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1. CHAPITRE I. TOPOLOGIE D’UN ESPACE VECTORIEL REEL

1.1. Espaces métriques, définition de la distance.
Onnote R? = Rx--- xR ={X = (21,,2,)| z; € R, Vi € [1,---,p]} - espace
p fois
vectoriel réel de dimension p.
On s’intéresse aux fonctions f : D C R? — RY. 1l faut d’abord étudier la structure
du domaine D car le domaine est aussi important que la fonction. Pour cela on va
définir une notion de distance.

Définition 1. Soit F un ensemble non-vide. On dit qu’'une application d : £ x E —
Ry, d: (x,y) — d(x,y) est une distance sur E si elle vérifie les trois axiomes suivants :
D1 (séparation) V(x,y) € E x E, {x =y} < {d(x,y) = 0};
D2 (symétrie) V(z,y) € E x E, d(z,y) = d(y, x);
D3 (inégalité triangulaire) V(z,y,2) € E x E x E, d(z,y) < d(z,z) + d(z,y).

Définition 2. On appelle espace métrique tout couple (E, d) out E # () est un espace
vectoriel et d est une distance.

Exemple 3. (1) E=R, d(z,y) = |z —y|
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(2) E = R. Soit f : # — f(x) une fonction concave définie Yz > 0, et t.q.
{f(x) =0} & {z = 0}. Alors d(z,y) = f(|]z — y|) est une distance. En effet,

les propriétés D1 et D2 sont évidentes et D3 suit de la condition de concavité.

Une fonction est concave sur un intervalle I si g, x1, 29,23 € I et 2y <
T1 < Ty < wg alors, f(xl) m(mo) > f(m;’;gm (Géométriquement, c’est une
remarque sur la relation entre les pentes de deux droites qui lient les points

de coordonnées (zo, f(xo) et (x1, f(x1)) et (xo, f(z2) et (z3, f(x3)). Faites un
HOSIONN

dessin!). Donc si on prend zy = 0,21 = a,z9 = b,z3 =a+bon a
—f(a:fz ®) Mais f(0) = 0 alors, si 0 < a < bon a f(a) > f(a+b) —f(b) et

donc f(a+b) < f(a) + f(b).

On a beaucoup d’exemples de distances différentes sur R. En particulier,

d(z,y) = /|xr —y| ou d(z,y) = % Le dernier exemple définit une
distance sur R qui, pour tout point, est inférieure & 1.
(3) Métriques sur E' = RP, soit X = (z1,---,2,) € RP et Y = (y1,---,y,) € RP.
Ona dy(X,Y) = (30, |z — 1:|?)"? (métrique euclidienne),
ou dy(X,Y) =377 @i — il
ou doo(X,Y) = sup,_ ... , [7i — yil
0 siz=wy,

(4) Soit E un ensemble quelconque. Pour x,y € E on définit d(z,y) = { 1 sinon

Remarque : dans cet exemple (E,d) n’est pas un espace métrique.
1.2. Boules ouvertes, fermées. Spheres. Parties bornées.
Définition 4. Soit a un point de R? et r > 0 un nombre réel.
(1) B(a,r) := {x € R? | d(a,z) < r} est appelée boule fermée de centre a et de
rayon 7.

(2) Une boule ouverte de centre a et de rayon r est B(a,r) := {x € R?| d(a,x) <
r}

(3) Une sphere de centre a et de rayon r est S(a,r) = {z € RP| d(a,x) =1}

On obtient des boules de formes différentes pour des espaces métriques différents.
Pour le voir je recommande vivement de dessiner des boules unité dans R? pour les
distances dy, ds et dy

Définition 5. Une partie bornée P de RP est une partie de R? pour laquelle on peut
trouver une boule (ouverte ou fermée) qui contient tous les points de P.

1.3. Ouverts et Fermés.

Définition 6. Une partie ouverte (ou un ouvert) de R? est une partie U t.q. Yu €
U, 3r > 0 tel que B(u,r) C U ie tout point de U est le centre d’une boule ouverte,
de rayon non-nul, incluse dans U.

Une partie fermée (ou un fermé) de R? est une partie telle que son complémentaire
U dans R? est un ouvert.

Remarque 7. F et () sont & la fois ouverts et fermés.

Proposition 8. Dans un espace métrique (F,d), (1) une boule ouverte est un ouvert,
et (2) une boule fermée est un fermé.
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Démonstration. (1) Soit y € B(a,r). Alors choisissons € > 0 t.q. d(a,y) < r—e (un tel
e existe, car d(a,y) est strictement plus petit que r). Pour tout z € B(y, €), montrons
que z € B(a,r), cela veut dire qu'autour de chaque point y de B(a,r) il existe une
boule ouverte entierement contenue dans B(a,r).
Par inégalité triangulaire d(a, z) < d(a,y) + d(z,y) = d(a,z) < r — e+ € =r. Donc
z € B(a,r), i.e. chaque point de B(y, €) appartient a B(a,r) et B(y,€) C B(a,r).
(2) Soit CB(a,) le complémentaire de B(a,). I faut montrer que CB(a,r) est un
ouvert. Soit y € CB(a,r). Montrons qu’il existe une boule contenant y entierement
contenue dans CB(a, 7).
Puisque y est en dehors de B(a,r), d(a,y) > r. Soit € = d(a,y) —r > 0.
Pour tout z € B(y, €) montrons que z € (B(a,r). En effet, par inégalité triangulaire
d(a,z) +d(z,y) > d(a,y) =r+ €. Donc d(a,z) > r+¢e—d(z,y). Puisque z € B(y,¢)
on ae>d(z,y) donc d(a,z) >r+e—d(z,y) >r+ec—e=r=z¢cCB(a,r). Donc
B(a,r) est un complément d'un ouvert, c’est donc un fermé. O]

Définition 9. Soit F un ensemble non-vide et P(E) ’ensemble de ses parties. On appelle topologie induite par distance
(ou topologie tout court) 'ensemble des ouverts 7 C P(E) vérifiant les propriétés suivantes :
(1) E et 0 sont des éléments de T

(2) Toute intersection finie d’éléments de 7 appartient & T

(3) Toute réunion d’éléments de T appartient & 7.

Définition 10. Position d'un point par rapport a une partie de RP.
Soit A C RP.

(1) On dit que a est intérieur & A si on peut trouver un ouvert U € R? t.q. a € U

et U C A. L'intérieur de A, noté A, est le plus grand ouvert inclus dans A.

(2) On dit que a est un point frontiere de A si tout ouvert U C RP contenant a
rencontre a la fois A et le complémentaire de A.

(3) On dit que a est adhérent a A si tout ouvert U C RP contenant a rencontre

A.
(4) L’adhérence de A, notée A, est le plus petit fermé qui contient A.

Définition 11. On dit qu’une partie V' de R? est un voisinage de x € R? si V' contient
un ouvert contenant x.

Exercice. Démontrer I’équivalence avec la définition suivante : On dit que V' C RP
est un voisinage de x ssi 3¢ > 0 tel que B(x,¢) C V.

1.4. Normes des espaces vectoriels.

Définition 12. Soit £ un espace vectoriel sur R. On appelle norme sur £ une appli-
cation de F dans Ry qui a z —| z ||€ Ry, et vérifie

N1 (séparation) Ve € E, ||z [|[=0< 2 =0

N2 (homogénéité positive) VA € R,V € E. || Az ||= |A|- || = ||

N3 (inégalité triangulaire) Vo, y € E, [z +y ||<| =z || + || v || -

Un espace vectoriel sur R muni d’une norme est appellé espace vectoriel normé (e.v.n.).

Proposition 13. Soit £ un e.v.n. L’application d : £ x E — R, qui au couple (z, y)
associe d(z,y) :=||  — y || est une distance sur FE.

On l'appelle distance induite sur F par la norme. Elle possede les propriétés sui-
vantes :

~Vx e E, d0,z) = z ||

~VAER, Y(z,y) € E?, d )z, \y) = |Nd(z,y)




~V(z,y,2) E EXEXE, dlx+z,y+2) =d(x,y).

Remarque 14. Toute norme induit une distance, par contre toutes les distances ne
proviennent pas d’une norme. La distance (4) de 'exemple 3 n’est induite par aucune
norme (quelle propriétée de la norme n’est pas forcément satisfaite 7).

Exemple de normes sur R?. Soit x € R?, X = (1, -+ ,x,), v; € R,Vi e [1,---,pl.
Alors

| X |1 =7z (norme de Manhattan)

I X =02 ].’Ei|2)11/2 (norme euclidienne)

I X = (20 )"

| X o = maX1§i§p|9€i|

sont des normes sur RP.

Définition 15. Normes équivalentes. Deux normes || - || et || - ||’ sur R? sont
équivalentes s’il existe deux constantes A > 0, > 0 telles que VX € RP, )| X| <
X" < pl[ X[ Onnote [ - | ~ || - ",

Proposition 16. Cette définition induit une relation d’équivalence.

Démonstration. — reflexivité : || - || ~ || - ||
~ symétrie : si N|X|| < [|X]" < pllX| alors [ X" < X[ < XXV
— transitivité : M| X[ < [ X" < pl| X[ et BIX[" < [ X[ <y X]|" implique SAX]| < [| X" < yp| X]|.

O
Exemple 17. Les normes || X|» = (Zf|xi|2)l/2 et || X |loo= maxj<i<p|z;| sont
équivalentes. En effet, on a || X || < (p- || X||%)"? = /Dl X ||so- Soit k € {1, ,p} tel
que oy = max{zy, - @} = [ Xl|oo, alors | X[l = (@)1 < (327 [2:f2)"* = || X[
Donc -5 X[z < [|Xlee < [|X]]2-
Exercice.

1. Montrer que toutes les normes || - ||,,, n € [1, +00] sont équivalentes.

2.Si ||| ~ ||-|| montrer qu’il existe une constante A > 0 t.q. A| X || < || X' < 5| X]]
et A|LX" < [|X] < 31X
Théoréme 18. Deux normes équivalentes induisent la méme topologie.
Ie si les normes sont équivalentes on trouve que deux ensembles
T ={U € P(RP),U ouvert pour la norme || - ||}
et 7/ ={U € P(R?), U ouvert pour la norme || - ||}, sont égaux : T = T".

Démonstration. Soit U un élément de T, il faut montrer que c’est aussi un élément de 7.
Cela se traduit :

Soit U un ouvert pour la norme || - || & VX € U, 3¢ > 0 tel que B(X,e) C U. On va m.q. U est un ouvert
pour la norme || - ||. Pour tout X € U il faut montrer qu’il existe ¢/ > 0 tel que B’(X,¢’), une boule pour la norme
|| -]|" est un sous-ensemble de U. Pour cela on va trouver &’ tel que tout point Y de B’(X,¢’) appartienne aussi a
B(X,¢) et donc & U. Par équivalence des normes 3A > 0 tel que VZ € RP||Z]| < A|Z]|’. Soit Y € B'(X, %) on a

X =Y <AX =Y < /\i = ¢ donc B'(X, ;) C U. Donc si U est un ouvert pour || - ||, alors pour tout X € U, il
existe ¢/ = ; > 0 tel que B'(X,¢’) C U. Donc U est un élément de 7.

De la méme maniére on montre que si U est un élément de 7, c’est aussi un élément de 7. O
Théoréme 19. (Admis.) Sur un espace vectoriel normé de dimension finie, toutes
les normes sont équivalentes.

Corollaire 20. On parle de la topologie usuelle sur RP sans préciser la norme.

Dans la suite, on notera ||.|| sans préciser de quelle norme il s’agit.



2. CHAPITRE II. FONCTIONS DE PLUSIEURS VARIABLES.

2.1. Fonctions de plusieurs variables. Graphes. Lignes de niveau. On s’intéresse
maintenant aux fonctions f : D C RP — R?. On distingue des fonctions scalaires :
R?” — R et des fonctions vectorielles : R? — RY g > 1.

On va commencer par 1’étude des fonctions de deux variables. Une fonction définie
sur une partie D de R? et & valeurs réelles fait correspondre a tout point X = (z,y)
de D, (appelé le domaine de définition de F') un réel unique f(X).

Définition 21. Soit f: D — R, D C R%
(1) L’ensemble des points de R3
S = {(‘Tay>z) S Rg‘(x7y) €D, z= f(xay)}

est appelé la surface représentative de f. S est aussi appelé le graphe de la
fonction f.

