FICHE TD 4 - SUITES ET SERIES NUMERIQUES

Exercice 1.

Etudier les suites (u_n) dont le terme général est donné par :

1)
$$u_n = \frac{(-1)^n}{3^n}$$

2)
$$u_n = \frac{n^2}{e^n}$$

3)
$$u_n = \frac{\sin(n)}{n^2}$$

$$4) u_n = n^2 \sin(\frac{1}{3^n})$$

$$5) u_n = \sqrt[n]{n+1}$$

6)
$$u_n = (1 - \frac{1}{n})^n$$

7)
$$u_n = n\sin(\frac{2}{n})$$

1)
$$u_n = \frac{(-1)^n}{3^n}$$
 2) $u_n = \frac{n^2}{e^n}$ 3) $u_n = \frac{\sin(n)}{n^2}$ 4) $u_n = n^2 \sin(\frac{1}{3^n})$ 5) $u_n = \sqrt[n]{n+1}$ 6) $u_n = (1 - \frac{1}{n})^n$ 7) $u_n = n \sin(\frac{2}{n})$ 8) $u_n = \frac{a^n - b^n}{a^n + b^n}$, a, b positifs 9) $u_n = \frac{2^n}{n^2}$

$$9) u_n = \frac{2^n}{n^2}$$

Exercice 2.

Donner la nature des séries de terme général :

$$1) u_n = q^n$$

2)
$$u_n = \frac{1}{4^n \ln(2 + \frac{1}{n})}$$

Donner in flattire desired series de terme general.

1)
$$u_n = q^n$$
2) $u_n = \frac{1}{4^n \ln(2 + \frac{1}{n})}$
3) $u_n = \frac{1}{4^n \ln(1 + \frac{1}{n})}$
4) $u_n = \frac{n!}{n^n}$
5) $u_n = (a + \frac{1}{n})^n$, $a \text{ réel}$
6) $u_n = \frac{(-1)^n}{n \ln(n)}$
7) $u_n = (1 + \sqrt{n})^{-n}$
8) $u_n = n^{\alpha + 1}$

$$4) u_n = \frac{n!}{n^n}$$

5)
$$u_n = (a + \frac{1}{n})^n$$
, $a \text{ rée}$

$$6) u_n = \frac{(-1)^n}{n \ln(n)}$$

7)
$$u_n = (1 + \sqrt{n})^{-1}$$

$$8) \ u_n = n^{\alpha + 1}$$

Exercice 3.

Exercice g.

Exercice g.

Exercice g.

Exercice g.

Exercice g.

Où p et q sont des nombres entiers.

Exercice 4.

- a)Donner la nature de la série de terme général $u_n = \frac{1}{n} + \ln(1 \frac{1}{n})$.
- b)Simplifier la somme partielle $S_n = \sum_{k=2}^n u_k$ et en déduire la convergence de la suite $\alpha_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{3}$... + $\frac{1}{n}$ - $\ln(n)$.
- c)En déduire la somme de la série de terme général $v_n = \frac{(-1)^{n+1}}{n+(-1)^{n+1}}$

Exercice 5.

Pour quelles valeurs de $\alpha \in \mathbf{R}$ les séries suivantes sont-elles convergentes? Calculer leur somme lorsque

$$\alpha = 1.$$
1)
$$\sum_{n=2}^{\infty} \frac{1}{n^{\alpha}(n-1)}.$$
2)
$$\sum_{n=3}^{\infty} \frac{2n+1}{n(n^2-4)^{\alpha}}.$$

2)
$$\sum_{n=3}^{\infty} \frac{2n+1}{n(n^2-4)^{\alpha}}$$

Exercice 6.

En exprimant $u_n = \frac{1 + (-1)^n n^{\alpha}}{n^{2\alpha}}$ comme somme de deux suites, déterminer selon les valeurs de α la nature de la série $\sum u_n$.