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2.4. Coordonnées polaires 9
2.5. Propriétés des fonctions continues sur un compact 10
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8.4. Volume. Intégrales triples. 42
8.5. Coordonnées cylindriques. Coordonnées sphériques 43
9. Chapitre IX. Courbes et Intégrales curvilignes 43
9.1. Courbes de R2. Théorème des fonctions implicites pour les courbes de R2 43
9.2. Droite tangente, plan normal à une courbe paramétrée de R3 46
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1. Chapitre I. Topologie d’un espace vectoriel réel

1.1. Espaces métriques, définition de la distance.
On note Rp = R× · · · × R︸ ︷︷ ︸

p fois

= {X = (x1, ·, xp)| xi ∈ R, ∀i ∈ [1, · · · , p]} - espace

vectoriel réel de dimension p.
On s’intéresse aux fonctions f : D ⊂ Rp → Rq. Il faut d’abord étudier la structure

du domaine D car le domaine est aussi important que la fonction. Pour cela on va
définir une notion de distance.

Définition 1. Soit E un ensemble non-vide. On dit qu’une application d : E ×E →
R+, d : (x, y) 7→ d(x, y) est une distance sur E si elle vérifie les trois axiomes suivants :

D1 (séparation) ∀(x, y) ∈ E × E, {x = y} ⇔ {d(x, y) = 0};
D2 (symétrie) ∀(x, y) ∈ E × E, d(x, y) = d(y, x);
D3 (inégalité triangulaire) ∀(x, y, z) ∈ E × E × E, d(x, y) ≤ d(x, z) + d(z, y).

Définition 2. On appelle espace métrique tout couple (E, d) où E ̸= ∅ est un espace
vectoriel et d est une distance.

Exemple 3. (1) E = R, d(x, y) = |x− y|
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(2) E = R. Soit f : x 7→ f(x) une fonction concave définie ∀x ≥ 0, et t.q.
{f(x) = 0} ⇔ {x = 0}. Alors d(x, y) = f(|x − y|) est une distance. En effet,
les propriétés D1 et D2 sont évidentes et D3 suit de la condition de concavité.

Une fonction est concave sur un intervalle I si x0, x1, x2, x3 ∈ I et x0 <

x1 < x2 < x3 alors, f(x1)−f(x0)
x1−x0 ≥ f(x3)−f(x2)

x3−x2 . (Géométriquement, c’est une
remarque sur la relation entre les pentes de deux droites qui lient les points
de coordonnées (x0, f(x0) et (x1, f(x1)) et (x2, f(x2) et (x3, f(x3)). Faites un

dessin !). Donc si on prend x0 = 0, x1 = a, x2 = b, x3 = a + b on a f(a)−f(0)
a−0

≥
f(a+b)−f(b)

a+b−b . Mais f(0) = 0 alors, si 0 < a < b on a f(a) ≥ f(a + b) − f(b) et
donc f(a+ b) ≤ f(a) + f(b).

On a beaucoup d’exemples de distances différentes sur R. En particulier,

d(x, y) =
√

|x− y| ou d(x, y) =
|x− y|

1 + |x− y|.
Le dernier exemple définit une

distance sur R qui, pour tout point, est inférieure à 1.

(3) Métriques sur E = Rp, soit X = (x1, · · · , xp) ∈ Rp et Y = (y1, · · · , yp) ∈ Rp.

On a d2(X,Y ) = (
∑p

i=1 |xi − yi|2)1/2 (métrique euclidienne),

ou d1(X,Y ) =
∑p

i=1 |xi − yi|,
ou d∞(X, Y ) = supi=[1,··· ,p] |xi − yi|

(4) SoitE un ensemble quelconque. Pour x, y ∈ E on définit d(x, y) =

{
0 si x = y,
1 sinon.

Remarque : dans cet exemple (E, d) n’est pas un espace métrique.

1.2. Boules ouvertes, fermées. Sphères. Parties bornées.

Définition 4. Soit a un point de Rp et r > 0 un nombre réel.

(1) B(a, r) := {x ∈ Rp | d(a, x) ≤ r} est appelée boule fermée de centre a et de
rayon r.

(2) Une boule ouverte de centre a et de rayon r est B(a, r) := {x ∈ Rp| d(a, x) <
r}

(3) Une sphère de centre a et de rayon r est S(a, r) = {x ∈ Rp| d(a, x) = r}

On obtient des boules de formes différentes pour des espaces métriques différents.
Pour le voir je recommande vivement de dessiner des boules unité dans R2 pour les
distances d1, d2 et d∞.

Définition 5. Une partie bornée P de Rp est une partie de Rp pour laquelle on peut
trouver une boule (ouverte ou fermée) qui contient tous les points de P.

1.3. Ouverts et Fermés.

Définition 6. Une partie ouverte (ou un ouvert) de Rp est une partie U t.q. ∀u ∈
U, ∃r > 0 tel que B(u, r) ⊂ U ie tout point de U est le centre d’une boule ouverte,
de rayon non-nul, incluse dans U.

Une partie fermée (ou un fermé) de Rp est une partie telle que son complémentaire
U dans Rp est un ouvert.

Remarque 7. E et ∅ sont à la fois ouverts et fermés.

Proposition 8. Dans un espace métrique (E, d), (1) une boule ouverte est un ouvert,
et (2) une boule fermée est un fermé.
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Démonstration. (1) Soit y ∈ B(a, r). Alors choisissons ϵ > 0 t.q. d(a, y) < r−ϵ (un tel
ϵ existe, car d(a, y) est strictement plus petit que r). Pour tout z ∈ B(y, ϵ), montrons
que z ∈ B(a, r), cela veut dire qu’autour de chaque point y de B(a, r) il existe une
boule ouverte entièrement contenue dans B(a, r).
Par inégalité triangulaire d(a, z) ≤ d(a, y) + d(z, y) ⇒ d(a, z) < r − ϵ + ϵ = r. Donc
z ∈ B(a, r), i.e. chaque point de B(y, ϵ) appartient à B(a, r) et B(y, ϵ) ⊂ B(a, r).

(2) Soit {B(a, r) le complémentaire de B(a, r). Il faut montrer que {B(a, r) est un
ouvert. Soit y ∈ {B(a, r). Montrons qu’il existe une boule contenant y entièrement
contenue dans {B(a, r).
Puisque y est en dehors de B(a, r), d(a, y) > r. Soit ϵ = d(a, y)− r > 0.
Pour tout z ∈ B(y, ϵ) montrons que z ∈ {B(a, r). En effet, par inégalité triangulaire
d(a, z) + d(z, y) ≥ d(a, y) = r + ϵ. Donc d(a, z) ≥ r + ϵ− d(z, y). Puisque z ∈ B(y, ϵ)
on a ϵ > d(z, y) donc d(a, z) > r + ϵ− d(z, y) > r + ϵ− ϵ = r ⇒ z ∈ {B(a, r). Donc
B(a, r) est un complément d’un ouvert, c’est donc un fermé. �
Définition 9. Soit E un ensemble non-vide et P (E) l’ensemble de ses parties. On appelle topologie induite par distance

(ou topologie tout court) l’ensemble des ouverts T ⊂ P (E) vérifiant les propriétés suivantes :

(1) E et ∅ sont des éléments de T
(2) Toute intersection finie d’éléments de T appartient à T
(3) Toute réunion d’éléments de T appartient à T .

Définition 10. Position d’un point par rapport à une partie de Rp.
Soit A ⊂ Rp.

(1) On dit que a est intérieur à A si on peut trouver un ouvert U ∈ Rp t.q. a ∈ U

et U ⊂ A. L’intérieur de A, noté
o

A, est le plus grand ouvert inclus dans A.

(2) On dit que a est un point frontière de A si tout ouvert U ⊂ Rp contenant a
rencontre à la fois A et le complémentaire de A.

(3) On dit que a est adhérent à A si tout ouvert U ⊂ Rp contenant a rencontre
A.

(4) L’adhérence de A, notée A, est le plus petit fermé qui contient A.

Définition 11. On dit qu’une partie V de Rp est un voisinage de x ∈ Rp si V contient
un ouvert contenant x.

Exercice. Démontrer l’équivalence avec la définition suivante : On dit que V ⊂ Rp

est un voisinage de x ssi ∃ε > 0 tel que B(x, ε) ⊂ V.

1.4. Normes des espaces vectoriels.

Définition 12. Soit E un espace vectoriel sur R. On appelle norme sur E une appli-
cation de E dans R+ qui à x 7→∥ x ∥∈ R+, et vérifie

N1 (séparation) ∀x ∈ E, ∥ x ∥= 0 ⇔ x = 0
N2 (homogénéité positive) ∀λ ∈ R, ∀x ∈ E, ∥ λx ∥= |λ|· ∥ x ∥
N3 (inégalité triangulaire) ∀x, y ∈ E, ∥ x+ y ∥≤∥ x ∥ + ∥ y ∥ .
Un espace vectoriel sur Rmuni d’une norme est appellé espace vectoriel normé (e.v.n.).

Proposition 13. Soit E un e.v.n. L’application d : E×E → R+ qui au couple (x, y)
associe d(x, y) :=∥ x− y ∥ est une distance sur E.

On l’appelle distance induite sur E par la norme. Elle possède les propriétés sui-
vantes :

– ∀x ∈ E, d(0, x) =∥ x ∥
– ∀λ ∈ R, ∀(x, y) ∈ E2, d(λx, λy) = |λ|d(x, y)
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– ∀(x, y, z) ∈ E × E × E, d(x+ z, y + z) = d(x, y).

Remarque 14. Toute norme induit une distance, par contre toutes les distances ne
proviennent pas d’une norme. La distance (4) de l’exemple 3 n’est induite par aucune
norme (quelle propriétée de la norme n’est pas forcément satisfaite ?).

Exemple de normes sur Rp. Soit x ∈ Rp, X = (x1, · · · , xp), xi ∈ R, ∀i ∈ [1, · · · , p].
Alors

∥ X ∥1 =
∑p

1 |xi| (norme de Manhattan)

∥ X ∥2 = (
∑p

1 |xi|2)
1/2

(norme euclidienne)

∥ X ∥n = (
∑p

1 |xi|n)
1/n

∥ X ∥∞ = max1≤i≤p|xi|
sont des normes sur Rp.

Définition 15. Normes équivalentes. Deux normes ∥ · ∥ et ∥ · ∥′ sur Rp sont
équivalentes s’il existe deux constantes λ > 0, µ > 0 telles que ∀X ∈ Rp, λ∥X∥ ≤
∥X∥′ ≤ µ∥X∥. On note ∥ · ∥ ∼ ∥ · ∥′.

Proposition 16. Cette définition induit une relation d’équivalence.

Démonstration. – reflexivité : ∥ · ∥ ∼ ∥ · ∥
– symétrie : si λ∥X∥ ≤ ∥X∥′ ≤ µ∥X∥ alors 1

µ
∥X∥′ ≤ ∥X∥ ≤ 1

λ
∥X∥′.

– transitivité : λ∥X∥ ≤ ∥X∥′ ≤ µ∥X∥ et β∥X∥′ ≤ ∥X∥′′ ≤ γ∥X∥′ implique βλ∥X∥ ≤ ∥X∥′′ ≤ γµ∥X∥.
�

Exemple 17. Les normes ∥ X∥2 = (
∑p

1 |xi|2)
1/2

et ∥ X ∥∞= max1≤i≤p|xi| sont
équivalentes. En effet, on a ∥X∥2 ≤ (p · ∥X∥2∞)1/2 =

√
p∥X∥∞. Soit k ∈ {1, · · · , p} tel

que xk = max{x1, · · · , xp} = ∥X∥∞, alors ∥X∥∞ = (x2k)
1/2 ≤ (

∑p
1 |xi|2)

1/2
= ∥X∥2.

Donc 1√
p
∥X∥2 ≤ ∥X∥∞ ≤ ∥X∥2.

Exercice.
1. Montrer que toutes les normes ∥ · ∥n, n ∈ [1,+∞] sont équivalentes.
2. Si ∥·∥ ∼ ∥·∥′ montrer qu’il existe une constante λ > 0 t.q. λ∥X∥ ≤ ∥X∥′ ≤ 1

λ
∥X∥

et λ∥X∥′ ≤ ∥X∥ ≤ 1
λ
∥X∥′.

Théorème 18. Deux normes équivalentes induisent la même topologie.

Ie si les normes sont équivalentes on trouve que deux ensembles

T = {U ∈ P (Rp), U ouvert pour la norme ∥ · ∥}

et T ′ = {U ∈ P (Rp), U ouvert pour la norme ∥ · ∥′}, sont égaux : T = T ′.

Démonstration. Soit U un élément de T , il faut montrer que c’est aussi un élément de T ′.
Cela se traduit :

Soit U un ouvert pour la norme ∥ · ∥ ⇔ ∀X ∈ U, ∃ε > 0 tel que B(X, ε) ⊂ U. On va m.q. U est un ouvert
pour la norme ∥ · ∥′. Pour tout X ∈ U il faut montrer qu’il existe ε′ > 0 tel que B′(X, ε′), une boule pour la norme
∥ · ∥′ est un sous-ensemble de U. Pour cela on va trouver ε′ tel que tout point Y de B′(X, ε′) appartienne aussi à

B(X, ε) et donc à U. Par équivalence des normes ∃λ > 0 tel que ∀Z ∈ Rp∥Z∥ ≤ λ∥Z∥′. Soit Y ∈ B′(X, ε
λ
) on a

∥X − Y ∥ ≤ λ∥X − Y ∥′ < λ
ε

λ
= ε donc B′(X,

ε

λ
) ⊂ U. Donc si U est un ouvert pour ∥ · ∥, alors pour tout X ∈ U, il

existe ε′ =
ε

λ
> 0 tel que B′(X, ε′) ⊂ U. Donc U est un élément de T ′.

De la même manière on montre que si U est un élément de T ′, c’est aussi un élément de T . �

Théorème 19. (Admis.) Sur un espace vectoriel normé de dimension finie, toutes
les normes sont équivalentes.

Corollaire 20. On parle de la topologie usuelle sur Rp sans préciser la norme.

Dans la suite, on notera ||.|| sans préciser de quelle norme il s’agit.
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2. Chapitre II. Fonctions de plusieurs variables.

2.1. Fonctions de plusieurs variables. Graphes. Lignes de niveau. On s’intéresse
maintenant aux fonctions f : D ⊂ Rp → Rq. On distingue des fonctions scalaires :
Rp → R et des fonctions vectorielles : Rp → Rq, q > 1.

On va commencer par l’étude des fonctions de deux variables. Une fonction définie
sur une partie D de R2 et à valeurs réelles fait correspondre à tout point X = (x, y)
de D, (appelé le domaine de définition de F ) un réel unique f(X).

Définition 21. Soit f : D → R, D ⊂ R2.

(1) L’ensemble des points de R3

S = {(x, y, z) ∈ R3|(x, y) ∈ D, z = f(x, y)}.

est appelé la surface représentative de f. S est aussi appelé le graphe de la
fonction f.

(2) Soit A = (a, b) un point intérieur de D. Les fonctions x 7→ f(x, b) et y 7→
f(a, y) définies sur des intervalles ouverts, contenant respectivement b et a
sont appelées les fonctions partielles associées à f au point A.

(3) Soit k ∈ R. L’ensemble Lk = {(x, y) ∈ D tel que f(x, y) = k} est la
ligne de niveau k de la fonction f.

Remarque 22. Pour les fonctions de trois variables, la notion analogue à la ligne de
niveau est celle de surface de niveau (Formulez-là !)

Les lignes de niveau et les fonctions partielles sont utiles pour dessiner les graphes
des fonctions.

Exemple 23. A. f(x, y) = 4x2+ y2 sur D = {x2+ y2 ≤ 4}. On calcule et représente
des lignes de niveau k = 0, k = 1, k = 2, k = 4, k = −1. Pour k = 0 c’est un seul
point (0, 0), avec la valeur de la fonction 0, pour k = 1, 2, 4 on obtient des ellipses.
Par exemple aux points de l’ellipse 4x2+y2 = 1 la fonction a la valeur 1, etc. La ligne
de niveau k = −1 est l’ensemble vide (la fonction ne prend la valeur −1 en aucun
point). Au point (0, 0) les fonctions partielles sont x 7→ 4x2 et y 7→ y2.
B. Sur D = {x2 + y2 ≤ 4} et x ̸= 0 on considère la fonction f(x, y) = y/x avec ses
lignes de niveau k = 0, 1,−1, 2,−2. Ce sont des intervalles des droites y = 0, y =
x, y = −x, y = 2x, y = −2x sans le point x = y = 0. La valeur de la fonction sur la
droite y = x est égale à 1, sur y = −x est égale à −1, etc.

2.2. Notion de limite. Une fois qu’on a les normes et les voisinages, la définition
de limite est la même que dans R ou C :

Définition 24. Soit (Xn)n∈N une suite d’éléments de Rp et A ∈ Rp. On dit que
lim

n→+∞
Xn = A ssi ∀V voisinage de A, ∃NV ∈ N tel que n ≥ NV ⇒ Xn ∈ V . C’est-à-

dire ∀ε > 0 ∃Nε ∈ N tel que n ≥ Nε ⇒ ∥Xn − A∥ ≤ ε.

Lien avec les limites dans R :

Propriété 25. Soit (Xn)n∈N =
(
(xn1 , . . . , xnp)

)
n∈N une suite de Rp etA = (a1, . . . , ap) ∈

Rp, alors lim
n→+∞

Xn = A ssi ∀i = 1, . . . , p, lim
n→+∞

xni
= ai.

Définition 26. Soit f : D ⊂ Rp → Rq et A ∈ D. On dit que f a une limite L ∈ Rq

en A ssi ∀ (Xn)n∈N suite de D telle que lim
n→+∞

Xn = A, on a lim
n→+∞

f(Xn) = L.
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Il y a une autre définition de la limite d’une fonction utilisant ε − δ qui est
équivalente à la définition 26.

Définition 27. Soit f : D → Rq une fonction définie sur une partie D de Rp et A un
point adhérent à D, L un point de Rq. On dit que f a pour limite L lorsque X → A
si : (∀ε > 0,∃η > 0 ; ∥X − A∥ ≤ η,X ∈ D) =⇒ (∥f(X)− L∥ ≤ ε).

Remarque 28.

(1) La notion de limite ne dépend pas des normes utilisées (pourquoi ?).

(2) La limite, si elle existe, est unique (trivial mais très important).

(3) La limite partielle : soit D1 ⊂ D un sous-ensemble et A un point adhérent
à D1. Si f(X) tend vers L lorsque X tend vers A en restant dans D, alors
f(X) tend vers la même limite L si X tend vers A en restant dans D1. En
particulier, si on regarde le comportement des fonctions partielles au même
point, elles doivent toutes avoir la même limite (si elle existe, bien sûr).

Nous avons les propriétés suivantes des limites de fonctions :

Proposition 29. Soient f et g des fonctions définies sur D ⊂ Rp à valeur dans
Rq, X ∈ D et A un point adhérent à D.

(1) limX→A (f(X)± g(X)) = limX→A f(X)± limX→A g(X)

(2) limX→A f(X)g(X) = limX→A f(X) · limX→A g(X)

(3) Pour les fonctions à valeurs réelles (i.e. q = 1) si limX→A f(X) ̸= 0 on a

lim
X→A

1

f(X)
=

1

limX→A f(X)
.

(4) Composition. Soient les fonctions gi : E ⊂ Rn → Rp, i = 1, · · · , p et B
un point adhérent à E et f : D ⊂ Rp → Rq, si limY→B gi(Y ) = ai, A =
(a1, · · · , ap) un point adhérent à D alors

lim
Y→B

f(g1(Y ), · · · , gp(Y )) = lim
X→A

f(X).

(5) Majoration. Si limX→A g(A) = 0 et ∥f(X)−C∥ ≤ g(X), C ∈ Rq pour tout X
au voisinage de A, alors limX→A f(X) = C.

La preuve de cette proposition répète la preuve d’une proposition analogue pour
des fonctions d’une variable - il faut juste utiliser des normes à la place des valeurs
absolues.

2.3. Continuité.

Définition 30. Une fonction f est continue en un point A ∈ D si la limite de f en
ce point existe et est égale à la valeur de la fonction en A.

La fonction est continue sur D si elle est continue en tout point de D.

Ou bien on peut reformuler cette définition à l’aide des suites :

Définition 31. Soit f : D ⊂ Rp → Rq et A ∈ D. On dit que f est continue en A ssi
∀ (Xn)n∈N suite de D telle que lim

n→+∞
Xn = A, on a lim

n→+∞
f(Xn) = f(A).

Propriété 32. Opérations sur les fonctions continues : suite à la Proposition
29 la somme, le produit et le quotient (là où le dénominateur ne s’annule pas) des
fonctions continues sont continus. La composée de fonctions continues est continue.
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Remarque 33. Toute fonction obtenue à l’aide de fonctions continues élémentaires
de variables (x1, · · · , xp) en utilisant les opérations algébriques et la composition est
continue dans son domaine naturel de définition. Exemples : des polynômes xkyn,
exponentielles e2x+xy, trigonométriques sin(xy) etc sont continues sur R2.

Attention :
1

xnym
, n,m > 0 n’est pas un polynôme (et n’en a jamais été un).