(2) Soit A = (a,b) un point intérieur de D. Les fonctions = — f(z,b) et y —
f(a,y) définies sur des intervalles ouverts, contenant respectivement b et a
sont appelées les fonctions partielles associées a f au point A.

(3) Soit k£ € R. L’ensemble L, = {(z,y) € D tel que f(x,y) = k} est la
ligne de niveau k de la fonction f.

Remarque 22. Pour les fonctions de trois variables, la notion analogue a la ligne de
niveau est celle de surface de niveau (Formulez-1a!)

Les lignes de niveau et les fonctions partielles sont utiles pour dessiner les graphes
des fonctions.

Exemple 23. A. f(z,y) = 42> +y? sur D = {z? +y* < 4}. On calcule et représente
des lignes de niveau k = 0,k = 1,k = 2,k = 4,k = —1. Pour £ = 0 c’est un seul
point (0,0), avec la valeur de la fonction 0, pour £ = 1,2,4 on obtient des ellipses.
Par exemple aux points de Uellipse 422 4 y? = 1 la fonction a la valeur 1, etc. La ligne
de niveau k = —1 est I'ensemble vide (la fonction ne prend la valeur —1 en aucun
point). Au point (0, 0) les fonctions partielles sont x — 422 et y — 3.

B. Sur D = {2® + y*> < 4} et z # 0 on consideére la fonction f(z,y) = y/x avec ses
lignes de niveau k£ = 0,1,—1,2, —2. Ce sont des intervalles des droites y = 0, y =
r, y=—x, y=2x, y=—2x sans le point x = y = 0. La valeur de la fonction sur la
droite y = x est égale a 1, sur y = —x est égale a —1, etc.

2.2. Notion de limite. Une fois qu’on a les normes et les voisinages, la définition
de limite est la méme que dans R ou C :

Définition 24. Soit (X,),.y une suite d’éléments de R” et A € RP. On dit que
lim X, = A ssi VV voisinage de A, ANy € N tel que n > Ny = X, € V. Cest-a-

n—-+o0o

dire Ve > 0 IN. € N tel que n > N, = || X,, — A|| < e.
Lien avec les limites dans R :

Propriété 25. Soit (X,),cn = ((Tny, - - - ,xn]p))nEN une suite de R” et A = (a4, ...,a,) €
RP alors lim X, =AssiVi=1,...,p, lim =z, =a,.

n—-+00 n—+o0o
Définition 26. Soit f: D C R? — R%et A € D. On dit que f a une limite L. € RY
en A ssiV(X,),cy suite de D telle que lim X, = A,ona lim f(X,)=L.

n—-+00 n—-+00
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Il y a une autre définition de la limite d’une fonction utilisant ¢ — & qui est
équivalente a la définition 26.

Définition 27. Soit f : D — R? une fonction définie sur une partie D de RP et A un
point adhérent a D, L un point de R?. On dit que f a pour limite L lorsque X — A
it (ve>0,3n> 0 X — Al <n,X € D) = (|f(X) - L| <e).

Remarque 28.
(1) La notion de limite ne dépend pas des normes utilisées (pourquoi 7).
(2) La limite, si elle existe, est unique (trivial mais tres important).

(3) La limite partielle : soit D; C D un sous-ensemble et A un point adhérent
a Dy. Si f(X) tend vers L lorsque X tend vers A en restant dans D, alors
f(X) tend vers la méme limite L si X tend vers A en restant dans D;. En
particulier, si on regarde le comportement des fonctions partielles au méme
point, elles doivent toutes avoir la méme limite (si elle existe, bien str).

Nous avons les propriétés suivantes des limites de fonctions :

Proposition 29. Soient f et g des fonctions définies sur D C RP a valeur dans
R?, X € D et A un point adhérent a D.

(1) limxa (f(X) £ 9(X)) = limx_4 f(X) £ limx 4 g(X)
(2) limyx a4 f(X)g(X) =limx_,4 f(X) - limx_,4 g(X)
(3) Pour les fonctions a valeurs réelles (i.e. ¢ = 1) si limy_,4 f(X) # 0 on a
B 1
X—A f(X) limX_>A f(X)
(4) Composition. Soient les fonctions ¢; : £ C R* — RP, ¢ = 1,--- ,p et B
un point adhérent a E et f : D C R? — R? si limy,pg(Y) = a;, A =
(ay,--- ,ap,) un point adhérent a D alors

Jim F(gr(V), g (V) = Jim F(X).

(5) Majoration. Si limx_,4 g(A) =0et ||f(X)—C| < g(X),C € RY pour tout X
au voisinage de A, alors limy_,4 f(X) = C.

La preuve de cette proposition répete la preuve d'une proposition analogue pour
des fonctions d'une variable - il faut juste utiliser des normes a la place des valeurs
absolues.

2.3. Continuité.

Définition 30. Une fonction f est continue en un point A € D si la limite de f en
ce point existe et est égale a la valeur de la fonction en A.
La fonction est continue sur D si elle est continue en tout point de D.

Ou bien on peut reformuler cette définition a I’aide des suites :

Définition 31. Soit f: D CR? - R%et A € D. On dit que [ est continue en A ssi
V (Xn),ey suite de D telle que lim X, = A, on a lirf f(X,) = f(A).
n—-—+0oo

n—+00
Propriété 32. Opérations sur les fonctions continues : suite a la Proposition

29 la somme, le produit et le quotient (la ou le dénominateur ne s’annule pas) des
fonctions continues sont continus. La composée de fonctions continues est continue.
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Remarque 33. Toute fonction obtenue a I’aide de fonctions continues élémentaires
de variables (x1,--- ,x,) en utilisant les opérations algébriques et la composition est
continue dans son domaine naturel de définition. Exemples : des polynomes z*y",
exponentielles e2**%%  trigonométriques sin(xy) etc sont continues sur R?

Attention : —— n,m > 0 n’est pas un polynome (et n’en a jamais été un).
vy

Il peut étre pratique de fixer toutes les composantes sauf une :

Définition 34. Soit f: D C R? — R?. Soit X, = (m(l), c.,xp) €D . Pouri=1...,p,
on appelle i-eme fonction partielle de f en X la fonction :

o D; C R — R
Xl s flad, . ab T alt  ah)
ol z est a la i-eme place, et D; est tel que pour z € D;, (x},...,x,...,xh) € D.
Proposition 35. Si f est continue en xg = (2}, ..., 25) alors Vi = 1. .., p, la fonction

. . Z
partielle f,,; est continue en zj.

Remarque 36. La réciproque est fausse!
Exemple 37. On considére une fonction f : R? — R définie de la fagon suivante

Ty

——— si (z,y) # (0,0),
3 +y2 S1

@y ="

0 si (z,y) = (0,0).

Ses 2 fonctions partielles en (0,0) sont

sixz #0,
2
fooi: z—{ +0
O0six =0,
et
Y.
7511/#07
0 2
f(o,o),25 Y= Ty
0siy=0.

Elles sont donc continues. Pourtant f n’est pas continue en (0,0) :

1/n? 1
Soient £, = yp = 1/n. Ona lim =z, = lim y, =0, mais f(zn,yn) = /n = —.Donc lim f(zn,yn) #0=
n——+oo n—+oo 2/n2 2 n—-+oo
£(0,0).

Une autre démonstration du fait que f n’est pas continue en (0,0) : prenons une restriction de f sur la droite D;
définie par ’équation y = x.
TT 1

lim (ar: ):1im7—7.
@arso0 o, ) = fimy +22 2
Donc la fonction f restreinte & un sous-ensemble D; de R? n’a pas la méme limite que la méme fonction restreinte
4 deux autres sous-ensembles de R2. (Les fonctions partielles f(0,0),1 €t f(0,0),2 sont des restrictions de f aux droites

y = 0 et © = 0 respectivement). Or la limite, si elle existe, doit étre unique (remarque 28), donc la limite n’existe pas.

Etude de continuité des fonctions :

Exemple 38.

(].) On considére f(x,y) = z? + y2. On va montrer que pour toutes valeurs (z,y) = (a,b) la limite de
lim ;) (a,p) S (%, y) existe et est égale & la valeur au point f(a,b) = a® + b2. Si (z,y4) — (a,b) (par

exemple dans une norme euclidienne) cela veut dire que v/(z — a)? + (y — b)?2 — 0 donc on a :

($—a)2+(y—b)2—>0@{x_“_’0 {x—“l

y—b—0 y—b
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Donc limz 4y (a,b) 2 4+ y2 = a? + b2, c’est exactement ce qu’on cherche a montrer, et alors la fonction
est continue en chaque point.

En général on ne vérifie pas la continuité en chaque point comme dans cet
exemple - aux points réguliers on utilise plutot les propriétés des fonctions
continues.

(2) Prenons un autre exemple :

y .
=, six#0
fle,y) =5 o
3,sixz=0
alors  f(a,b) = Y pour x # 0 étant une fraction de fonctions continues
x

est continue mais pour x = 0 sur les droites y = kx on obtient des limites
différentes quand  — 0. On conclut que la fonction n’est pas continue en
(0,b), ¥b € R. Il y a une droite des points de discontinuité. Cette droite a
pour équation z = 0.

Définition 39. Soit f : D — R? une fonction définie sur une partie D de RP. Soit A
un point adhérent a D n’appartenant pas a D. Si f a une limite L lorsque X — A
on peut étendre le domaine de définition de f & D|J{A} en posant f(A) = L. On dit
que 'on a prolongé f par continuité au point A.

Théoréme 40. (Admis) Soit f : D — R? une fonction définie sur une partie D de RP. Les propriétés suivantes sont
équivalentes :

(1) f est continue

(2) Pour tout ouvert U de R4, f~1(U) est un ouvert de RP
(3) Pour tout fermé F de RY, f~1(F) est un fermé de RP
(4)

4) Pour toute suite (Xn)nen de D C RP convergeant vers A, la suite (f(Xn))nen converge vers f(A) pour

tout A € D.

2.4. Coordonnées polaires. Notation : R, = [0, +00[. On a une application bijec-
tive de R, x [0, 27[ vers R? donnée par les formules suivantes :

) { xr =rcost

y =rsint
Son application réciproque est 'application de R?* — R, x [0, 27| suivante :

S
(2) t = arccos N
N

Donc en particulier, on a r? = 22 + y2. Dans certains exemples d’étude de continuité
des fonctions il est utile de passer aux coordonnées polaires.

Souvent c’est pratique d’utiliser les coordonnées polaires pour étudier la continuité,
car la condition sur deux variables (z,y) — 0 devient une condition sur une seule
variable r — 0.

Exemple 41.

(1) Soit la fonction f: R* — R définie de la fagon suivante
2 _ 2

D (ryy) —

0si (x,y) = (0,0).
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Cette fonction est continue sur R?\ {(0,0)} en tant que fraction de fonctions
continues. En (0,0) on a :

! ¥ 2% — 2 Y r?cos’t —r
im —— = im —— 7 =lim
(z.)—(0,0) 22 + y? (z—0)2+(y—0)2—0 x2+y? =0 r2

% — g2 2sin? ¢

Cette limite est égale & cos®>t —sin®t. Le résultat dépend de ¢, i.e. il n’y a pas
de limite unique, donc la limite n’existe pas et f n’est pas continue en (0,0).

(2) Soit la fonction g : R? — R définie de la fagon suivante :

Q:?’

o si (z,y) # (0,0),

g9: (z,y)
0 si (z,y) = (0,0).

Cette fonction est continue sur R?\ {(0,0)} en tant qu'une fraction des fonc-
tions continues. En (0,0) on a :

, z3 , 3 . ricosdt

lim @——= lim — = lim ———

(z,y)—(0,0) x2 + y2 (z—0)2+(y—0)2—0 2 + y2 r—0 r2

Cette limite est égale au produit des limites : lim,_,o(cos®¢) lim,_,or = 0, car
|cost| < 1 - une fonction bornée. Finalement, la fonction g est continue en
(0,0) et donc elle est continue sur R?.

2.5. Propriétés des fonctions continues sur un compact.

Définition 42. Une partie compacte (un compact) de R? est une partie fermée et
bornée.

Il existe au moins deux differentes fagons de définir un compact dans un espace
normé, mais dans RP elles sont équivalentes a celle qu’on donne ici.

