TD Equations Différentielles n° 2

Systèmes différentiels linéaires à coefficients constants

1) Déterminer $\exp(tA)$, $t \in \mathbb{R}$ lorsque A est une des matrices suivantes:

$$\begin{pmatrix} 5 & -6 \\ 3 & -4 \end{pmatrix}, \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix},$$

$$\begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 1 & 3 \end{pmatrix}, \begin{pmatrix} \lambda & 0 & 0 \\ 1 & \lambda & 0 \\ 0 & 1 & \lambda \end{pmatrix}, \lambda \in \mathbb{C}$$

2) Soit $\lambda \in \mathbb{C}$ et $n \in \mathbb{N}^*$. Calculer e^{tA} , $t \in \mathbb{R}$ où $A \in M_n(\mathbb{C})$ est la matrice

$$A = \lambda Id + N$$
, $N_{i,j} = \delta_{j=i+1}$.

- 3) Soit $A \in M_n(\mathbb{C})$ tel que les valeurs propres λ_i de A vérifient $Re(\lambda_i) \leq -\alpha < 0$. Montrer que quelque soit $\varepsilon > 0$, il existe $C(\varepsilon)$ tel que $||e^{tA}|| \leq C(\varepsilon)e^{(-\alpha+\varepsilon)t}$, $\forall t \geq 0$. (on utilisera la question précédente). En déduire que $\lim_{t\to\infty} e^{tA} = 0$
- 4) Le résultat de la question précédente est il toujours vrai si on suppose qu'il existe une valeur propre λ de A telle que $Re(\lambda) = 0$? Justifier en exhibant des systèmes différentiels $\dot{X} = AX$, où les valeurs propres λ_i de A vérifient $Re(\lambda_i) \leq 0$, possédant des solutions non bornées. Donner une condition sur ces valeurs propres de partie réelle nulle pour que e^{tA} reste bornée sur $[0, \infty[$. Donner une condition générale pour que e^{tA} reste bornée sur \mathbb{R} .

Autour de la formule de Duhamel

1) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction bornée. On considère l'équation différentielle

$$x''(t) - x(t) = f(t), \ \forall t \in \mathbb{R}, \ (E').$$

- i) Montrer que si il existe une solution de (E') bornée sur \mathbb{R} , elle est unique. On se propose de calculer cette solution.
- ii)Ecrire (E') sous la forme d'un système différentiel

$$X'(t) = AX(t) + F(t), \forall t \in \mathbb{R},$$

où
$$X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$
, $A \in M_2(\mathbb{R})$ et $F(t) \in \mathbb{R}^2$.

- iii) Calculer e^{tA} , pour tout $t \in \mathbb{R}$.
- iv) En utilisant la formule de Duhamel sur (0,t) $(t \in \mathbb{R})$, montrer que toute solution de (E') peut s'écrire sous la forme

$$x(t) = Ae^{t} + Be^{-t} + \int_{0}^{t} sh(t-s)f(s)ds, \ \forall t \in \mathbb{R}. \ (S)$$

v) On fixe L > 0. Trouver A_L et B_L pour que x(L) = x(-L) = 0 et montrer que la solution calculée est bornée sur (-L, L) indépendamment de L. Quand $L \to \infty$, montrer que les coefficents A_L et B_L ont des limites A_∞ , B_∞ . En prenant $A = A_\infty$, $B = B_\infty$ dans (S), montrer alors que l'unique solution bornée de (E') s'écrit

$$x(t) = \int_{-\infty}^{t} e^{s-t} f(s) ds - \int_{t}^{\infty} e^{t-s} f(s) ds.$$

2) Soit $A \in M_n(\mathbb{C})$ tel que $Re(\lambda_i) < 0$ et $B(t) \in M_n(\mathbb{C})$ tel que $\lim_{t \to \infty} \|B(t)\| = 0$. Montrer que toute solution x du système linéaire $\dot{x} = Ax + B(t)x$ tend vers 0 lorsque $t \to \infty$. **Application:** Donner une condition sur a pour que toutes les solutions de $\dot{x} = A(t)x$ où A(t) est la matrice

$$\begin{pmatrix} e^{-t} & \frac{t^2}{t^2+1} & e^{-t} \\ \frac{\sin t}{t} & 0 & 1+e^{-t} \\ (2-a)(e^{-t}-1) & -1 & -a\frac{t^3}{1+t^3} \end{pmatrix},$$

tendent vers 0 pour $t \to \infty$.

- 4) Soit $A \in M_n(\mathbb{C})$ tel que $Re(\lambda) \leq 0$ et les valeurs propres de partie réelles nulles sont simples. Soit $B(t) \in M_n(\mathbb{C})$ et $C(t) \in \mathbb{C}^n$ tel que $\int_0^\infty |B(t)| dt < \infty$ et $\int_0^\infty |C(t)| dt < \infty$. Montrer que la solution de $\dot{x} = Ax + B(t)x + C(t)$ et $x(0) = x_0$ est bornée sur $[0, \infty[$.
- 5) Soit A et B deux matrices réelles. Montrer que $\lim_{n\to\infty} \left(e^{\frac{t}{n}A}e^{\frac{t}{n}B}\right)^n = e^{t(A+B)}$, $\forall t \in \mathbb{R}$ avec convergence uniforme sur tout compact. On posera $f_n(t) = \left(e^{\frac{t}{n}A}e^{\frac{t}{n}B}\right)^n$ et on calculera une équation différentielle satisfaite par f_n .