Il peut être pratique de fixer toutes les composantes sauf une :

Définition 34. Soit f : D ⊂ Rp → Rq. Soit X0 = (x10, . . . , x
p
0) ∈ D. Pour i = 1 . . . , p,

on appelle i-ème fonction partielle de f en X0 la fonction :

fX0,i :

{
Di ⊂ R → Rq

x 7→ f(x10, . . . , x
i−1
0 , x, xi+1

0 , . . . , xp0)

où x est à la i-ème place, et Di est tel que pour x ∈ Di, (x
1
0, . . . , x, . . . , x

p
0) ∈ D.

Proposition 35. Si f est continue en x0 = (x10, . . . , x
p
0) alors ∀i = 1 . . . , p, la fonction

partielle fx0,i est continue en xi0.

Remarque 36. La réciproque est fausse !

Exemple 37. On considère une fonction f : R2 → R définie de la façon suivante

f : (x, y) 7→


xy

x2 + y2
si (x, y) ̸= (0, 0),

0 si (x, y) = (0, 0).

Ses 2 fonctions partielles en (0, 0) sont

f(0,0),1 : x 7→


x · 0
x2 + 0

si x ̸= 0,

0 si x = 0,

et

f(0,0),2 : y 7→


0 · y

0 + y2
si y ̸= 0,

0 si y = 0.

Elles sont donc continues. Pourtant f n’est pas continue en (0, 0) :

Soient xn = yn = 1/n. On a lim
n→+∞

xn = lim
n→+∞

yn = 0, mais f(xn, yn) =
1/n2

2/n2
=

1

2
. Donc lim

n→+∞
f(xn, yn) ̸= 0 =

f(0, 0).
Une autre démonstration du fait que f n’est pas continue en (0, 0) : prenons une restriction de f sur la droite D1

définie par l’équation y = x.

lim
(x,y)→(0,0)

(
f(x, y)

∣∣
D1

)
= lim

x→0

xx

x2 + x2
=

1

2
.

Donc la fonction f restreinte à un sous-ensemble D1 de R2 n’a pas la même limite que la même fonction restreinte

à deux autres sous-ensembles de R2. (Les fonctions partielles f(0,0),1 et f(0,0),2 sont des restrictions de f aux droites

y = 0 et x = 0 respectivement). Or la limite, si elle existe, doit être unique (remarque 28), donc la limite n’existe pas.

Etude de continuité des fonctions :

Exemple 38.

(1) On considère f(x, y) = x2 + y2. On va montrer que pour toutes valeurs (x, y) = (a, b) la limite de

lim(x,y)→(a,b) f(x, y) existe et est égale à la valeur au point f(a, b) = a2 + b2. Si (x, y) → (a, b) (par

exemple dans une norme euclidienne) cela veut dire que
√

(x− a)2 + (y − b)2 → 0 donc on a :

(x− a)2 + (y − b)2 → 0 ⇔
{

x− a→ 0

y − b→ 0
⇔

{
x→ a

y → b
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Donc lim(x,y)→(a,b) x
2 + y2 = a2 + b2, c’est exactement ce qu’on cherche a montrer, et alors la fonction

est continue en chaque point.

En général on ne vérifie pas la continuité en chaque point comme dans cet
exemple - aux points réguliers on utilise plutôt les propriétés des fonctions
continues.

(2) Prenons un autre exemple :

f(x, y) =

{ y

x
, si x ̸= 0

3, si x = 0

alors f(a, b) =
y

x
pour x ̸= 0 étant une fraction de fonctions continues

est continue mais pour x = 0 sur les droites y = kx on obtient des limites
différentes quand x → 0. On conclut que la fonction n’est pas continue en
(0, b), ∀b ∈ R. Il y a une droite des points de discontinuité. Cette droite a
pour équation x = 0.

Définition 39. Soit f : D → Rq une fonction définie sur une partie D de Rp. Soit A
un point adhérent à D n’appartenant pas à D. Si f a une limite L lorsque X → A
on peut étendre le domaine de définition de f à D

∪
{A} en posant f(A) = L. On dit

que l’on a prolongé f par continuité au point A.

Théorème 40. (Admis) Soit f : D → Rq une fonction définie sur une partie D de Rp. Les propriétés suivantes sont

équivalentes :

(1) f est continue

(2) Pour tout ouvert U de Rq , f−1(U) est un ouvert de Rp

(3) Pour tout fermé F de Rq , f−1(F ) est un fermé de Rp

(4) Pour toute suite (Xn)n∈N de D ⊂ Rp convergeant vers A, la suite (f(Xn))n∈N converge vers f(A) pour
tout A ∈ D.

2.4. Coordonnées polaires. Notation : R+ = [0,+∞[. On a une application bijec-
tive de R+ × [0, 2π[ vers R2 donnée par les formules suivantes :

(1)

{
x = r cos t
y = r sin t

Son application réciproque est l’application de R2 → R+ × [0, 2π[ suivante :

(2)

 r =
√
x2 + y2

t = arccos
x√

x2 + y2

Donc en particulier, on a r2 = x2 + y2. Dans certains exemples d’étude de continuité
des fonctions il est utile de passer aux coordonnées polaires.

Souvent c’est pratique d’utiliser les coordonnées polaires pour étudier la continuité,
car la condition sur deux variables (x, y) → 0 devient une condition sur une seule
variable r → 0.

Exemple 41.

(1) Soit la fonction f : R2 → R définie de la façon suivante

f : (x, y) 7→


x2 − y2

x2 + y2
si (x, y) ̸= (0, 0),

0 si (x, y) = (0, 0).
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Cette fonction est continue sur R2 \ {(0, 0)} en tant que fraction de fonctions
continues. En (0, 0) on a :

lim
(x,y)→(0,0)

x2 − y2

x2 + y2
= lim√

(x−0)2+(y−0)2→0

x2 − y2

x2 + y2
= lim

r→0

r2 cos2 t− r2 sin2 t

r2
.

Cette limite est égale à cos2 t− sin2 t. Le résultat dépend de t, i.e. il n’y a pas
de limite unique, donc la limite n’existe pas et f n’est pas continue en (0, 0).

(2) Soit la fonction g : R2 → R définie de la façon suivante :

g : (x, y) 7→


x3

x2 + y2
si (x, y) ̸= (0, 0),

0 si (x, y) = (0, 0).

Cette fonction est continue sur R2 \ {(0, 0)} en tant qu’une fraction des fonc-
tions continues. En (0, 0) on a :

lim
(x,y)→(0,0)

x3

x2 + y2
= lim√

(x−0)2+(y−0)2→0

x3

x2 + y2
= lim

r→0

r3 cos3 t

r2

Cette limite est égale au produit des limites : limr→0(cos
3 t) limr→0 r = 0, car

| cos t| ≤ 1 - une fonction bornée. Finalement, la fonction g est continue en
(0, 0) et donc elle est continue sur R2.

2.5. Propriétés des fonctions continues sur un compact.

Définition 42. Une partie compacte (un compact) de Rp est une partie fermée et
bornée.

Il existe au moins deux differentes façons de définir un compact dans un espace
normé, mais dans Rp elles sont équivalentes à celle qu’on donne ici.

Exemple 43. Dans R un intervalle fermé, et dans Rp les boules fermées sont des
exemples de compacts.

Théorème 44. (Admis) Soit f : D → Rq une fonction continue sur une partie
D ⊂ Rp et K une partie compacte de Rp contenue dans D. Alors, f(K) est une
partie compacte de Rq.

Corollaire 45. Une fonction continue sur un compact est bornée et atteint ses bornes.

Cela signifie que sur un compact K ∈ Rp il existe au moins un point Xm ∈ K et
au moins un point XM ∈ K tels que pour tout X ∈ K on ait

∥f(Xm)∥ ≤ ∥f(X)∥ ≤ ∥f(XM)∥.

2.6. Connexité par arc. Théorème des valeurs intermédiaires.

Définition 46. On dit qu’une partie Γ de Rp est un arc continu si on peut trouver
une application continue γ d’un intervalle [a, b] de R dans Rp dont l’image soit Γ. γ
est appelé un paramétrage de Γ. Les points de Γ, A = γ(a) et B = γ(b) s’appellent
les extrémités de Γ.

Attention : Γ est un objet géométrique tandis que γ, une fonction continue, est un
objet analytique. Un arc continu admet une infinité de paramétrages possibles.
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Définition 47. Soit E un sous-ensemble de Rp. On dit que E est connexe par arc si,
étant donnés deux points arbitraires A et B de E on peut trouver un arc continu Γ,
d’extrémités A,B entièrement contenu dans E.

Théorème 48 (des valeurs intermédiaires). Soit f : D → R une fonction
continue sur une partie D ⊂ Rp connexe par arc. Soit A,B deux points de D. Pour
tout nombre réel r compris entre f(A) et f(B) il existe un point C de D tel que
f(C) = r.

Démonstration. Ici on utilise le théorème des valeurs intermédiaires des fonctions
d’une variable. Soit γ : [a, b] → D un paramétrage d’un arc continu tel que γ(a) =
A et γ(b) = B. La fonction d’une variable f ◦ γ : I → R est continue étant une
composition de fonctions continues donc, par le théorème des valeurs intermédiaires,
il existe c ∈ [a, b], tel que f ◦ γ(c) = r. Soit C = γ(c), alors C ∈ D et f(C) = r. �

3. Chapitre III. Calcul Différentiel

3.1. Dérivées. Matrice jacobienne. Gradient.
Rappel. Soit f : I → R une fonction dérivable sur un intervalle I ∈ R. La dérivée

de f au point a ∈ I est :

(3) f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

x→a

f(x)− f(a)

x− a

Soit f : D ⊂ Rp → Rq et A ∈ D. Une expression du type “ lim
X→A

f(X)− f(A)

X − A
”

n’est pas bien définie parce que diviser par X−A, qui est un vecteur de Rp, n’a aucun
sens ! Néanmoins, si on fixe toutes les composantes de X sauf une, on peut définir des
dérivées partielles.

Définition 49. Soit f : D ⊂ Rp → Rq et A ∈ D. Pour i = 1, . . . , p, on appelle

dérivée partielle par rapport à xi de f en A = (a1, · · · ap), et on note
∂f

∂xi
(A), ou bien

f ′
xi
(A), la dérivée de la fonction partielle fA,i prise en ai :

∂f

∂xi
(A) = f ′

A,i(ai) = lim
xi→ai

f(a1, · · · , xi, · · · , ap)− f(a1, · · · , ai, · · · , ap)
xi − ai

.

Pour une fonction de deux variables f : D ∈ R2 → R en point A = (a, b) ∈ D
les dérivées partielles de f(x, y) en (a, b) sont les dérivées des fonctions partielles
f(x, b) et f(a, y) qui se calculent alors :

∂f

∂x
(a, b) = lim

h→0

f(a+ h, b)− f(a, b)

h
et
∂f

∂y
(a, b) = lim

k→0

f(a, b+ k)− f(a, b)

k
.

Parfois, on les note aussi f ′
x(a, b) et f

′
y(a, b).

Exemple 50. Soit f(x, y) = 2x2−3xy+4y2. Calculer les dérivées partielles au point
(1, 2). En considérant y constant et en dérivant par rapport à x on a :

∂f

∂x

∣∣
(x,y)=(1,2)

= (4x− 3y)
∣∣
(x,y)=(1,2)

= −2

En considérant x constant et en dérivant par rapport à y on a :

∂f

∂y

∣∣
(x,y)=(1,2)

= (−3x+ 8y)
∣∣
(x,y)=(1,2)

= 13
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Définition 51. La matrice des dérivées partielles de f : Rp → Rq s’appelle la
matrice jacobienne ou la Jacobienne de f.

La matrice jacobienne Jac(f)(X0) fait passer de Rp dans Rq : elle a p colonnes et
q lignes.

(4) Jac(f)(X0) =


∂f1
∂x1

(X0) . . .
∂f1
∂xp

(X0)

...
...

∂fq
∂x1

(X0) . . .
∂fq
∂xp

(X0)

 .

Autrement dit, pour une fonction vectorielle f(x1, ·xp) à valeurs dans Rq la matrice

jacobienne a pour colonnes les vecteurs ∂f
∂xi
. En particulier, pour une fonction de p

variables à valeurs réelles, la matrice jacobienne est simplement une matrice-ligne :

Jac(f)(x1, · · · , xp) =
(
∂f

∂x1
, · · · , ∂f

∂xp

)
.

Sa matrice transposée - la matrice-colonne :

−−→
gradf(x1, · · · , xp) = †

(
∂f

∂x1
, · · · , ∂f

∂xp

)
s’appelle le gradient de f .

3.2. Propriétés des dérivées partielles. Les dérivées partielles d’une fonction qui
est obtenue par des opérations algébriques sur d’autres fonctions (somme, produit,
fraction) suivent les mêmes règles.

Si une fonction f : D ⊂ Rp → Rq est obtenue par des opérations algébriques
(somme, produit, fraction) sur les fonctions g, h : D ⊂ Rp → Rq, ses dérivées partielles
peuvent être obtenues à partir des dérivées partielles de g et h par les formules de
dérivée de somme, produit, fraction habituelles ((u+ v)′ = u′ + v′, etc.)

Les dérivées partielles d’une composition de fonctions sont plus compliquées.
Rappel : règle de châıne. Soit g : I ⊂ R → J ⊂ R, g : x 7→ g(x), h : J ⊂ R →

R, h : y 7→ h(y) et f : I ⊂ R → R, f : x 7→ h(g(x)). On a :

df

dx

∣∣
x=x0

=
dh

dy

∣∣
y=g(x0)

· dg

dx

∣∣
x=x0

Proposition 52. Soient

g : D ⊂ Rp → E ⊂ Rm, g : X 7→ g(X) = (g1(X), · · · , gm(X)),
h : E ⊂ Rm → Rq, h : Y 7→ h(Y ) = (h1(Y ), · · · , hq(Y )),
f : D ⊂ Rp → Rq, f : X 7→ h(g(X)) = f(X) = (f1(X), · · · fq(X))

des fonctions telles que g enX0 ∈ D et h en g(X0) ∈ E sont des fonctions continument
dérivables (i.e. les dérivées partielles existent et sont continues) alors pour tout i ∈
{1, · · · , p}, j ∈ {1, · · · , q} :

(5)

∂fj
∂xi

(X0) =
∂(h ◦ g)j
∂xi

(X0)

=
∂hj
∂y1

(g(X0))
∂g1
∂xi

(X0) + · · ·+ ∂hj
∂ym

(g(X0))
∂gm
∂xi

(X0)

ce qui nous donne les entrées d’une matrice jacobienne de f qui est un produit des
matrices jacobiennes de h et g.
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En particulier, si

h : R2 → R, (y1, y2) 7→ h(y1, y2) et g : Rp → R2, X 7→ (g1(X), g2(X))

pour f = h ◦ g : Rp → R on a

∂(f)

∂xi
(X0) =

∂(h ◦ g)
∂xi

(X0) =
∂h

∂y1
(g(X0))

∂(g1)

∂xi
(X0) +

∂h

∂y2
(g(X0))

∂(g2)

∂xi
(X0)

Exemple 53. (1) Soit f(x) = ex sin2 x. On peut voir f comme une composition
de deux fonctions g : R → R2, g(x) = (ex, sinx) et h : R2 → R, h(y1, y2) =
y1 · (y2)2.
On a deux façons de calculer la dérivée de f - directement ou en utilisant

la Proposition (52) :

f ′(x) =
∂(y1 · (y2)2)

∂y1
· ∂(y1)
∂x

+
∂(y1 · (y2)2)

∂y2
· ∂(y2)
∂x

= (y2)
2ex + 2y1y2 cos x = sin2 x · ex + 2ex sinx cos x.

(2) On peut aussi résoudre des problèmes comme celui-là :

Soient f(x) = F (x, ϕ(x)) = 0, où f(x) et ϕ(x) sont des fonctions d’une
variable et F (y1, y2) est une fonction de deux variables. Calculer ϕ′(x) en
fonction des dérivées de F.

On considère f(x) en tant qu’une fonction composée :

f ′(x) =
∂F

∂y1

dx

dx
+
∂F

∂y2

dϕ(x)

dx
= F ′

1(x, ϕ(x)) + F ′
2(x, ϕ(x))ϕ

′(x) = 0.

D’où ϕ′(x) = −F
′
1

F ′
2

(x, ϕ(x)).

3.3. Derivées partielles d’ordre supérieur. Fonctions de classe Ck. Théorème
de Schwarz. Soit f : D ⊂ Rp → R. Les dérivées partielles définissent p nouvelles
fonctions

f ′
xi
(x1, · · · , xp) =

∂f

∂xi
(x1, · · · , xp).

On peut regarder les dérivées partielles de chacune de ces nouvelles fonctions. Cela
nous donne les dérivées partielles d’ordre 2 (aussi appellées les dérivées partielles
secondes) et à leur tour on peut regarder les dérivées partielles des dérivées partielles
d’ordre 2, etc. Cela s’écrit par exemple :

f ′′
xixj

=
∂2f

∂xi∂xj
:=

∂

∂xi

(
∂f

∂xj

)
Définition 54. Une fonction f : D ⊂ Rp → R de classe Ck est une fonction dont
toutes les dérivées partielles jusqu’à l’ordre k existent et sont continues. Une fonction
est dite de classe C∞ si elle est de classe Ck pour tout k ∈ N.

Théorème 55. (Schwarz) Soit f : D ⊂ Rp → R une fonction de classe C2 sur D.

Les fonctions de dérivées partielles d’ordre 2,
∂

∂xi

(
∂f

∂xj

)
et

∂

∂xj

(
∂f

∂xi

)
sont égales

en tout point de D.
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Remarque 56. Le théorème de Schwarz implique que les dérivées partielles d’ordre
k, k ≥ 2, d’une fonction de classe Ck, f : D ⊂ Rp → R ne dépendent pas de l’ordre
dans lequel les dérivées partielles sont prises. Par exemple, pour une fonction de deux

variables f(x, y) de classe C3, on a :
∂3f

∂x∂y∂x
=

∂3f

∂x2∂y
.

3.4. Différentielle. (Chapitre 2 de [2].)
Lors de l’équation (3), en essayant de généraliser l’expression pour la dérivée d’une

fonction d’une variable aux fonctions de plusieurs variables, nous avons introduit les
fonctions de dérivées partielles, qui sont utiles et révèlent certaines informations sur
le comportement de la fonction mais n’apportent pas toute l’information.

Exemple 57. On considère à nouveau l’exemple 37. La fonction f : R2 → R définie
de la façon suivante :

f : (x, y) 7→


xy

x2 + y2
si (x, y) ̸= (0, 0),

0 si (x, y) = (0, 0).

On calcule sa dérivée partielle par rapport à x :

– ∀(x0, y0) ̸= (0, 0),
∂f

∂x
(x0, y0) =

(
xy0

x2 + y20

)′∣∣∣∣
x=x0

=
y30 − x2y0
(x2 + y20)

2

∣∣∣∣
x=x0

=
y30 − x20y0

(x20 + y20)
2 .

–
∂f

∂x
(0, 0) est la dérivée de x 7→

{
0 si x ̸= 0,
0 si x = 0,

donc
∂f

∂x
(x0, y0) = lim

h→0

f(0 + h, 0)− f(0, 0)

h
= 0.

On voit que
∂f

∂x
(0, 0) existe, de même

∂f

∂y
(0, 0) existe et vaut 0, et pourtant f n’est

même pas continue en (0, 0). Donc les dérivées partielles ne suffisent pas à décrire la
régularité de la fonction.

Nous allons réécrire l’équation (3) sans division et la généraliser aux fonctions de
plusieurs variables.

Définition 58. Soit f : D ⊂ Rp → Rq, A ∈ D. La différentielle df(A) de f au point
A est une application linéaire de Rp dans Rq telle que au voisinage de A on a :

(6) f(A+H)− f(A) = ( df(A)) (H) + r(H), où r(H) = o(∥H∥).

Ici,H ∈ Rp, tel queA+H est au voisinage deA. La fonction f est dite différentiable au point
A si elle possède une différentielle en ce point. La fonction f est dite différentiable
dans un domaine D si elle est différentiable en tout point de D.

Cette application agit sur les vecteurs de Rp et les envoie vers Rq, en particulier
( df(A))(H) ∈ Rq. Le reste, r(H) = o(∥H∥), dit “petit o” de ∥H∥, est une fonction
r : D ⊂ Rp → Rq, négligeable devant ∥H∥. On peut comparer leurs normes :

lim
∥H∥→0

∥r(H)∥Rq

∥H∥Rp

= 0.

On peut réécrire la condition de différentiablité

lim
∥H∥→0

f(A+H)− f(A)− ( df(A)) (H)

∥H∥
= 0
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Si elle existe, la différentielle df(A) est unique. On la note selon les auteurs ou les
circonstances :

L = Df(A) ou df(A) ou DAf ou dAf.

La différentielle df(A), si elle existe, est donnée par une matrice de taille p × q
(une application linéaire de Rp vers Rq écrite dans des bases des espaces vectoriels
Rp et Rq). Cette matrice est appellée la matrice jacobienne.

La différentiabilité entrâıne l’existence des dérivées partielles. On peut le voir sur
un exemple d’une fonction f à p variables à valeurs réelles (q = 1). Par définition :

∂f

∂xi
(A) = lim

hi→0

f(a1, · · · , ai + hi, · · · , ap)− f(a1, · · · , ai, · · · , ap)
hi

.