Exemple 43. Dans R un intervalle fermé, et dans RP les boules fermées sont des
exemples de compacts.

Théoréme 44. (Admis) Soit f : D — RY une fonction continue sur une partie
D C RP et K une partie compacte de RP contenue dans D. Alors, f(K) est une
partie compacte de R,

Corollaire 45. Une fonction continue sur un compact est bornée et atteint ses bornes.

Cela signifie que sur un compact K € RP il existe au moins un point X,, € K et
au moins un point X, € K tels que pour tout X € K on ait

LA ) [ < 1P CON < 1LF(Xan)]l-

2.6. Connexité par arc. Théoréme des valeurs intermédiaires.

Définition 46. On dit qu'une partie I' de R? est un arc continu si on peut trouver
une application continue vy d’'un intervalle [a,b] de R dans R? dont I'image soit T'. v
est appelé un paramétrage de I'. Les points de I', A = y(a) et B = ~(b) s’appellent
les extrémités de I'.

Attention : I' est un objet géométrique tandis que -y, une fonction continue, est un
objet analytique. Un arc continu admet une infinité de paramétrages possibles.
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Définition 47. Soit E un sous-ensemble de R?. On dit que E est connexe par arc si,
étant donnés deux points arbitraires A et B de E on peut trouver un arc continu I,
d’extrémités A, B entierement contenu dans FE.

Théoréeme 48 (des valeurs intermédiaires). Soit f : D — R wune fonction
continue sur une partie D C RP connexe par arc. Soit A, B deux points de D. Pour
tout nombre réel r compris entre f(A) et f(B) il existe un point C de D tel que

f(c)=r.

Démonstration. Ici on utilise le théoreme des valeurs intermédiaires des fonctions
d’une variable. Soit v : [a,b] — D un paramétrage d'un arc continu tel que y(a) =
A et y(b) = B. La fonction d'une variable f o~y : I — R est continue étant une
composition de fonctions continues donc, par le théoreme des valeurs intermédiaires,
il existe ¢ € [a,b], tel que foxy(c) =r. Soit C' = ~(c), alors C € D et f(C)=r. O

3. CHAPITRE III. CALCUL DIFFERENTIEL

3.1. Dérivées. Matrice jacobienne. Gradient.
Rappel. Soit f : I — R une fonction dérivable sur un intervalle I € R. La dérivée
de f au point a € I est :

(3) f'(a) = lim i £ = f@)

h—0 T—a T —a

f(X) — f(4),

X-—A
n’est pas bien définie parce que diviser par X — A, qui est un vecteur de R?, n’a aucun
sens! Néanmoins, si on fixe toutes les composantes de X sauf une, on peut définir des
dérivées partielles.

Soit f: D CRP — R%et A € D. Une expression du type “%imA
—

Définition 49. Soit f: D C R” - R?et A € D. Pour i = 1,...,p, on appelle
0

/ (A), ou bien
x

7

dérivée partielle par rapport a x; de f en A = (ay,---a,), et on note

f2.(A), la dérivée de la fonction partielle f4; prise en a; :

af . f(ah'”71‘737”'7a)_f(a17"'7ai7"'7a)
o (A) = Lalas) = Tim. T 23
Pour une fonction de deux variables f : D € R? — R en point A = (a,b) € D
les dérivées partielles de f(z,y) en (a,b) sont les dérivées des fonctions partielles
f(z,b) et f(a,y) qui se calculent alors :
0 f(a+h7b)_f(avb)e 8f f<a7b+k)_f(a7b>

ar " = h Loy =i T

Parfois, on les note aussi f;(a,b) et f;(a,b).

Exemple 50. Soit f(x,y) = 22* — 3zy + 4y*. Calculer les dérivées partielles au point
(1,2). En considérant y constant et en dérivant par rapport a x on a :

= (4z — 3y)| -2

(zy)=(12) ~
En considérant x constant et en dérivant par rapport a y on a :

o7
By | @w)=(1.2)

of
ox | (@y)=(1,2)

= (=324 8Y)| )2 = 13
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Définition 51. La matrice des dérivées partielles de f : RP — R? g’appelle la
matrice jacobienne ou la Jacobienne de f.

La matrice jacobienne Jac(f)(Xy) fait passer de R dans R? : elle a p colonnes et
q lignes.

dfi df1

—(Xp) ... —(X

83:1( 0) axp( 0)
(4) Jac(f)(Xo) = : z

9fq of

—— (X, —1(X,

ox 1 ( 0) 8xp ( 0)
Autrement dit, pour une fonction vectorielle f(z1,-x,) a valeurs dans R? la matrice
jacobienne a pour colonnes les vecteurs g_:i' En particulier, pour une fonction de p
variables a valeurs réelles, la matrice jacobienne est simplement une matrice-ligne :

0 0
Jac(f)(@r, -+ ) = (a_f 8_f) |

Sa matrice transposée - la matrice-colonne :
-
grad f(z1, - z,) = T(

s’appelle le gradient de f.

of 3_f>

dxy’ 0z,

3.2. Propriétés des dérivées partielles. Les dérivées partielles d’une fonction qui
est obtenue par des opérations algébriques sur d’autres fonctions (somme, produit,
fraction) suivent les mémes regles.

Si une fonction f : D C RP — RY est obtenue par des opérations algébriques
(somme, produit, fraction) sur les fonctions g, h : D C R? — R?, ses dérivées partielles
peuvent étre obtenues a partir des dérivées partielles de g et h par les formules de
dérivée de somme, produit, fraction habituelles ((u + v)" = u' + v/, etc.)

Les dérivées partielles d'une composition de fonctions sont plus compliquées.

Rappel : régle de chaine. Soit g: [ CR— JCR,g:x—g(z), h: JCR —
Rh:y—h(y)et f:ICR—=R,f:z~ h(g(z)). Ona:

df dh dg

dx 'z==0 - d_y|y:g(a:0) ) dz ‘x:xo
Proposition 52. Soient
g: DCRF - FEC Rm7g X = g(X) = (gl(X)v U 7gm(X))7
h: ECR™ -RLA:Y = h(Y)= (M), - ,h(Y)),
f : DCRP— Rq’f P X e h(g(X)) = f(X) = (fl(X)>fq<X))
des fonctions telles que g en Xy € D et hen g(Xy) € E sont des fonctions continument
dérivables (i.e. les dérivées partielles existent et sont continues) alors pour tout i €

{L"' 7p}>j€{1>"' aQ} :

) e = S
= S R e 5 (X)) (X

ce qui nous donne les entrées d'une matrice jacobienne de f qui est un produit des
matrices jacobiennes de h et g.
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En particulier, si
hiR® =R, (y1,42) = h(yr, 4a) et g : R? = R?, X = (g1(X), g2(X))
pour f=hog:RP - Rona
a(f) d(hog) oh 9(g1) oh 0(g2)

X,) = Xo) = 2 (g(X N DIV (x0) + P g(x X
Exemple 53. (1) Soit f(x) = e*sin®x. On peut voir f comme une composition
de deux fonctions g : R — R? g(z) = (€% sinx) et h : R? — R, h(y, y2) =
Y1+ (y2)*

On a deux facons de calculer la dérivée de f - directement ou en utilisant
la Proposition (52) :

/ _6(y1-(y2)2) o) | Oy - (12)?) O(y2)
flz) = Oy1 Oz + Yo " ox

= (3/2)2636 + 2y1y2 cos T = sin?x - e* + 2% sin x cos .

(2) On peut aussi résoudre des problemes comme celui-1a :
Soient f(x) = F(x,¢(x)) = 0, ou f(z) et ¢(z) sont des fonctions d'une
variable et F'(y1,y2) est une fonction de deux variables. Calculer ¢'(z) en
fonction des dérivées de F.

On considére f(z) en tant qu'une fonction composée :

_ OF dz  OF d¢(x)

C Oyp dz Oy, dx
H
£y

f'(z) = Fi(z,¢(z)) + Fy(x, ¢(x))¢ () = 0.

Dou ¢/(z) = ——(z, ¢(x)).
3.3. Derivées partielles d’ordre supérieur. Fonctions de classe C*. Théoréeme
de Schwarz. Soit f : D C RP — R. Les dérivées partielles définissent p nouvelles
fonctions

of

ol ) = a—%(mh L Tp)-

On peut regarder les dérivées partielles de chacune de ces nouvelles fonctions. Cela
nous donne les dérivées partielles d’ordre 2 (aussi appellées les dérivées partielles
secondes) et a leur tour on peut regarder les dérivées partielles des dérivées partielles
d’ordre 2, etc. Cela s’écrit par exemple :

o _ o 9 [(of
Tty 8ZEZ6$J o (‘9@ 8[Ej

Définition 54. Une fonction f : D C R? — R de classe C* est une fonction dont
toutes les dérivées partielles jusqu’a 'ordre £ existent et sont continues. Une fonction
est dite de classe C*™ si elle est de classe C* pour tout k € N.

Théoréme 55. (Schwarz) Soit f: D C R? — R une fonction de classe C* sur D.

Les fonctions de dérivées partielles d’ordre 2, 0 ﬁ et i of sont égales
8961- axj 8xj 8xz

en tout point de D.
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Remarque 56. Le théoreme de Schwarz implique que les dérivées partielles d’ordre

k, k> 2, d’une fonction de classe C*, f: D C R? = R ne dépendent pas de l'ordre

dans lequel les dérivées partielles sont prises. Par exemple, pour une fonction de deux
Pf Pf

0xdydx  0x20y’

3.4. Différentielle. (Chapitre 2 de [2].)

Lors de I’équation (3), en essayant de généraliser I’expression pour la dérivée d’une
fonction d’une variable aux fonctions de plusieurs variables, nous avons introduit les
fonctions de dérivées partielles, qui sont utiles et révelent certaines informations sur
le comportement de la fonction mais n’apportent pas toute l'information.

variables f(z,y) de classe C*, on a :

Exemple 57. On considere & nouveau l'exemple 37. La fonction f : R? — R définie
de la fagon suivante :

g (x,y) # (0,0)
x2 y2 ) ) )

0si(x,y) = (0,0).

On calcule sa dérivée partielle par rapport a x :

~ V(20,y0) # (0,0) g(x Yo) = (_xyo )I I tin ) I 1)
0, Y0 AN 0, 90 2 _|_y8 _— (1'2 +y8)2 — (x(2)+y(2))2
a .
- —f(O, 0) est la dérivée de x +— 0 L 70,
T 0sixz=0,

_ . S0+ h,0)— f(0,0)
donc %(xo, Yo) = }1113(1) -

0 0
On voit que 8—f(0, 0) existe, de méme 8_f(0’ 0) existe et vaut 0, et pourtant f n’est
x

=0.

méme pas continue en (0,0). Donc les dérivées partielles ne suffisent pas a décrire la
régularité de la fonction.

Nous allons réécrire I’équation (3) sans division et la généraliser aux fonctions de
plusieurs variables.

Définition 58. Soit f: D C R? — RY, A € D. La différentielle df(A) de f au point
A est une application linéaire de R? dans R? telle que au voisinage de A on a :

(6) f(A+H) = f(A) = (df(A)) (H) + r(H), ot r(H) = o([|H]]).

Ici, H € RP, tel que A+ H est au voisinage de A. La fonction f est dite différentiable au point
A si elle possede une différentielle en ce point. La fonction f est dite différentiable
dans un domaine D si elle est différentiable en tout point de D.
Cette application agit sur les vecteurs de R? et les envoie vers RY, en particulier
(df(A))(H) € RY. Le reste, r(H) = o(||H]|), dit “petit 0” de ||H||, est une fonction
r: D C RP — RY, négligeable devant ||H||. On peut comparer leurs normes :
7 (H) ||

lim ————— =0.
IH|—0 || H||go

On peut réécrire la condition de différentiablité

f(A+ H) = f(A) = (df(A)) (H)

-0
iz | H|
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Si elle existe, la différentielle df(A) est unique. On la note selon les auteurs ou les
circonstances :

L=Df(A)ou df(A) ou Daf ouduf.

La différentielle df(A), si elle existe, est donnée par une matrice de taille p x ¢
(une application linéaire de RP vers RY écrite dans des bases des espaces vectoriels
R? et R?). Cette matrice est appellée la matrice jacobienne.

