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Motivation : P,

o F, generated by (x;)_;
e PY,, pure symmetric automorphism group / McCool group

» group of automorphisms of F, which send each x; to a conjugate of
itself,

» group of motions of a collection of n coloured unknotted, unlinked
circles in 3-space.

@ Koszulness of their cohomology groups?
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@ Use of the hypertree poset for the computation of the />-Betti
numbers of P¥,, by C. Jensen, J. McCammond and J. Meier.

@ Action of PX, on a contractible complex MM, defined by
McCullough and Miller in 1996 in terms of marking of hypertrees,
whose fundamental domain is the hypertree poset on n vertices,

e PX,» Inn(F,) => OP¥%, = P%X,/Inn(F,)
e OPY, acts cocompactly on MM,

@ Use of a theorem by Davis, Januszkiewicz and Leary to obtain the
expression of /?>-cohomology of the group in term of the cohomology
of the fundamental domain of the complex.
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Summary

Q The hypertree poset
e Computation of the homology of the hypertree poset
© From the hypertree poset to rooted trees

o Back to the cohomology
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Hypergraphs and hypertrees

Definition (Berge, 1989)
A hypergraph (on a set V') is an ordered pair (V, E) where:
e V is a finite set (vertices)

@ E is a collection of subsets of cardinality at least two of elements of
V (edges).

Example of a hypergraph on [1; 7]
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Walk on a hypergraph

Definition

Let H= (V,E) be a hypergraph.

A walk from a vertex or an edge d to a vertex or an edge f in H is an
alternating sequence of vertices and edges beginning by d and ending by f:

(d,...,e,',v,-,e,'+1,...,f)

where for all i, vi € V, e; € E and {vj,viy1} C €.
The length of a walk is the number of edges and vertices in the walk.

Examples of walks
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Hypertrees

Definition

A hypertree is a non-empty hypergraph H such that, given any distinct
vertices v and w in H,

o there exists a walk from v to w in H with distinct edges e;, (H is
connected),

e and this walk is unique, (H has no cycles).

Example of a hypertree

O—2 6&—D
9’9!
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The hypertree poset

Definition

Let | be a finite set of cardinality n, S and T be two hypertrees on .

S <X T < Each edge of S is the union of edges of T

We write S < T if ST butS#T.

Example with hypertrees on four vertices

QO
4

@« @
=
@ @
> & & & & @ but not >—®
Bérénice Oger (ICJ -Lyon) From PX, to the homology of HT, January, 21st 2014 8 /37



Graded poset by the number of edges [McCullough and Miller 1996],
There is a unique minimum ﬁ

HT(l) = hypertree poset on /,

HT, = hypertree poset on n vertices.

Mébius number : (n —1)"~2 [McCammond and Meier 2004]

Goal:
@ New computation of the homology dimension

@ Computation of the action of the symmetric group on the homology
(Conjecture of Chapoton 2007)
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Homology of the poset
To every poset P, one can associate a simplicial complex (nerve of the
poset seen as a category) whose

@ vertices are elements of P,

o faces are the chains of P.
Definition
A strict k-chain of hypertrees on | is a k-tuple (a1, ..., ax), where a; are
hypertrees on | different from the minimum 0 and a; < Ajt1-
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Homology of the poset
To every poset P, one can associate a simplicial complex (nerve of the
poset seen as a category) whose

@ vertices are elements of P,

@ faces are the chains of P.
Definition
A strict k-chain of hypertrees on | is a k-tuple (a1, ..., ax), where a; are
hypertrees on | different from the minimum 0 and a; < Ajt1-

Let Ci be the vector space generated by strict k-chains. We define
C_1 = C.e. We define the following linear map on the set (Cy)x>—_1:
k .
M(ar < ... <ar1) =D (D' (ar < ... <& = ... < a),
i=1
(al <...=< ak+1) € Cy.
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Homology of the poset
To every poset P, one can associate a simplicial complex (nerve of the
poset seen as a category) whose

@ vertices are elements of P,

@ faces are the chains of P.
Definition
A strict k-chain of hypertrees on | is a k-tuple (a1, ..., ax), where a; are
hypertrees on | different from the minimum 0 and a; < Ajt1-

Let Ci be the vector space generated by strict k-chains. We define
C_1 = C.e. We define the following linear map on the set (Cy)x>—_1:
k .
M(ar < ... <ar1) =D (D' (ar < ... <& = ... < a),
i=1
(al <...=< ak+1) € Cy.
The homology is defined by:

Hj == keraj/imajH.
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Theorem (McCammond and Meier, 2004)

The homology of HT, is concentrated in maximal degree (n—3).
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Theorem (McCammond and Meier, 2004)

The homology of HT, is concentrated in maximal degree (n—3).

