 0 we must have x E {0, a},
y E {0, a}, and then = 1. With the conditions (x, y) 0 (0, 0),
x 54 a, ,(i, the only possibility is x = 0, y = a. From (2.22), the only
solution in a of 0(a, 0) = a is a = a. So

However, from (2.24) and (2.25), 8(b, a) = /3 implies
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so that, from (2.22), b = 0 and hence a = /3. Since ~i is assumed it
follows that the sum on the right of (3.6) is an empty sum. Thus E (a, ~3) =
0. Using this in (3.5), we obtain

Since 0(a, a) = 0(a, 0), (3.4) and (3.7) contradict each other. Hence a = ,Q.

We now return to the general case. Let a,# and -y be non-negative
integers with 9(a, ~3) = 6(0:,,). We want to show that # = -y. If = 0,
it easily follows that {3 = ~y. So, we may assume that a, ~3 and y are positive
integers. If a = # or a = 7, we obtain ,8 = 7 by the previous case. Hence
we can assume that /~ and a 54 -y. so that a, 0, ^t are pairwise
distinct. We deduce a contradiction. Note that 0(a, 0) :0 0, a,,8, -y. We
define the multiplicative function f by

the values f (pl), f (~) and f(P1) remain to be fixed. From (2.19) with f
as in (3.8), we obtain

where

For positive integers m and n, let

and

We have
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where, for instance in it should be understood that x and y are fixed

and equal to 0 and a respectively so that

Remark 3.13. If 0(b, -y) = ,~ for some b, then from (2.24) and (2.25)

so that, from (2.22), b = 0 and y = /3. Since -y 0 ~i is assumed, it follows
that ~(6,7) = # is not solvable. Therefore the sums in (3.12) corresponding
to y = 7 are empty sums, i.e. E2, E. and E8 are empty sums.

We have, since, from (2.22), 0(a, 0) = a implies a = a,

Similarly,

If 0(a,,8) = a and 0(b, a) = /~, since 0(~c,!/) ~ maxfx, yl, it follows that

/3  a and a  3 so that a = ,a.Since i is assumed it follows that
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Now,

If 8(a, 7) = a and 0(b, a) = /3, from (2.24) and (2.25) we have

so that 0(a, b) = 0 and hence a = b = 0 so that q = a and a = {3. Since
this is not the case, we obtain

From (3.9), (3.12), Remark 3.13, and (3.14)-(3.18), we obtain

Since 0(a, P) = 0(,8, a), interchanging the roles of a and ,Q in (3.19) we
obtain

Equating (3.19) and (3.20) and cancelling the like terms we obtain

By Remark 3.13, the sum on the right hand side of (3.21) is an empty sum
so that its value is zero. Using this in (3.19), we get

In a similar way we can prove that
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Weshallnowfind f-1(p«), f-1(p,e) and f-1(p7). Observing that, by (2.22),
the conditions 9(x,y) = a and 0  y  a 10, al so that, from
(3-8), x E {{3, ’Y}, we have from (2.26)

Also

From (2.22), the conditions imposed in the above sum imply that x rt. (0, # ) .
In order that the sum does not contain terms which become zero the only
possible choices are x = y or x = a. However, if x = ~y, by Remark 3.13
the sum corresponding to this choice will be empty. Hence

Similarly,

Making use of (3.24)-(3.26) in (3.22) and (3.23) and equating the two results
we obtain

We now take f(P7) = 0 and = 1 in (3.27). We get after transposing
the terms,

To obtain a contradiction from (3.28) we require the following:
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Lemma 3.29. Let À, it be two distinct positive integers and cp a multiplica-
tive functions defined by

cp(pa) and WV) being kept arbitrary. We set = p. Then, if we define

±pl for some positive integer r.

Proof. If F(A, p) is an empty sum its value is zero. We may assume that
it is a non empty sum. In this case we show that = +p~. We have
by (2.26)

In the inner most sum on the right hand side of (3.30), 0  al  a  p.
Hence al 54 p. From the definition of the function cp, the only possible
choice of a¡ in order that this sum contains a non-zero term is a, = A, so
that

Clearly,

We note that Kl 0 0 implies that the sum defining K2 is an empty sum so
that K2 = 0. For, let K, = p so that p = 8(À, A ) . If K2 is not an empty
sum, we would have a = O(A, bl), it = 0(a, a), 0  b1  a, so that

and hence bl = 0. But b1 &#x3E; 0. Therefore if 0 then K2 = 0 and hence
F(A, it) = -Kl - K2 = -p. So let Kl = 0 so that F(A, p) = -K2. Again
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by (2.26),

As before we can assume that the inner most sum on the right
hand side above. So, we get

where

and

We write B2 = 8(À, A), A3 = 8(’B, ~2), A4 = 8(’B, As) and so on.
As before we note that K3 # 0 implies K4 is an empty sum so that

