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Abstract. A generalised bialgebra is an algebra which is also a coalgebra,

with a relation λ linking coproducts of products of elements to products of
coproducts of them. The rigidity theorem, first proven by Loday in 2008,

states that, under certain conditions on λ, any associated generalised bialgebra

is free and cofree over its primitive elements. We give here an easy-to-check
criterion to build by duality such a theorem and apply it to prove the freeness

of some combinatorial algebras.

Une bigèbre généralisée est une algèbre munie d’une structure de cogèbre et

d’une famille de relations λ permettant la réécriture de coproduits de produits
d’éléments en produits de coproduits de ces mêmes éléments. Le théorème de

rigidité, prouvé en 2008 par Loday, permet d’établir, sous certaines conditions
sur λ, la liberté et la coliberté de toute bigèbre généralisée associée. Nous

donnons ici un critère facilement vérifiable pour l’obtention par dualité d’un

tel théorème avant de l’appliquer pour montrer la liberté de certaines algèbres
combinatoires.

Introduction

In 1969, Beck introduced in [1] the notion of distributive laws relating products of
different types in an algebras, such as, for instance, the one linking the commutative
product and the Lie bracket in a Poisson algebra. In 1997, Markl introduced in [12]
this notion for operads and sketched the notion of generalised bialgebra. In 2008,
Loday proved in [9] what is called the rigidity theorem: under certain conditions on
the relations λ linking products and coproducts, a generalised bialgebra is free and
cofree over its primitive elements. In 2015, Livernet, Mesablishvili and Wisbauer
generalised in [8] this result to monads and the authors loosened the conditions on
λ in [3], showing that for any type of algebra and coalgebra, there exists relations
such that the rigidity theorem holds. We present here a way to explicitly build a
rigidity theorem, in the first section, and apply this in the other sections to preLie
algebras (section 2), dendriform algebras (section 3) and tridendriform algebras
(section 4) to show the freeness of some combinatorial algebras (section 2 and 5),
such as WQSym-algebras or hypertree algebras. We recover in the last section
results of Vong in [17], giving an operadic frame to his proof, and of Burgunder-
Curien-Ronco in [2], with a simpler description of the generators of the algebra.
The notion of operad is a keypoint in the proof of these results, but the results
themselves can be understood without knowing it.

The work of the first author was supported by ANR CATHRE. The work of the second author
was supported by LabEx CIMI..
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1. General results

An operad is a functor F from the category of finite dimensional S-module to
itself, i.e. a linear species, endowed with a linear map π : F ◦F → F . It is used to
encode a family of operations graded by arity and satisfying some given relations.
For instance, Operad Comm associates to any vector space the trivial representa-
tion of the symmetric group and encodes commutative algebras. We consider two
connected algebraic operads A and C, or, in other words, a type of algebra A and a
type of coalgebra Cc, such that there is no operations or cooperations of arity 0, and
the spaces of operations and cooperations of arity 1 is generated by the identity.

Let us first recall that a coalgebra is conilpotent if and only if for any x in C,
there exists n such that δ(x) = 0, for any δ ∈ C(k), k > n, that primitives are
elements x such that δ(x) = 0, for any cooperation δ (the coproduct is reduced)
and define the cofiltration on any conilpotent coalgebra C, FnC = {x ∈ C|δ(x) = 0,
for any δ ∈ C(k), k > n}. We moreover denote by K a field of characteristic 0.

Definition 1.0.1. A generalised bialgebra of type Cc−λA is a vector space C which
is an A-algebra, a conilpotent Cc-coalgebra and such that any operation µ of arity
n and any cooperation δ of coarity m satisfy the rewriting rule

λ : δ ◦ µ 7→
∑

µi,δj ,σ

cµi,δj (µ1 ⊗ . . .⊗ µm) ◦ σ ◦ (δ1 ⊗ . . .⊗ δn) ,

where µi are operations, δi are cooperations, σ is a permutation and cµi,δj is a
function from Cn to K, constant on the sets {(x1, . . . , xn)|xj ∈ FijC − Fij−1C},
which enables to rewrite any coproducts of products of elements in terms of products
of coproducts of the same elements. The rewriting rule λ is moreover asked to be
compatible with the structure of operads of C and A, i.e. that the rewriting of
(δ1 ⊗ . . .⊗ δm) ◦ δ ◦ µ ◦ (µ1 ⊗ . . .⊗ µn) does not depend on the order used to apply
the different rules.