Corollary

The character for the action of the symmetric group on H,_3 is given in
terms of characters for the action of the symmetric group on Cy by:

n—3

Xi, 3 = (-1)"3 Z (=1)*xc,, where n=#I.
k=—1
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What are species?

Definition

A species F is a functor from the category of finite sets and bijections to
itself. To a finite set |, the species F associates a finite set F(/)
independent from the nature of I.
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What are species?
Definition
A species F is a functor from the category of finite sets and bijections to

itself. To a finite set |, the species F associates a finite set F(/)
independent from the nature of I.

Species = Construction plan, such that the set obtained is invariant by
relabelling
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What are species?
Definition
A species F is a functor from the category of finite sets and bijections to

itself. To a finite set |, the species F associates a finite set F(/)
independent from the nature of I.

Species = Construction plan, such that the set obtained is invariant by
relabelling
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What are species?
Definition
A species F is a functor from the category of finite sets and bijections to

itself. To a finite set |, the species F associates a finite set F(/)
independent from the nature of I.

Species = Construction plan, such that the set obtained is invariant by
relabelling

® + —

@
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What are species?

Definition

A species F is a functor from the category of finite sets and bijections to
itself. To a finite set |, the species F associates a finite set F(/)
independent from the nature of I.

Counterexamples
The following sets are not obtained using species:
e {(1,3,2),(2,1,3),(2,3,1)(3,1,2)}(set of permutations of {1,2,3}
with exactly 1 descent)
o (graph of divisibility of {1,2,3,4,5,6})

/

SNOAOG
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Examples of species

e {(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)} (Species of lists
Assoc on {1,2,3})

ol dupd suab &)

rooted trees PreLie)

@8@@5@

These sets are the image by species of the set {1,2,3}.

(Species of cycles)
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Examples of species

0 {(V.0,8),(0, % 4),(4,0,%),(6%9), (&0 8), (%6 0))
(Species of lists Assoc on {&, O, &})

(agpidegideal s

rooted trees PreLie)

AL A

These sets are the image by species of the set {&, O, &}.

(Species of cycles)
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Operations on species and associated series

Proposition

Let F and G be two species. The following operations can be defined on
them:

e F'(I) = F(IU{e}), (derivative)
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Operations on species and associated series

Proposition

Let F and G be two species. The following operations can be defined on
them:

e F'(I)= F(IU{e}), (derivative)

Example: Derivative of the species of cycles on | = {Q, &, &}

v
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Operations on species and associated series

Proposition

Let F and G be two species. The following operations can be defined on
them:

e F'(I) = F(IU{e}), (derivative)
o (F+ G)(I)= F(I)u G(!), (addition)
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Operations on species and associated series

Proposition

Let F and G be two species. The following operations can be defined on
them:

e F'(I) = F(IU{e}), (derivative)
e (F+ G)(I)= F(I)u G(I), (addition)
o (Fx G)(I)=>pup= F(h) x G()), (product)
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Operations on species and associated series

Proposition
Let F and G be two species. The following operations can be defined on
them:

e F'(I) = F(IU{e}), (derivative)

e (F+ G)(I)= F(I)u G(I), (addition)

o (F x G)(I) = Xyups F(I) x G(h), (product)

o (FoG)(I) = Urepqy F(m) x I1jer G(J), (substitution) where P(/)
runs on the set of partitions of /.
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Operations on species and associated series

Proposition

Let F and G be two species. The following operations can be defined on

them:

e F'(I) = F(IU{e}), (derivative)

o (F+ G)(I)= F(I)u G(/), (addition)
o (FxG)(I)=>pun= F(h) x G(k), (product)
o (FoG)(I) = Urepuy F(m) X T ex G(J), (substitution) where P(/)

runs on the set of partitions of /.

Example of substitution: Rooted trees of lists on | = {1,2,3,4}

(2,4,3)

(4,3,2)

(1)

(3,4)

(3)

()

|
(1)

(1)

(4,2,3)

(1,2)

(4,1)
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Definition
To a species F, we associate its generating series:
Xn

Ce(x) = 3 #F({L,...,n})

n>0

Examples of generating series:

@ The generating series of the species of lists is Cassoc = %

—x"

@ The generating series of the species of rooted trees is
ChreLic = Y_n>0 N 15

@ The generating series of the species of cycles is Ccycles = — In(1 — x).
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Definition
The cycle index series of a species F is the formal power series in an
infinite number of variables p = (p1, p2, p3, - . .) defined by:

Ze(p) =D — | D Fpppst .-

n>0 = \oeG,

@ with F?, is the set of F-structures fixed under the action of o,

e and o;, the number of cycles of length i in the decomposition of
into disjoint cycles.