Par définition de la différentielle on a aussi
f(a1, · · · , ai + hi, · · · , ap)− f(a1, · · · , ai, · · · , ap)

hi
=

df(A)(H) + r(H)

hi
Ici H est le vecteur transposé de (0, · · · , hi, · · · , 0). Donc r(H) = o(∥H∥) = o(hi) et

lim
hi→0

df(A)(H) + r(H)

hi
= lim

hi→0

df(A)(H)

hi
.

Donc ici

df(A) †(0, · · · , 0, hi, 0, · · · , 0) =
∂f

∂xi
(A) · hi

et par linéarité

df(A) †(h1, · · · , hi, · · · , hp) =
p∑
i=0

∂f

∂xi
(A) · hi

Finalement, on remarque que

df(A)(H) = Jac(f)(A)H et df(A) =
∑ ∂f

∂xi
(A) dxi

car les différentielles de fonctions xi, notées dxi, satisfont dxi(H) = hi.
Dans les exercices de nature théorique, la différentiabilité est souvent établie en

montrant directement par des majorations que le reste r(H) est un o(∥H∥). Mais
si f est donnée explicitement au moyen des fonctions usuelles, on va plus vite en
constatant simplement l’existence et la continuité de ses dérivées partielles. Si une
fonction est de classe C1 elle est différentiable.

Propriété 59. Soit f : D ⊂ Rp → Rq et X0 ∈ D. Si ∀i = 1, . . . , p, ∀j = 1, . . . , q,

X 7→ ∂fj
∂xi

(X) existe au voisinage de X0 et est continue en X0, alors f est différentiable

en X0.

En termes moins précis, que j’ai prise dans le livre [2] et que je pense essentielle pour

la compréhension du cours, la GRANDE IDÉE DU CALCUL DIFFÉRENTIEL :

(7)

(
accroissement
de la fonction

)
=

(
terme linéaire par rapport à
l’accroissement de la variable

)
+

(
petit terme

correctif

)
Proposition 60. Propriétés de la différentielle.

(1) Continuité. Une fonction différentiable en un point est continue en ce point.

(2) Linéarité. Soient f, g : D → Rq deux fonctions définies sur une partie D
de Rp. Si f et g sont différentiables en A ∈ D, λ ∈ R, alors d(f + g)(A) =
df(A) + dg(A) et d(λf)(A) = λ df(A).
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(3) Composition. Soient g : D → E ⊂ Rm définie sur une partie D de Rp et
différentiable en A ∈ D, et h : E → Rq différentiable en g(A), alors h ◦ g est
différentiable en A et la différentielle d(h ◦ g)(A) = ð(g(A))× dg(A)

La composition suit de la formule (6) :

h(g(A+H))− h(g(A)) = dh(g(A))(g(A+H)− g(A)) + petit reste
= dh(g(A)) dg(A)(H) + un autre petit reste

En pratique c’est donné par le produit des matrices jacobiennes (comparer avec
l’équation (5)).

Regardons maintenant une fonction f : D ⊂ R2 → R. Soit (x, y) ∈ D. On remarque
que la différentielle d’une fonction (x, y) → f(x, y) au point (x, y) est égale à :

df(x, y) =
∂f

∂x
(x, y) dx+

∂f

∂y
(x, y) dy

Exemple 61. (1) On reprend : soit une fonction f : R2 → R définie de la façon
suivante

f : (x, y) 7→


xy

x2 + y2
si (x, y) ̸= (0, 0),

0 si (x, y) = (0, 0).

On sait que f n’est pas différentiable en (0, 0) parce qu’elle n’est même
pas continue. Comment se comportent ses dérivées partielles au voisinage de
(0, 0) ?

On a vu que si (x0, y0) ̸= (0, 0),
∂f

∂x
(x0, y0) =

y0(y
2
0 − x20)

(x20 + y20)
2

et que
∂f

∂x
(0, 0) =

0. Donc
∂f

∂x
est bien définie au voisinage de (0, 0), mais elle n’est pas continue :

si xn = 1/n et yn = 2/n, on a lim
n→+∞

xn = 0, lim
n→+∞

yn = 0, et
∂f

∂x
(xn, yn) =

2/n2

(1/n2 + 4/n2)2
=

2/n2

25/n4
. Donc, lim

n→+∞

∂f

∂x
(xn, yn) ̸= 0.

(2) Soit

f :

 R2 → R2

(x, y) 7→ (x2y2, x+ y)

Est-elle différentiable en (2, 3) ?

Soit (x0, y0) ∈ R2,
∂f 1

∂x
(x0, y0) = 2x0y

2
0,
∂f 1

∂y
(x0, y0) = 2y0x

2
0,
∂f 2

∂x
(x0, y0) =

1,
∂f 2

∂y
(x0, y0) = 1.

Toutes ces dérivées partielles sont continues en (2, 3) donc f est différentiable

en (2, 3). On a Jac(f)(2, 3) =

 36 24

1 1

 .

(3) On considère :

f :

 R → R

x 7→ x2
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est-elle différentiable en 2 ? Soit x0 ∈ R,
∂f

∂x
(x0) = 2x0. Elle est continue en 2

donc f est différentiable en 2 et Jac(f)(2) =
∂f

∂x
(2) = f ′(2) = 4.

4. Chapitre IV. Propriétés géométriques des fonctions de plusieurs
variables

4.1. Dérivée directionnelle.

Définition 62. Soit f : D ⊂ Rp → Rq, A ∈ D et
−→
V un vecteur de Rp. On dit que f

a une dérivée au point A en suivant le vecteur
−→
V si l’expression :

D−→
V
f(A) := lim

t→0

f(A+ t
−→
V )− f(A)

t

existe. D−→
V
f(A) s’appelle la dérivée directionnelle de f en A en direction de vecteur

−→
V .

Remarque 63. Les dérivées partielles
∂f

∂xi
sont des dérivées directionnelles de f en

A en direction de vecteurs de base ei =
t(0, · · · , 1︸︷︷︸

i

, · · · , 0).

Proposition 64. Soit f : D ⊂ Rp → R, de classe C1, en A ∈ D et
−→
V un vecteur de

Rp. Alors, la dérivée directionnelle de f en A en direction de vecteur
−→
V est égale au

produit scalaire du gradient de f au point A et du vecteur
−→
V :

(8) D−→
V
f(A) =

−−→
gradf(A) ·

−→
V

Démonstration. On va démontrer cette proposition pour le cas p = 2. La généralisation

au cas p > 2 est assez directe. Soit {−→i ,−→j } une base orthonormale de R2 et
−→
V =

λ
−→
i + µ

−→
j et A = (x0, y0) ∈ D ∈ R2. Soit une fonction u : R → R2, u(t) =

(x0, y0)+ t
−→
V =

(
x0 + λ

−→
i , y0 + µ

−→
j
)
:= (x(t), y(t)) . On considère une fonction d’une

variable à valeurs réelles : F (t) = f(u(t)). C’est une fonction composée. Sa dérivée
en 0 :

dF

dt
(0) =

d(f ◦ u)
dt

(0) =
∂f

∂x

∣∣
(x,y)=(x0,y0)

· ∂x(t)
∂t

(0) +
∂f

∂y

∣∣
(x,y)=(x0,y0)

· ∂y(t)
∂t

(0)

=
∂f

∂x

∣∣
(x,y)=(x0,y0)

· λ+
∂f

∂y

∣∣
(x,y)=(x0,y0)

· µ =
−−→
gradf ·

−→
V

car
dx(t)

dt

∣∣
t=0

=
d(x0 + λt)

dt

∣∣
t=0

= λ et
dy(t)

dt

∣∣
t=0

=
d(y0 + µt)

dt

∣∣
t=0

= µ. De l’autre coté

dF

dt
(0) = lim

t→0

F (t)− F (0)

t
= lim

t→0

f(u(t))− f(u(0))

t

= lim
t→0

f(x0 + λt, y0 + µt)− f(x0, y0)

t
:= D−→

V
f(x0, y0)

D’où la relation (8). �
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4.2. Gradient. Soit f : D ⊂ R2 → R une fonction de classe C1. Son gradient, pris

en tout point de D définit une fonction à valeurs vectorielles
−−→
gradf : D ⊂ R2 → R2,

noté aussi :
−→
∇f(x, y) :=

(
∂f

∂x
,
∂f

∂y

)
(x, y).

4.2.1. Propriété [a] : Le gradient est perpendiculaire à la ligne de niveau.

Définition 65. Soit X un point d’une courbe Γ ∈ Rp et T une droite tangente à Γ

au point X. On dit qu’un vecteur
−→
V est perpendiculaire à la courbe Γ au point X si

−→
V est perpendiculaire à T. Dans ce cas on dit aussi que

−→
V est normal à la courbe Γ

au point X.

En particulier, cela signifie que le produit scalaire de V et du vecteur directeur de
T est égal à 0.

Soient D ⊂ R2, f : D → R et (x, y) ∈ D, alors si f(x, y) = a, (x, y) appartient à
la ligne de niveau La(f).

Théorème 66. Le vecteur gradient
−→
∇f(x, y) est normal à la courbe La(f) au point

(x, y).

Démonstration. Soit (x + h, y + k) ∈ La(f) un point au voisinage de (x, y), qui
appartient à la même courbe de niveau que (x, y).

Alors, f(x + h, y + k) − f(x, y) = 0 car les valeurs de f en ces deux points sont
égales. De la grande idée du calcul différentiel (7) on a :

f(x+ h, y + k)− f(x, y) = df(x, y) ·
(
h
k

)
+ o(∥(h, k)∥)

=
∂f

∂x
(x, y) · h+

∂f

∂y
(x, y) · k + o(∥(h, k)∥).

On a lim
(h,k)→0

o(∥(h, k)∥) = 0, donc
∂f

∂x
(x, y) · h +

∂f

∂y
(x, y) · k → 0 quand (x + h, y +

k) → (x, y). Quand (x + h, y + k) → (x, y) tout en restant sur La(f), le vecteur
(h, k) est un vecteur tangent à La(f). On a alors trouvé que le produit scalaire de(
∂f

∂x
(x, y),

∂f

∂y
(x, y)

)
et (h, k) égale 0, on en déduit que ces deux vecteurs sont or-

thogonaux. �

Exemple 67. A. f(x, y) = x2 + y2. La(f) = C((0, 0),
√
a) - cercle de centre (0, 0) et

de rayon
√
a.
∂f

∂x
(x, y) = 2x,

∂f

∂y
(x, y) = 2y. On remarque que (2x, 2y) = 2(x, y) est 2

fois le vecteur radial qui est en effet orthogonal au cercle.
B. Soit la courbe d’équation x2−y = 0. Pour calculer la normale en chaque point de

cette courbe, on la voit comme une ligne de niveau 0 de la fonction f(x, y) = x2 − y.

La normale est donc donnée par son gradient :
−→
∇f(x, y) =

(
2x
−1

)
.

4.2.2. Propriété [b] : Le gradient indique la ligne de plus grande pente.
Sur le graphe de la fonction f on prend un point (x, y, f(x, y)), alors (x, y) est sur la
ligne de niveau a = f(x, y).
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Théorème 68. Le gradient en (x, y) indique la direction de plus grande pente ≥ 0
sur Γf à partir d’un point en question.

Démonstration.

f((x, y) +−→v )− f(x, y) =
−→
∇f(x, y) · −→v + o(∥−→v ∥)

Le produit scalaire
−→
∇f(x, y) ·−→v vaut ∥

−→
∇f(x, y)∥·∥−→v ∥ cos θ, où θ est l’angle entre les

deux vecteurs. L’accroissement de la fonction atteint le maximum quand cos θ = 1,

alors −→v doit être parallèle à
−→
∇f(x, y). �

Remarque 69. En suivant la ligne de plus grande pente dans D on a, sur le graphe,
le chemin le plus court à parcourir pour obtenir une variation donnée de f. Autrement
dit, si on veut passer le plus vite possible du niveau a au niveau b à partir d’un point
(x, y) donné de niveau a = f(x, y), il faut suivre le gradient.

4.3. Formule de Taylor.
Rappel : petit o. Soient f et g deux fonctions d’une variable à valeurs réelles.

On dit que g = o(f) au point a si :

lim
x→a

g(x)

f(x)
= 0

Exemple : u(x) = x3, v(x) = x2 +2x. En a = 0 on a u(x) = o(v(x)) et en a = +∞ on
a v(x) = o(u(x)).

Rappel : La formule de Taylor avec le reste en forme de Lagrange. Si f
est n+ 1 fois différentiable en a, on a une approximation de f par un polynôme :

f(a+ t) = f(a) + f ′(a)t+ · · · f
(n)(a)

n!
tn + rn(a, t)

où il existe θ ∈ [a, a + t] tel que rn(a, t) =
f (n+1)(θ)

(n+ 1)!
tn+1. C’est une conséquence

du théorème des accroissements finis : si f est continue et dérivable sur l’intervalle
[a, b], a < b alors ∃x0 ∈ [a, b] tel que f(b) = f(a) + f ′(x0)(b− a).

Finalement, on a aussi la formule de Taylor-Young avec rn(a, t) = o(tn) :

f(a+ t)− f(a) =
n∑
k=1

f (k)(a)

k!
tk + o(tn)

C’est cette formule qu’on va généraliser au cas de plusieurs variables.

Théorème 70. (Formule de Taylor) Soit f : D ⊂ Rp → R de classe Cn au voisinage
du point A(a1, a2, · · · ap) ∈ D. Soient H(h1, · · · , hp) ∈ Rp et l’intervalle [A,A+H] ⊂
D. Alors,

f(A+H)− f(A) =
n∑
k=1

1

k!

(
(h1∂1 + · · ·hp∂p)k(f)

)
(A) + o(∥H∥n)

Démonstration. Ici ∂i :=
∂

∂xi
. Soit F (t) = f(A + tH) une fonction composée d’une

variable à valeurs réelles. On va utiliser la formule de Taylor-Lagrange pour cette
fonction. Pour cela on remarque que :

F ′(t) =

p∑
i=1

∂f(A+ tH)

∂xi
· d(ai + thi)

dt
.
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Pour la k-ème dérivée de la fonction composée F (t) on a :

F (k)(t) =
∑

(∂ik · · · (∂i1f(A+ tH) ) · · · )︸ ︷︷ ︸
k fois

d(ai1 + thi1)

dt
· · · d(aik + thik)

dt

où on prend la somme sur tout i1 ∈ {1, · · · , p}, · · · , ik ∈ {1, · · · , p}. On remarque que
d(aik + thik)

dt
= hi, ∀i ∈ {1, · · · , p}. Par le binôme de Newton cette formule se réécrit :

F (k)(t) = (h1∂1 + · · ·+ hp∂p)
kf(A+ tH)

On écrit a formule de Taylor-Lagrange pour la fonction F (0 + t) au voisinage de 0 :

F (t) = F (0) + F ′(0)t+ · · ·+ 1

n!
F (n)(0)tn +

1

(n+ 1)!
F (n+1)(θ)tn+1, θ ∈ [0, t].

Pour t = 1 on a :

F (1) = F (0) + F ′(0)t+ · · · 1
n!
F (n)(0) +

1

(n+ 1)!
F (n+1)(θ), θ ∈ [0, 1]

D’où :

f(a1 + h1, · · · , ap + hp) = f(a1, · · · , ap) +
n∑
k=1

1

k!
(h1∂1 + · · ·+ hp∂p)

kf(A) + rn(A,H)

Le dernier terme est le reste :

rn(A,H) =
1

(n+ 1)!
(h1∂1 + · · ·+ hp∂p)

n+1f(A+ θH) ≡ o(∥H∥n).

�
En particulier, la formule de Taylor à l’ordre 2 est la suivante :

(9) f(A+H) = f(A) +

p∑
i=1

∂if(a)hi +
1

2

p∑
i,j=1

∂i∂jf(a)hihj + o(∥H∥2)

La matrice-colonne des entrées ∂if est la matrice Jacobienne. La matrice p × p des
dérivées secondes

Hessf (A) := [αij] = [∂i∂jf(A)]

s’appelle la matrice Hessienne de f en A. Par le théorème de Schwarz cette matrice
est symétrique si f est de classe C2. La forme quadratique α(u) =

∑p
i,j=1 αijuiuj

s’appelle la forme hessienne de f en A.

Remarque 71. L’idée de la formule de Taylor c’est de trouver une approximation
de la fonction par un polynôme dans un voisinage d’un point donné.

En particulier, pour p = 2, A = (a, b), H = (h, k), (A +H) = (a + h, b + k) on a
les formules de Taylor suivantes :

– n = 0

f(A+H)− f(A) = o((
√
h2 + k2)0) ⇔ lim

H→0

f(A+H)− f(A)

1
= 0

- continuité
– n = 1

f(A+H)− f(A) = h
∂f

∂x
(a, b) + k

∂f

∂y
(a, b) + o(

√
h2 + k2)

- différentiabilité.
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– n = 2

(10)
f(A+H) − f(A) = h

∂f

∂x
(a, b) + k

∂f

∂y
(a, b)

+
1

2

(
h2
∂2f

∂x2
(a, b) + 2hk

∂2f

∂x∂y
(a, b) + k2

∂2f

∂y2
(a, b)

)
+ o(h2 + k2)

4.4. Vecteur normal et plan tangent à un graphe d’une fonction de 2 va-
riables.

A. Surfaces et coordonnées curvilignes (Ici je suis le cours [4]).
Soit f : D → R une fonction continue définie sur une partie D de R2. L’ensemble

des points de R3 :

S = {(x, y, z) ∈ R3|(x, y) ∈ D, z = f(x, y)}

est le graphe de la fonction f sur D (définition 21). Il est évident que l’application :

F : D → S, F (x, y) = (x, y, f(x, y))

est une bijection. Puisque les points de S sont donnés par des paires de nombres
(x, y), l’ensemble S est une surface de dimension 2 dans R3.

Si on a un chemin Γ : I → D, alors automatiquement on a un chemin F ◦Γ : I → S
sur la surface S. Si {

x = x(t)
y = y(t)

est une représentation paramétrique de Γ alors le chemin F ◦ Γ sur S est donné par
les trois fonctions :  x = x(t)

y = y(t)
z = f(x(t), y(t))

Soit (x0, y0) ∈ D. On peut trouver un chemin :

x = x0 + t, y = y0, z = f(x0 + t, y0)

sur la surface S pour lequel la coordonnée y = y0 ne change pas et un autre chemin :

x = x0, y = y0 + t, z = f(x0, y0 + t)

pour lequel la coordonnée x = x0 ne change pas. Ces chemins partant de points
différents de la surface S tracent des lignes de coordonnées sur S. Pour cette raison
on appelle (x, y) les coordonnées curvilignes sur S.

B. Plan tangent
Si la fonction z = f(x, y) est différentiable en (x0, y0) ∈ D, alors, quand (x, y) →

(x0, y0) on a :

(11) f(x, y) = f(x0, y0) + α(x− x0) + β(y − y0) + o
(√

(x− x0)2 + (y − y0)2
)

où α et β sont des constantes égales aux dérivées partielles au point (x0, y0).
Considérons un plan dans R3 donné par une équation

(12) z = z0 + α(x− x0) + β(y − y0)

où z0 = f(x0, y0). On voit que le graphe (11) de la fonction f autour du point (x0, y0)

est éloigné du plan (12) d’une valeur négligeable devant
√
(x− x0)2 + (y − y0)2.
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Définition 72. Le plan

(13) f(x, y) = f(x0, y0) + α(x− x0) + β(y − y0)

avec α =
∂f

∂x
(x0, y0), β =

∂f

∂y
(x0, y0) est appellé le plan tangent au graphe de la fonction

z = f(x, y) au point (x0, y0, f(x0, y0)).

C.Vecteur normal
Soit (x, y, z) ∈ D ⊂ R3 et F (x, y, z) = 0 l’équation implicite d’une surface S

(précédemment on avait une surface : z = f(x, y) pour laquelle F (x, y, z) = f(x, y)−
z.) Soit

t ∈ I ⊂ R, γ : t 7→

 x = f(t)
y = g(t)
z = h(t)

l’équation paramétrique d’une courbe de la surface passant par le point P0(x0, y0, z0),
c’est-à-dire qu’il existe

t0 ∈ I, tel que (x0, y0, z0) = (f(t0), g(t0), h(t0)) et (x, y, z) = (f(t), g(t), h(t))

qui satisfont l’équation F (x, y, z) = 0 pour tout t ∈ I. Soit u(t) = F (f(t), g(t), h(t))
une fonction composée de I → R, qui est identiquement nulle sur I. Donc au point
t = t0 on a

(14) 0 =
du

dt
=
∂F

∂x
· df
dt

+
∂F

∂y
· dg
dt

+
∂F

∂z
· dh
dt

De l’équation (14) suit que le vecteur t

(
df

dt
,
dg

dt
,
dh

dt

)∣∣∣∣
t=t0

est orthogonal au vec-

teur t

(
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
≡

−−→
gradF (P0). Le vecteur

t

(
df

dt
,
dg

dt
,
dh

dt

)∣∣∣∣
t=t0

est un vecteur

quelconque dans l’espace tangent à S au point P0. Donc le vecteur

−−→
gradF (P0) =

t

(
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
(P0)

est orthogonal à tout vecteur tangent à la surface S passant par P0. Cela signifie
exactement que le vecteur gradient est normal à la surface S.