If K3 = 0, F(a, = K4. For a given a with 0(a, A) = J.L, this procedure can
not be continued indefinitely since we obtain a strictly decreasing sequence
of positive integers with ~&#x3E;a&#x3E;&#x26;i&#x3E;&#x26;2&#x3E;-"&#x3E;0. Hence for some

positive integer r(a) we get that and
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Since O(A, A) = 8(À, p) implies A = p (which has been proved earlier), Ak =
ae implies k = E. Hence there can be at most one term in the above sum
so that F(A, p) = which completes the proof of Lemma 3.29. D

We now return to the equation (3.28). We apply Lemma 3.29 with A == ,8,
p = a, cp = f (on noting that we have chosen = 0 in (3.8)) so that
F(#, a) = 0 or :i:(f(¡l))r for some positive integer r. If F(,Q, a) = 0, (3.28)
reduces to

Since the coefficient of f (p~) is positive in the above equation, we can
easily assign a value to which does not satisfy the equation (3.31). If
F(~i, a) = :!:(f(pp)r, we obtain from (3.28)

Since a) ~ 0 implies N(,Q, a) &#x3E; 0, we can regard equation (3.32) as a
polynomial equation of degree r+2 in the variable If f (p,8) is chosen
in such a way that equals none of the r+2 roots of the equation (3.32),
we obtain a contradiction. This completes the proof of Theorem 3.1. 0

4. Theorem 4.1

In this section we prove

Theorem 4.1. (With the hypothesis of Theorem 3.1). If a,,8,, and 6 are
non-negative integers such that

then either a = 0(1, c) for some c &#x3E; 0 or ,~ = d) for some d &#x3E; 0.

Proof. Most of the arguments we shall use in this proof were already used
in the proof of Theorem 3.1, so that we shall omit some details.
We first prove that if a and (3 are non-negative integers, then

(4.1) 0 (a, a) = ~(/3, ~i) implies a = /3.

We may assume that a and ,Q are positive integers. Let a =1=,8. We deduce
a contradiction. Define the multiplicative function f by
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First, we observe from (2.22) and (2.23) that 0(a, a) = 0(,8, P) 0 10,,Bl
so that f(p8(a,a») = 0. Taking A = p = a in (2.19) and f as in (4.2), we
obtain

where

We have, as in (3.12)

If 0(c, #) = a for some c, we have from (2.23) and (2.24)

so that 6(c, c) = 0 and hence c = 0 so that a = {3. Since (~ is assumed,
it follows that 0(c, #) = a has no solutions. Hence each sum on the right
hand side of (4.4) is empty so that ~(a, a) = 0. Using this in (4.3), we
obtain

We shall now evaluate f -1 (pe(«, «)~ directly from (2.26). We obtain

In the above sum, from (4.2), the non-zero terms correspond to x = 0 or
x = ~3; but, from (2.22), x = 0 and 9(x,y) = 0(a, a) implies y = 0(a, a)
which is forbidden, so /3. By Theorem 3.1, x = (3, 9(x, y) _
9(a, a) = 0 (,8, (3) implies y = /3. Hence

Again by (2.26),
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since, in the above sum, the non-zero terms correspond to x E 10, 01 which
are forbidden. Hence from (4.7),

(4.5) and (4.8) contradict each other. This, proves (4.1).

Suppose now that 0:, (3, T and J are non-negative integers such that
0 (a, (3) = 9(7, 6). We prove that

(4.9) easily follows if = 0. So we may assume that a,,Q, q and 6 are
positive integers.

Let a = ~i. If q = J, then we have 0 (a, a) = 9(~, q) so that by (4.1),
a = q. Hence a = 0(y, 0). Let 77~. We now have

In this case we must prove (4.9) with (3 = a. First, we observe that, if 6
can be written 6 = 0(a, d’), then from (2.24) and (2.25),

which implies by Theorem 3.1, a = 8(~y, d’) so that (4.9) is satisfied. The
same conclusion holds, if we assume that, = 0(a, c’). Thus, if (4.9) does
not hold, none of the equations

is solvable. We now define the multiplicative function f by

the values f(Po.), f(P1) and f (pb) are left to be chosen. Taking A = /-t = a
in (2.19) with f as in (4.11), we obtain

where

By our assumption on the solvability of the equations mentioned above, in
the sum on the right hand side of E (a, a), x or y can not be either -y or
J. The allowable choice is (x, y) = (0, ) which is again not possible since
(~!/) 7~ (0, ). Hence ¿(o:,a) = 0. Using this in (4.12) we obtain
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By (2.26), (4.11) and by Theorem 3.1,

In the above sum, if x is equal to a, q, 6 respectively, then from Theorem 3.1,
y is equal to a, 6, 1. Further, these three values of y satisfy 0  y  9 (a, a) .
For instance, y :5 ~(7?~) = 0(a, a) and ’Y = 0(a, a) is forbidden since