La différentiabilité entraine l'existence des dérivées partielles. On peut le voir sur
un exemple d’une fonction f a p variables a valeurs réelles (¢ = 1). Par définition :

@f (A) — im f(ah... 7@@._}_}%’... 7ap) _f(ah... Qg ’ap)
axi h;—0 ]’LZ
Par définition de la différentielle on a aussi
flay, -+ a;+hi, - ap) — flay, - a,--- ,ay)  df(A)(H) +r(H)
h; a hi
Ici H est le vecteur transposé de (0, -, h;, -+ ,0). Donc r(H) = o(||H||) = o(h;) et

LA () dF(A)(H)
hiA)O h’L hiHO hz
Donc ici
| of
et par linéarité l
T - of
df(A) (hlﬁ"'ahia"'7hp): 8 (A)hl
im0 i
Finalement, on remarque que
0
AF(A)(H) = Jac))(AH et df(4) =3 2 (4)a,

car les différentielles de fonctions x;, notées dzx;, satisfont dz;(H) = h;.

Dans les exercices de nature théorique, la différentiabilité est souvent établie en
montrant directement par des majorations que le reste r(H) est un o(||H||). Mais
si f est donnée explicitement au moyen des fonctions usuelles, on va plus vite en
constatant simplement l’existence et la continuité de ses dérivées partielles. Si une
fonction est de classe C! elle est différentiable.

Propriété 59. Soit f: DCR - R7et Xoe D.SiVi=1,...,p,Vj=1,...,q,

X — 3 L (X) existe au voisinage de X et est continue en X, alors f est différentiable
T
en X().

En termes moins précis, que j’ai prise dans le livre [2] et que je pense essentielle pour
la compréhension du cours, la GRANDE IDEE DU CALCUL DIFFERENTIEL :

(1) ( accroissement ) ( terme linéaire par rapport a ) ( petit terme >

de la fonction l’accroissement de la variable correctif

Proposition 60. Propriétés de la différentielle.
(1) Continuité. Une fonction différentiable en un point est continue en ce point.

(2) Linéarité. Soient f,¢g : D — R? deux fonctions définies sur une partie D
de RP. Si f et g sont différentiables en A € D, A € R, alors d(f + ¢)(A) =
df(A) + dg(A) et dAf)(A) = Adf(A).
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(3) Composition. Soient g : D — E C R™ définie sur une partie D de R? et
différentiable en A € D, et h : E — RY différentiable en g(A), alors h o g est
différentiable en A et la différentielle d(h o g)(A) = 8(g(A)) x dg(A)

La composition suit de la formule (6) :

hg(A+ H)) — h(g(A)) = dh(g(A))(g(A+ H) — g(A)) + petit reste
= dh(g(A))dg(A)(H) + un autre petit reste

En pratique c’est donné par le produit des matrices jacobiennes (comparer avec
I’équation (5)).

Regardons maintenant une fonction f : D C R* — R. Soit (z,y) € D. On remarque
que la différentielle d’une fonction (z,y) — f(x,y) au point (x,y) est égale a :

0 0
df(z,y) = a—i(:c,y) dz + a—g(rc, y) dy

Exemple 61. (1) On reprend : soit une fonction f : R* — R définie de la fagon

suivante 2y ‘

2t (z,y) # (0,0),
fo(@y)—

0si (x,y) = (0,0).
On sait que f n’est pas différentiable en (0,0) parce qu’elle n’est méme
pas continue. Comment se comportent ses dérivées partielles au voisinage de
(0,0)7
_ Yoy — )

) 0 0
On a vu que si (zo,y0) # (0,0), 8—;2(900,%) = 2t et que a_i(oao) =
0+ Yo

0
0. Donc 9f est bien définie au voisinage de (0, 0), mais elle n’est pas continue :

Ox

n:l tn:2 ) Ii n:71. n:7t_ nyYn) —
si x 2/ne Y gn ona lm z 0 Hm y 0, e ax(x Un)

2/n 2/n . of

= .D 1 —(Tn, Yn 0.
(1/n%+4/n?)%?  25/n* NG e B (0, 4n) 7
(2) Soit
R? — R?
f:

(z,y) = (2%, 2 + y)
Est-elle différentiable en (2,3)?

, aft of! af?
SOlt (350790) € R27 a_fx(xmy()) - 2$0y§; a_f:‘y(lbay()) - 2y(]x(2)7 a_'i(xmy()) -
af?
1, — =1.
) ay ($07y0)
Toutes ces dérivées partielles sont continues en (2, 3) donc f est différentiable
36 24
en (2,3). On a Jac(f)(2,3) =
1 1
(3) On considere :
R—R

T+—T
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0
est-elle différentiable en 27 Soit zy € R, 8—f(:c0) = 2z¢. Elle est continue en 2
x
0
donc f est différentiable en 2 et Jac(f)(2) = a—f(Q) = f(2) = 4.
x

4. CHAPITRE IV. PROPRIETES GEOMETRIQUES DES FONCTIONS DE PLUSIEURS
VARIABLES

4.1. Dérivée directionnelle.

Définition 62. Soit f: D CR? — R?, A€ D et V un vecteur de R?. On dit que f
a une dérivée au point A en suivant le vecteur 7 si I'expression :

va(A) = lim fA+ t7> — f(4)

t—0 t

existe. Dy f(A) s’appelle la dérivée directionnelle de f en A en direction de vecteur

V.

0
Remarque 63. Les dérivées partielles 6_f sont des dérivées directionnelles de f en
€T

A en direction de vecteurs de base e; = (0,---, 1 ,---,0).

\(-/
Proposition 64. Soit f: D C R? — R, de classe C!, en A € D et 7 un vecteur de
RP. Alors, la dérivée directionnelle de f en A en direction de vecteur 7 est égale au

produit scalaire du gradient de f au point A et du vecteur

®) Dy f(A) = grad f(4) -V

Démonstration. On va démontrer cette proposition pour le cas p = 2. La généralisation
au cas p > 2 est assez directe. Soit { 7, j } une base orthonormale de R? et V =
AT+ u7 et A = (wo,y0) € D € R? Soit une fonction u : R — R? wu(t) =
(20, Yo) —|—t7 = (xo + )\?, Yo + u?) := (z(t),y(t)) . On considere une fonction d’une

variable a valeurs réelles : F(t) = f(u(t)). C’est une fonction composée. Sa dérivée
en 0 :

dr o d(fouw), o Of () of o)
E(O) N d (O) Bl %h%y)z(wo,yo) . 7(0) + 8_y‘($,y):(:vo,yo) ’ 7(0)
of of _

B %}(xvy):(wo,yo) A+ 0_y|($,y):(xo,yo) - = gradf - 7

da(t) d(wo + At) dy(t) d(yo + ut) | /
o dt |t:0 - T}ho = Aet dt ’t:o = T|t:0 = p. De 'autre coté
aF o g PO FO) _yp F(u(®) = f(u(0)
dt t—0 0

t t
I f(wo + M, yo + pt) — f(20,Yo)
= lim
t—0 t

D’ou la relation (8). O

= va(ifo,yo)
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4.2. Gradient. Soit f : D C R? — R une fonction de classe C'. Son gradient, pris
en tout point de D définit une fonction & valeurs vectorielles gradf : D C R? — R2,

noté aussi :
af o
Vi) = (a—ia—i) (2, y).

4.2.1. Propriété [a] : Le gradient est perpendiculaire a la ligne de niveau.

Définition 65. Soit X un point d'une courbe I' € R? et T" une droite tangente a I'
au point X. On dit qu’un vecteur V' est perpendiculaire a la courbe I' au point X si

7 est perpendiculaire a 7. Dans ce cas on dit aussi que 7 est normal a la courbe I’
au point X.

En particulier, cela signifie que le produit scalaire de V' et du vecteur directeur de
T est égal a 0.

Soient D C R? f: D — Ret (z,y) € D, alors si f(z,y) = a, (z,y) appartient a
la ligne de niveau L,(f).

Théoréme 66. Le vecteur gradient ?f(a:, y) est normal a la courbe Lo (f) au point
(z,y).

Démonstration. Soit (x + h,y + k) € L.(f) un point au voisinage de (x,y), qui
appartient a la méme courbe de niveau que (z,y).

Alors, f(x + h,y + k) — f(x,y) = 0 car les valeurs de f en ces deux points sont
égales. De la grande idée du calcul différentiel (7) on a :

ety +0) = fag) = drtea)- () + ol k)

_of of
= Fww n+Law wranm.
On a lim o(||(h,k)||) = 0, donc ﬁ(30 )-h—i—ﬁ(aj )k — 0 quand (z + h,y +
(h,k)—)O ) - Y 833' Y ay Y q 'Y

k) — (x,y). Quand (x + h,y + k) — (x,y) tout en restant sur L,(f), le vecteur
(h, k) est un vecteur tangent a L,(f). On a alors trouvé que le produit scalaire de

0 0

(a—f(x,y), a—f(x,y)) et (h,k) égale 0, on en déduit que ces deux vecteurs sont or-
x Yy

thogonaux. O

Exemple 67. A. f(z,y) = 2® + y*. L,(f) = C((0,0), /a) - cercle de centre (0,0) et
de rayon +/a. %(m, y) = 2z, g—g(x,y) = 2y. On remarque que (2z,2y) = 2(x,y) est 2

fois le vecteur radial qui est en effet orthogonal au cercle.

B. Soit la courbe d’équation 22—y = 0. Pour calculer la normale en chaque point de
cette courbe, on la voit comme une ligne de niveau 0 de la fonction f(z,y) = 2* —y.
La normale est donc donnée par son gradient : ? flz,y) = ( 3$1 ) .

4.2.2. Propriété [b] : Le gradient indique la ligne de plus grande pente.

Sur le graphe de la fonction f on prend un point (z,y, f(x,y)), alors (z,y) est sur la
ligne de niveau a = f(x,y).
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Théoréme 68. Le gradient en (x,y) indique la direction de plus grande pente > 0
sur I'y a partir d’un point en question.

Démonstration.
P, y) + ) = fa,y) = V f(z,9) - T +o(| 7))

Le produit scalaire ?f(:v, y)- U vaut ||€f($, )| -7 cos b, ot 8 est I'angle entre les
deux vecteurs. L’accroissement de la fonction atteint le maximum quand cosf = 1,

alors ¥ doit étre parallele & ? f(z,y). d

Remarque 69. En suivant la ligne de plus grande pente dans D on a, sur le graphe,
le chemin le plus court a parcourir pour obtenir une variation donnée de f. Autrement
dit, si on veut passer le plus vite possible du niveau a au niveau b a partir d’'un point
(x,y) donné de niveau a = f(x,y), il faut suivre le gradient.

4.3. Formule de Taylor.
Rappel : petit o. Soient f et g deux fonctions d’une variable a valeurs réelles.
On dit que g = o(f) au point a si :

Exemple : u(z) = 2*,v(z) = 2>+ 22. En a = 0 on a u(z) = o(v(x)) et en a = +oo on

av(zr) = o(u(x)).
Rappel : La formule de Taylor avec le reste en forme de Lagrange. Si f
est n 4 1 fois différentiable en a, on a une approximation de f par un polynome :

: f" (a)
fla+t) = f(a)+ f(a)t +--- o t" + ry(a,t)
f(n+l)(9)
ou il existe 0 € [a,a + t] tel que r,(a,t) = mt”“. C’est une conséquence
n !

du théoreme des accroissements finis : si f est continue et dérivable sur 'intervalle
la,b], a < b alors 3z € [a, b] tel que f(b) = f(a)+ f'(z0)(b— a).
Finalement, on a aussi la formule de Taylor-Young avec r,(a,t) = o(t") :

n R (g
fla+1) = f(a) :Zf k,( Lk 4 oft)

C’est cette formule qu’on va généraliser au cas de plusieurs variables.