Remark 1.0.2. It is then sufficient to give the rewriting rules on the generating
operations and cooperations.

Example 1.0.3. A commutative cocommutative Hopf bialgebra, i.e. such that
its cocommutative coproduct is a morphism of algebra, is a Commc−Hopf Comm-
generalised bialgebra. A As−n.u.i. As generalised bialgebra is defined as an asso-
ciative coassociative bialgebra (B,µ,∆) with rewriting rule given, for any u, v ∈ B
by:

∆ ◦ µ(u, v) = u⊗ v + ∆(u)1 ⊗ µ(∆(u)2, v) + µ(u,∆(v)1)⊗∆(v)2,

with Sweedler’s notation of the coproduct.

Let us now consider a basis B of an operad A, or equivalently a family of bases
BH of every free A-algebra H. Given an element x of BH and a product µ ∈ A(n),
the coproduct ∆µ given by duality on x ∈ BH is then defined as:

∆µ(x) =
∑

x1,...,xn∈BH

δx∗(µ(x1,...,xn))6=0
1

x∗(µ(x1, . . . , xn))
x1 ⊗ . . .⊗ xn,

where x∗ is the dual of x with respect to BH and δx∗(µ(x1,...,xn)) 6=0 is the Kronecker
symbol.

To fulfil the requirements of the rigidity theorem, the bases BH have to satisfy
some conditions:
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Definition 1.0.4. A basis BH is said to be a compatible basis if products and
dual coproducts expressed in this basis commute with the action of the symmetric
group. In other words, for any cooperation ∆ ∈ C(n), any operation µ ∈ A(n), any
σ ∈ Sn and any x1, . . . , xn ∈ PrimH, we have:

∆ ◦ µ (σ · (x1, . . . , xn)) = σ · (∆ ◦ µ(x1, . . . , xn)),

where the symmetric group acts by permutation on the {xi}.

We then obtain an analogue of the rigidity theorem:

Proposition 1.0.5. If the considered basis B is a compatible basis, then the rigid-
ity theorem applies: any conilpotent Cc − A-bialgebra with rewriting rule given by
duality (computed on the free algebra) is free and cofree over the vector space of its
primitives.

Remark 1.0.6. An example of bases of operads which are not compatible is given
by the Lyndon basis and the comb basis of the operad Lie (see [3]).

Example 1.0.7. Using the duality on usual bases of known operads, we find
back the following cases: cocommutative-commutative Hopf algebras by Borel,
coassociative-associative bialgebras by Loday and Ronco, coassociative-Zinbiel and
comagmatic-magmatic bialgebras by Burgunder, coNAP-preLie bialgebras by Liv-
ernet, conilpotent-nilpotent and coduplicial-duplicial bialgebras by Loday [9].

We apply Proposition 1.0.5 in the following sections.

2. The preLie Case

We consider here the preLie operad and the rooted tree basis introduced by
Chapoton and Livernet in [5]: the free preLie algebra on a vector space V is spanned
by rooted (non planar) trees with vertices indexed by V . We recall that the relation
satisfied by a preLie product x is given by:

(xx y) x z − xx (y x z) = (xx z) x y − xx (z x y).

Combinatorially, the product of two rooted trees T and S, T x S, is the sum
over all possible ways to add an edge between a vertex of T and the root of S. The
root of the obtained tree is the root of T . The dual coproduct is then given by the
sum over all possible ways to delete an edge in the tree:

∆(T ) =
∑

a∈E(T )

Ra(T )⊗ La(T ),

where Ra(T ) is the connected component of T − {a} containing the root of T and
La(T ) is the other connected component.

Remark 2.0.8. This coproduct is obtained by taking only connected components
in the Connes-Kreimer coproduct.