Théorie de Floquet

1)Démontrer le théorème de Floquet

Considérons le système différentiel $\dot{X} = A(t)X$ où A est une matrice T-périodique de taille $n \in \mathbb{N}^*$. Montrer que toute matrice fondamentale $\Phi(t)$ associée à ce système (i.e. une matrice formée par une base de solutions du système différentiel) peut s'écrire

$$\Phi(t) = P(t)e^{tB}$$

où B est une matrice à coefficient constant et P une matrice T-périodique.

2) Soit ρ_i)_{i=1..n} les valeurs propres de e^{TB} et λ_i tel que $\rho_i = e^{\lambda_i T}$. Montrer que

$$\Pi_{i=1}^n \rho_i = \exp \int_0^T TrA(t)dt, \ \sum_{i=1}^n \lambda_i = \frac{1}{T} \int_0^T TrA(t)dt (mod \frac{2k\pi}{T}).$$

Pour cela, on démontrera la formule de Liouville: si $\Phi(t)$ est une matrice formée d'une base de solution de $\dot{X} = A(t)X$, alors

$$\det(\Phi(t)) = \det(\Phi(t_0)) \exp \int_{t_0}^t \operatorname{tr}(A(s)) ds. \tag{0.1}$$

Donner alors une condition sur les ρ_i pour que toute solution du système différentiel $\dot{X} = A(t)X$ converge vers 0 pour $t \to \infty$.

- 3) Soit $\dot{X} = A(t)X$, A matrice de taille n et T-périodique et f une fonction scalaire T-périodique.
- i) On suppose n=1 et A(t)=f(t). Déterminer B et P(t) du théorème de Floquet. Donner une condition sur f pour que les solutions restent bornées pour $t\to\pm\infty$ ou soient périodiques.
- ii)Soit n=2 et A(t)=f(t)C où C est une matrice de taille 2 à coefficients constants. Calculer B et P(t) du théorème de Floquet et donner des conditions sur f et C pour que les solutions du système différentiel soient bornées quand $t \to \pm \infty$ ou périodiques.
 - iii) Soit n=2 et A(t) s'écrit

$$A(t) = \begin{pmatrix} \cos t & \sin t \\ \sin t & -\cos t \end{pmatrix}.$$

Est ce que les solutions du système différentiel associé sont bornées?

4) Soit le système différentiel

$$\dot{x} = 2x + y + x \cos t - y \sin t,$$

$$\dot{y} = -x + 2y - x \cos t + y \sin t.$$

Montrer qu'il n'y a pas de solution autre que la solution nulle qui vérifie $\lim_{t\to\infty}(x(t),y(t))=(0,0)$.

Instabilité paramétrique

1) Trouver la forme du domaine de stabilité (pour la solution nulle) sur le plan (ε, ω) du système décrit par l'équation x'' = -f(t)x où

$$f(t) = (\omega + \varepsilon)^2$$
, si $0 \le t < \pi$,
 $f(t) = (\omega - \varepsilon)^2$, si $\pi \le t < 2\pi$

où f est 2π périodique et $\varepsilon << 1$.

- 2) Equation de Hill Mathieu x'' + a(t)x = 0 avec a positive, non nulle et T périodique. On se propose de montrer le résultat du à Lyapounov.
- Si $T \int_0^T a(s) ds \le 4$ alors toutes les solutions de x'' + a(t)x = 0 sont bornées et le point x = 0 est stable.
- (i) Montrer en utilisant la théorie de Floquet et la formule de Liouville que si toutes les solutions de x'' + a(t)x = 0 sont bornées alors le point x = 0 est stable.
- (ii) On va montrer que toutes les solutions de x'' + a(t)x = 0 sont bornées. Supposons qu'il existe une solution non bornée: montrer qu'il existe $r \in \mathbb{R}$ et une solution x telle que x(t+T) = rx(t).
- (iii) On définit $u(t) = \frac{x'}{x}$. Montrer que u vérifie une équation de Ricatti. En déduire que x s'annule au moins une fois sur [0,T] et possède deux zéros consécutifs sur un intervalle de longueur inférieur à T.

(iv) Démontrer le lemme suivant: soit f régulière sur un intervalle $[\alpha \ \beta]$ tel que $f(\alpha) = f(\beta) = 0$ et strictement positive sur cet intervalle. Alors

$$\int_{\alpha}^{\beta} \frac{|f''(x)|}{f(x)} > \frac{4}{\beta - \alpha}.$$

(v) Conclure.