Théoreme 70. (Formule de Taylor) Soit f : D C RP — R de classe C™ au voisinage
du point A(ay, as,---a,) € D. Soient H(hy,--- ,h,) € RP et lintervalle [A, A+ H] C
D. Alors,

n

FA+H) = f(A) = 55 ((mdy+ - 1y8,) () (A) + o | H|")

0
Démonstration. Ici 0; := Ere Soit F(t) = f(A+ tH) une fonction composée d'une
l’A

variable & valeurs réelles. On va utiliser la formule de Taylor-Lagrange pour cette
fonction. Pour cela on remarque que :

zp: Of(A+tH) d(a; + thy)

=1
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Pour la k-éme dérivée de la fonction composée F'(t) on a :

FO) =3 (8, - (0 f(A+ 75}[))\.;'—201(%-1 +thy)  d(ai, +th,)

dt dt
k fois
ott on prend la somme sur tout i, € {1,-+- ,p},--- i, € {1,---,p}. On remarque que
d aZ ch ) Mo s 7 .
(@, ;; . = h;,Vi € {1,--- ,p}. Par le binome de Newton cette formule se réécrit :

F®(t) = (hoy + - + hy0,)* f(A+ tH)

On écrit a formule de Taylor-Lagrange pour la fonction F(0 4+ t) au voisinage de 0 :

1 1
F(t)=F F' vk — ) n F(n+1) n+1 ‘
(1) = F(O) + F'(0)t + -+ + — FU(0)1" + CE O)"*, 6 € [0,]
Pourt=1ona:
= / - i (n) 1 (n+1)
F(1) = F(0)+ F'(0)t + n!F (0) + T 1)!F (0), 8 €[0,1]

D'ou :
"1
flart by sap+hy) = flan, - ap) + 75 (mdy + -+ hyy)*f(A) + (A, H)
k=1
Le dernier terme est le reste :

1
(A H) = 00

(h101 + -+ + hp0p)" " f(A+ 0H) = o( | H|").

En particulier, la formule de Taylor a l'ordre 2 est la suivante :

P p
1
(9) fA+H) = f(A) + > dif(a)hi + 3 > 00 f(@)hshy + o(|[H]*)
i=1 ij=1
La matrice-colonne des entrées 0;f est la matrice Jacobienne. La matrice p x p des
dérivées secondes
Hessp(A) := o] = [0,0;f(A)]
s’appelle la matrice Hessienne de f en A. Par le théoreme de Schwarz cette matrice
est symétrique si f est de classe C*. La forme quadratique a(u) = Y7, cujusu;
s’appelle la forme hessienne de f en A.

Remarque 71. L’idée de la formule de Taylor c¢’est de trouver une approximation
de la fonction par un polynéme dans un voisinage d’un point donné.

En particulier, pour p =2, A = (a,b), H = (h,k), (A+ H) = (a+ h,b+ k) on a
les formules de Taylor suivantes :

-n=20

f(A+ H) - f(A)

F(A+H) = F(A) = ol (VEET R)?) & lim, 1 0
—
- continuité
-n=1

FA+ H) — f(A) = f%(a, b) + kzg—’;(a, b) + o(VI2 + K2

- différentiabilité.
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-n=2
fas i) -5 = hlan + i @
o +1 (hQaQ—f(a b) + 2hk ) (a,b) + kQaQ—f(a b)) + o(h? + k%)
2 Ox2""’ 0xdy "’ oy2’

4.4. Vecteur normal et plan tangent a un graphe d’une fonction de 2 va-
riables.

A. Surfaces et coordonnées curvilignes (Ici je suis le cours [4]).

Soit f : D — R une fonction continue définie sur une partie D de R?. L’ensemble
des points de R? :

S={(z,y,2) € R’|(z,y) € D, 2= f(x,y)}
est le graphe de la fonction f sur D (définition 21). Il est évident que I'application :
F:D— S, F(z,y) = (z,y, f(z,y))

est une bijection. Puisque les points de S sont donnés par des paires de nombres
(z,%), Pensemble S est une surface de dimension 2 dans R3.
Sion aun chemin I' : I — D, alors automatiquement on a un chemin Fol': [ — S

sur la surface S. Si
{ x = x(t)
y =y(t)

est une représentation paramétrique de I" alors le chemin F' o I" sur S est donné par
les trois fonctions :

r = x(t)
y =y
z = [flx(t),y(t))

Soit (zg,¥0) € D. On peut trouver un chemin :
T =m0+t y=1yo, 2= f(xo+1t )
sur la surface S pour lequel la coordonnée y = yy ne change pas et un autre chemin :
T =1m9, Yy=1yo+t, 2= f(zo,y0 +1)

pour lequel la coordonnée x = =z ne change pas. Ces chemins partant de points
différents de la surface S tracent des lignes de coordonnées sur S. Pour cette raison
on appelle (z,y) les coordonnées curvilignes sur S.

B. Plan tangent

Si la fonction z = f(x,y) est différentiable en (x,y0) € D, alors, quand (z,y) —

(o,Y0) on a :
(1) fla,y) = f(wo,w0) +ala — 70) + By — vo) + o0 (V@ =20 + (v = w0)?)

ou « et 3 sont des constantes égales aux dérivées partielles au point (xg, yo).
Considérons un plan dans R?® donné par une équation

(12) z =29+ a(r — o) + By — Yo)

ou zg = f(xg, yo). On voit que le graphe (11) de la fonction f autour du point (xg, yo)
est éloigné du plan (12) d’une valeur négligeable devant \/(z — x0)2 + (y — yo)?.
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Définition 72. Le plan

(13) f(x,y) = f(wo,90) + alr — x0) + By — Yo)

0 0
avec o = —f(xo, Yo), 5 = —f(xo, o) est appellé le plan tangent au graphe de la fonction

ox dy
z = f(z,y) au point (xo, Yo, f(z0,¥0))-

C.Vecteur normal

Soit (z,y,2) € D C R3 et F(xz,y,2) = 0 I’équation implicite d’une surface S
(précédemment on avait une surface : z = f(x,y) pour laquelle F(z,y,2) = f(z,y) —
z.) Soit

ft)

9(t)

h(t)

I’équation paramétrique d’une courbe de la surface passant par le point Py(zo, Yo, 20),
c’est-a-dire qu’il existe

to € I, tel que (0,40, 20) = (f(to), g(to), h(to)) et (x,y,2) = (F(1),9(t), h(t))

qui satisfont 'équation F'(z,y,z) = 0 pour tout ¢ € I. Soit u(t) = F(f(t),g(t), h(t))
une fonction composée de I — R, qui est identiquement nulle sur /. Donc au point
t=1tyona

x
tel CR, v:t— Y
z

_du OF df (OF dg  OF dh

14 == = . - .-
(14) it o Aty o @
df dg dh
De l'équation (14) suit que le vecteur —f, —g, — est orthogonal au vec-
de di” dt J|,_,,
OF OF OF — df dg dh
teur ! <%, ' %> = gradF(P,). Le vecteur ' (?{;, Egt’ E) . est un vecteur

quelconque dans I'espace tangent a S au point Fy. Donc le vecteur

OF OF 8F> (P)

% o L or or or
gradF(Py) = (895’ oy’ 0z

est orthogonal a tout vecteur tangent a la surface S passant par Fy. Cela signifie
exactement que le vecteur gradient est normal a la surface S.

L’équation du plan tangent a la surface donnée par 'équation F'(z,y,z) = 0 est
facile a établir : c’est le plan passant par Py tel que tout vecteur de ce plan est

—
orthogonal & gradF'(Fp). Les coordonnées d’un point M(x,y,z) du plan vérifient :
PyM - gradF'(Py) = 0. Ce produit scalaire donne I’équation du plan tangent :

OF OF OF
(55—930734—9072 —20) (%’8_3/75) (Po) = 0.
De fagon plus explicite :
OF oF oF
(- xo)a—x(Po) + (y — yo)a—y(Po) + (2 — ZO)a(PO) = 0.

On peut comparer cette formule a la formule (13).
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5. EXTREMA

5.1. Extrema locaux et globaux. Définition. On étudie le comportement dune
fonction de plusieurs variables a valeurs réelles. Une telle fonction peut avoir des
valeurs extrémales : des minima (des valeurs les plus petites) ou des maxima (des
valeurs les plus grandes) sur tout le domaine de définition ou bien sur une certaine
partie. On les appelle des extrema.

Définition 73.
1. Soit f : D — R une fonction définie sur une partie D C RP. On dit que f
admet un maximum (resp. minimum) global au point A € D si pour tout X € D on

a f(X) < f(A) (resp. f(X) > f(A)). Le maximum (resp. minimum) est appelé strict
i F(X) < (4) (resp. F(X) > F(A)).

2. On dit que f admet un maximum (resp. minimum) local au point A € D si on
peut trouver un nombre 7 > 0 tel que X € D et || X — A|| < r entraine f(X) < f(A)

(resp. f(X) = f(A)).

Les extrema globaux sont appelés aussi extrema absolus.

5.2. Théoréme des extrema sur un compact.

Théoreme 74. Soit f : K — R une fonction continue sur un compact K C RP.
Alors f admet un mazximum et un minimum sur K.

Remarque 75. En dimension p = 1 la fonction a des points extrémaux sur un
intervalle. Soit ils sont a l'intérieur de Uintervalle, auquel cas ils vérifient f'(x) = 0,
soit ils sont au bord de lintervalle (sur le bord, la condition f’(x) = 0 n’est pas
forcément satisfaite). Donc pour trouver les extrema on cherche d’abord des points
critiques (ou la derivée s’annule), puis on compare la valeur des points critiques avec
les valeurs sur le bord de l'intervalle. Les valeurs max et min se trouvent parmi ces
valeurs-la.

Définition 76. Soit f : D — R une fonction de classe C'! sur une partie D de RP. On
dit que A € D est un point critique de f si toutes les dérivées partielles s’annulent
en A (équivalent a dire que le gradient de f est nul en A, équivalent a dire aussi que
la différentielle de f est nulle en A).

Théoreme 77 (Condition nécessaire d’extremum local). Soit f : U — R une fonction
de classe C? définie sur un ouvert U C RP admettant un mazimum ou un minimum
local au point A € U. Alors A est un point critique de f.

Démonstration. Reprenons la formule de Taylor (10) a l'ordre 2 en dimension 2. La
preuve se généralise sans probleme aux dimensions supérieures.

0 0
flathib )= fa.b) = hgl(a0) + k5 (@b
1 0*f O f 0?f
~ [ h*==(a,b) + 2hk b) + k*—=(a,b h,k)|]?
vy (252 @+ 2L 0ty + 1255 0n)) + ol 0P
Si on a un maximum local en A, alors f(a+h,b+k)— f(a,b) < 0 pour tout (h, k) suffi-
samment petit. La valeur de la fonction linéaire de deux variables h% (a,b) + kg—g; (a,b),

si elle n’est pas 0, est grande par rapport aux termes suivants. Donc cette valeur, si
elle n’est pas égale a 0, doit étre négative. Pourtant pour h, k positifs il faut que les
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constantes 3 (a,b) <0, i =1,2 et pour h, k négatifs il faut que les mémes valeurs
T
of : , . Of : : . .
P (a,b) >0, i=1,2,don 5 =0, 7 = 1,2. On peut refaire le méme raisonnement
X; Z;
pour un min local. 0

5.3. Extrema de fonctions de 2 variables - critere par le déterminant de
matrice Hessienne.
Soit f: D CRP - Ret Xge D. Quand p =1, pour savoir si un point critique X
est un maximum local ou un minimum local, on étudie la dérivée seconde (quand elle
existe) :

—si f"(Xo) > 0, alors f(Xp) est un minimum local,

—si f"(Xo) < 0, alors f(Xj) est un maximum local,

—si f"(Xo) = 0, il faut faire des calculs supplémentaires de dérivées supérieures -

ce peut étre un point d’inflexion, un maximum ou un minimum.

Dans le cas de plusieurs variables a la place de f”, on étudie la Hessienne.

Propriété 78. Soit f: D C R” = R et Xy € D un point critique de f. On suppose
que la Hessienne H f(Xj) existe. Alors
— si toutes les valeurs propres de H f(X,) sont strictement positives, f(Xo) est un
minimum local,
— si toutes les valeurs propres de H f(Xj) sont strictement négatives, f(Xy) est un
maximum local,
— sinon, et si toutes les valeurs propres ne sont pas 0, il n’y a pas d’extrema. Si
toutes les valeurs propres sont 0, il faut étudier des termes d’ordre supérieur dans
la décomposition de Taylor en Xj.