L’équation du plan tangent à la surface donnée par l’équation F (x, y, z) = 0 est
facile à établir : c’est le plan passant par P0 tel que tout vecteur de ce plan est

orthogonal à
−−→
gradF (P0). Les coordonnées d’un point M(x, y, z) du plan vérifient :

−−→
P0M ·

−−→
gradF (P0) = 0. Ce produit scalaire donne l’équation du plan tangent :

(x− x0, y − y0, z − z0) ·
(
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
(P0) = 0.

De façon plus explicite :

(x− x0)
∂F

∂x
(P0) + (y − y0)

∂F

∂y
(P0) + (z − z0)

∂F

∂z
(P0) = 0.

On peut comparer cette formule à la formule (13).
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5. Extrema

5.1. Extrema locaux et globaux. Définition. On étudie le comportement d’une
fonction de plusieurs variables à valeurs réelles. Une telle fonction peut avoir des
valeurs extrémales : des minima (des valeurs les plus petites) ou des maxima (des
valeurs les plus grandes) sur tout le domaine de définition ou bien sur une certaine
partie. On les appelle des extrema.

Définition 73.
1. Soit f : D → R une fonction définie sur une partie D ⊂ Rp. On dit que f

admet un maximum (resp. minimum) global au point A ∈ D si pour tout X ∈ D on

a f(X) ≤ f(A) (resp. f(X) ≥ f(A)). Le maximum (resp. minimum) est appelé strict
si f(X) < f(A) (resp. f(X) > f(A)).

2. On dit que f admet un maximum (resp. minimum) local au point A ∈ D si on

peut trouver un nombre r > 0 tel que X ∈ D et ∥X −A∥ < r entrâıne f(X) ≤ f(A)
(resp. f(X) ≥ f(A)).

Les extrema globaux sont appelés aussi extrema absolus.

5.2. Théorème des extrema sur un compact.

Théorème 74. Soit f : K → R une fonction continue sur un compact K ⊂ Rp.
Alors f admet un maximum et un minimum sur K.

Remarque 75. En dimension p = 1 la fonction a des points extrémaux sur un
intervalle. Soit ils sont à l’intérieur de l’intervalle, auquel cas ils vérifient f ′(x) = 0,
soit ils sont au bord de l’intervalle (sur le bord, la condition f ′(x) = 0 n’est pas
forcément satisfaite). Donc pour trouver les extrema on cherche d’abord des points
critiques (où la derivée s’annule), puis on compare la valeur des points critiques avec
les valeurs sur le bord de l’intervalle. Les valeurs max et min se trouvent parmi ces
valeurs-là.

Définition 76. Soit f : D → R une fonction de classe C1 sur une partie D de Rp. On
dit que A ∈ D est un point critique de f si toutes les dérivées partielles s’annulent
en A (équivalent à dire que le gradient de f est nul en A, équivalent à dire aussi que
la différentielle de f est nulle en A).

Théorème 77 (Condition nécessaire d’extremum local). Soit f : U → R une fonction
de classe C2 définie sur un ouvert U ⊂ Rp admettant un maximum ou un minimum
local au point A ∈ U. Alors A est un point critique de f.

Démonstration. Reprenons la formule de Taylor (10) à l’ordre 2 en dimension 2. La
preuve se généralise sans problème aux dimensions supérieures.

f(a+ h, b+ k)− f(a, b) = h
∂f

∂x
(a, b) + k

∂f

∂y
(a, b)

+
1

2

(
h2
∂2f

∂x2
(a, b) + 2hk

∂2f

∂x∂y
(a, b) + k2

∂2f

∂y2
(a, b)

)
+ o(∥(h, k)∥2)

Si on a un maximum local en A, alors f(a+h, b+k)−f(a, b) ≤ 0 pour tout (h, k) suffi-

samment petit. La valeur de la fonction linéaire de deux variables h
∂f

∂x
(a, b) + k

∂f

∂y
(a, b),

si elle n’est pas 0, est grande par rapport aux termes suivants. Donc cette valeur, si
elle n’est pas égale à 0, doit être négative. Pourtant pour h, k positifs il faut que les
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constantes
∂f

∂xi
(a, b) ≤ 0, i = 1, 2 et pour h, k négatifs il faut que les mêmes valeurs

∂f

∂xi
(a, b) ≥ 0, i = 1, 2, d’où

∂f

∂xi
≡ 0, i = 1, 2. On peut refaire le même raisonnement

pour un min local. �

5.3. Extrema de fonctions de 2 variables - critère par le déterminant de
matrice Hessienne.
Soit f : D ⊂ Rp → R et X0 ∈ D. Quand p = 1, pour savoir si un point critique X0

est un maximum local ou un minimum local, on étudie la dérivée seconde (quand elle
existe) :

– si f ′′(X0) > 0, alors f(X0) est un minimum local,
– si f ′′(X0) < 0, alors f(X0) est un maximum local,
– si f ′′(X0) = 0, il faut faire des calculs supplémentaires de dérivées supérieures -
ce peut être un point d’inflexion, un maximum ou un minimum.

Dans le cas de plusieurs variables à la place de f ′′, on étudie la Hessienne.

Propriété 78. Soit f : D ⊂ Rp → R et X0 ∈ D un point critique de f . On suppose
que la Hessienne Hf(X0) existe. Alors

– si toutes les valeurs propres de Hf(X0) sont strictement positives, f(X0) est un
minimum local,

– si toutes les valeurs propres de Hf(X0) sont strictement négatives, f(X0) est un
maximum local,

– sinon, et si toutes les valeurs propres ne sont pas 0, il n’y a pas d’extrema. Si
toutes les valeurs propres sont 0, il faut étudier des termes d’ordre supérieur dans
la décomposition de Taylor en X0.

Pour p = 2 on fait le calcul de la formule de Taylor. Au point critique X0(a, b) on
a

f(a+h, b+k)−f(a, b) = 1

2

(
h2
∂2f

∂x2
(a, b) + 2hk

∂2f

∂x∂y
(a, b) + k2

∂2f

∂y2
(a, b)

)
+o(∥(h, k)∥2)

Donc le signe de la forme quadratique (la forme hessienne)

1

2

(
h2
∂2f

∂x2
(a, b) + 2hk

∂2f

∂x∂y
(a, b) + k2

∂2f

∂y2
(a, b)

)
va déterminer si on a un maximum, un minimum ou ni l’un ni l’autre. Pour avoir
un maximum (resp. minimum) il faut que la forme soit négative (resp. positive) pour
tout (h, k) au voisinage de (0, 0). Si la forme hessienne n’est pas de signe défini on a
des couples (h, k) pour lesquelles la valeur de f(a+ h, b+ k)− f(a, b) est positive et
d’autres pour lesquelles cette valeur est négative. Donc on a des directions (h, k) dans
lesquelles la fonction a un maximum au point (a, b) et d’autres où la fonction a un
minimum au même point. Ce type de point critique s’appelle un point selle (comme
une selle de cheval) ou bien point col (comme dans les montagnes).

On étudie alors la forme hessienne. On choisit des notations standard :

R =
∂2f

∂x2
(a, b), S =

∂2f

∂x∂y
(a, b), T =

∂2f

∂y2
(a, b).
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On suppose que R ̸= 0 et on réécrit la forme hessienne :

Rh2 + 2Shk + Tk2 = R

(
h2 + 2

S

R
hk +

T

R
k2
)

= R

(
h2 + 2

S

R
hk +

(
S

R

)2

k2 −
(
S

R

)2

k2 +
T

R
k2

)

= R

((
h+

S

R
k

)2

+

(
T

R
− S2

R2

)
k2

)

Puisque le premier terme

(
h+

S

R
k

)2

≥ 0, c’est le deuxième terme qui définit si la

forme est de signe défini. Alors,

– Si (
T

R
− S2

R2
) > 0 (⇔ RT − S2 > 0) on a un maximum si R < 0 et minimum si

R > 0.
– Si RT − S2 < 0 on a un point selle.

Remarque 79. Si RT − S2 > 0 la condition R > 0 ( R < 0) est équivalente à la
condition R+T > 0 (R+T < 0) i.e. la condition sur la trace de la matrice hessienne.

Recherche des extrema :
– Déterminer des points où f n’est pas de classe C1 et regarder les valeurs de f en
ces points. Par exemple, la fonction f(x, y) = 1−

√
x2 + y2 admet un maximum

à l’origine mais on ne le trouve pas parmi les points critiques.
– Rechercher les points critiques.
– Etudier les points critiques.

Exemple 80. Extrema locaux et globaux de f(x, y) = 2x2y+2x2+y2 sur R2. Points
critiques : 

∂f

∂x
= 4xy + 4x = 0

∂f

∂y
= 2x2 + 2y = 0

⇒
{
x(y + 1) = 0
x2 + y = 0

On trouve alors trois points critiques (0, 0), (−1,−1) et (1,−1).

pt critique (0, 0) (−1,−1) (1,−1)

R = 4y + 4 4 0 0
S = 4x 0 -4 4
T = 2 2 2 2
RT − S2 8 −16 −16
Signe de R > 0

Nature du pt critique : min pt selle pt selle

Les extrema globaux : on voit que

lim
x→±∞

f(x, 0) = lim
x→±∞

2x2 = +∞
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donc pas de maximum global. Pas de minimum global non plus car

lim
x→±∞

f(x,−2) = lim
x→±∞

−2x2 + 4 = −∞

Ici on a utilisé un critère par le signe du déterminant (et de la trace) de la matrice
hessienne pour déterminer la nature du point critique. Si le déterminant est 0 on doit
regarder la formule de Taylor à l’ordre supérieur (à l’ordre 3 et parfois plus).

Exemple 81. On cherche des extrema locaux de g(x, y) = x4 + y4 − 2x2 sur R2.
On trouve 3 points critiques (−1, 0), (0, 0), (1, 0) pour lesquels on ne peut pas

utiliser le critère car RT − S2 = 0 mais g(x, y) = (x2 − 1)2 + y4 − 1 donc en (±1, 0)
il y a un minimum local. En (0, 0) on a g(0, 0) = 0 et au voisinage de (0, 0) on a
des valeurs positives et négatives g(0, y) = y4 > 0 et g(y, 0) = x4 − 2x2 < 0 pour x
suffisamment petit. Donc (0, 0) n’est pas un max ni un min, c’est un point-selle.

5.4. Extrema liés. Soit K un compact de R2. Soit f : K → R une fonction de
classe C2. Soit g(x, y) = 0 l’équation de la courbe C ⊂ K. Si C est le bord de K, on
a une notation C = ∂K. On regarde la restriction de f sur la courbe C. Si la courbe
C a pour équation g(x, y) = 0, tous les points de la courbe satisfont cette équation.
Quand on cherche les extrema de la fonction f sur C on dit qu’on étudie les extrema
de f assujettie à la contrainte g(x, y) = 0. Ce sont des extrema liés.

Exemple 82. Exemple A. Voici un exemple de problème de recherche d’extrema
liés : parmi des rectangles avec la somme de cotés 2p (où p est un nombre positif
donné), trouver un rectangle à l’aire maximale. Soient x, y les cotés du rectangle.
Alors on a σ(x, y) = xy l’aire, qui doit être maximale tandis que (x, y) sont sousmis
à la condition x+ y = p. Ici, il est facile d’exprimer y par x et trouver un maximum
d’une fonction d’une variable ainsi obtenue.

Il est rare que l’on puisse exprimer y directement comme une fonction de x en
utilisant la contrainte.

Exemple B. Regardons un exemple de la page 362 [2] : la fonction f(x, y) = x2+y2

et la contrainte, la courbe C, définie par une équation g(x, y) = 0. Il s’agit de trouver
un minimum de f, lié par cette relation g(x, y) = 0. C’est un minimum de f sur la
courbe C. Géométriquement on peut résoudre le problème en traçant des lignes de
niveau de f. Les lignes de niveau de f sont des cercles concentriques du centre (0, 0).
Si on trace des cercles de rayons croissants, jusqu’à leur rencontre avec la courbe C, la
valeur critique est sur le cercle qui touche la courbe. Faites un dessin - c’est instructif
(dessinez une courbe quelconque et tracez les cercles).

La méthode générale utilise la considération suivante. Soit P (a, b) un point extre-
mum de f restreint à la courbe C. Le vecteur tangent à la courbe au point P doit être
aussi tangent à la ligne de niveau f(a, b) (on le voit clairement dans l’exemple B).
Mais les lignes de niveau sont normales au gradient de f, de l’autre côté le vecteur
tangent à C est normal au gradient de g. Donc ces deux gradients sont proportionnels.
On appelle le coefficient de proportionnalité le multiplicateur de Lagrange.

Proposition 83. Soit f : U → R, g : U → R deux fonctions de classe C1 sur un
ouvert U de R2. Soit (a, b) un point de U tel que :

(1) f soumise à la contrainte g(x, y) = 0 admet un extremum au point(a, b).

(2)
−−→
grad g(a, b) ̸= 0

Alors il existe un nombre réel λ ̸= 0 tel que
−−→
gradf(a, b) = λ

−−→
grad g(a, b).
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Les nombres a, b, λ sont des solutions du système d’équations suivant : les dérivées
partielles de f(x, y)− λg(x, y) par rapport à x, y, λ doivent être égales à 0.

∂f

∂x
(a, b)− λ

∂g

∂x
(a, b) = 0

∂f

∂y
(a, b)− λ

∂g

∂y
(a, b) = 0

g(a, b) = 0

Exemple 84. Trouver le point de la courbe y = x2 qui est le plus près du point
(0, h). Alors, ici g(x, y) = y − x2, et f(x, y) = x2 + (y − h)2 - le carré de la distance.
Les gradients nous donnent  2x+ 2λx = 0

2(y − h)− λ = 0
y − x2 = 0

Les solutions : soit x = 0, et alors y = 0 aussi, ou bien λ = −1 et y = h − 1/2,

x = ±
√
h− 1/2. Alors pour h ≥ 1/2, les points (±

√
h− 1/2, h − 1/2) sont à la

distance minimale de (0, h). Si h < 1/2 on a (0, 0) comme point le plus proche.

Théorème 85. Soit f une fonction C2 sur un compact K ⊂ R2, alors f atteint un
minimum et un maximum globaux sur K. Ces points d’extrema sont

– soit des points intérieurs de K, auquel cas ce sont des points critiques (
−−→
grad f = 0

en ces points)
– soit ils sont sur le bord ∂K de K auquel cas ils sont donnés par le calcul des
extrema liés en utilisant des multiplicateurs de Lagrange.

Exemple 86. Trouver les extrema globaux de f(x, y) = y + y2 − x2 + 3 sur B(0, 1)
disque de centre (0, 0) de rayon 1. On cherche les points critiques :

∂f

∂x
= −2x = 0

∂f

∂y
= 1 + 2y = 0

On trouve un seul point critique (0,−1/2). Ce point se trouve dans le disque et sa
valeur est f(0,−1/2) = 11/4

La matrice hessienne donne :

dét

(
−2 0
0 2

)
= −4 < 0 ⇒ (0,−1/2) point selle.

Il faut alors chercher les extrema globaux sur le bord x2 + y2 − 1 = 0. On a : −2x− 2λx = 0
1 + 2y − 2λy = 0
x2 + y2 − 1 = 0

On trouve les points (0,±1) et (±
√
15

4
,−1

4
). Les valeurs : f(0, 1) = 5, f(0,−1) =

3, f(±
√
15

4
,−1

4
) =

15

8
. On compare ces valeurs et conclut que le max se trouve au

point (0, 1) et le min aux points (±
√
15

4
,−1

4
).
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5.5. Extrema d’une fonction de n > 2 variables. En dimension n on procède de
la même façon qu’en dimension 2. En utilisant la formule de Taylor en dimension n
au voisinage d’un extremum on voit que la condition nécessaire est que le gradient
s’annule aux points d’extrema locaux. La condition suffisante pour avoir un miminum
(resp. maximum) est que la forme hessienne soit positivement (resp. négativement)
définie.

Pour les extrema liés on a le théorème suivant ([2]) :

Théorème 87. Soient f, g1, · · · gn des fonctions réelles de classe C1 sur un ouvert U
de Rp, et E un ensemble défini par les équations :

g1(X) = 0, · · · , gn(X) = 0, avec X ∈ U.

Si la restriction de f à E admet un extremum local en A ∈ E, et si les différentielles
Dg1(A), · · · , Dgn(A) sont linéarement indépendantes sur Rp, alors nécessairement les
formes linéaires Df(A), Dg1(A), · · · , Dgn(A) sont liées. En d’autres termes, il existe
des coefficients réels λ1, · · ·λn, appelés multiplicateurs de Lagrange, tels que

Df(A) = λ1Dg1(A) + · · ·λnDgn(A)

6. Chapitre VI. Champs de vecteurs

6.1. Definitions.

Définition 88. Un champ de vecteurs surD ⊂ Rp est une application qui à tout point

M de D associe un vecteur
−→
V (M) de Rp. Soit {O ;

−→
i ,

−→
j ,

−→
k } un repère orthonormé

de R3, alors un champ de vecteurs
−→
V (x, y, z), (x, y, z) ∈ D ⊂ R3 est donné par trois

fonctions P,Q et R sur D à valeurs réelles :

−→
V (x, y, z) = P (x, y, z)

−→
i +Q(x, y, z)

−→
j +R(x, y, z)

−→
k

On dit que le champ de vecteurs
−→
V est de classe Ck sur D si P,Q,R sont de classe

Ck.

Les fonctions à valeurs réelles, on les appelle parfois des champs scalaires, tandis que
les champs vectoriels sont des fonctions à valeurs vectorielles. Quand on dessine un
champ de vecteurs, on a des vecteurs associés à tout point du domaine de définition.
Pour dessiner un champ de vecteurs, on prend quelques points sur le plan R2 et en
chaque point choisi on calcule la valeur du champ ; on fait un dessin du vecteur ainsi
obtenu en commençant au point choisi. Voici quelques exemples de champs faciles à
dessiner :

Exemple 89.

Champ uniforme : champ constant, par exemple, λ
−→
i , λ ∈ R.

Champ convergent : −x−→i − y
−→
j .

Champ tournant : −y−→i + x
−→
j .

6.2. Gradient. Opérateur Nabla. Le gradient est un exemple d’un champ de vec-
teurs. Le gradient d’une fonction f : D → R de classe C1 sur D ⊂ Rn associe à

chaque point X de D le vecteur
−−→
gradf(X). Dans R3 en coordonnées {x, y, z} on a :

−−→
gradf(X) =

(
∂f

∂x
(X),

∂f

∂y
(X),

∂f

∂z
(X)

)
.
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Dans R3 on regarde un opérateur
−→
∇ à coordonnées

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
. Cet opérateur

vectoriel

(15)
−→
∇ =

−→
i
∂

∂x
+
−→
j
∂

∂y
+
−→
k
∂

∂z
.

agissant sur une fonction f est égal au gradient :
−−→
gradf =

−→
∇f. Cet opérateur

−→
∇ est

aussi appelé l’opérateur de Hamilton (c’est le même Hamilton (1805 - 1865) qui a
introduit le mot ”vecteur”).

Linéarité du gradient : Soient f1, f2 des fonctions définies sur une partie de Rn

et λ, µ des nombres réels. Alors
−−→
grad(λf1 + µf2) = λ

−−→
gradf1 + µ

−−→
gradf2

On peut se poser une question : et si tous les champs de vecteurs sont des gradients
de fonctions ? On voit rapidement que c’est une restriction assez forte.

Définition 90. Soit
−→
V un champ de vecteurs

−→
V : D → R3, D ⊂ R3. S’il existe

f : D → R tel que
−→
V =

−−→
gradf on dit que le champ

−→
V dérive du potentiel scalaire f

sur D et
−→
V est un champ de gradient aussi appelé un champ potentiel.

Remarque 91.

1. La condition
−→
V =

−−→
gradf dans certains livres de physique est donnée avec un

signe :
−→
V = −

−−→
gradf pour des raisons de convention dans certaines équations.

2. Si la fonction f existe, elle est unique à une constante près.

6.3. Divergence et Rotationnel.

A l’aide de l’opérateur
−→∇ on peut définir des opérations sur des champs - la diver-

gence et le rotationnel.

Soit
−→
V : D ⊂ R3 → R3 un champ de vecteurs de classe C1. Le produit scalaire de

l’opérateur
−→
∇ avec le champ

−→
V donne une fonction, qui s’appelle la divergence de

−→
V .

Le produit vectoriel de l’opérateur
−→
∇ avec un champ

−→
V donne un nouveau champ,

qui s’appelle le rotationnel de
−→
V .

La divergence agit sur des champs de vecteurs et donne des fonctions.

Définition 92. Soit
−→
V : D → R3, D ⊂ R3 un champ de vecteurs,

−→
V = P

−→
i +

Q
−→
j +R

−→
k , où P,Q,R sont des fonctions D → R. La divergence de

−→
V est

(16) div
−→
V =

−→
∇ ·

−→
V =

∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.

On remarque que la divergence est linéaire :

div(λ
−→
V + µ

−→
W ) = λ div

−→
V + µ div

−→
W

Le rotationnel agit sur des champs de vecteurs et donne des champs de vecteurs.