To apply the rigidity theorem to some algebras, we compute the associated
relation:

Proposition 2.0.9. The preLie product and its dual coproduct satisfy the following
relation:

(1) ∆(T x S) = #T × T ⊗ S + (T x S1)⊗ S2 + (T1 x S)⊗ T2 + T1 ⊗ (T2 x S),
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where ∆(T ) = T1 ⊗ T2, ∆(S) = S1 ⊗ S2 and #T = max{k|∃δ ∈ C(k) : δ(T ) 6= 0}.
Thus any conilpotent preLie-copreLie bialgebra whose product and coproduct are
linked by this relation is free and cofree over its primitives.

Example 2.0.10 (Hypertrees). The bijection between decorated hypertrees and
a pair given by some types of box trees and decorated sets in [15] motivated the
introduction of the following product on hypertrees introduced by Berge.

Definition 2.0.11 (Berge). A hypergraph (on a set V ) is an ordered pair (V,E)
where V is a finite set and E is a collection of elements of cardinality at least two,
belonging to the power set P(V ). The elements of V are called vertices and those
of E are called edges. Defining a walk as a collection of adjacent edges, a hypertree
is then a connected acyclic hypergraph.

Let us consider a rooted hypertree H, i.e. a hypertree with a distinguished
vertex. We define a preLie product on rooted hypertrees H x G as the sum of all
the ways to graft the root of G on a vertex v of H, where the grafting is given by
adding an edge of cardinality 2 between v and r.

Example 2.0.12. We represent below the product of two rooted hypertrees:

4

1 2

3 x 6

75

=
4

1 2

3

6

75

+
4

1 2

3

6

75

+
4

1 2

3

6

75

+

4

1 2

3

6

75

.

On this algebra, we define the coproduct given by all the ways to delete an edge
of cardinality two in the hypertree. This coproduct satisfies the dual relations of
Equation 1. Hence the associated algebra is preLie free, with primitive elements
given by the hypertrees with no binary edge, i.e. edge of cardinality two.

3. The dendriform case

3.1. Rigidity theorem. We discuss in this section the case of coduplicial-dendriform
algebras:

Definition 3.1.1. A dendriform algebra (see [10]) structure on A is a pair of binary
products ≺: A⊗A→ A and �: A⊗A→ A, satisfying, for any a, b, c ∈ A:

• (a ≺ b) ≺ c = a ≺ (b ∗ c), • (a � b) ≺ c = a � (b ≺ c),
• (a ∗ b) � c = a � (b � c), with ∗ =≺ + �.

The free dendriform algebra on a vector space V is spanned by labelled binary
planar trees labelled by elements of a basis of V . Consider a tree T and denote T
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as the grafting of its left hand-side tree tl and right hand-side tree tr as follows:
T = ∨(tl; tr). The operations ≺,� are defined on two trees T and S as:

T ≺ S = ∨(tl; tr ∗ S) and T � S = ∨(T ∗ sl; sr), with T ∗ ∅ = ∅ ∗ T = T.

We recall the definition of duplicial algebras.

Definition 3.1.2. A duplicial algebra [9] structure on A is a pair of binary products
. : A⊗A→ A and / : A⊗A→ A, satisfying that . and / are associative and

(x . y) / z = x . (y / z), for any x, y, z in A.

The free duplicial structure on the planar binary rooted trees is given by:

T . S = ∨(T . sl; sr) and T / S = ∨(tl; tr / S)

with T . ∅ = ∅ / T = T .

We define dual coproducts induced by the duplicial structure for trees as follows.

Definition 3.1.3. Let T = ∨(t1, t2) be a tree, define

∆.(T ) = ∆.(t1)1 ⊗ ∨(∆.(t1)2, t2) and ∆/(T ) = ∨(t1,∆/(t2)1)⊗∆/(t2)1

, with ∆.(∨(∅, ∅)) = 0 and ∆/(∨(∅, ∅)) = 0, using Sweedler notation for the co-
product.