Pour p = 2 on fait le calcul de la formule de Taylor. Au point critique Xy(a,b) on
a

f(a+h,b+k)—f(a,b) = (h28 f( ,b)+2hkaiéf (a b)+k2a§( ,b))+o(||(h,k:)||2)

Donc le signe de la forme quadratique (la forme hessienne)

0% f
0xdy

82

o2 f
2
2<h 5oa(a.0) + 20k

(a,b) + k262f( b))

va déterminer si on a un maximum, un minimum ou ni 'un ni 'autre. Pour avoir
un maximum (resp. minimum) il faut que la forme soit négative (resp. positive) pour
tout (h, k) au voisinage de (0,0). Si la forme hessienne n’est pas de signe défini on a
des couples (h, k) pour lesquelles la valeur de f(a + h,b+ k) — f(a,b) est positive et
d’autres pour lesquelles cette valeur est négative. Donc on a des directions (h, k) dans
lesquelles la fonction a un maximum au point (a,b) et d’autres ou la fonction a un
minimum au méme point. Ce type de point critique s’appelle un point selle (comme
une selle de cheval) ou bien point col (comme dans les montagnes).
On étudie alors la forme hessienne. On choisit des notations standard :

02 f 9% f a2f

(a,b), S =
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On suppose que R # 0 et on réécrit la forme hessienne :

T
Rh?+2Shk+Tk?> =R (h2 + 2§hk + —k2)

R R

S S\? S\? T
_ 2, o2 Il 2 (2 2 40
=R h—l-Qth—l—(R)k (R)k—i-Rk)

SN\* [T 52\,
“r((k 5+ (5 2)e)

S 2
Puisque le premier terme (h + T%k) > 0, c’est le deuxieme terme qui définit si la

forme est de signe défini. Alors,

T 52
— Si (}—% - ﬁ) >0 (& RT — S? > 0) on a un maximum si R < 0 et minimum si
R>0.

~ Si RT — S% < 0 on a un point selle.

Remarque 79. Si RT — S? > 0 la condition R > 0 ( R < 0) est équivalente a la
condition R+T > 0 (R+T < 0) i.e. la condition sur la trace de la matrice hessienne.

Recherche des extrema :
— Déterminer des points oll f n’est pas de classe C! et regarder les valeurs de f en
ces points. Par exemple, la fonction f(z,y) =1— /2% + y? admet un maximum
a l'origine mais on ne le trouve pas parmi les points critiques.
— Rechercher les points critiques.
— Etudier les points critiques.

Exemple 80. Extrema locaux et globaux de f(z,y) = 222y + 22% + y* sur R?. Points
critiques :

af
Q% T 2’4y =0
L =224+ 2y=0 y =
dy
On trouve alors trois points critiques (0,0), (=1, —1) et (1, —1).

pt critique (0,0) | (=1,—1) | (1,-1)

R=4dy+4 i 0 0

S =4x 0 -4 4

T =2 2 2 2

RT — S? 8 —16 —16

Signe de R >0

Nature du pt critique : | min | pt selle | pt selle

Les extrema globaux : on voit que

lim f(z,0) = lim 22% = +o0

r—F00 r—F00
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donc pas de maximum global. Pas de minimum global non plus car

lim f(z,—2) = lim —22° +4 = —c0
r—=+00 z—+o00
Ici on a utilisé un critére par le signe du déterminant (et de la trace) de la matrice
hessienne pour déterminer la nature du point critique. Si le déterminant est 0 on doit
regarder la formule de Taylor a l'ordre supérieur (a l'ordre 3 et parfois plus).

Exemple 81. On cherche des extrema locaux de g(z,y) = 2* + y* — 222 sur R?.
On trouve 3 points critiques (—1,0), (0,0), (1,0) pour lesquels on ne peut pas
utiliser le critere car RT — S? = 0 mais g(x,y) = (z* — 1)> + y* — 1 donc en (£1,0)
il y a un minimum local. En (0,0) on a ¢g(0,0) = 0 et au voisinage de (0,0) on a
des valeurs positives et négatives g(0,y) = y* > 0 et g(y,0) = 2* — 222 < 0 pour z
suffisamment petit. Donc (0,0) n’est pas un max ni un min, c¢’est un point-selle.

5.4. Extrema liés. Soit K un compact de R?. Soit f : K — R une fonction de
classe C?. Soit g(z,y) = 0 I'équation de la courbe C' C K. Si C' est le bord de K, on
a une notation C' = K. On regarde la restriction de f sur la courbe C. Si la courbe
C' a pour équation g(z,y) = 0, tous les points de la courbe satisfont cette équation.
Quand on cherche les extrema de la fonction f sur C' on dit qu’on étudie les extrema
de f assujettie a la contrainte g(z,y) = 0. Ce sont des extrema liés.

Exemple 82. Exemple A. Voici un exemple de probleme de recherche d’extrema
liés : parmi des rectangles avec la somme de cotés 2p (ou p est un nombre positif
donné), trouver un rectangle a l'aire maximale. Soient x,y les cotés du rectangle.
Alors on a o(z,y) = xy l'aire, qui doit étre maximale tandis que (x,y) sont sousmis
a la condition x + y = p. Ici, il est facile d’exprimer y par x et trouver un maximum
d’une fonction d’une variable ainsi obtenue.

Il est rare que 'on puisse exprimer y directement comme une fonction de x en
utilisant la contrainte.

Exemple B. Regardons un exemple de la page 362 [2] : la fonction f(x,y) = 2% +y>
et la contrainte, la courbe C, définie par une équation g(x,y) = 0. Il s’agit de trouver
un minimum de f, lié par cette relation g(z,y) = 0. C’est un minimum de f sur la
courbe C. Géométriquement on peut résoudre le probleme en tracant des lignes de
niveau de f. Les lignes de niveau de f sont des cercles concentriques du centre (0, 0).
Si on trace des cercles de rayons croissants, jusqu’a leur rencontre avec la courbe C| la
valeur critique est sur le cercle qui touche la courbe. Faites un dessin - ¢’est instructif
(dessinez une courbe quelconque et tracez les cercles).

La méthode générale utilise la considération suivante. Soit P(a,b) un point extre-
mum de f restreint a la courbe C. Le vecteur tangent a la courbe au point P doit étre
aussi tangent a la ligne de niveau f(a,b) (on le voit clairement dans 'exemple B).
Mais les lignes de niveau sont normales au gradient de f, de I'autre coté le vecteur
tangent a C' est normal au gradient de g. Donc ces deux gradients sont proportionnels.
On appelle le coefficient de proportionnalité le multiplicateur de Lagrange.

Proposition 83. Soit f : U =+ R, g : U — R deux fonctions de classe C! sur un
ouvert U de R?. Soit (a,b) un point de U tel que :

(1) f soumise a la contrainte g(z,y) = 0 admet un extremum au point(a, b).
—
(2) grad g(a,b) #0
— —
Alors il existe un nombre réel A # 0 tel que gradf(a,b) = A grad g(a, b).
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Les nombres a, b, A sont des solutions du systeme d’équations suivant : les dérivées
partielles de f(z,vy) — Ag(z, y) par rapport a x,y, A doivent étre égales a 0.

5‘9

—0
gf a,b) — )\g—y =0
9(a, b) =0

Exemple 84. Trouver le point de la courbe y = 22 qui est le plus prés du point
(0,h). Alors, ici g(z,y) =y — 22, et f(x,y) = 2?4+ (y — h)? - le carré de la distance.
Les gradients nous donnent

20 +2X z =0
2y—h)— A =0
y—a2 =0
Les solutions : soit x = 0, et alors y = 0 aussi, ou bien A = —1 et y = h — 1/2,

x = ++/h—1/2. Alors pour h > 1/2, les points (++/h —1/2,h — 1/2) sont a la

distance minimale de (0, ). Si h < 1/2 on a (0,0) comme point le plus proche.

Théoréme 85. Soit f une fonction C? sur un compact K C R2, alors f atteint un
minimum et un maximum globaux sur K. Ces points d’extrema sont .
— soit des points intérieurs de K, auquel cas ce sont des points critiques (grad f =0
en ces points)
— soit ils sont sur le bord OK de K auquel cas ils sont donnés par le calcul des
extrema liés en utilisant des multiplicateurs de Lagrange.

Exemple 86. Trouver les extrema globaux de f(x,y) =y + y* — 2% + 3 sur B(0,1)
disque de centre (0,0) de rayon 1. On cherche les points critiques :

of

— =-=2z =0
% =1+2y =0
Jy 4

On trouve un seul point critique (0, —1/2). Ce point se trouve dans le disque et sa
valeur est f(0,—1/2) =11/4

La matrice hessienne donne :

dét ( _02 g > = —4 < 0= (0,—1/2) point selle.

Il faut alors chercher les extrema globaux sur le bord 22 + 3> —1=0. On a :

—2x =2 x =0
1+2y—2\y =0
22+ -1 =0

VAL
On trouve les points (0, £1) et (i—T,—Z). Les valeurs : f(0,1) =5, f(0,—1) =
V15 1 15
3, f (j:T, _4_1) =3 On compare ces valeurs et conclut que le max se trouve au
V11
point (0,1) et le min aux points (£——, ——).

4 4
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5.5. Extrema d’une fonction de n > 2 variables. En dimension n on procede de
la méme facon qu’en dimension 2. En utilisant la formule de Taylor en dimension n
au voisinage d’un extremum on voit que la condition nécessaire est que le gradient
s’annule aux points d’extrema locaux. La condition suffisante pour avoir un miminum
(resp. maximum) est que la forme hessienne soit positivement (resp. négativement)
définie.

Pour les extrema liés on a le théoreme suivant ([2]) :

Théoréme 87. Soient f, g1, - g, des fonctions réelles de classe C* sur un ouvert U
de RP, et E un ensemble défini par les équations :

g1(X)=0,--+,9,(X) =0, avec X € U.

Si la restriction de f a E admet un extremum local en A € E, et si les différentielles
Dgi(A),- -+, Dg,(A) sont linéarement indépendantes sur RP, alors nécessairement les
formes linéaires Df(A), Dgi(A),- -, Dg,(A) sont liées. En d’autres termes, il existe
des coefficients réels Ay, --- \,, appelés multiplicateurs de Lagrange, tels que

Df(A) = MDgi(A) + - A Dgn(A)

6. CHAPITRE VI. CHAMPS DE VECTEURS

6.1. Definitions.

Définition 88. Un champ de vecteurs sur D C RP est_> urE> ag)lication qui a tout point
M de D associe un vecteur 7(M ) de RP. Soit {O ; ¢, j, k } un repeére orthonormé

de R?, alors un champ de vecteurs V(x, y,2), (x,y,2) € D C R3 est donné par trois
fonctions P, Q et R sur D a valeurs réelles :

— — -
V(g 2) = Pa,y,2) 7 +Qa,,2) 7 + Rlx,y.2) k

On dit que le champ de vecteurs 7 est de classe C* sur D si P,Q, R sont de classe
C*.

Les fonctions a valeurs réelles, on les appelle parfois des champs scalaires, tandis que
les champs vectoriels sont des fonctions a valeurs vectorielles. Quand on dessine un
champ de vecteurs, on a des vecteurs associés a tout point du domaine de définition.
Pour dessiner un champ de vecteurs, on prend quelques points sur le plan R? et en
chaque point choisi on calcule la valeur du champ ; on fait un dessin du vecteur ainsi
obtenu en commencant au point choisi. Voici quelques exemples de champs faciles a
dessiner :

Exemple 89.

—
Champ uniforme : champ constant, par exemple, A i , A € R.

%
Champ convergent : —x ¢ —y j .

- =
Champ tournant : —y i +x j.

6.2. Gradient. Opérateur Nabla. Le gradient est un exemple d'un champ de vec-
teurs. Le gradient d’une fonction f : D — R de classe C! sur D C R™ associe a

—
chaque point X de D le vecteur gradf(X). Dans R? en coordonnées {z,y,z} on a :

amad ) = (GL00. 0.5 )
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o 0 0
Dans R? on regarde un opérateur ? a coordonnées | —, —, — | . Cet opérateur
_— Ox’ dy 0z

vectoriel

—>8 —>8

agissant sur une fonction f est égal au gradient : grad f= ? f. Cet opérateur ? est
aussi appelé l'opérateur de Hamilton (c’est le méme Hamilton (1805 - 1865) qui a
introduit le mot ”vecteur”).