Définition 93. Soit
−→
V : D → R3, D ⊂ R3 un champ de vecteurs,

−→
V = P

−→
i +

Q
−→
j +R

−→
k , où P,Q,R sont des fonctions D → R. Le rotationnel de

−→
V est

(17)

−→
rot

−→
V =

−→
∇ ∧

−→
V =

∣∣∣∣∣∣
−→
i

−→
j

−→
k

∂/∂x ∂/∂y ∂/∂z
P Q R

∣∣∣∣∣∣
=

(
∂R

∂y
− ∂Q

∂z

)
−→
i +

(
∂P

∂z
− ∂R

∂x

)
−→
j +

(
∂Q

∂x
− ∂P

∂y

)
−→
k .
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On remarque que le rotationnel est linéaire :
−→
rot(λ

−→
V + µ

−→
W ) = λ

−→
rot

−→
V + µ

−→
rot

−→
W

Exemple 94. Système d’équations de Maxwell pour le champ électromagnétique
dans le vide :

1. div
−→
E =

ρ

ϵ0
2. div

−→
B = 0

3.
−→
rot

−→
E = −∂

−→
B

∂t
4.

−→
rot

−→
B =

−→
j

ϵ0c2
+

1

c2
∂
−→
E

∂t
Ici on note :

- ρ(x, t) - la densité volumique de charge électrique au point x = (x1, x2, x3) à
l’instant t,

-
−→
j (x, t) - le vecteur densité de courant,

-
−→
E (x, t) - le vecteur champ électrique,

-
−→
B (x, t) - le vecteur induction magnétique,

- ϵ0 - la permittivité diélectrique du vide,
- c - la vitesse de la lumière dans le vide (= 299792458 m/s).

Remarque 95. Propriétés de l’opérateur
−→
∇ :

Soit
−→
V : D → R3, D ⊂ R3 un champ de vecteurs de classe C1, et f : D → R une

fonction de classe C1. Alors, on a

div(
−→
rot

−→
V ) =

−→
∇ · (

−→
∇ ∧

−→
V ) ≡ 0.

Formellement on peut le voir comme un produit mixte, qui est identiquement 0 si les
vecteurs ne sont pas linéairement indépendants. Ici ce ne sont pas des vecteurs mais

des opérateurs vectoriels mais le produit mixte de
−→
∇ ,

−→
∇ et

−→
V est identiquement 0.

On a aussi

(18)
−→
rot

−−→
gradf =

−→
∇ ∧ (

−→
∇f) ≡ 0.

Définition 96. L’opérateur

∆f = div(
−−→
gradf)

défini sur les fonctions f : D → R, D ⊂ R3 de classe C2 à valeurs dans les fonctions
est appelé l’opérateur de Laplace.

6.4. Théorème de Poincaré. .

Proposition 97. Soit
−→
V : D → R3, D ⊂ R3,

−→
V = P

−→
i + Q

−→
j + R

−→
k , un champ

de vecteurs, P,Q,R des fonctions de D vers R. Une condition nécessaire pour que le

champ
−→
V dérive d’un potentiel scalaire surD est qu’en tout pointM deD,

−→
rot

−→
V = 0.

Démonstration. La relation 18 implique que pour qu’il existe f : D → R, tel que−→
V =

−−→
gradf on a

−→
rot

−→
V = 0. Cela se traduit en trois conditions sur les fonctions

P,Q et R : 

∂R

∂y
=
∂Q

∂z
∂P

∂z
=
∂R

∂x
∂Q

∂x
=
∂P

∂y
�
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La condition suffisante pour un champ d’être un champ de gradient est une condi-
tion sur le domaine de définition du champ.

Théorème 98 (Poincaré).

Soit
−→
V : R3 → R3 un champ de vecteurs de classe C1 tel que

−→
rot

−→
V = 0. Alors il

existe une fonction f : R3 → R telle que
−→
V =

−−→
grad f.

Remarquez ici que le champ V est défini en tout point de R3 . On ne donne pas
ici de démonstration de ce théorème mais on remarque que le champ de vecteurs
en question doit impérativement être de classe C1 sur R3. C’est R3, le domaine de
définition du champ, qui joue un rôle important ici.

Voici une définition pertinente :

Définition 99. Un domaine D ⊂ Rn est simplement connexe si D est connexe par
arc (Définition 47) et toute courbe fermée de D peut être ramenée à un point par une
déformation continue tout en restant dans D.

Exemple 100. Un exemple d’un domaine non-simplement connexe : un domaine de
R2 - un anneau qu’on peut définir pour r2 < R2 par D = {(x, y)| r2 ≤ x2+y2 ≤ R2}.
On peut voir ce domaine comme un disque de rayon R troué : le petit disque autour
du centre est enlevé du grand disque. Il n’est pas simplement connexe. En effet, si on
considère une courbe fermée de D (un lacet) qui contourne (0, 0) il n’y a pas de façon
de l’amener à un point, sans la faire ”sauter” par dessus ce disque absent.

Le théorème de Poincaré se formule d’une façon plus générale :

Théorème 101 (Poincaré généralisé).
Soit D un domaine de R3. Soit V : D → R3 un champ de vecteurs de classe C1 et

−→
rot

−→
V = 0. Alors si D est simplement connexe, il existe une fonction f : D → R telle

que
−→
V =

−−→
gradf.

6.5. Calcul du potentiel. Si
−→
V est un champ potentiel, alors on peut trouver le

potentiel à une constante près. On va faire un exemple de calcul ici.

Soit
−→
V : R3 → R3 un champ de vecteurs de composantes P,Q,R :

P (x, y, z) = 6x(y + z2), Q(x, y, z) = 3x2, R(x, y, z) = 6x2z

Il est de classe C∞ sur R3 car les fonctions P,Q,R sont des polynômes. De plus−→
rotV = 0 :  ∂R/∂y − ∂Q/∂z = 0− 0 = 0

∂P/∂z − ∂R/∂x = 12xz − 12xz = 0
∂Q/∂x− ∂P/∂y = 6x− 6x = 0

Par le théorème de Poincaré (Théorème 98),
−→
V dérive d’un potentiel scalaire.

Déterminons tous les potentiels scalaires f : R3 → R du champ
−→
V . on a

−−→
gradf =

−→
V . ∂f/∂x = 6x(y + z2) (1)

∂f/∂y = 3x2 (2)
∂f/∂z = 6x2z (3)

De (2) on a f(x, y, z) = 3x2y+ ϕ(x, z), où ϕ : R2 → R est une fonction différentiable.
De (1) on a ∂f/∂x = 6x(y + z2) = ∂(3x2y + ϕ(x, z))/∂x = 6xy + ∂ϕ(x, z)/∂x. Donc

∂ϕ(x, z)/∂x = 6xz2 ⇒ ϕ(x, z) = 3x2z2 + ψ(z), où ψ : R → R dérivable.
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Il suit

f(x, y, z) = 3x2y + 3x2z2 + ψ(z)

et avec l’équation (3) on a

∂f/∂z = 6x2z = ∂(3x2y + 3x2z2 + ψ(z))∂z = 6x2z + ψ′(z)

ce qui donne ψ(z) = k, k - une constante. Finalement

f(x, y, z) = 3x2y + 3x2z2 + k

est un potentiel scalaire de
−→
V .

7. Chapitre VII. Formes différentielles

7.1. Formes différentielles.

Définition 102. On appelle 1-forme différentielle définie sur l’ouvert U ⊂ Rp une
application α de U dans l’espace dual de Rp, c’est-à-dire dans (Rp)∗ = L(Rp,R),
l’espace des applications linéaires de Rp vers R.

α : U → L(Rp,R)

Soit x ∈ U, alors α(x) ∈ L(Rp,R).
Soit

−→
V un champ de vecteurs sur U , cela signifie en particulier

−→
V (x) ∈ Rp. Comme

on a α(x) application linéaire de Rp → R et
−→
V (x) ∈ Rp en chaque point x de U on a

α(x)(
−→
V (x)) ∈ R.

Cela montre qu’en chaque point de U l’espace des 1-formes différentielles est dual
à l’espace de champs de vecteurs.
En effet, si un espace E (de dimension finie) est muni d’un produit scalaire, il

existe un isomorphisme entre E et son dual. Ici E est l’espace des champs de vecteurs
sur un ouvert E = Vect(U) avec un produit scalaire < .|. > (x) défini en chaque
point x ∈ U. On peut donc établir une correspondance entre l’espace des champs

de vecteurs et son espace dual des 1-formes différentielles, noté Ω1(U) : si
−→
V est un

champ de vecteurs sur U il existe une unique 1-forme différentielle α sur U telle que

∀x ∈ U et ∀−→W ∈ Vect(U). On à

(19) α(
−→
W )(x) =<

−→
V |

−→
W > (x)

Nous avons déjà vu un exemple d’une 1-forme différentielle, c’est la différentielle d’une
fonction f de classe C1 sur l’ouvert U à valeurs dans R donnée par

df : x ∈ U 7→ df(x) =

p∑
i=1

∂f

∂xi
(x) dxi.

En tant qu’application de U dans L(Rp,R), elle s’écrit

df =

p∑
i=1

∂f

∂xi
dxi

Ici, nous notons B∗ = { dx1, · · · dxp} la base duale de la base de l’espace des champs
de vecteurs, la base canonique de Rp. L’application dxi est donc la i−ème 1-forme
coordonnée :

dxi : (x1, · · · , xp) 7→ xi
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- sur un vecteur de coordonnées (x1, · · · , xp) la forme dxi a pour valeur xi (la forme
différentielle et le champ de vecteurs considerés au même point de U). Pour tout X
de U, α(X) s’écrit dans B∗ avec des coefficients ai qui dépendent du point X :

(20) α(X) =

p∑
i=1

ai(X) dxi

Définition 103. Une 1-forme différentielle α est de classe Ck sur un ouvert U si les
fonctions ai qui interviennent dans (20) sont de classe Ck sur U.

7.2. n-formes différentielles. Pour définir les 1-formes différentielles nous avons
travaillé avec des formes linéaires L(Rp,R) mais nous pouvons définir des formes bi-
linéaires alternées (anti-symétriques) et plus généralement k-linéaires anti-symétriques

L((Rp)k,R).

Définition 104. Une application linéaire L : (Rp)k → Rq est une k-forme anti-
symétrique (= alternée) si la valeur de L change de signe sous une permutation de
deux variables :

L(
−→
V 1, . . . ,

−→
V i, . . . ,

−→
V j, . . . ,

−→
V k) = −L(

−→
V 1, . . . ,

−→
V j, . . . ,

−→
V i, . . . ,

−→
V k)

En particulier, si
−→
V i =

−→
V j, et i ̸= j la valeur de L est 0.

Exemple 105. Le produit vectoriel
−→
V ∧

−→
W, où

−→
V ,

−→
W ∈ R3 est un exemple d’une

forme anti-symétrique à valeurs dans R3.

Ce qui nous intéresse ici ce sont des formes anti-symétriques à valeurs dans R.On in-
troduit le produit des formes linéaires de sorte qu’à deux formesA ∈ L((Rp)k,R) etB ∈
L((Rp)l,R) on associe une forme A ∧ B ∈ L((Rp)k+l,R). Ce produit est appelé le
produit extérieur. Le produit extérieur, noté ∧, est

– associatif : (A ∧B) ∧ C = A ∧ (B ∧ C)
– distributif : (A+B) ∧ C = A ∧ C +B ∧ C
– anti-symétrique : A∧B = (−1)klB∧A pour A ∈ L((Rp)k,R) et B ∈ L((Rp)l,R).

En particulier, si on a deux 1-formes A,B ∈ L(Rp,R) leur produit A∧B ∈ L((Rp)2,R)
est anti-symétrique :

A ∧B = −B ∧ A
En général, le produit extérieur des formes A1, . . . , Ak ∈ L(Rp,R), A1 ∧ . . . ∧ Ak est
une k-forme anti-symétrique qui, évaluée sur k vecteurs de Rp a pour valeur :

(21) A1 ∧ . . . ∧ Ak(
−→
V 1, . . . ,

−→
V k) =

∣∣∣∣∣∣
A1(

−→
V 1) · · · Ak(

−→
V 1)

· · · · · · · · ·
A1(

−→
V k) · · · Ak(

−→
V k)

∣∣∣∣∣∣ = det(Aj(
−→
V i))

Définition 106. Soit U un ouvert de Rp, k ≥ 0 un entier. On appelle k-forme différentielle
sur U une application

ω : U → L((Rp)k,R)

telle que, pour tout x de U, ω(x) est une k-forme alternée sur Rp. On note Ωk(U)
l’espace des k-formes différentielles sur U ⊂ Rp.

Une k-forme différentielle est aussi appelée une forme différentielle de degré k.
On considère les fonctions à valeurs réelles comme des 0-formes différentielles.
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Par exemple les 2-formes différentielles sur U ⊂ R2 forment l’espace des formes
bilinéaires alternées. Donc si on a deux formes α, β ∈ Ω1(U), alors on a un produit
α∧β ∈ Ω2(U) tel que α∧β = −β∧α. En dimension 2 dans la base ( dx, dy) les 1-formes
sont α(x, y) = P (x, y) dx+Q(x, y) dy et les 2-formes ω(x, y) = h(x, y) dx∧ dy. Il n’y a
pas de formes dx∧ dx ou dy∧ dy à cause de l’anti-symétrie, et dx∧ dy = − dy∧ dx.
Une k-forme différentielle dans Rp peut se décomposer

(22) ω(X) =
∑

1≤i1<i2<···<ik≤p

fi1i2···ik(X) dxi1 ∧ dxi2 ∧ · · · ∧ dxik .

où fi1i2···ik(X) sont des fonctions sur U ⊂ Rp et dxij sont des éléments de la base de
(Rp)∗ = L(Rp,R).

On peut définir la valeur d’une k-forme donnée évaluée sur k champs de vecteurs au
point donné. On utilise la dualité entre les formes différentielles et les champs point
par point donnée par le produit scalaire < ·, · > .

Exemple 107.

(1) On peut regarder une 1-forme z dx dans R3 au point (5,−2, 3) évaluée sur

un champ vectoriel
−→
V (x, y, z) = x2

−→
i + xy

−→
j + 2z

−→
k . La forme z dx au point

(5,−2, 3) est égale à 3 dx. La valeur du champ
−→
V (5,−2, 3) = 52 · −→i − 5 · 2 · −→j + 6 ·

−→
k .

L’évaluation de la 1-forme 3 dx sur
−→
V (5, 2, 3) est alors

< 3 dx, 25 · −→i − 10 · −→j + 6 ·
−→
k >= 3 · 25 < dx,

−→
i >= 75.

On utilise le fait que { dx, dy, dz} forme la base duale de la base {−→i ,−→j ,
−→
k }

et par conséquent < dx,
−→
i >= 1, < dx,

−→
j >=< dx,

−→
k >= 0.

(2) On regarde une 2-forme ω = y dx ∧ dy dans R2 au point (−3, 2) évaluée sur

deux champs vectoriels
−→
W (x, y) = (2x − y)

−→
i + xy2

−→
j et

−→
U = 3y

−→
i +

−→
j .

D’abord, ω(−3, 2) = 2 dx ∧ dy. Les valeurs des champs au point donné sont
−→
W (−3, 2) = (2 · (−3)−2)

−→
i −3 ·22 ·−→j = −8

−→
i −12

−→
j et

−→
U (−3, 2) = 6

−→
i +

−→
j .

L’évaluation de la 2-forme ω sur
−→
W (−3, 2) et

−→
U (−3, 2) au point (−3, 2) en

suivant la formule (21) est alors

< 2 dx ∧ dy, (−8
−→
i − 12

−→
j ) ∧ (6

−→
i +

−→
j ) >= 2 · (−8) · (1) < dx,

−→
i >< dy,

−→
j >

+2 · (−12) · 6 < dy,
−→
j >< dx,

−→
i >= −16 + 144 = 128.

7.3. Formes exactes. Différentielle de de Rham.

Définition 108. La 1-forme différentielle α de classe C0 (ou continue) sur l’ouvert
U est exacte s’il existe une fonction f de classe C1 sur l’ouvert U telle que α = df.
On dit que f est une primitive de α.

Il existe des 1-formes différentielles qui n’ont pas de primitive. Sur un ouvert
connexe, lorsqu’une primitive existe, elle est unique à ajout d’une constante près.
Reconnâıtre si une 1-forme différentielle est exacte est un problème analogue à celui
de savoir reconnâıtre si un champ de vecteurs est un champ de gradient (partie 6.5
du cours).

Plaçons-nous par exemple en dimension 2 et considérons un champ de vecteurs
défini sur un ouvert U ∈ R2 par :

∀(x, y) ∈ U :
−→
V (x, y) = P (x, y)

−→
i +Q(x, y)

−→
j .
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ainsi qu’une forme différentielle α définie par :

∀(x, y) ∈ U : α(x, y) = P (x, y) dx+Q(x, y) dy.

Par la dualité (19) on a df(x)((h, k)) =< ∇f(x)|(h, k) > . Alors les équations α =

df et
−→
V =

−→
∇f sont toutes les deux équivalentes au même système :

P (x, y) =
∂f

∂x
(x, y)

Q(x, y) =
∂f

∂y
(x, y)

Comment vérifier si une 1-forme différentielle est exacte ? Pour les champs de vecteurs
on avait le théorème de Poincaré général. Pour les 1-formes c’est exactement le même
théorème. Pour le formuler en dimension quelconque il faut introduire un opérateur

analogue à l’opérateur
−→∇ qui agit sur les formes.

En fait on a déjà cet opérateur - c’est l’opérateur d :

d =

p∑
i=1

dxi
∂

∂xi
.

Il faut comprendre que sur une forme différentielle ω (22) l’opérateur dxi
∂

∂xi
agit par

les dérivées partielles sur les fonctions fi1i2···ik(X) et par multiplication extérieure de
dxi sur les formes dxi1 ∧ dxi2 ∧ · · · ∧ dxik :

dω =

p∑
i=1

dxi ∧
∂

∂xi
ω.

L’opérateur d est appellé la différentielle de de Rham, aussi appelé parfois la différentielle extérieure.
La différentielle de de Rham agit sur des fonctions de classe C1 en les envoyant vers
les 1-formes différentielles.

On peut définir l’action de d sur les 1-formes aussi bien que sur les fonctions. Par
exemple, en dimension 2 :

d
(
P (x, y) dx+Q(x, y) dy

)
=

(
dx

∂

∂x
+ dy

∂

∂y

)(
P (x, y) dx+Q(x, y) dy

)
=
∂P

∂x
dx ∧ dx+

∂Q

∂x
dx ∧ dy +

∂P

∂y
dy ∧ dx+

∂Q

∂y
dy ∧ dy

=

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy

On a utilisé dans le calcul dx ∧ dx = dy ∧ dy = 0, et dx ∧ dy = − dy ∧ dx.

Remarque 109. La différentielle de de Rham est un opérateur qui agit sur les formes
différentielles et il augmente leur degré de 1, d : Ωk(U) → Ωk+1(U). Par exemple sur
une forme (22)

dω(X) =

p∑
i=1

dxi
∂

∂xi

( ∑
1≤i1<i2<···<ik≤p

fi1i2···ik(X) dxi1 ∧ dxi2 ∧ · · · ∧ dxik

)

=

p∑
i=1

∑
1≤i1<i2<···<ik≤p

∂

∂xi
(fi1i2···ik(X)) dxi ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik
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Lemme 110. La différentielle de de Rham d : Ωk(U) → Ωk+1(U), U ⊂ Rp au carré
est nul :

d2 = 0.

Démonstration. En coordonnées l’opérateur d agissant sur une forme différentielle

ω ∈ Ωk(U) s’écrit : dω =

p∑
i=1

dxi
∂

∂xi
ω ∈ Ωk+1(U).

Son carré est calculé ainsi :

d(dω) = (d2)ω =

(
p∑
i=1

dxi
∂

∂xi

p∑
i=1

dxi
∂

∂xi

)
ω =

p∑
i=1

p∑
j=1

dxi ∧ dxj ∧
∂

∂xi

(
∂

∂xj
(ω)

)
=

∑
1≤i<j≤p

dxi ∧ dxj ∧
∂

∂xi

(
∂

∂xj
(ω)

)
+

∑
1≤j<i≤p

dxi ∧ dxj ∧
∂

∂xi

(
∂

∂xj
(ω)

)
+

p∑
i=1

dxi ∧ dxi ∧
∂

∂xi

(
∂

∂xi
(ω)

)
.

En changeant les notations i ↔ j dans la deuxième somme, on voit que la première

somme a les termes dxi ∧ dxj
∂

∂xi

(
∂

∂xj
(ω)

)
et la deuxième dxj ∧ dxi

∂

∂xj

(
∂

∂xi
(ω)

)
pour les mêmes i et j. En utilisant le lemme de Schwarz, on a :

∂

∂xi

(
∂

∂xj
(ω)

)
=

∂

∂xj

(
∂

∂xi
(ω)

)
.

Puisque dxi∧ dxj = − dxj∧ dxi les deux premières sommes s’annulent mutuellement
et pour la troisième somme on a : ∀i, dxi ∧ dxi = 0. �
Remarque 111. La différentielle de de Rham agit sur le produit extérieur de deux
formes différentielles α et β de degrés p et q comme suit :

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ.

C’est facile à voir si on écrit α et β explicitement (comme dans (20)).

7.4. La dimension 3 est spéciale. Faisons le calcul d’action d’opérateur de de
Rham en dimension 3.

0. Pour une 0-forme différentielle (c’est-à-dire simplement une fonction)

f = f(x, y, z)

définie sur un domaine D ∈ R3, où f une fonction de classe C1 sur D, on obtient

(23) df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz,

Dans cette forme on reconnâıt une expression pour la différentielle (cela est le cas
pour toute dimension).