1 = 8(a, c) is not solvable. Therefore

By (2.26) and by our assumption,

since "f = 0(6, y) &#x3E; y implies y  q, and with (2.22), y 0 -y. Similarly,

Making use of (4.15)-(4.17) in (4.14), we obtain after simplification,

Comparing (4.13) and (4.18), we obtain

We choose f (pa) = 0. Not both the sums F(,,8) and F(8, 7) can be non-
empty. If F(-y, 8) is non-empty, so that = 0, we choose = 1.
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As in Lemma 3.29, F(y, 6) = 0 or tl. In this case, (4.19) reduces to
0 = 2 f (~b) + F(y, J), so that by choosing f (pa) ~ -2F(y, ~), we obtain a
contradiction. If F(b, 7) is a non-empty sum (so that 6) = 0) a similar
contradiction can be obtained. If both 8) and F(b, ’1) are empty sums,
simply we choose 0 to obtain a contradiction. Thus the

equation (4.19) results in a contradiction in all cases. Thus (4.9) is true

We now complete the remaining cases. We can assume now that 0(a, ,8)
= 8(’1, 6), where a =1= (3. If y = b, we obtain 8(",) = 0 (a, (3). Hence

by the previous considerations, we have ’1 = 0 (a, c) or y = 0 (p, c). So we
have a = 8(’Y,¿) or (3 = 6(y, d’) = 0(6, d’), by Theorem 3.1. So we may
assume that a ~ (3 and ’1 =I 8. If a = q, then a = 0(,y, 0). If a = J
then (by Theorem 3.1) (3 = y. In this case we must show that a = 9(,8, c)
or ,Q = 0(a, d). If these two possibilities do not occur, we may take the
multiplicative function f defined by

By (2.19) with this f , we can show that = 1 and making use
of (2.26) we obtain that = 2 leading to an absurdity.

Finally, we can now assume that a, #, q, 6 are pairwise distinct positive
integers with 0 (a, #) = 9(" 8). Suppose that the conclusion of Theorem 4.1
does not hold; this together with Theorem 3.1 implies that none of the four
equations

is solvable.
Let f be the multiplicative function defined by

the values of and remain to be fixed. Since = f(¡l) = 0,
from (2.19), with f as in (4.21) we obtain

where
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In the sum on the right hand side of E (a, 0), by the assumption made on
the solvability of equations in (4.20), the choices x = 7 or y = 6 are not
permissible. Hence

so that, as in (3.12)

Remark 4.24. We may note here that ~(c~/3) = B(-y, b) and Theorem 3.1
imply that 0(b, q) =,8 if and only if 0(b, a) = J. In particular N(7"Q) _
N(a, b) and F(y, /3) = F(a, J). Similarly ~(a, /3) = 7 if and only if 0(a, J) =
a. Thus N(,Q, 7) = N (6, a) and F(~i, ’Y) = F(6, a).
Now by Remark 4.24,

and

so that 0(a, b) = 0 and hence a = b = 0, so that 6 = a and q = /3. This is
not possible since a, ~3, -y and 6 are pairwise distinct. It follows that

Making use of (4.25)-(4.27) in (4.23) and replacing the resulting value of
¿(0:,{3) in (4.22) we obtain

From (2.26), we can show that
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and

Making use of (4.29) and (4.30) in (4.28), after simplification we obtain

Now, by (2.26), by Theorem 3.1 and since = f V) = 0, we obtain

Making use of (4.29) and (4.30) in (4.32) we obtain after simplification

Equating (4.31) and (4.33) and transposing the terms, we get

By Theorem 3.1, it is clear that the N-functions take the value 0 or 1.

Also, N(a, J) and N(6, a) can not be simultaneously unity. It follows that
the coefficients of is positive. If the sum F(y, 6) is non-empty, so
that F(6, q) = 0, we choose f(p7) = 1. Applying Lemma 3.29 with A = y,
p _ ~, cp = f (on noting that f (pcl) = f(pP) = 0) yields F(7, ð) = 0, +1.
In this case (4.34) reduces to

It is easy to choose f (pb) not satisfying (4.35). A similar contradiction
can be obtained if F(b, y) is non-empty. If F(~y, 8) and F(8, y) are both
empty sums, (4.34) reduces to 0 = This obviously gives a
contradiction if 0. This completes the proof of Theorem 4.1.

D

5. Final results

From Lemma 2.17, Theorems 3.1 and 4.1 and the definition given in
(2.13), we obtain

Theorem 5.1. If 1/1 preserves multiplicativity, y) &#x3E; max(z, yl for all
(x, y) E T, each multiplicative function is invertible with respect to 1/1 and
the identical equation (1.4) holds for all multiplicative functions, then V) is
a Lehmer-Narkiewicz convolution.
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It may be noted that the multiplicativity preserving property of ’0 is

not a necessary condition for the validity of (1.4). For example, if T =

1 (1, n), (n, 1) : n E and = n for all n E Z+, then
(1.4) holds trivially for all arithmetic functions f with f (1) = 1. However,
~ does not preserve multiplicativity.
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