Linéarité du gradient : Soient f1, fo des fonctions définies sur une partie de R”

— — —
et A, i des nombres réels. Alors grad(Af; + pfe) = A gradf; + p grad fo

On peut se poser une question : et si tous les champs de vecteurs sont des gradients
de fonctions ? On voit rapidement que c’est une restriction assez forte.

Définition 90. Soit V' un champ de vecteurs V.D o R3, D C R3. S'il existe
f:D — R tel que 7 = gradf on dit que le champ 7 dérive du potentiel scalaire f

sur D et 7 est un champ de gradient aussi appelé un champ potentiel.

Remarque 91.
1. La condition 7 = gradf dans certains livres de physique est donnée avec un

signe : V' = —grad f pour des raisons de convention dans certaines équations.
2. Si la fonction f existe, elle est unique a une constante pres.

6.3. Divergence et Rotationnel.

A Taide de 'opérateur ? on peut définir des opérations sur des champs - la diver-
gence et le rotationnel.

Soit V : D C R?® — R3 un champ de vecteurs de classe C'. Le produit scalaire de
I'opérateur ? avec le champ 7 donne une fonction, qui s’appelle la divergence de

Le produit vectoriel de I'opérateur ? avec un champ 7 donne un nouveau Champ,

qui s’appelle le rotationnel de
La divergence agit sur des champs de vecteurs et donne des fonctions.

Deﬁmtlon 92. Soit V : D — R3, D C R3 un champ de vecteurs, 7 Pi +
Q 7 +R k ou P, (@, R sont des fonctions D — R. La divergence de

P
(16) vV =V.V = a L 09 OR
(9y 0z’
On remarque que la divergence est linéaire :
divAV 4+ gW) = A divV + pu diviV

Le rotationnel agit sur des champs de vecteurs et donne des champs de vecteurs.

Deﬁnltlon 93. Soit V : D — R3, D C R3 un champ de vecteurs VvV —pP7 +

Q 7 +R k ou P, (Q, R sont des fonctions D — R. Le rotationnel de ? est
- 2 7

K
AV = VAT = | a/00 00y 90
(17) P Q R

_(OR 0@\ (0P OR\—  (0Q OP) -
oy 0z 0z Ox or Oy
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On remarque que le rotationnel est linéaire :
— — — —
rot(A7 +pW) = A otV + p rotW

Exemple 94. Systeme d’équations de Maxwell pour le champ électromagnétique
dans le vide :

1L divE =2 2. divB =0
€0
— OB — 7 10F
3. rotﬁ——ﬁ 4. rot§—607+c—25

Ici on note :

- p(x,t) - la densité volumique de charge électrique au point = = (x,z9,x3) &
I'instant ¢,

- j (x,t) - le vecteur densité de courant,

- E(x,t) - le vecteur champ électrique,

- B(x,t) - le vecteur induction magnétique,

- €g - la permittivité diélectrique du vide,

- ¢ - la vitesse de la lumiere dans le vide (= 299792458 m/s).

Remarque 95. Propriétés de 1’opérateur ? :

Soit : D — R3, D C R3 un champ de vecteurs de classe C*, et f: D — R une
fonction de classe C!. Alors, on a

div(rotV) =V - (V A V) = 0.

Formellement on peut le voir comme un produit mixte, qui est identiquement 0 si les
vecteurs ne sont pas linéairement indépendants. Ici ce ne sont pas des vecteurs mais

des opérateurs vectoriels mais le produit mixte de V, et 7 est identiquement 0.
On a aussi

— —
(18) rot gradf = v A (?f) = 0.

Définition 96. L’opérateur
e 4
Af = div(gradf)
défini sur les fonctions f: D — R, D C R3 de classe C* & valeurs dans les fonctions
est appelé I'opérateur de Laplace.

6.4. Théoréeme de Poincaré. .

Proposition 97. Soit vV .Do R3, D C R3,7 =Pi +Qj + Rk, un champ

de vecteurs, P, (), R des fonctions de D vers R. Une condition nécessaire pour que le
. . . , . —

champ V' dérive d'un potentiel scalaire sur D est qu’en tout point M de D, rotV = 0.

Démonstration. La relation 18 implique que pour qu’il existe f : D — R, tel que

7 = gradf on a rotv2 = 0. Cela se traduit en trois conditions sur les fonctions

P,Qet R :
(oR _0Q

o _ i
b 9
Ox

dy
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La condition suffisante pour un champ d’étre un champ de gradient est une condi-
tion sur le domaine de définition du champ.

Théoréme 98 (Poincaré).
Soit V : R3 — R3 un champ de vecteurs de classe C' tel que otV = 0. Alors il
. . —

existe une fonction f: R3 — R telle que 7 = grad f.

Remarquez ici que le champ V est défini en tout point de R3 . On ne donne pas
ici de démonstration de ce théoreme mais on remarque que le champ de vecteurs
en question doit impérativement étre de classe C' sur R?. C’est R3, le domaine de
définition du champ, qui joue un role important ici.

Voici une définition pertinente :

Définition 99. Un domaine D C R™ est simplement connexe si D est connexe par
arc (Définition 47) et toute courbe fermée de D peut étre ramenée a un point par une
déformation continue tout en restant dans D.

Exemple 100. Un exemple d'un domaine non-simplement connexe : un domaine de
R? - un anneau qu’on peut définir pour 72 < R* par D = {(z,y)| r* < 2> +y* < R*}.
On peut voir ce domaine comme un disque de rayon R troué : le petit disque autour
du centre est enlevé du grand disque. Il n’est pas simplement connexe. En effet, si on
considere une courbe fermée de D (un lacet) qui contourne (0,0) il n’y a pas de fagon
de 'amener a un point, sans la faire "sauter” par dessus ce disque absent.

Le théoreme de Poincaré se formule d’une fagon plus générale :

Théoréme 101 (Poincaré généralisé).
Soit D un domaine de R3. Soit V : D — R3 un champ de vecteurs de classe C' et

rot V. = 0. Alors si D est simplement conneze, il existe une fonction f : D — R telle
que 7 = gradf.

6.5. Calcul du potentiel. Si 7 est un champ potentiel, alors on peut trouver le
potentiel a une constante pres. On va faire un exemple de calcul ici.

Soit V' : R® — R3 un champ de vecteurs de composantes P,Q, R :
P(z,y,2) = 6z(y + 2°%), Q(x,y,2) =32°, R(z,y,2) =62’z

Il_>est de classe C™ sur R? car les fonctions P,Q, R sont des polynomes. De plus
rotV =0 :

OR/0y —0Q/0z =0-0 =0
OP/0z — OR/0x = 12xz— 122z =0
0Q/0x — OP/dy = 6z — 6x =0

Par le théoreme de Poincaré (Théoreme 98), 7 dérive d'un potentiel scalaire.
Déterminons tous les potentiels scalaires f : R*> — R du champ 7 on a gradf = 7
of |0z =6x(y+2z*) (1)
0f /0y = 3a° (2)
Of )0z =62z (3)
De (2) on a f(x,y,2) = 3z%y + é(x, 2), oit ¢ : R* — R est une fonction différentiable.
De (1) on a 9f 0z = 6x(y + 2%) = I(32%y + ¢(x, 2)) /0x = 6xy + Op(x, z)/Ox. Donc

0¢(x,2)/0x = 622° = é(z,2) = 32°2% +¢(2), ot ¢ : R — R dérivable.
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Il suit
f(z,y, 2) = 322y + 32%2% + ¥(2)
et avec I’équation (3) on a
Of )0z = 612 = 0(32%y + 32%2% +1(2))0z = 62%2 +¢'(2)
ce qui donne ¥ (z) = k, k - une constante. Finalement

f(z,y,2) = 32y + 32%22° + k

est un potentiel scalaire de 7

7. CHAPITRE VII. FORMES DIFFERENTIELLES

7.1. Formes différentielles.

Définition 102. On appelle 1-forme différentielle définie sur 'ouvert U C R? une
application o de U dans l'espace dual de RP, c’est-a-dire dans (RP)* = L(RP,R),
I’espace des applications linéaires de R? vers R.

a:U — L(RP,R)

Soit z € U, alors a(x) € L(RP,R).
Soit 7 un champ de vecteurs sur U, cela signifie en particulier 7(3:) € RP. Comme

on a o%:z:) application linéaire de R? — R et 7(3:) € R? en chaque point x de U on a
a(z)(V(z)) € R.

Cela montre qu’en chaque point de U l'espace des 1-formes différentielles est dual
a l'espace de champs de vecteurs.

En effet, si un espace E (de dimension finie) est muni d’un produit scalaire, il
existe un isomorphisme entre E et son dual. Ici E est ’espace des champs de vecteurs
sur un ouvert E = Vect(U) avec un produit scalaire < .|. > (x) défini en chaque
point x € U. On peut donc établir une correspondance entre 1’espace des champs
de vecteurs et son espace dual des 1-formes différentielles, noté Q'(U) : si V est un
champ de vecteurs sur U il existe une unique 1-forme différentielle o sur U telle que

Vo € U et YW € Vect(U). On &
(19) a(W)(z) =< V|V > ()

Nous avons déja vu un exemple d’'une 1-forme différentielle, c’est la différentielle d'une
fonction f de classe C! sur I'ouvert U a valeurs dans R donnée par

p 8f

i=1 z;

df :zx e Uw df(z) = (x) da;.

En tant qu’application de U dans L(RP, R), elle s’écrit
P
of

Ici, nous notons B* = {dxy,--- dz,} la base duale de la base de I'espace des champs
de vecteurs, la base canonique de RP. L’application dz; est donc la i—eme 1-forme
coordonnée :

dz; @ (21, ,2p) =
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- sur un vecteur de coordonnées (z1,--- ,x,) la forme dx; a pour valeur z; (la forme
différentielle et le champ de vecteurs considerés au méme point de U). Pour tout X
de U, a(X) s’écrit dans B* avec des coefficients a; qui dépendent du point X :

P

(20) a(X) =) a;(X)dx;

=1

Définition 103. Une 1-forme différentielle a est de classe C* sur un ouvert U si les
fonctions a; qui interviennent dans (20) sont de classe C* sur U.

7.2. n-formes différentielles. Pour définir les 1-formes différentielles nous avons
travaillé avec des formes linéaires L£(R?, R) mais nous pouvons définir des formes bi-
linéaires alternées (anti-symétriques) et plus généralement k-linéaires anti-symétriques

L((RP)k R).

Définition 104. Une application linéaire L : (RP)* — RY est une k-forme anti-
symétrique (= alternée) si la valeur de L change de signe sous une permutation de
deux variables :

LV Vi Vo V) =—L(Ve VoV V)

En particulier, si 72 = 7]», et i # j la valeur de L est 0.

— —
Exemple 105. Le produit vectoriel 7 AW, ou 7, W € R3 est un exemple d’une
forme anti-symétrique & valeurs dans R3.

Ce qui nous intéresse ici ce sont des formes anti-symétriques a valeurs dans R. On in-
troduit le produit des formes linéaires de sorte qu’a deux formes A € L((RP)*,R) et B €
L((RP)!,R) on associe une forme A A B € L((RP)** R). Ce produit est appelé le
produit extérieur. Le produit extérieur, noté A, est

— associatif : (AAB)AC =AN(BAC)

— distributif : (A+ B)AC=AANC+ BAC

— anti-symétrique : AAB = (—1)"BA A pour A € L((RP)*,R) et B € L((RP)!,R).
En particulier, si on a deux 1-formes A, B € L(R?, R) leur produit AAB € L((RF)?,R)
est anti-symétrique :

ANB=—-BAA

En général, le produit extérieur des formes Ay, ..., Ay € L(RP,R), Aj A... A Ay est
une k-forme anti-symétrique qui, évaluée sur k vecteurs de R” a pour valeur :

AV - AV
@) A ATV T =] = det(4, (V)
AV - ATV

Définition 106. Soit U un ouvert de RP, k£ > 0 un entier. On appelle k-forme différentielle

sur U une application
w: U— L((RP)* R)

telle que, pour tout z de U,w(x) est une k-forme alternée sur RP. On note QF(U)
I’espace des k-formes différentielles sur U C R?.
Une k-forme différentielle est aussi appelée une forme différentielle de degré k.
On considere les fonctions a valeurs réelles comme des O-formes différentielles.
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Par exemple les 2-formes différentielles sur U C R? forment l'espace des formes
bilinéaires alternées. Donc si on a deux formes «, 8 € Q}(U), alors on a un produit
ang € Q*(U) tel que aAB = —BAa. En dimension 2 dans la base (dz, dy) les 1-formes
sont a(x,y) = P(x,y)dz+Q(z,y) dy et les 2-formes w(x,y) = h(z,y)dzA dy. lIn’y a
pas de formes dz A dz ou dy A dy a cause de 'anti-symétrie, et de A dy = —dy A de.
Une k-forme différentielle dans R? peut se décomposer

1< <t <<, <p

Ol fiiy-.iy (X) sont des fonctions sur U C R? et dz;, sont des éléments de la base de
(RP)* = L(RP,R).