1. Pour une 1-forme différentielle

α = P dx+Q dy +R dz

définie sur un domaine D ∈ R3, où P,Q,R sont des fonctions de classe C1 sur D, on
obtient

(24) dα =

(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz +

(
∂P

∂z
− ∂R

∂x

)
dz ∧ dx+

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy
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2. Pour une 2-forme différentielle

ω = P dy ∧ dz +Q dz ∧ dx+R dx ∧ dy

définie sur un domaine D ∈ R3, P,Q,R des fonctions de classe C1 sur D, on obtient

(25) dω =

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dx ∧ dy ∧ dz

3. Une forme différentielle de degré 3 sur D ⊂ R3 s’écrit

ν = f(x, y, z) dx ∧ dy ∧ dz

avec f(x, y, z) - une fonction sur D. Il n’y a pas de 4-formes différentielles à cause de
l’anti-symétrie, donc en particulier, dν = 0, ∀ν ∈ Ω3(U), U ⊂ R3.

On reconnâıt ici, au moins formellement, les expressions en coordonnées du gradient
d’une fonction (23), du rotationnel (24) et de la divergence (25) du champ de vecteurs
correspondant. De cette façon, dans R3 les opérateurs de la théorie des champs de
vecteurs se révèlent être tous liés à la différentielle de de Rham sur des formes de
degrés 0,1,2.

La dimension 3 est spéciale. En plus de la dualité entre les 1-formes et les champs
de vecteurs dans la théorie des formes différentielles, il y a une dualité appelée dualité
de Poincaré (le même Poincaré que le théorème). Cette dualité de Poincaré sur Rp est
une application entre les k-formes et les (p−k)-formes. Par conséquent en dimension 3
les 1-formes sont duales aux 3−1 = 2-formes. De ce fait, via cette dualité de Poincaré
les 2-formes sont aussi liées aux champs de vecteurs.

7.5. Formes fermées. Théorème de Poincaré pour les formes différentielles.

Définition 112. On dit qu’une k-forme différentielle ω est fermée si dω = 0.

Théorème 113 (Poincaré pour les formes différentielles sur Rp).
Soit α une k-forme différentielle sur Rp. Alors α est exacte si et seulement si elle

est fermée.

Exemple 114. On souhaite savoir si la forme α = 4xy dx + (1 + 2x2) dy est exacte
et trouver éventuellement sa primitive. La forme est définie sur R2 tout entier qui est
simplement connexe. On a ici P = 4xy et Q = 1 + 2x2 On calcule :

∂P

∂y
− ∂Q

∂x
= 4x− 4x = 0

La forme est donc exacte et on cherche une primitive f en résolvant le système :{ ∂f
∂x

= 4xy
∂f
∂y

= 1 + 2x2

en intégrant la première de ces équations par rapport à x, il vient :

f(x, y) = 2x2y + ϕ(y),

où ϕ est une fonction d’une variable, dérivable. On utilise ensuite la deuxième équation :

∂(2x2y + ϕ(y))

∂y
= 1 + 2x2

D’où ϕ(y) = y + C, C ∈ R et finalement

f(x, y) = 2x2y + y + C

Cela correspond au calcul du potentiel du champ correspondant.
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On utilise cette méthode pour résoudre certaines équations différentielles ordinaires
- ici par exemple si on pense à dy

dx
comme à y′, la dérivée de y par rapport à x on a

intégré une équation différentielle

4xy + (1 + 2x2)y′ = 0.

Autre exemple : α = 2y2(x + y) dx + 2xy(x + 3y) dy est une forme fermée et par
conséquent exacte, donc sa primitive f(x, y) = x2y2 + 2y3x + C donne la solution
x2y2 + 2y3x+ C = 0 de l’équation différentielle : 2y2(x+ y) + 2xy(x+ 3y)y′ = 0.

On peut le voir comme ça : une équation différentielle peut se réécrire de la façon
suivante : α = 0, où α est une 1-forme différentielle. Alors, si α = df, f = const est
la solution de l’équation différentielle α = 0.

La théorie des formes différentielles est utilisée en intégration. Souvent on dit qu’on
intègre des fonctions, en réalité on intègre des formes différentielles. Cette ligne de
pensée va nous diriger vers l’intégration des fonctions de plusieurs variables.

8. Chapitre VIII. Intégrales multiples

8.1. Définition. Intégrale double. Soit f une fonction continue sur un rectangle
R = [a, b] × [c, d] de R2. On partage ce rectangle en n ·m petits rectangles Rij, i ∈
[1,m], j ∈ [1, n]. Rij a pour cotés le m-ième segment horizontal et le n-ième segment
vertical. Son sommet supérieur droit est le point (xi, yj) = (a + i · b−a

m
, c + j · d−c

n
).

La somme de Riemann, Smn, est la somme des volumes des parallélépipèdes de bases
sur Rij et de hauteurs donnés par la valeur de f en (xi, yj) de Rij

Smn =
b− a

m

d− c

n

m∑
i=1

n∑
j=1

f(xi, yj).

Définition 115. L’intégrale double de f sur R est la limite des sommes de Riemann :∫∫
R

f(x, y) dx dy = lim
m→∞,n→∞

Smn.

Propriété 116.

(1) Linéarité. Soient f et g deux fonctions réelles continues sur R, alors∫∫
R

(λf(x, y) + µg(x, y)) dx dy = λ

∫∫
R

f(x, y) dx dy + µ

∫∫
R

g(x, y) dx dy

(2) Croissance. Soient f et g deux fonctions réelles continues sur R, telles que
f(x, y) ≤ g(x, y), ∀(x, y) ∈ R, alors∫∫

R

f(x, y) dx dy ≤
∫∫

R

g(x, y) dx dy

On en déduit que∣∣∣∣∫∫
R

f(x, y) dx dy

∣∣∣∣ ≤ ∫∫
R

|f(x, y)| dx dy

(3) Théorème de Fubini pour un rectangle. L’intégrale double d’une fonction
réelle continue f sur un rectangle R = [a, b]× [c, d] est égale à deux intégrales
simples successives :∫∫

R

f(x, y) dx dy =

∫ d

c

∫ b

a

(f(x, y) dx) dy =

∫ b

a

∫ d

c

(f(x, y) dy) dx
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En particulier, si f(x, y) = g(x)h(y)∫∫
R

f(x, y) dx dy =

∫ b

a

g(x) dx ·
∫ d

c

h(y) dy

8.2. Aire d’une partie quarrable. Théorème de Fubini. Pour définir l’intégrale
double sur une partie de R2 qui n’est pas un rectangle on introduit la notion d’une
partie quarrable du plan.

Soit D une partie bornée de R2 et R = [a, b]× [c, d] un rectangle qui la contient.
On appelle subdivison σ de R, m ·n rectangles Rij = [xi, xi+1]× [yj, yj+1], xi, yj ∈ R

venant du partage de [a, b] en m segments et de [c, d] en n segments :

a = x0 < x1 < · · · < xm = b ; c = y0 < y1 < · · · < yn = d

pour m et n quelconques. Le rectangle Rij, est d’aire µ(Rij) = (xi+1−xi) · (yj+1−yj).
A toute subdivison σ de R on associe deux quantités qu’on appelle les sommes de

Darboux :

s(σ) =
∑
Rij⊂D

(xi+1 − xi) · (yj+1 − yj) et S(σ) =
∑

Rij
∩
D ̸=∅

(xi+1 − xi) · (yj+1 − yj).

Définition 117. On dit que D ⊂ R est quarrable si la borne supérieure des sommes
s(σ) est égale à la borne inférieure des sommes S(σ). Leur valeur commune donne
l’aire de D.

Remarque 118. Si D est une partie quarrable du plan alors la frontière de D est
quarrable d’aire nulle. Ainsi, un disque ou un polygone sont des exemples de parties
quarrables, que l’on prenne ou non leur frontière.

Définition 119. Une fonction f bornée sur une partie quarrable de R2 est intégrable
si et seulement si la somme (aussi appelé une somme de Riemann)∑

Rij
∩
D ̸=∅

f(ui, vj) Aire(Rij)

tend vers une limite finie indépendante du choix de (ui, vj) quand xi+1−xi et yj+1−yj
tendent vers 0. Cette limite est appelée l’intégrale de f sur D :∫∫

D

f(x, y) dx dy.

Théorème 120. Soit f : D → R une fonction continue et bornée sur une partie
quarrable du plan. Alors f est intégrable sur D.

Remarque 121. La propriété d’être bornée est importante. C’est la même chose
pour les fonctions d’une seule variable comme le montre l’exemple de la fonction 1/x
qui n’est pas bornée sur l’intervale ]0, 1] : elle n’est pas intégrable !

Théorème 122. Soit f : D → R une fonction bornée sur une partie quarrable
du plan. Si l’ensemble des points de discontinuité de f est d’aire nulle alors f est
intégrable sur D.

Par ailleurs, l’aire d’une partie quarrableD ⊂ R2 peut être vue comme une intégrale
d’une fonction constante égale à 1 sur D :

Aire(D) =

∫∫
D

dx dy
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Il est facile d’expliquer cela par un raisonnement géométrique - présenter le graphe
de la fonction 1 sur D et voir quel volume représente l’intégrale double.

Comment, en pratique, calcule-t-on les intégrales doubles sur une partie quarrable
du plan ?

- Soit ϕ et ψ deux fonctions continues sur [a, b] et soit

D = {(x, y) ∈ R2| ϕ(x) ≤ y ≤ ψ(x)}.
(Faire un dessin). Soit f une fonction réelle intégrable sur D. Alors, on a∫∫

D

f(x, y) dx dy =

∫ b

a

(∫ ψ(x)

ϕ(x)

f(x, y) dy

)
dx.

Exemple 123. On calcule

I =

∫∫
D

(x+ y)2 dx dy

où D est un triangle de sommets (0, 0), (0, 1) et (2, 0). Alors ici

ϕ(x) = 0 et ψ(x) = −x
2
+ 1, x ∈ [0, 2].

Donc

I =

∫ 2

0

(∫ −x/2+1

0

(x+ y)2 dy

)
dx =

∫ 2

0

[
(x+ y)3

]y=−x/2+1

y=0
dx =

7

6

La variable x ayant exactement le même statut que la variable y donc on peut calculer
la même intégrale comme suit :

I =

∫ 1

0

(∫ 2−2y

0

(x+ y)2 dx

)
dy

et obtenir le même résultat. Il faut faire attention aux bornes de l’intégrale. La valeur
de l’intégrale est un nombre - on ne peut pas avoir des fonctions pour des bornes pour
l’intégrale simple calculée en dernier.

8.3. Changement de variables dans une intégrale double. Matrice jaco-
bienne. Soit f une fonction continue sur un compact quarrable D ⊂ R2. Soit une
bijection notée ∆ → D définie par :

(u, v) 7→ (x = ϕ(u, v), y = ψ(u, v)),

ϕ et ψ étant de classe C1. Alors,∫∫
D

f(x, y) dx dy =

∫∫
∆

f(ϕ(u, v), ψ(u, v)

∣∣∣∣D(x, y)

D(u, v)

∣∣∣∣ du dv,
où

∣∣∣∣D(x, y)

D(u, v)

∣∣∣∣ = ∣∣∣∣∂x∂u ∂y∂v − ∂x

∂v

∂y

∂u

∣∣∣∣ est la valeur absolue du déterminant de la matrice

Jacobienne (définition 51) des dérivés premières de l’application ∆ → D.
On peut le voir en utilisant le calcul des formes différentielles. Si x = x(u, v) et y =

y(u, v) la 2-forme différentielle dx ∧ dy s’exprime en du ∧ dv par le calcul suivant
(dans le contexte des intégrales on n’écrit pas de symbole de produit ∧) :

dx dy =

(
∂x

∂u
du+

∂x

∂v
dv

)
·
(
∂y

∂u
du+

∂y

∂v
dv

)
=

∂x

∂u

∂y

∂v
du dv +

∂x

∂v

∂y

∂u
dv du =

(
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

)
du dv
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Exemple 124. Si on effectue un changement linéaire des variables :

ϕ(u, v) = au+ bv, ψ(u, v) = cu+ dv

alors, la fonction intégrée n’est modifiée que par le facteur

|ad− bc|,

(valeur absolue du déterminant). Lorsque ce déterminant est 1 (pour une rotation par
exemple), la fonction intégrée reste inchangée. Ce changement de variables linéaire
envoie un carré [0, 1] × [0, 1] vers le parallélogramme P engendré par les vecteurs(
a
b

)
et

(
c
d

)
. Donc en particulier

Aire(P ) =

∫
P

dx dy =

∫
[0,1]×[0,1]

|ad− bc| du dv = |ad− bc|

Exemple 125. Changement en coordonnées polaires. Soit [0,∞[×[0, 2π[→ R2 une
bijection entre les coordonées polaires et cartésiennes données par

(r, t) 7→ (x = r cos t, y = r sin t).∣∣∣∣D(x, y)

D(u, v)

∣∣∣∣ = ∣∣∣∣ ∂x
∂r

∂x
∂t

∂y
∂r

∂y
∂t

∣∣∣∣ = r cos2 t+ r sin2 t = r.

Calculer I =
∫∫

D
y2 dx dy sur D, disque de centre (0, 0) de rayon R. Le calcul direct

est assez long :

I =
∫ R
−R

(∫ √
R2−x2

−
√
R2−x2 y

2 dy
)
dx =

∫ R
−R 2

(∫ √
R2−x2

0
y2 dy

)
dx

=
∫ R
−R 2 (y3/3)

√
R2−x2

0 dx = 4
3

∫ R
0
(
√
R2 − x2)3 dx

= 4
3

∫ 0

π/2
R3 sin3 θ(−R sin θ)dθ = 4

3
R4
∫ π/2
0

sin4 θdθ = πR4

4

où on utilise le changement de variables

x = R cos θ, 0 ≤ θ ≤ π/2, dx = −R sin θ dθ, R2−x2 = R2(1− cos2 θ) = R2 sin2 θ.

On utilise aussi la linéarisation de sin4 θ :

sin4 θ =

(
eiθ − e−iθ

2i

)4

=
e4iθ − 4e2iθ + 6− e−2iθ + e−4iθ

16
=

1

8
cos 4θ − 1

2
cos 2θ +

3

8

Ce calcul a l’air assez long et fort utile, mais à l’aide d’un changement de variables
sous l’intégrale double on arrive au résultat plus rapidement : les coordonnées polaires
transforment le rectangle en disque. Ici on a un disque et donc :

∆ = {(r, t) ∈ R2 |0 ≤ r ≤ R et 0 ≤ t ≤ 2π} → D = {(x, y) ∈ R2
∣∣x2 + y2 ≤ R2}

D’où

I =

∫∫
∆

r2 sin2 tr dt dr =

∫ R

0

r3 dr ·
∫ 2π

0

sin2 t dt =
R4

4
·
∫ 2π

0

1− cos 2t

2
dt =

πR4

4
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8.4. Volume. Intégrales triples. Pour certaines parties E ⊂ R3 et certaines fonc-
tions f : E → R on définit un nombre réel noté

I =

∫∫∫
E

f(x, y, z) dx dy dz

et appelé l’intégrale de f sur E.

Définition 126. Un compact élémentaire ∆ de R3 est une partie de R3 de l’une des
formes suivantes :

(1) ∆(x,y) = {(x, y, z) ∈ R3| ϕ1(x, y) ≤ z ≤ ϕ2(x, y), où(x, y) ∈ D − partie
quarrable de R2 et ϕ1, ϕ2 − fonctions continues surD}

(2) ∆z = {(x, y, z) ∈ R3| a ≤ z ≤ b, où(x, y) ∈ D(z) = la projection
sur le plan xy de l’intersection de ∆ et du plan passant par (0, 0, z)
et parallèle au plan xy}

(3) P = [a, b]× [c, d]× [e, f ], dans ce cas on dit aussi que c’est un pavé de R3.

Théorème 127. (de Fubini) Soit ∆ un compact élémentaire de R3 et f(x, y, z) une
fonction continue sur ∆.

(1) Si ∆ est de type ∆(x,y) alors∫∫∫
∆

f(x, y, z) dx dy dz =

∫∫
D

(∫ ϕ2(x,y)

ϕ1(x,y)

f(x, y, z) dz

)
dx dy

(intégration par ”piles”)

(2) Si ∆ est de type ∆z alors∫∫∫
∆

f(x, y, z) dx dy dz =

∫ b

a

(∫∫
D(z)

f(x, y, z) dx dy

)
dz

(intégration par ”tranches”)

(3) Si ∆ = [a, b]× [c, d]× [e, f ] alors∫∫∫
∆

f(x, y, z) dx dy dz =

∫ b

a

(∫ d

c

(∫ f

e

f(x, y, z) dz

)
dy

)
dx

=

∫ f

e

(∫ d

c

(∫ b

a

f(x, y, z) dx

)
dy

)
dz = · · ·

En particulier, le volume de ∆ est l’intégrale triple sur ∆ de la fonction 1 :

Volume de ∆ =

∫∫∫
∆

dx dy dz

Les intégrales triples sont des intégrales de 3-formes différentielles. Pour les 3-formes
différentielles on peut calculer ce qui ce passe si on change les variables. Supposons
que x, y et z soient des fonctions de variables u, v et w telles qu’on a les formules

x = x(u, v, w), y = y(u, v, w), z = z(u, v, w).

Ce sont des formules de changement de variables - c’est-à-dire une transformation qui
à un point m de coordonnées u, v et w associe le point de coordonnées x, y et z. Le
jacobien du changement de variable est le déterminant∣∣∣∣D(x, y, z)

D(u, v, w)

∣∣∣∣ =
∣∣∣∣∣∣
∂x/∂u ∂x/∂v ∂x/∂w
∂y/∂u ∂y/∂v ∂y/∂w
∂z/∂u ∂z/∂v ∂z/∂w

∣∣∣∣∣∣ .
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Alors, si le domaine ∆ est transformé par ce changement de variables en ∆′, la 3-forme
différentielle dx dy dz doit être changée à l’aide du Jacobien et on obtient la formule
suivante :∫∫∫

∆

f(x, y, z) dx dy dz =

∫∫∫
∆′
f(x(u, v, w), y(u, v, w), z(u, v, w))

∣∣∣∣D(x, y, z)

D(u, v, w)

∣∣∣∣ du dv dw
8.5. Coordonnées cylindriques. Coordonnées sphériques. Prima facie, les
coordonnées cylindriques sont r, t et z telles que

x = r cos t, y = r sin t, z = z, avec r2 = x2 + y2, t ∈ [0, 2π[

On obtient ∣∣∣∣D(x, y, z)

D(r, t, z)

∣∣∣∣ = r

Exemple 128. Le volume de la partie ∆ du cylindre d’équation x2 + y2 − ax ≤ 0
(où a > 0) comprise entre le plan xy et le plan d’équation z = 1 s’obtient grâce
à la formule de changement de variables : ∆ est transformée par les coordonnées
cylindriques en

∆′ = {(r, t, z)| t ∈ [0, 2π[, r ∈ [0, a cos t], z ∈ [0, 1]

Alors,

V =

∫∫∫
∆

dx dy dz =

∫ 2π

0

∫ a cos t

0

r dr dt

∫ 1

0

dz =

∫ 2π

0

(a cos t)2

2
dt

=
a2

2

∫ 2π

0

1 + cos 2t

2
dt =

a2π

2

Les coordonnées sphériques sont (θ, ϕ, r) telles que
(26)

g : [0, π]× [0, 2π]× [0,+∞[ → R3

(θ, ϕ, r) 7→ g(θ, ϕ, r) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ).

9. Chapitre IX. Courbes et Intégrales curvilignes

9.1. Courbes de R2. Théorème des fonctions implicites pour les courbes de
R2. Une courbe Γ de R2 peut être définie de plusieurs façons différentes.

A) Forme explicite y = f(x) où f : I → R, I ⊂ R,

Γ = {(x, y)| x ∈ I ⊂ R, y = f(x)}.

Si f est dérivable en x0 ∈ I alors Γ possède une tangente au point m0 = (x0, y0), où
y0 = f(x0). L’équation de cette tangente est

y − y0 = f ′(x0)(x− x0).

B) Forme paramétrique (cf. Définition 46)

Définition 129. Une partie de Rp, Γ est une courbe s’il existe une application
continue γ d’un intervalle [a, b] ⊂ R dans Γ ⊂ Rp. Si cette application est bijective,
γ est appelé un arc de courbe. Le couple (Γ, γ) est appelé une courbe paramétrée. Si
γ(a) = γ(b) mais γ(t1) ̸= γ(t2) pour tous les points t1 ̸= t2 de [a, b] la courbe Γ est
appelée une courbe fermée ou un circuit fermé.
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Les courbes planes sont des courbes dans R2. Les courbes gauches sont des courbes

dans R3.
Soit

γ(t) =

{
x = g(t)
y = h(t)

où g, h : [a, b] → R, [a, b] ⊂ R. Alors, la fonction γ(t) à valeurs dans R2 sur un
intervalle [a, b] définit Γ, une courbe paramétrée dans R2 :

Γ = {(x, y)|x = g(t), y = h(t); t ∈ [a, b]}.