Examples

@ The cycle index series of the species of lists is Zassoc = 1_—1p1.
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Operations on cycle index series

Operations on species give operations on their cycle index series:

Proposition

Let F and G be two species. Their cycle index series satisfy:

Zric =ZFr+ 26, Zrxec = ZF X Zg,

0z
Zroc = ZFo Zg, Zp =5

Definition
The suspension ¥ of a cycle index series f(p1, p2, p3, . . .) is defined by:

Xf= _f(_pla —P2, —pP3, - )
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Counting strict chains using large chains
Let / be a finite set of cardinality n.

Definition

A large k-chain of hypertrees on | is a k-tuple (a1,...,ax), where a; are
hypertrees on | and a; < ajy1.
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Counting strict chains using large chains

Let / be a finite set of cardinality n.

Definition

A large k-chain of hypertrees on | is a k-tuple (a1,...,ax), where a; are
hypertrees on | and a; < aj;1.

Let My s be the set of words on {0,1} of length k, with s letters "1". The
species M  is defined by:

@ = Mk,S7
VO — 0.

Bérénice Oger (ICJ -Lyon) From PX, to the homology of HT, January, 21st 2014 20 / 37



Counting strict chains using large chains
Let / be a finite set of cardinality n.

Definition

A large k-chain of hypertrees on | is a k-tuple (a1,...,ax), where a; are
hypertrees on | and a; < aj;1.

Let My s be the set of words on {0,1} of length k, with s letters "1". The
species M  is defined by:

[b = Mk,57
VO — 0.
Proposition

The species Hy of large k-chains and HS; of strict i-chains are related by:

Hy = ZHS,' X M.

i>0
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Proposition
The species Hy of large k-chains and HS; of strict i-chains are related by:

Hie =Y HSi x My

i>0 )
Proof.
Deletion of repetitions (3jss---»3j)
(a1,...,ak)
uj = 0if aj = aj_1, 1 otherwise (1. .., uk) with 20 = 0 B
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The previous proposition gives, for all integer k > 0:

n—2 k
xe=>_ |

S
Xi-
i=0
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The previous proposition gives, for all integer k > 0:
n—2
k
XK= (I.)Xf-
i=0

Xk is a polynomial P(k) in k which gives, once evaluated in —1, the
character:

Corollary

X, , = (Z1)"P(=1) = (=1)"x1

The hypertrees will now be on n vertices.
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Pointed hypertrees

Definition
Let H be a hypertree on |. H is:
@ rooted in a vertex s if the vertex s of H is distinguished,
@ edge-pointed in an edge a if the edge a of H is distinguished,

@ rooted edge-pointed in a vertex s in an edge a if the edge a of H and
a vertex s of a are distinguished.

Example of pointed hypertrees

—(2)—D
Vi
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Proposition: Dissymmetry principle
The species of hypertrees and of pointed hypertrees are related by:

H+HP? =HP +HA.

We write:
@ Hy, the species of large k-chains of hypertrees,

o H%?, the species of large k-chains of hypertrees whose minimum is
rooted edge-pointed,

o Y}, the species of large k-chains of hypertrees whose minimum is
rooted,

@ H2, the species of large k-chains of hypertrees whose minimum is
edge-pointed.

Corollary (O., 2013)

The species of large k-chains of hypertrees are related by:

Hi + HE = HE + i
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Last but not least type of hypertrees

Definition
A hollow hypertree on n vertices (n > 2) is a hypertree on the set

{#,1,...,n}, such that the vertex labelled by #, called the gap, belongs
to one and only one edge.

Example of a hollow hypertree

2—3 ®
® 0’9’0
@ ®)
We denote by H¢, the species of large k-chains of hypertrees whose
minimum is a hollow hypertree.
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Relations between species of hypertrees

Theorem
The species Hy, HY, and H§ satisfy:

HE = X x H (1)

HP = X x Comm oHS + X, (
Hi = CommoHg_q o HE, (

Hi = (Hi-1 = x) o HE, (4)
HE = (M, —x) o Hf. (
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Relations between species of hypertrees
Theorem

The species Hy, HY, and H§ satisfy:

HE = X x H (1)

H = X x CommoH§, + X, (2)

Hi = CommoHg_q o HE, (3)

Hi = (Hi-1 = x) o HE, (4)

()

HE = (M, —x) o Hf. 5

Proof.

© Rooting a species F is the same as multiplying the singleton species X
by the derivative of F,

v
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Second part of the proof.