Proposition 3.1.4 (Rigidity theorem for coduplicial dendriform bialgebras). Any
connected dendriform coduplicial bialgebra satisfying the following relations is free
and cofree over its primitive elements:

∆.(T � S) = T ⊗ S + T ∗ (∆.(S))1 ⊗ (∆.(S))2 + (∆.(T ))1 ⊗ (∆.(T ))2 � S,
∆.(T ≺ S) = (∆.(T ))1 ⊗ (∆.(T ))2 ≺ S,
∆/(T � S) = T � (∆/(S))1 ⊗ (∆/(S))2,

∆/(T ≺ S) = T ⊗ S + T ≺ (∆/(S))1 ⊗ (∆/(S))2 + (∆/(T ))1 ⊗ (∆/(T ))2 ∗ S,
where ∗ =� + ≺.

3.2. Link with the Tamari lattice. Let T, S be two planar binary trees. A right
path is a path from an inner edge to the root with only right inner edges. Define
the right (resp. left) path rT (resp. lT ) to be the longest path with only inner right
(resp. left) edges, and define RT (resp. LT ) to be the number of vertices on the
right (resp. left) path.

Lemma 3.2.1. The number of terms in T � S (resp. T ≺ S) is
(
RT+LS−1

RT

)
(resp.(

RT+LS−1
LS

)
).

Tamari endowed in 1962 the set of planar binary trees with a structure of poset
given by the following covering relation: a planar binary tree T covers a planar
binary tree S if there exists a vertex v in S and T such that the three connected
components C1, C2, C3 obtained by removing v are the same in S and T ,

i.e. S =
v

C1 C2

C3
and T = v

C3C2

C1

.
We denote by ≤ the partial order obtained by transitive closure of this covering

relations: the obtained poset is a lattice called Tamari lattice.
The intervals in the Tamari lattice are described as follows.
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Proposition 3.2.2 ([4], Prop 3.2). The dendriform and duplicial products enable
the description of the following intervals:

[T . S;T / S] = {X|X ∈ T ≺ S},

for any planar binary trees T and S.

Recalling from [6, Theorem 2.8] that the intervals in Tamari lattice are in one-to-
one correspondance with interval-poset, remark that the interval-poset associated
with the interval [T . S;T / S] has two connected components, corresponding re-
spectively to T and S. We can now compute the cardinal of this type of interval,
using Lemma 3.2.1.

Proposition 3.2.3. The number of elements in the intervals described above is
given by:

|[T . S;T / S]| =
(
RT + LS − 1

LS

)
,

for any planar binary trees T and S.

4. The tridendriform case

Let us recall from [11] and [14] the relations governing a tridendriform algebra:

Definition 4.0.4. A tridendriform algebra is a vector space A together with three
operations ≺: A⊗A→ A, · : A⊗A→ A and �: A⊗A→ A, satisfying the following
relations:

(a ≺ b) ≺ c = a ≺ (b ≺ c+ b � c+ b · c), (a � b) ≺ c = a � (b ≺ c),
(a ≺ b+ a � b+ a · b) � c = a � (b � c), (a · b) · c = a · (b · c),
(a � b) · c = a � (b · c), (a ≺ b) · c = a · (b � c),
(a · b) ≺ c = a · (b ≺ c).

Note that the operation ∗ := ≺ + · + � is associative. Let Tn be the set of
all planar rooted trees (also known as Schröder trees) with n + 1 leaves, n ≥ 1.
Given trees t1, . . . , tr, let ∨(t1, . . . , tr) be the tree obtained by joining the roots of
t1, . . . , tr, ordered from left to right, to a new root. Then, any t ∈ Tn may be
written in a unique way as t = ∨(t1, . . . , tr), with ti ∈ Tni and

∑r
i=1 ni+ r−1 = n.

Following [11], the free tridendriform algebra on one generator is spanned by
planar rooted trees with operations �, · and ≺ recursively given by:

t ≺ w :=∨(t1, . . . , tr−1, tr ∗ w),
t · w :=∨(t1, . . . , tr−1, tr ∗ w1, w2, . . . , wl),
t � w :=∨(t ∗ w1, w2, . . . , wl),

for t = ∨(t1, . . . , tr) and w = ∨(w1, . . . , wl).