On dit que γ(t) = (g(t), h(t)) est une représentation paramétrique de la courbe.
La même courbe peut avoir des représentations différentes, par exemple, les pa-

ramétrisations

γ(t) =

{
x = t
y = 2t

, t ∈ [0, 1]; γ(s) =

{
x = s/2
y = s

, s ∈ [0, 2]

définissent le même segment sur la droite y = 2x.
Pour une courbe

γ(t) =

(
g(t)
h(t)

)
sa dérivée γ′(t) =

{
g′(t)
h′(t)

définit un vecteur tangent à la courbe Γ au point (x, y) = (g(t), h(t)). Pour écrire
l’équation de la tangente à Γ au point donné de la courbe γ(t0) = (x0, y0), on trouve
l’équation de la droite passant par (x0, y0) et parrallèle à (g′(t0), h

′(t0)). On l’écrit
sous la forme de déterminant d’une matrice∣∣∣∣ x− x0 g′(t0)

y − y0 h′(t0)

∣∣∣∣ = 0

Ce qui donne

g′(t0)(x− x0)− f ′(t0)(y − y0) = 0.

Si (g′(t0), h
′(t0)) = (0, 0) la tangente peut exister également, sa pente est lim

t→t0

h′(t0)

g′(t0)
lorsque cette limite existe.

Définition 130. On note Γ+ un arc d’une courbe avec un sens de parcours indiqué.
On dit qu’on choisit l’orientation de Γ quand on choisit le sens de parcours. On
dénote par Γ− un arc d’une courbe qui est le même que Γ+ mais avec un sens de
parcours opposé. Soit γ : [a, b] → Γ une paramétrisation de Γ. On dit que γ est
compatible avec l’orientation de Γ+ si le point γ(t) se déplace dans le sens de parcours
de Γ lorsque le paramètre crôıt de a à b.

Exemple 131. Soit Γ une partie de la droite y = x sur l’intervalle [0, 2] parcourue
du point (2, 2) vers le point (0, 0). Deux paramétrisations

t ∈ [0, 2], γ(t) =

(
t
t

)
et µ(t) =

(
2− t
2− t

)
se distinguent par l’orientation : µ est compatible avec Γ+ tandis que γ a une orien-
tation opposée.

C) Forme implicite : par une équation cartésienne

Γ = {(x, y) ∈ D|f(x, y) = 0} où f : D → R, D ⊂ R2.
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Dans ce cas, sous certaines conditions, c’est possible de se ramener à la forme explicite.
On cherche à exprimer y en fonction de x par y = ϕ(x) localement, i.e. au voisinage
d’un point de la courbe (x0, y0).

Théorème 132. (Des fonctions implicites pour les courbes.) Soit D ⊂ R2 et f : D →
R une fonction de classe C1 sur D. Soit (x0, y0) ∈ D avec

f(x0, y0) = 0 et
∂f

∂y
(x0, y0) ̸= 0.

Alors il existe I ⊂ R un intervalle ouvert de centre x0 et J ⊂ R, un intervalle ouvert
de centre y0, tels que

(1) ∀x ∈ I, f(x, y) = 0 possède une unique solution y ∈ J notée y = ϕ(x) (en
particulier y0 = ϕ(x0)).

(2) En particulier, ϕ : I → J est dérivable sur I avec

ϕ′(x) = −
∂f
∂x
(x, y)

∂f
∂y
(x, y)

Exemple : f(x, y) = x2+y2−1, ∂f
∂y

= 2y. Pour le point (x0, y0) = (0, 1) de la courbe

f(x, y) = 0 on a ∂f
∂y
(0, 1) = 2 - le théorème s’applique, d’où l’existence d’une fonction

ϕ : I → J. On peut prendre les intervalles I =]− 1, 1[ et J =]0, 2[. Dans ce cas simple
on peut expliciter ϕ(x) =

√
1− x2. Pour la dérivée on vérifie que

ϕ′(x) = − x√
1− x2

= −x
y
= −

∂f
∂x
(x, y)

∂f
∂y
(x, y)

.

L’intérêt du théorème réside dans les cas où on ne peut pas expliciter ϕ, mais où
néanmoins on peut construire le graphe en utilisant les valeurs des tangentes.

En utilisant la formule de Taylor, on a

f(x, y) = f(x0, y0)

+∂f
∂x
(x0, y0)(x− x0) +

∂f
∂y
(x0, y0)(y − y0) + o(

√
|x− x0|2 + |y − y0|2)

La ligne de niveau 0 de f définit une courbe implicitement. (x0, y0) appartient a cette
courbe si f(x0, y0) = 0. La différentielle en ce point décrit bien le comportement de
la courbe :

(27)
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0) = 0.

C’est une équation de la droite tangente. Si on peut résoudre cette équation linéaire
par rapport à y (i.e. ∂f

∂y
(x0, y0) ̸= 0) alors la courbe f(x, y) = 0 est proche de la

droite (27) dans un voisinage suffisamment petit. On peut espérer pouvoir résoudre
f(x, y) = 0 comme une relation explicite entre y et x.

Remarque 133. Si ∂f
∂x
(x0, y0) ̸= 0 le théorème des fonctions implicites appliqué en

permutant le rôle de x et y donne une application ψ : J → I et au voisinage de
(x0, y0) l’équation de la courbe est x = ψ(y).
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9.2. Droite tangente, plan normal à une courbe paramétrée de R3. Une
courbe paramétré dans l’espace, appelée aussi ”courbe gauche”, est donnée par une
application vectorielle :

γ(t) =

 x(t)
y(t)
z(t)

 , t ∈ I ⊂ R.

Le vecteur directeur de la droite tangente au point de la courbe (x0, y0, z0) = (x(t0), y(t0), z(t0))
est donné par la dérivée de γ :

−→
γ′ (t0) =

 x′(t0)
y′(t0)
z′(t0)

 .

La droite tangente T passe par (x0, y0, z0) et parallèle au vecteur γ′(t0). Cela signifie

que chaque vecteur
−−→
P0P passant du point P0 = (x0, y0, z0) au point P = (x, y, z) ∈ T

est colinéaire au vecteur
−→
γ′ (t0). En coordonnées cela donne l’équation de la droite : x− x0 = kx′(t0)

y − y0 = ky′(t0)
z − z0 = kz′(t0)

 , k ∈ R.

k est ici un coefficient de proportionnalité entre les vecteurs
−−→
P0P et

−→
γ′ (t0). Cette

variable k dépend de la position du point P sur la droite et quand k parcourt R, le
point P parcourt la droite tangente. Si toutes les coordonnées de

−→
γ′ (t0) sont non-nulles

on peut réécrire l’équation de la droite sans k :

(28)
x− x0
x′(t0)

=
y − y0
y′(t0)

=
z − z0
z′(t0)

.

Le plan normal, orthogonal à la courbe au point de la courbe (x0, y0, z0), ce qui
en pratique signifie orthogonal à la tangente en ce point, est donné par la relation
suivante :

x′(t0) · (x− x0) + y′(t0) · (y − y0) + z′(t0) · (z − z0) = 0.

Ici on utilise le produit scalaire de la tangente et du vecteur
−−→
P0Q, passant du point

P0 = (x0, y0, z0) au point Q = (x, y, z) du plan. Le plan est normal quand le produit

scalaire
−→
γ′ (t0) ·

−−→
P0Q vaut 0.

Exemple 134. Cherchons les équations de la tangente et du plan normal à la courbe
donnée par les relations paramétrique :

x = t, y = t2, z = t3

au point (x0, y0, z0) = (1, 1, 1), t = 1. On a x′ = 1, y′ = 2t, z′ = 3t2, donc au
point (1, 1, 1), le vecteur directeur de la tangente est égal à (1, 2, 3). L’équation de la
tangente est

x− x0
1

=
y − y0

2
=
z − z0

3
et celle du plan normal

1 · (x− x0) + 2 · (y − y0) + 3 · (z − z0) = 0.
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Dernière remarque ici à propos de la dimension. La droite est un objet de dimension
1, donc pour écrire une équation d’une droite dans R3 il faut deux relations linéaires
indépendantes, car 1 = 3 − 2. Quand on utilise une variable supplémentaire k pour
écrire une équation d’une droite, on a 4 variables et 3 relation linéaires : 4− 3 = 1.
Un plan dans l’espace R3 est donné par une seule équation linéaire, du point de

vue de la dimension car la dimension du plan est 2 = 3− 1.

9.3. Longueur d’une courbe. Abscisse curviligne. Un arc de courbe est orienté
par le choix de l’un des deux sens de parcours possible, ce qui revient à distinguer les

vecteurs tangents opposés ±
−→
γ′ (t). Pour calculer la longueur d’un arc de la courbe Γ

on partage la courbe en n morceaux et on cherche la somme des longueurs. Quand
n→ ∞ les morceaux de la courbe deviennent petits et presque des segments donc

n∑
i=1

∥
−−−−−→
MiMi+1∥ =

n∑
i=1

∥−→γ (ti+1)−−→γ (ti)∥ ≈
n∑
i=1

∥ −→γ ′(ti) ∥ (ti+1 − ti).

on peut substituer à la longueur d’un morceauMiMi+1 la longueur du vecteur tangent
∥−→γ ′(ti)∥ au point Mi = γ(ti). En considérant des subdivision de plus en plus fines et
en passant à la limite en n∞ on obtient la sommation continue qui définit la longueur :
l’arc de courbe Γ donné par la parametrisation γ : [a, b] → R3, γ(t) = (x(t), y(t), z(t))
a pour longueur

L(Γ) =

∫ b

a

∥
−→
γ′ (t)∥dt.

Théorème 135. La longueur d’un arc d’une courbe est bien définie - elle ne dépend
pas de la paramétrisation.

Soit p : [ud, uf ] → [a, b], p(u) = t une fonction dérivable p′(u) ̸= 0, pour u ∈ [ud, uf ],
et a = p(ud), b = p(uf ).On a le même arc de courbe Γ avec une nouvelle représentation
paramétrique µ(u) = γ(p(u)). Montrons que L(Γ) =

∫ uf
ud

|µ′(u)|du. En effèt,

dµ

du
=

dγ

dt

dt

du

L(Γ) =

∫ uf

ud

∥µ′(u)∥du =

∫ uf

ud

∥∥∥∥dγdt dt

du

∥∥∥∥ du =

∫ uf

ud

∥∥∥∥dγdt
∥∥∥∥(∥∥∥∥ dt

du

∥∥∥∥ du) =

∫ b

a

∥∥∥∥dγdt
∥∥∥∥ dt.

On pose ds = |−→γ ′t| dt =
√
x′2 + y′2 + z′2 dt. On l’appelle l’abscisse curviligne car

cette forme différentielle joue le même rôle dans les intégrales sur les courbes que dx
sur les intégrales simples sur un intervalle.

Remarque 136. Dans R2 une courbe paramétrée est donnée par

γ(t) =

{
x = x(t)
y = y(t)

, γ′(t) =

{
x′ = x′(t)
y′ = y′(t)

, ∥−→γ ′(t)∥ =
√
x′2 + y′2

Si la courbe est donnée par l’équation y = f(x), alors

γ(t) =

(
t

f(t)

)
, ∥−→γ ′(t)∥ =

√
1 + f ′(t)2.
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9.4. Intégrale curviligne d’une fonction.

Définition 137. Soit f une fonction continue sur un domaine D ⊂ R3 contenant une
courbe Γ, t ∈ [a, b]. L’intégrale curviligne de f sur Γ est définie par∫

Γ

f(x, y, z) ds =

∫ b

a

f(x(t), y(t), z(t)) ∥−→γ ′(t)∥ dt

Exemple 138. Soit Γ le cercle dans le plan z = 1 de centre (0, 0, 1) et de rayon
R > 0. On choisit une représentation paramétrique, pour t ∈ [0, 2π[

γ(t) =

 x(t) = R cos t
y(t) = R sin t
z(t) = 1

−→γ ′(t) =

 x′(t) = −R sin t
y′(t) = R cos t
z′(t) = 0

On a |−→γ ′(t)| =
√
R2 sin2 t+R2 cos2 t = R. La longueur du cercle

L(Γ) =

∫
Γ

ds =

∫ 2π

0

|−→γ ′(t)| dt =
∫ 2π

0

R dt = 2πR

Soit f(x, y, z) = x2 = y2 + z2. Sa restriction sur le cercle est

f(x, y, z)∥Γ = f(R sin t, R cos t, 1) = R2 cos2 t+R2 sin2 t+ 1 = R2 + 1

et finalement l’intégrale curviligne vaut

I =

∫ 2π

0

(1 +R2)R dt = 2π(1 +R2)R

9.5. Intégrale curviligne d’un champ de vecteurs = intégrale curviligne
d’une 1-forme différentielle.

Soit
−→
V : D → R2 un champ de vecteurs continu sur une partie D ⊂ R2 contenant

une courbe Γ de paramétrisation γ(t) : [a, b] → Γ.

Définition 139. L’intégrale

(29) I =

∫ b

a

−→
V (γ(t)) · −→γ ′(t) dt

du produit scalaire de
−→
V (γ(t)) et du vecteur tangent à la courbe Γ au point γ(t) :

−→γ ′(t) est appelé l’intégrale curviligne d’un champ de vecteurs
−→
V .

L’intégrale (29) est indépendante de toute paramétrisation compatible avec l’orien-
tation de Γ+. Cette intégrale est souvent notée

I =

∫
Γ+

−→
V ·

−→
ds

où
−→
ds = −→τ ds est le ”vecteur de l’abscisse curviligne” - le vecteur unitaire −→τ étant le

vecteur-directeur de la tangente au point donné de la courbe. Le vecteur −→τ est orienté

dans le sens de parcours de la courbe. En particulier, si
−→
V = P (x, y)

−→
i +Q(x, y)

−→
j

(30) I =

∫
Γ+

P dx+Q dy

- c’est une intégrale curviligne d’une 1-forme différentielle α formellement correspon-
dante au champ de vecteur coordonnée par coordonnée :

−→
V = P (x, y)

−→
i +Q(x, y)

−→
j ! α = P dx+Q dy
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Exemple 140. Soit γ - l’arc de la parabole y = x2 sur un segment [−2, 2] et
−→
V =

−y−→i + x
−→
j . On peut calculer de deux façon différentes l’intégrale I =

∫
Γ+

−→
V ·

−→
ds.

Première façon - via dx et dy

A la place de champ de vecteur −y−→i + x
−→
j on écrit une 1-forme différentielle

−y dx+ x dy. Donc l’intégrale curviligne devient

I =

∫
Γ+

−y dx+ x dy

On choisi une représentation γ : [−2, 2] → Γ par

γ(t) =

(
t
t2

)
, γ′(t) =

(
1
2t

)
,

{
dx = 1 · dt
dy = 2t dt

Donc

I =

∫
Γ+

−y dx+ x dy =

∫ 2

−2

(−t2) dt+ t · 2t dt =
∫ 2

−2

(t2) dt = 16/3

Deuxième façon - directe via dt
On peut directement calculer l’intégrale par la formule (29) en réécrivant V (t) =

−t2−→i + t
−→
j et −→γ ′(t) = 1

−→
i + 2t

−→
j :

I =

∫ 2

−2

−→
V (t) · −→γ ′(t) dt =

∫ 2

−2

(−t2 · 1 + t · 2t) dt = 16/3.

Propriété 141. Propriétés de l’intégrale curviligne
– Si Γ− est un chemin avec une orientation opposée à Γ+∫

Γ−

−→
V ·

−→
ds = −

∫
Γ+

−→
V ·

−→
ds

– Soit Γ1

∪
Γ2 la réunion de deux arcs de classe C1. Le choix d’orientations pour

Γ1 et Γ2 fournit l’orientation pour leur réunion. On définit alors∫
Γ+
1

∪
Γ+
2

−→
V ·

−→
ds =

∫
Γ+
1

−→
V ·

−→
ds+

∫
Γ+
2

−→
V ·

−→
ds

Remarque 142. Sens physique d’une intégrale curviligne : si
−→
V (M) représente une

force variable appliquée au pointM du chemin Γ+, l’intégrale I est le travail de la force
V nécessaire pour déplacer une particule unitaire le long du chemin Γ+. L’intégrale
curviligne du champ V sur Γ+ est aussi appelé la circulation du champ V sur Γ+.

9.6. Théorème de Poincaré et intégrale curviligne. Le théorème de Poincaré
parle des conditions nécessaires et suffisantes pour qu’un champ de vecteurs soit
un champ de gradient (Théorème 101) ou pour qu’une forme fermée soit exacte
(Théorème 113). L’intégrale curviligne d’un champ de gradient a des propriétés par-
ticulières, à savoir :

Proposition 143. L’intégrale curviligne de champ de gradient
−→
V =

−−→
gradf le long

d’un arc de courbe d’extremités A et B est égale à f(B)− f(A).

Démonstration. Montrons la proposition dans R2. Le champ

−→
V (x, y) =

−−→
gradf =

∂f

∂x

−→
i +

∂f

∂y

−→
j
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définit l’intégrale curviligne∫
Γ+

−−→
gradf ·

−→
ds =

∫
Γ+

∂f

∂x
dx+

∂f

∂y
dy

Soit γ : t 7→ (x(t), y(t)), t ∈ [a, b] une paramétrisation compatible de Γ+. En parti-
culier γ(a) = A et γ(b) = B. La restriction de la forme ∂f

∂x
dx + ∂f

∂y
dy sur Γ+ nous

donne :

∂f

∂x
dx+

∂f

∂y
dy =

∂f

∂x

dx

dt
dt+

∂f

∂y

dy

dt
dt =

(
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

)
dt

=
df(x(t), y(t))

dt
dt = df

Donc, ∫
Γ+

−−→
gradf ·

−→
ds =

∫ b

a

df = [f(x(t), y(t))]ba = f(B)− f(A).

�
L’intégrale ne dépend donc que des extremités du chemin d’intégration Γ+ pas du

chemin lui-même.

Proposition 144. Les propriétés suivantes d’un champ
−→
V de vecteurs sont équivalentes :

– Il existe une fonction f telle que
−→
V =

−−→
gradf

– Il existe une fonction f telle que
−→
V · ds = df

– La circulation de
−→
V d’un point A au point B est indépandente du chemin. Elle

ne dépend que de A et de B.

– La circulation du champ
−→
V le long de tout chemin fermé est nulle.

Exemple 145. Soit
−→
V le champ de vecteurs défini sur l’ouvert Ω = R2 \ {(0, 0)} par

−→
V (x, y) = P (x, y)

−→
i +Q(x, y)

−→
j , où P (x, y) =

−y
x2 + y2

et Q(x, y) =
x

x2 + y2

On vérifie que
−→
V satisfait la condition nécessaire pour être un champ de gradient :

∂P

∂y
=
∂Q

∂x
=

y2 − x2

(x2 + y2)2

On calcule la circulation de
−→
V sur le cercle unité C+ paramétré comme suit :

γ(t) = (cos t, sin t), t ∈ [0, 2π], x(t) = cos t, y(t) = sin t.

Dans cette paramétrisation les différentielles sont dx = − sin t dt, dy = cos t dt et les

coordonnées du champ
−→
V

P (x(t), y(t)) =
−y

x2 + y2
=

− sin t

1
, Q(x(t), y(t)) =

x

x2 + y2
=

cos t

1

Finalement, l’intégrale curviligne
∫
C+ P dx+Q dy se calcule∫ 2π

0

− sin t(− sin t) dt+ cos t cos t dt =

∫ 2π

0

dt = 2π

et s’avère ne pas être nulle. Par la Proposition 144, cela implique que ce champ
−→
V

n’est pas un champ de gradient car la circulation le long du chemin fermé (le cercle
C+) n’est pas nulle !
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Par le théorème de Poincaré on aurait pu anticiper cela car Ω, le domaine de

définition de champ
−→
V n’est pas simplement connexe (Définition 99). En effet, le

cercle C+ est un chemin autour du point (0, 0). Ce point étant exclu du domaine Ω,
on ne peut pas ramener C+ à un point tout en restant dans Ω.

10. Chapitre X. Théorèmes de Stokes : Green-Riemann,
Ostrogradski...

10.1. Théorème de Green-Riemann. Parfois on utilise la notation
∮

pour une
intégrale sur une courbe fermée pour soulignier que le circuit est fermé.

Théorème 146 (Green-Riemann). Soit D un compact de R2 limité par un bord
C = ∂(D) de classe C1 par morceaux et P,Q : D → R des fonctions de classe C1.
On a

(31)

∮
C+

P dx+Q dy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy

où C+ designe le bord C, orienté de sorte qu’un mobile parcourant C a toujours D à
sa gauche.