We separate the root and every edge containing it, putting gaps where the
root was,

Hi = X x CommoH + X,

®) Q—03 ®

@‘%’5 @ @‘ﬁ

)

— o+ |
] @ 30O @ @ 33—
© @‘@ ©— #5‘@ &—@
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Dimension of the homology

Proposition
The generating series of the species Hy, H and H{ satisfy:
Ch_oCP
szx-exp(#—l), (6)
Ci
Ci = (Ck—1 — x)(CR), (7)
Ce” = (Ci_y — x)(CR), (8)
x-Cp =Cp, (9)
Ck+CPP=cCf+Cf. (10))
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Lemma

The generating series of Ho and H§ are given by:
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Lemma

The generating series of Ho and H§ are given by:

This implies with the previous theorem:

Theorem (McCammond and Meier, 2004)

The dimension of the only homology group of the hypertree poset is

(n—1)""2

This dimension is the dimension of the vector space PreLie(n-1) whose

basis is the set of rooted trees on n — 1 vertices.
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From the hypertree poset to rooted trees

© This dimension is the dimension of the vector space PrelLie(n-1)
whose basis is the set of rooted trees on n — 1 vertices.
The operad (a species with more properties on substitution) whose
vector space are PrelLie(n) is PreLie.

@ This operad is anticyclic [Chapoton, 2005]: There is an action of the
symmetric group &, on PreLie(n — 1) which extends the one of G,_;.

© Moreover, there is an action of &, on the homology of the poset of
hypertrees on n vertices.

Question

Is the action of &, on PreLie(n-1) the same as the action on the
homology of the poset of hypertrees on n vertices?
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Character for the action of the symmetric group on the
homology of the poset

Using relations on species established previously, we obtain:

Proposition

The series Zy, ZF, Z¢ and Z}? satisfy the following relations:

L+ 2P =70 + 7, (11)
Z°P ozP - 7P
Zlf:pl—l—plXCommo( k_lolf k), (12)
Zk
Z/? I Zlf = Zk_]_ O Zlf’ (13)
Z
ZP+ 7P =27 [ 0Zf, and plg—pkzZ,f. (14)
1
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Theorem (0. 2013, conjecture of [Chapoton, 2007)

| The cycle index series Z_1, which gives the character for the action of
&, on H,_3, is linked with the cycle index series M associated with the
anticyclic structure of PrelLie by:

Z_1 = p1 — XM = Comm oX PreLie +p; (X PreLie +1). (15)
The cycle index series ZP | is given by:

ZP, = p1 (X PreLie+1). (16)

v
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Theorem (0. 2013, conjecture of [Chapoton, 2007)

| The cycle index series Z_1, which gives the character for the action of
&, on H,_3, is linked with the cycle index series M associated with the
anticyclic structure of Prelie by:

Z_1=p1 — XM = CommoX PrelLie +p; (X PreLie+1). (15)
The cycle index series ZP | is given by:

ZP, = p1 (X PreLie+1). (16)

v

Proof.
Sketch of the proof

@ Computation of Zy = Comm and Z§ = Perm = p; + p; x Comm
© Replaced in the formula giving ZJ in terms of itself and Z”,

ZP o028 — 7P
Z5 = p1+ p1 x Commo (—1000> ,

Z
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Second part of the proof.

© As X PrelLieo Perm = Perm oX PreLie = p;, according to [Chapoton,
2007], we get:
ZP, = p1 (X PreLie+1).

@ The dissymetry principle associated with the expressions gives:
Comm —i—Z_pl o Perm — Perm = Perm +7_1 o Perm — Perm .

@ Thanks to equation [equation 50, Chapoton 2005], we conclude:

_ 1
*M —1=—pi(~1+ 3 Prelie+=5—-).

Bérénice Oger (ICJ -Lyon) From PX, to the homology of HT, January, 21st 2014 33 /37



Back to the cohomology

Proposition (Jensen, McCammond and Meier, 2006)

The cohomology of H*(PX,,7Z) is generated by one-dimensional classes

o, where 1 < i # j < n, subject to the relations :

* *

(1) a,-j/\oz,-j—O
* *

Q oz,-j/\ozj,-—O

* ko * * *
Q o Naj = (akj — a,-j-) A af;.

Question:
Are these algebras Koszul?

@ n = 2,3 not hard to prove it is Koszul.
@ For n > 4 : we consider OPX,,

Conditions on generators : | #j, iZ#land i #2ifj=1
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Back to the cohomology

@ Dual presentation : Universal enveloping algebra of a Lie algebra

e Computation with Bergman : not Koszul (A. Conner and P. Goetz)
The 8th term of the Hilbert series should be 589824, and it is 589834.
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Thank you for your attention !

[O. 2013] Bérénice Oger Action of the symmetric groups on the homology
of the hypertree posets. Journal of Algebraic Combinatorics, february
2013.

Bérénice Oger (ICJ -Lyon) From PX, to the homology of HT, January, 21st 2014 36 / 37



and End!

© Hollow case:
HE = ™ o HE, (17)

Hi’" = CommoHj_;. (18)

;.:

w | ||
Pe®9 ]

=
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Eccentricity

Definition
The eccentricity of a vertex or an edge is the maximal number of vertices
on a walk without repetition to another vertex.

The center of a hypertree is the vertex or the edge with minimal
eccentricity.

Example of eccentricity

O e=5
() e=6
Oe=7
O e=8
@®e=
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