Lemma 4.0.5. The number of terms appearing in T ∗S is D(RT , LS), the Delannoy
number of n,m ([16, A266213]). The number of elements in T ≺ S (resp. T · S
and T � S) is D(RT , LS − 1) (resp. D(RT − 1, LS − 1) and D(RT − 1, LS)).

From the tridendriform operad, we define a new operad called terplicial, on
which the tridendriform operad is quasi-set (see [3]), by analogy with coduplicial-
dendriform bialgebras.

Definition 4.0.6. A terplicial algebra is a vector space V endowed with three
binary products {J,H,I} satisfying the following relations:



RIGIDITY THEOREM, FREENESS OF ALGEBRAS AND APPLICATIONS 7

I and H are associative, (x J y) J z = x J (y I z),
(x I y) J z = x I (y J z), (xHy) J z = xH(y J z),
(x I y)Hz = x I (yHz), (x J y)Hz = xH(y I z).

All the equations but the second and the last coincide with relations satisfied by
triduplicial algebra defined by J.-C. Novelli and J.-Y. Thibon in [13]. The products
introduced by V. Vong in [17] satisfy these relations.

Theorem 4.0.7. The free terplicial algebra on one generator is spanned by planar
trees. Hence, the dimension of the space of operations of arity n in the terplicial
operad is given by the Schröder-Hipparchus number.

The operations J, I and H on a free terplicial algebra are described recursively
as follows, for any tree T = ∨(t1, . . . , tn) and S = ∨(s1, . . . , sm), and denoting by
∅ the empty tree:

T J S = ∨(t1, . . . , tn−1, tn I S),

THS = ∨(t1, . . . , tn−1, tn I s1, s2, . . . , sm),

T I S = ∨(T I s1, s2 . . . , sm),

given that for any T , T I ∅ = ∅ I T = T .

Remark 4.0.8. Let us denote by RST (resp. LST ) the rightmost (resp. leftmost)
subtree of a planar tree T obtained by deleting the root of T . Combinatorially,
T I S (resp. T J S) is given by the grafting of T on the leftmost path of S (resp.
by the grafting of RST on the leftmost path of S, itself grafted on the rightmost
edge of T −RST ) and THS is given by grafting RST on the leftmost path of LSS
and grafting it on T −RST and S −LSS glued together, where for any tree T and
subtree S of T , T − S denotes the tree obtained by deleting vertices and edges of
S in T .

Example 4.0.9. If T = and S = , the products are given by:

T I S = , T J S = and THS = .

We introduce the dual coproduct associated with the products J, H and I. They
are given inductively on T = ∨(t1, . . . , tn) by ∆I (resp. ∆J, resp. ∆H)(T ) = 0, if
t1 = ∅ (resp. tn = ∅, resp. n = 2) and, otherwise,

∆I(T ) = t1 ⊗ ∨(∅, t2, . . . , tn) + ∆I(t1)1 ⊗ ∨(∆I(t1)2, t2, . . . , tn),

∆J(T ) = ∨(t1, . . . , tn−1, ∅)⊗ tn + ∨(t1, . . . , tn−1,∆I(tn)1)⊗∆I(tn)2,

∆H(T ) =

n−1∑
i=2

∨(t1, . . . , ti−1, ∅)⊗ ∨(ti, . . . , tn) + ∨(t1, . . . , ti)⊗ ∨(∅, ti+1, . . . , tn)

+ ∨(t1, . . . , ti−1,∆I(ti)1)⊗ ∨(∆I(ti)2, ti+1, . . . , tn),

A combinatorial interpretation of the coproducts is the following: ∆I(T ) (resp.
∆J(T )) is given by all the ways to cut edges in the leftmost path of T (resp. of RST
or the one linking the root to RST ) . The coproduct ∆H(T ) is given by cutting
edges in the leftmost path of children of the root, which are not cut by the two
other coproducts.