Démonstration. D’abord on donne ici une démonstration dans le cas le plus simple.
Soit D un carré R de sommets (0, 0), (1, 0), (1, 1) et (0, 1) et supposons Q = 0. On
cherche à démontrer ∮

∂R

P dx = −
∫∫

R

∂P

∂y
dx dy

Côté gauche de l’égalité Pour calculer l’intégrale curviligne
∫
∂R
P dx on oriente

le bord du carré ∂R contre l’aiguille du montre. On note le coté de R allant du
sommet (0, 0) vers (1, 0)Γ1, de (1, 0) vers (1, 1) − Γ2, etc. Le bord du carré ∂R =
Γ1

∪
Γ2

∪
Γ3

∪
Γ4. On peut paramétré les cotés Γi o de la façon suivante :

γ1 : [0, 1] → Γ1, t 7→ (t, 0) dx = 1 · dt, dy = 0 · dt
γ1 : [0, 1] → Γ2, t 7→ (1, t) dx = 0 · dt, dy = 1 · dt
γ1 : [0, 1] → Γ3, t 7→ (1− t, 1) dx = 1 · dt, dy = 0 · dt
γ1 : [0, 1] → Γ4, t 7→ (0, 1− t) dx = 0 · dt, dy = 1 · dt∮

∂R

P dx =

∫
Γ1

P dx+

∫
Γ2

P dx+

∫
Γ3

P dx+

∫
Γ4

P dx

On a ∫
Γ1
P (x, y) dx =

∫ 1

0
P (t, 0) dt,∫

Γ2
P (x, y) dx =

∫ 1

0
P (1, t)0 · dt = 0,∫

Γ3
P (x, y) dx =

∫ 1

0
P (1− t, 1) dt = −

∫ 1

0
P (t, 1) dt,∫

Γ4
P (x, y) dx =

∫ 1

0
P (0, 1− t)0 · dt = 0

Finalement le côté gauche est égal à∫ 1

0

P (t, 0) dt−
∫ 1

0

P (t, 1) dt

Côté droit de l’égalité
On calcule l’intégrale double par Fubini :

−
∫∫

R

∂P

∂y
dx dy = −

∫ 1

0

(∫ 1

0

∂P

∂y
dy

)
dx = −

∫ 1

0

(P (x, 1)− P (x, 0)) dx

ce qui est exactement le côté gauche obtenu précédemment !
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Il est clair qu’on démontre de la même façon que∮
∂R

Q(x, y) dy =

∫∫
R

∂Q

∂x
dx dy.

La démonstration se généralise facilement sur n’importe quelle partie quarrable de
R2. �
Remarque 147. L’intégrale curviligne du champ

−→
V (x, y) = P (x, y)

−→
i + Q(x, y)

−→
j

est l’intégrale de la 1-forme différentielle correspondante

α = P (x, y) dx+Q(x, y) dy.

On remarque que la 2-forme (
∂Q

∂x
− ∂P

∂y

)
dx dy

est égale à dα. La formule de Green-Riemman dans cette écriture devient

(32)

∮
∂(D)

α =

∫∫
D

dα.

Exemple 148. Calculer l’intégrale curviligne I le long de la boucle fermée C constituée
par les deux arcs de parabole y = x2 et x = y2 décrite dans le sens direct avec

I =

∫
C

(2xy − x2)dx+ (x+ y2)dy.

Vérifier le résultat en utilisant la formule de Riemann.

Important ! La formule de Green-Riemann marche seulement dans des domaines
fermés et bornés par une courbe fermée - on n’a pas de formule reliant les intégrales
doubles aux intégrales curvilignes sur un chemin quelconque. La formule de Green-
Riemann est vraie seulement pour des chemins fermés.

10.2. Applications (calcul d’aire, théorème de Poincaré). L’aire d’un domaine
de R2 grâce au théorème de Green-Riemann s’exprime par une intégrale curviligne

AireD =

∫
D

dx dy =
1

2

∮
∂(D)

−y dx+ x dy = −
∮
∂(D)

y dx =

∮
∂(D)

x dy

Exemple 149. Soit D le domaine défini entre la parabole y = x2 et la droite y = 4.
On cherche l’aire deD. On peut la trouver en calculant l’intégrale curviligne de champ

de vecteurs
−→
V = −y−→i +x

−→
j . Le bord est une réunion de Γ et Γ1 où Γ est la parabole

de paramétrisation (t, t2), t ∈ [−2, 2] et Γ1 la droite de paramétrisation (2− t, 4). De
l’exemple 140 on a

I =

∮
Γ+

−y dx+ x dy =

∫ 2

−2

(−t2) dt+ t · 2t dt =
∫ 2

−2

(t2) dt = 16/3

et sur la droite Γ1 on a x = 2− t, y = 4, donc dx = − dt, dy = 0 · dt et

I =

∫
Γ+
1

−y dx+ x dy =

∫ 2

−2

(−4)(− dt) + (2− t)(0 · dt) =
∫ 2

−2

4 dt = 16

Le résultat pour l’intégrale curviligne sur le chemin fermé est∫
Γ
∩

Γ1

−y dx+ x dy =
16

3
+ 16 =

64

3
.
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On vérifie que ∮
Γ
∪

Γ1

−y dx+ x dy = 2

∫∫
D

dx dy.

On a ∫∫
D

dx dy =

∫ 2

−2

∫ 4

x2
dy dx =

∫ 2

−2

(4− x2) dx =

[
4x− x3

3

]2
−2

=
32

3

ce qui est exactement la moité de l’intégrale curviligne.

Soit la forme différentielle α = P dx+Q dy sur D ⊂ R2 fermée. C’est-à-dire que

dα =

(
∂Q

∂x
− ∂P

∂y

)
dx dy = 0.

Par la formule de Green-Riemann (31) on voit que cela implique que∮
C+

P dx+Q dy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy = 0

et cela sur n’importe quel chemin fermé C+. La seule condition sur C+ est que le
chemin C+ doit être le bord d’un domaine quelconque D !

La formule de Green-Riemann éclaire un autre côté du théorème de Poincaré - une
1-forme fermée sur un domaine D a son intégrale sur toute courbe fermée contenue
dans D égale à zero. Par conséquent elle est exacte (cf. 141). Par exemple, pour la
forme

ω =
x dy − y dx

x2 + y2

on arrive en changeant des variables en coordonnées polaires (x, y) → (r, t) :

x = r cos t, y = r sin t

à obtenir

dx = dr cos t− r sin t dt, dy = dr sin t+ r cos t dt et par conséquent ω = dt.

Il apparâıt que ω est exacte par cette formule ! Or si on calcule son intégrale sur
un circuit fermé autour de l’origine comme on a fait dans l’exemple 145 on voit
que l’intégrale n’est pas nulle et par conséquent la forme n’est pas exacte. Ce qui
est correct c’est que ω est exacte localement, mais pas globalement, partout dans
R2 \ (0, 0). Le plus grand ouvert sur lequel on peut obtenir le changement de variables
continu (x, y) → (r, t) est le complémentaire dans le plan R2 d’une demi-droite issue
de l’origine, mais pas le plan entier ni le plan privé de l’origine.

10.3. Surfaces. Intégrale de surface de fonctions réelles. L’idée de base est la
même que pour les intégrales curvilignes, mais au lieu d’intégrer sur un arc de courbe
on intègre sur une surface. C’est par une intégrale de surface qu’on calcule

– l’aire d’une surface (l’aire d’une sphère, par exemple)
– le flux d’un champ de vecteurs à travers une surface

Une surface S de R3 peut être définie de différentes façons :
– a) Forme explicite par une équation de la forme z = f(x, y) où f : D → R, D ⊂
R2,

S = {(x, y, z)| (x, y) ∈ D ⊂ R2, z = f(x, y)}.
Une parabolöıde de révolution z = x2 + y2 en est un exemple.
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– b) Forme implicite par une équation de la forme F (x, y, z) = 0 où F : E →
R, E ⊂ R3,

S = {(x, y, z) ∈ E ⊂ R3| F (x, y, z) = 0}.
La sphère de R3 de centre l’origine et de rayon R en est un exemple :

x2 + y2 + z2 = R2

– c) Forme paramétrique par une représentation paramétrique

g : D ⊂ R2 → S ⊂ R3,
(u, v) 7→ g(u, v) = (x, y, z)

Exemple 150. S - une sphère de centre l’origine et de rayon R

(33)
g : [0, π]× [0, 2π] → S ⊂ R3

(θ, ϕ) 7→ g(θ, ϕ) = (R sin θ cosϕ,R sin θ sinϕ,R cos θ)

Soit m le point de S de paramètres θ et ϕ.
– (a) Lorsque ϕ est fixé et que θ varie dans [0, π] m décrit un demi-cercle. Un
vecteur-tangent à ce demi-cercle au point m est

−→
∂g

∂θ
= (R cos θ cosϕ,R cos θ sinϕ,−R sin θ)

– (b) Lorsque θ est fixé et que ϕ varie dans [0, 2π], m décrit un cercle. Un vecteur-
tangent à ce cercle au point m est

−→
∂g

∂ϕ
= (−R sin θ sinϕ,R sin θ cosϕ, 0)

On note
−→
N (θ, ϕ) =

−→
∂g

∂θ
∧
−−→
∂g

∂ϕ
,

ce vecteur s’il est non nul est normal à la sphère au point m. Le point m ∈ S est
appelé un point régulier de la surface si ce vecteur est non nul en m.

On a une situation analogue pour une surface quelconque paramétrée par

g : D ⊂ R2 → S, de classe C1

(u, v) 7→ g(u, v) = (x, y, z)

On considère D une partie quarrable de R2 et g de classe C1 sur un ouvert de R2

contenant D. On note
−→
N (u, v) =

−→
∂g

∂u
∧
−→
∂g

∂v
,

ce vecteur s’il est non nul est normal à la surface S au point (u, v).
La notion d’aire de la surface paramétrée par −→g (u, v) avec (u, v) ∈ D vient de la

considération suivante. La surface peut être fractionnée en un nombre fini de parties
associées à des rectangles Rij = [ui, ui +∆iu]× [vj, vj +∆jv] du plan de paramètres
(u, v). L’aire de la portion de surface correspondant à Rij sera approchée par l’aire
d’un rectangle de cotés

−→g (ui, vj +∆jv)−−→g (ui, vj) ≈
∂−→g
∂v

∆jv et −→g (ui +∆iu, vj)−−→g (ui, vj) ≈
∂−→g
∂u

∆iu.

Il en résulte :

A =
∑
i,j

∥∂
−→g
∂u

∧ ∂−→g
∂v

∥∆iu∆jv.
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Ce qui, après des fractionnements de plus en plus fins, aboutit à la définition précise
de l’aire avec une intégrale double. On note

dA = ∥∂
−→g
∂u

∧ ∂−→g
∂v

∥ du dv

et on l’appelle l’élément d’aire.
Voici un cas particulier : quand la surface est le graphe d’une fonction d’équation

z = h(x, y), on a :

dA =

√√√√1 +

(
∂
−→
h

∂x

)2

+

(
∂
−→
h

∂y

)2

dx dy

Soit f : U → R, U ⊂ R3 et S ⊂ U. On a

f ◦ g : D ⊂ R2 → S ⊂ U ⊂ R3 → R,
(u, v) 7−→ f(g(u, v)).

On peut considérer l’intégrale double

I =

∫∫
D

f(g(u, v))∥−→N (u, v)∥ du dv

et démontrer que I est indépendante du choix de la représentation paramétrique g.
Pour calculer l’intégrale d’une fonction sur une surface on note

I =

∫∫
S

fdA

et on l’appelle intégrale de f sur la surface S.
En particulier, lorsqu’on prend pour f la fonction constante égale à 1 on obtient

par définition l’aire de S notée

A(S) =

∫∫
S

dA

Après le choix d’une représentation paramétrique de S on calcule A(S) par

A(S) =

∫∫
D

∥
−→
N (u, v)∥ du dv

Exemple 151. Sur la sphère de rayon R, la calotte sphérique S est l’ensemble des
points de coordonnées sphériques (R, θ, ϕ) tels que 0 ≤ θ ≤ α. S a la représentation
paramétrique donnée par l’équation (33) de l’exemple 150. Le vecteur normal est

(34)
−→
N (θ, ϕ) =

−→
∂g

∂θ
∧
−→
∂g

∂ϕ
= (R2 sin2 θ cosϕ,R2 sin2 θ sinϕ,R sin θ cos θ),

et

∥
−→
N (θ, ϕ)∥ = R2 sin θ.

L’aire de la calotte vaut donc

A(S) =

∫∫
0≤θ≤α, 0≤ϕ≤2π

R2 sin θ dθ dϕ = R2

∫ α

0

sin θ dθ

∫ 2π

0

dϕ = 2πR2(1− cosα)

En particulier, pour α = π, S est la sphère et son aire est 4πR2.
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Remarque 152. On remarque que si on change des variables par exemple, {x, y} en
{u, v} c’est exactement comme dans la section 8.3, la 2-forme :

dx ∧ dy =

∣∣∣∣D(x, y)

D(u, v)

∣∣∣∣ du ∧ dv =

(
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

)
du ∧ dv

et on a le même type de formule pour dy ∧ dz et dz ∧ dx. Le produit vectoriel :

∂−→g
∂u

∧ ∂−→g
∂v

=

(
∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v
,
∂y

∂u

∂z

∂v
− ∂z

∂u

∂y

∂v
,
∂z

∂u

∂x

∂v
− ∂x

∂u

∂z

∂v

)
Finalement,

(35) dA =
∂−→g
∂u

∧ ∂−→g
∂v

du dv = dx ∧ dy + dy ∧ dz + dz ∧ dx

10.4. Intégrale de surface d’un champ de vecteurs. Soit S une surface com-
portant deux faces distinctes. Elle est dite orientable.

En chaque point régulier, il existe deux vecteurs unitaires normaux opposés. Le
choix d’un de ces vecteurs −→n + oriente la surface S.

Soit
−→
V un champ de vecteurs continu sur S. Le flux d’un champ

−→
V à travers S est

l’intégrale de surface ∫∫
S

−→
V · −→n + dA

On peut noter −→n + dA =
−→
dA. De (35) on a

−→
dA =

−→
k dx ∧ dy +

−→
i dy ∧ dz +

−→
j dz ∧ dx

Pour un champ de vecteurs
−→
V = P

−→
i + Q

−→
j + R

−→
k et une surface S définie par

g(u, v) = (x, y, z), (u, v) ∈ D ⊂ R3.

(36)

∫∫
S

−→
V ·

−→
dA =

∫∫
S

P dy dz +Q dz dx+R dx dy

Formule de la divergence - relie le flux de champ à travers une surface fermée à

l’intégrale triple de divergence de ce champ sur le domaine de R3 limité par cette
surface. Soit E un domaine de R3 et S = ∂(E) la surface qui est le bord de E.
Alors, la formule de la divergence (aussi appelée Ostrogradski et dans le contexte
éléctromagnétique - Gauss) est la suivante

(37)

∫∫
∂E

−→
V ·

−→
dA =

∫∫∫
E

div
−→
V dx dy dz

Exemple 153. Vérifions la formule d’Ostrogradski avec E - boule de R3 de centre

O = (0, 0, 0) et de rayonR et
−→
V = P

−→
i +Q

−→
j +R

−→
k champ de vecteurs de composantes

P = x, Q = y, R = 2z. La frontière de E est la sphère S de centre O et de rayon
R. On peut prendre la paramétrisation paramétrique de sphère (33) avec le vecteur

normal
−→
N (θ, ϕ) (34). Ce vecteur est dirigé vers l’extérieur, donc on note S+ la sphère

orientée ainsi.

I =

∫∫
S+

−→
V ·

−→
N (θ, ϕ) dθdϕ

On a −→
V (g(θ, ϕ)) = (R sin θ cosϕ,R sin θ sinϕ, 2R cos θ),

son produit scalaire avec
−→
N (θ, ϕ) = (R2 sin2 θ cosϕ,R2 sin2 θ sinϕ,R sin θ cos θ)
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est égal à R3(sin θ + cos2 θ sin θ). Finalement, l’intégrale recherchée est :

I = R3

∫ 2π

0

dϕ

∫ π

0

(sin θ + cos2 θ sin θ)dθ =
16πR3

3

D’autre part div
−→
V =

∂P

∂x
+
∂Q

∂y
+
∂R

∂z
= 4. L’intégrale triple∫∫∫

E

div
−→
V dx dy dz = 4

∫∫∫
E

dx dy dz = 4 Volume(E) = 4× 4

3
πR3 =

16πR3

3
.

Formule du rotationnel relie l’intégrale curviligne du champ de vecteur sur un cir-
cuit fermé avec le flux de rotationel du même champ à travers une surface dont le
circuit est le bord. La formule du rotationnel (aussi appelée formule de Stokes) est la
suivante

(38)

∮
∂S=C+

−→
V ·

−→
ds =

∫∫
S+

−→
rot

−→
V ·

−→
dA

Autrement dit, la circulation du champ
−→
V le long de la courbe fermé C+ est égale

au flux de rotationnel de
−→
V à travers une surface limitée par C+ (avec l’orientation

compatible). Cette formule est une reformulation de la formule de Green-Riemann
pour une courbe fermée dans R3.

Exemple 154. Ca serait bien de faire encore un exemple de calcul par la formule du
rotationnel.

10.5. Formule de Stokes générale :
∫
∂(D)

ω =
∫
D
dω.

L’intégration est une opération qui à un domaine de dimension k et à une k-forme
différentielle associe un nombre. Des exemples sont

– l’intégrale simple ∫
I

f(x) dx

- associe un nombre à une 1-forme différentielle f(x) dx sur un segment I = [a, b]
de dimension 1.

– l’intégrale double ∫∫
D

g(x, y) dx dy

- associe un nombre à une 2-forme différentielle g(x, y) dx dy sur un domaine
D ⊂ R2

– l’intégrale triple ∫∫∫
E

h(x, y, z) dx dy dz

associe un nombre à une 3-forme différentielle h(x, y, z) dx dy dz sur un domaine
E ⊂ R3

– l’intégrale curviligne ∫
Γ

p(x, y) dx+ q(x, y) dy

associe un nombre à une 1-forme différentielle p(x, y) dx + q(x, y) dy sur une
courbe Γ ⊂ R2 ou bien∫

C

P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz
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associe un nombre à une 1-forme différentielle P (x, y, z) dx + Q(x, y, z) dy +
R(x, y, z) dz sur une courbe C ⊂ R3. Une courbe étant un objet de dimension 1
cela est possible.

– l’intégrale de surface∫∫
S

P (x, y, z) dy dz +Q(x, y, z) dz dx+R(z, y, z) dx dy

associe un nombre à une 2-forme P (x, y, z) dy dz+Q(x, y, z) dz dx+R(z, y, z) dx dy
dans R3 sur une surface S ∈ R3, objet de dimension 2.

Soit D un domaine fermé et borné de dimension q dans Rp, on note ∂(D) son bord
(qui est de dimension q−1.) Soit ω une (q−1)-forme dans Rp (Définition 106). Alors,
la formule de Stokes générale est satisfaite :

(39)

∫
∂(D)

ω =

∫
D

dω

Les cas spéciaux de cette formule sont :
– q = 1, p = 1 - c’est le théorème fondamental de l’analyse :∫ b

a

df = f(b)− f(a)

– q = 2, p = 2 - théorème de Green-Riemann
– q = 2, q = 3 - théorème de Stokes (du rotationnel)
– q = 3, q = 3 - théorème d’Ostrogradski (de la divergence)

La formule (39) donne une formulation élégante de plusieurs théorèmes.
Elle présente une connection entre l’opération géométrique ∂ qui à un domaine D

associe son bord ∂(D) et l’opération algébrique - d qui à une forme différentielle ω
associe une forme différentielle dω. Selon la formule (39) ces deux opérations sont en
dualité !

Il faut remarquer que ∂, l’opération de prendre le bord, est différente de la notion
topologique de prendre la frontière. La notion de l’intérieur change avec la dimension,
à savoir, si on regarde un segment [a, b] dans R son intérieur est un segment ouvert
]a, b[ et sa frontière est deux points {a, b}. Le même segment dans R2 n’a pas de points
d’intérieur ! Tous les points de [a, b] sont des points frontière.

Ici, soit D un domaine de dimension k de Rp. Si D est donné par sa forme pa-
ramétrique avec m équations paramétriques avec n variables, sa dimension est k =
p+ n−m.

Par exemple, pour une courbe de R3, γ(t) = (x(t), y(t), z(t)) il y a m = 3 équations

x = x(t), y = y(t), z = z(t)

sur p = 3 variables de R3, (x, y, z) qui dépendent d’une variable t, en tout p + n = 4
variables, dont une, t, qu’on appelle libre. Donc dans R3 la dimension d’une courbe
est p+ n−m = 1.

Un autre exemple, une surface paramétrée dans R3 est donnée par 3 équations sur 5
variables (u, v, x, y, z), dont u, v sont des variables libres et x, y, z s’expriment à partir
de u, v. Cela donne que la dimension d’une surface dans R3 est égale à 2 = 5− 3.

Souvent un domaine de dimension p−1 dans Rp est appelé une hypersurface. Pour
définir une hypersurface dans Rp il faut une équation reliant p variables. Ou bien on
peut introduire p − 1 variables libres et avec p équations définir une hypersurface.
Une surface de R3 en est un exemple.
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On peut resumer comme suit : la dimension d’un domaine est le nombre minimal
de variables indépendantes qui le définissent.

Ce qui suit ces considèrations de dimension, c’est qu’un voisinage Ω d’un point X
de D de dimension k dans Rp peut être de deux types :

(1) Ω ≃ U ⊂ Rk ou (2) Ω ≃ V ⊂ Rk−1 × R.
Les points de D avec le voisinge de type (1) sont des points intérieurs. Les points de
D avec le voisinge de type (2) sont des points du bord. (L’opération de prendre le
bord peut aussi être définie à l’aide des simplexes et des châınes (cf. Chapitre 9 de
[3]), ce qui dépasse le programme de ce cours.)

On remarque que ∂(∂(D)) = ∅ pour tout domaine D. Cette propriété est en corres-
pondance avec la relation d(dω) = 0 pour toute forme différentielle ω (Lemme 110).
Le théorème de Stokes général dit qu’on peut ”échanger” une opération avec l’autre.

C’est un résultat très profond qui relie l’analyse des objets géométriques par des
méthodes algébriques. C’est une pierre angulaire de l’analyse moderne.
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