We now use terplicial operad to obtained a new rigidity theorem for tridendriform
algebras.
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Proposition 4.0.10 (Rigidity theorem for coterplicial tridendriform bialgebras).
Any connected tridendriform coterplicial bialgebra satisfying the following mixed
ditributive laws is free and cofree over its primitive elements:

∆I(T ≺ S) =(∆I(T ))1 ⊗ (∆I(T ))2 ≺ S,
∆I(T · S) =(∆I(T ))1 ⊗ (∆I(T ))2 · S,

∆I(T � S) =T ⊗ S + (∆I(T ))1 ⊗ (∆I(T ))2 � S + T ∗ (∆I(S))1 ⊗ (∆I(S))2,

∆H(T ≺ S) =(∆H(T ))1 ⊗ (∆H(T ))2 ≺ S,
∆H(T · S) =T ⊗ S + (∆H(T ))1 ⊗ (∆H(T ))2 · S + T · (∆H(S))1 ⊗ (∆H(S))2+

(∆J(T ))1 ⊗ (∆J(T ))2 � S + T ≺ (∆I(S))1 ⊗ (∆I(S))2,

∆H(T � S) =T � (∆H(S))1 ⊗ (∆H(S))2,

∆J(T ≺ S) =T ⊗ S + (∆J(T ))1 ⊗ (∆J(T ))2 ∗ S + T ≺ (∆I(S))1 ⊗ (∆I(S))2

∆J(T · S) =T · (∆J(S))1 ⊗ (∆J(S))2

∆J(T � S) =T � (∆J(S))1 ⊗ (∆J(S))2

where ∗ =� + ≺ +·.

5. Application: freeness of WQSym algebra

Let us consider the space of surjections: WQSymr
n := {x : [n]→ [r], x surjective }

and let WQSym = ⊕n≥r≥1K[WQSymr
n]. For x ∈ WQSymr

n, we write x =
x(1) . . . x(n). This vector space can be endowed with a dendriform structure (≺,�),
see for example [14], as follows: let x ∈WQSymr

n, y ∈WQSyms
m define

x � y :=
∑

a×b∈WQSym
max(a)<max(b)

std(a)=x,std(b)=y

a× b and x ≺ y :=
∑

a×b∈WQSym
max(a)≥max(b)

std(a)=x,std(b)=y

a× b,

where × is the concatenation of words and std is the identity on words belonging to
WQSym and if a word is not surjective (i.e. its image is in {1, . . . , j−1}∪{j+1, k}
with a gap in j), its standardisation is recursively defined as the standardisation of
the word obtained by decreasing by one all letters bigger than a gap.

Let x ∈ WQSymr
n, and suppose that x−1(r) = {j1 < · · · < jλ(x)}. Recur-

sively define the left-to-right maxima as LR(x) := (LR(xj1), j1)), with xj1 =
x(1) . . . x(j1−1) and LR(∅) = ∅. Similarly define the right-to-left maxima RL(x) :=(
jλ(x), RL(xjλ(x))

)
, with xjλ(x) = x(jλ(x) + 1) . . . x(n) and RL(∅) = ∅.

Example 5.0.11. For x = 2 4 1 5 5 3 6 7 3 1 2 5 the left to right maxima are
in bold red: 2 4 1 5 5 3 6 7 3 1 2 5 and LR(x) = (1, 2, 4, 7, 8). The right to left
maxima are in red: 2 4 1 5 5 3 6 7 3 1 2 5 and RL(x) = (8, 12).

We can now define a coduplicial structure on WQSym. For x ∈ WQSymr
n,

denote LR(x) = (l1, . . . , lx) and RL(x) = (r1, . . . , ry):

∆.(x) =

x∑
k=1

x(1) . . . x(lk − 1)⊗ std(x(lk) . . . x(n)),

∆/(x) =

y∑
k=1

std(x(1) . . . x(rk))⊗ x(rk + 1) . . . x(n).
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Proposition 5.0.12. WQSym endowed with the coproducts ∆.,∆/ and the den-
driform structure (≺,�) is a Dupc-Dend bialgebra.

Hence, we can reprove the known result (see [7, 2, 14, 17]) using the coduplicial-
dendriform structure on WQSym:

Proposition 5.0.13. WQSym is free as a dendriform algebra on its primitives.

Remark 5.0.14. The primitives are not the same as in [2], since in dimension 3
the primitives are (1, 3, 2) and (2, 3, 1), whereas in [2] it is (1, 2, 1) and (2, 3, 1). The
number of primitives elements for each dimension is given by the Fubini numbers
[16, A00670].

The algebra WQSym can be endowed with a tridendriform structure, as follows.
Let x ∈WQSymr

n, y ∈WQSyms
m and define:

x � y :=
∑

a×b∈WQSym
max(a)<max(b)

std(a)=x,std(b)=y

a×b, x ≺ y :=
∑

a×b∈WQSym
max(a)>max(b)

std(a)=x,std(b)=y

a×b and x·y :=
∑

a×b∈WQSym
max(a)=max(b)

std(a)=x,std(b)=y

a×b.

Suppose that x−1(r) = {j1 < · · · < jr} and let x′ ∈ WQSymr−1
n−k be the co-

restriction x′ := x|{1,...,r−1}. We denote x as x =
∏
j1<···<jλ(x) x

′. The work of

Vong [17] gives a construction of a terplicial algebraic structure on WQSyms
m.

For x ∈WQSymr
n, y ∈WQSyms

m define the operations

x J y =
∏

jx1 ,...,j
x
λ(x)

x′ × y, xHy =
∏

jx1 ,...,j
x
λ(x)

,jy1 ,...,j
y
λ(x)

x′ × y′ and x I y = x× y,

where x =
∏
jx1 ,...,j

x
λ(x)

x′ and y =
∏
jy1 ,...,j

y
λ(x)

y′. The relations are checked by direct

inspection.
The coterplicial structure on WQSym is combinatorially constructed as follows:

for x ∈WQSymr
n there is a unique way to describe it as x1 × . . . × xp such that

every xi is irreducible that is to say that there does not exist u, v ∈ WQSym
such that xi = u× v. Suppose x =

∏
j1,...,jλ(x)

x′ =
∏
j1,...,jλ(x)

u1 × . . .× uq where

u1 × . . . × uq is the irreducible decomposition of x′, ui ∈WQSymsi
mi . Denote by

U1 = u1 × . . . × up1 the decomposition x =
∏
j1,...,jλ(x)

U1 × us+1 × . . . × uq with∑
i=1 p1 − 1mi + λ(x) < jλ(x) ≤

∑
i=1 p1mi + λ(x),

∆J(x) =
∑
i

∏
j1,...,jλ(x)

(
U1 × up1+1 × . . .× up1+i

)
⊗ std(up1+i+1 × . . .× uq),

∆I(x) =
∑
i

x1 × . . .× xi ⊗ xi+1 × . . .× xp,

∆H(x) =
∑
i,l

∏
j1,...,ji

(
u1 × . . .× ul

)
⊗

∏
ji+1,...,jλ(x)

(
ul+1 × . . .× uq

)
where the last sum runs over i, l such that m1 + . . .+ml−1 < ji ≤ m1 + . . .+ml.

These cooperations enable us to prove the following proposition:

Proposition 5.0.15 ([2]). The algebra WQSym is endowed with a terplicialc-
tridendriform bialgebra structure. Hence, the algebra WQSym is free as a terplicial
algebra and free as a tridendriform algebra.
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dendriformes”. In: C. R. Math. Acad. Sci. Paris 342.6 (2006), pp. 365–369.
issn: 1631-073X.

[15] Bérénice Oger. “Decorated hypertrees”. In: J. Combin. Theory Ser. A 120.7
(2013), pp. 1871–1905. issn: 0097-3165.

[16] N. J. A. Sloane. “The on-line encyclopedia of integer sequences”. 2016. https://oeis.org/.
[17] Vincent Vong. “On (non-) freeness of some tridendriform algebras”. In: DMTCS

proc. FPSAC 2016 (2016).
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