On peut définir la valeur d'une k-forme donnée évaluée sur k£ champs de vecteurs au
point donné. On utilise la dualité entre les formes différentielles et les champs point
par point donnée par le produit scalaire < -, - > .

Exemple 107.

(1) On peut regarder une 1-forme zdx dans R? au point (5,—2,3) évaluée sur

un champ vectoriel 7(95, y,z) = x2_i> + :cy7 + 2z k. La forme zdx au point
(5,—2,3) est égale a 3dx. La valeur du champ

_>

V(5,-2,3)=5-7 -5.2. ] +6- k.

L’évaluation de la 1-forme 3 dx sur 7(5, 2,3) est alors

—
<3d2,25- 7 —10- ] +6- K >=3-25< dz, i >=T5.
- =
On utilise le fait que {dz, dy, dz} forme la base duale ge la base { i, j
et par conséquent < dz, i >=1, < da:,7 >=< dz, k >=0.

I

}

Y

(2) On regarde une 2-forme w = ydz A dy dans R? au point (—3,2) évaluée sur
—— : 2 o T - =
deux champs vectoriels W(x,y) = 2z —y) i + xy*j et =3yi + j.

Il;abord, w(=3,2) = 2dz _/>\ dy. Les_> valeurs _c)les chimps au point dongé SO_H;E
W(=3,2) = (2-(—3)—2)7 —3-22. 7 = 87 —127 et U(-3,2) =67 + J.
L’évaluation de la 2-forme w sur W(—3,2) et ﬁ(—i’), 2) au point (—3,2) en
suivant la formule (21) est alors

<2de A dy, (—87 —127)A(67 +_>?) S>=2.(=8)-(1) < da, 7 >< dy, ] >
+2-(—12)-6 < dy, j >< dz, i >= —16+ 144 = 128.
7.3. Formes exactes. Différentielle de de Rham.

Définition 108. La 1-forme différentielle o de classe C° (ou continue) sur 1'ouvert
U est exacte s'il existe une fonction f de classe C! sur I'ouvert U telle que a = df.
On dit que f est une primitive de a.

Il existe des 1-formes différentielles qui n’ont pas de primitive. Sur un ouvert
connexe, lorsqu’une primitive existe, elle est unique a ajout d’une constante pres.
Reconnaitre si une 1-forme différentielle est exacte est un probleme analogue a celui
de savoir reconnaitre si un champ de vecteurs est un champ de gradient (partie 6.5
du cours).

Plagons-nous par exemple en dimension 2 et considérons un champ de vecteurs
défini sur un ouvert U € R? par :

V(z,y) € U: 7(93, y) = P(z,y) 7 +Q,9)7 -
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ainsi qu'une forme différentielle o définie par :
V(z,y) €U a(r,y) = P(z,y)de + Q(z, y) dy.
Par la dualité (19) on a df(z)((h,k)) =< Vf(z)|(h,k) > . Alors les équations o =

df et V = ? f sont toutes les deux équivalentes au méme systeme :
of

Comment vérifier si une 1-forme différentielle est exacte ? Pour les champs de vecteurs
on avait le théoreme de Poincaré général. Pour les 1-formes c’est exactement le méme
théoreme. Pour le formuler en dimension quelconque il faut introduire un opérateur
analogue a 'opérateur ? qui agit sur les formes.

En fait on a déja cet opérateur - c’est I'opérateur d :

u )
d:Z1 dxiaxi.

Il faut comprendre que sur une forme différentielle w (22) opérateur dx; agit par

8@-

les dérivées partielles sur les fonctions f;;,..;, (X) et par multiplication extérieure de
dz; sur les formes dx;, A da;, A--- A day, :

& %)
w Z v

L’opérateur d est appellé la différentielle de de Rham, aussi appelé parfois la différentielle extérieus
La différentielle de de Rham agit sur des fonctions de classe C! en les envoyant vers
les 1-formes différentielles.

On peut définir 'action de d sur les 1-formes aussi bien que sur les fonctions. Par
exemple, en dimension 2 :

d (P(x,y) dz + Q(x,y) dy) = (dx2 + dyaﬁy) (P(x,y) dz + Q(z,y) dy)

ox
:a—de/\ dx—l—a—de/\ dy—l—a—de/\ dr + —dy A dy
f)g 5 Ox dy dy
_(9Q _or
(ax ay)dx/\dy

On a utilisé dans le calcul dz A dz = dy A dy =0, et dz A dy = —dy A dx.

Remarque 109. La différentielle de de Rham est un opérateur qui agit sur les formes
différentielles et il augmente leur degré de 1, d : Q¥(U) — QF+1(U). Par exemple sur
une forme (22)

p
dW(X) - Z dxza% ( Z fi1i2~~~ik (X) dlL‘il VAN d(L‘i2 VANRERWAN d{L’Zk)
i=1 !

1< <t << <p

p
0
- Z Z 1. (flllzlk (X)) day A dagy A dagy A= A dz;,

i=1 1<i) <ia<-<ix<p
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Lemme 110. La différentielle de de Rham d : Q8(U) — Q*Y(U), U C R? au carré
est nul :

d*> = 0.
Démonstration. En coordonnées l'opérateur d agissant sur une forme différentielle

P
w € QF(U) s'éerit @ dw = Z da:iaa w e Q).
=1

i

1=
Son carré est calculé ainsi :

d(dw) = de—<deladexl )w—ZdezAd% a%(ai( ))

i=1 j=1

0 0 0 0
Z dz; A dzj A oz (836 (w ) Z dz; A dzj A oz (8—%@)))

1<Z<j<p 1<5<i<p
a (0
+ E dz; A dz; A oz (&x,( ))

En changeant les notations ¢ <+ j dans la deuxieme somme, on voit que la premiere

somme a les termes dx; A dxjai (%( )) et la deuxieme dz; A d-l"zaa (8?6( ))
i j ;

pour les mémes i et j. En utilisant le lemme de Schwarz, on a :

61- (%(W)) - 6%] (aiz (w)) '

Puisque dz; A dzj = —dz; A d; les deux premieres sommes s’annulent mutuellement
et pour la troisieme somme on a : Vi, dz; A dz; = 0. O

Remarque 111. La différentielle de de Rham agit sur le produit extérieur de deux
formes différentielles o et 5 de degrés p et ¢ comme suit :

d(aAB)=daAp+ (—1)Pandp.
C’est facile a voir si on écrit a et § explicitement (comme dans (20)).

7.4. La dimension 3 est spéciale. Faisons le calcul d’action d’opérateur de de
Rham en dimension 3.
0. Pour une 0-forme différentielle (c’est-a-dire simplement une fonction)

f=1f(zy.2)
définie sur un domaine D € R3, ot f une fonction de classe C* sur D, on obtient
f of of
23 d d —dy + = dz,
(23) f= o, Wt o

Dans cette forme on reconnait une expression pour la différentielle (cela est le cas
pour toute dimension).
1. Pour une 1-forme différentielle

a=Pdr+Qdy+ Rdz

définie sur un domaine D € R3, ot P, Q, R sont des fonctions de classe C! sur D, on
obtient

OR 0Q OP OR 0oQ 0P
24 Sk oz T 7
(24) da = <(‘3y 8z)dy/\dz+(8z &C) dz/\dx—i—(ax ay)dyc/\dy
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2. Pour une 2-forme différentielle
w=PdyN dz+Qdz A de+ Rdx A dy

définie sur un domaine D € R?, P,(Q, R des fonctions de classe C' sur D, on obtient

OP 9Q OR

3. Une forme différentielle de degré 3 sur D C R3 s’écrit
v=f(x,y,z)de A dy A dz

avec f(x,y, z) - une fonction sur D. Il n’y a pas de 4-formes différentielles a cause de
I'anti-symétrie, donc en particulier, dv = 0, Vv € Q3(U), U C R3.

On reconnait ici, au moins formellement, les expressions en coordonnées du gradient
d’une fonction (23), du rotationnel (24) et de la divergence (25) du champ de vecteurs
correspondant. De cette facon, dans R? les opérateurs de la théorie des champs de
vecteurs se révelent étre tous liés a la différentielle de de Rham sur des formes de
degrés 0,1,2.

La dimension 3 est spéciale. En plus de la dualité entre les 1-formes et les champs
de vecteurs dans la théorie des formes différentielles, il y a une dualité appelée dualité
de Poincaré (le méme Poincaré que le théoreme). Cette dualité de Poincaré sur RP est
une application entre les k-formes et les (p—k)-formes. Par conséquent en dimension 3
les 1-formes sont duales aux 3 —1 = 2-formes. De ce fait, via cette dualité de Poincaré
les 2-formes sont aussi liées aux champs de vecteurs.

7.5. Formes fermées. Théoreme de Poincaré pour les formes différentielles.

Définition 112. On dit qu'une k-forme différentielle w est fermée si dw = 0.

Théoréeme 113 (Poincaré pour les formes différentielles sur RP).
Soit a une k-forme différentielle sur RP. Alors « est exacte si et seulement si elle
est fermée.

Exemple 114. On souhaite savoir si la forme o = 4zy dz + (1 + 222) dy est exacte
et trouver éventuellement sa primitive. La forme est définie sur R? tout entier qui est
simplement connexe. On a ici P = 4y et Q = 1 + 222 On calcule :

or 0
Yy x
La forme est donc exacte et on cherche une primitive f en résolvant le systeme :
d
g_; = 4zy
a_y = 1 + 2:172
en intégrant la premiere de ces équations par rapport a x, il vient :
fla,y) = 227y + (y),

ol ¢ est une fonction d’une variable, dérivable. On utilise ensuite la deuxieme équation :

D212y + (y)
dy
Dot ¢(y) =y + C, C € R et finalement
flz,y) =22y +y+C

Cela correspond au calcul du potentiel du champ correspondant.

=1+ 222
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On utilise cette méthode pour résoudre certaines équations différentielles ordinaires
. . . N dy N / /oo 7 \

- lei par exe{nple si on pense & g, comme a i/, la dérivée de y par rapport a x on a
intégré une équation différentielle

day + (1 +22%)y = 0.

Autre exemple : a = 2y*(z + y) dz + 2zy(xr + 3y) dy est une forme fermdée et par
conséquent exacte, donc sa primitive f(z,y) = z*y* + 2y>z + C donne la solution
2%y? + 23z + C' = 0 de I'équation différentielle : 2y?(x + y) + 2zy(x + 3y)y’ = 0.

On peut le voir comme ¢a : une équation différentielle peut se réécrire de la facon
suivante : a = 0, ot « est une 1-forme différentielle. Alors, si a = df, f = const est
la solution de I’équation différentielle o = 0.

La théorie des formes différentielles est utilisée en intégration. Souvent on dit qu’on
integre des fonctions, en réalité on integre des formes différentielles. Cette ligne de
pensée va nous diriger vers 'intégration des fonctions de plusieurs variables.

8. CHAPITRE VIII. INTEGRALES MULTIPLES

8.1. Définition. Intégrale double. Soit f une fonction continue sur un rectangle
R = [a,b] x [c,d] de R On partage ce rectangle en n - m petits rectangles R;;,i €
[1,m], j € [1,n]. R;; a pour cotés le m-ieme segment horizontal et le n iéme segment
vertical. Son sommet supérieur droit est le point (z;,y;) = (a +1- =%, c+j - =°).
La somme de Riemann, S, est la somme des volumes des paralleleplpedes de bases
sur R;; et de hauteurs donnés par la valeur de f en (z;,y;) de R;;

S =L ESTS flw)

i=1 j=1

Définition 115. L’intégrale double de f sur R est la limite des sommes de Riemann :

/ flzyy)dedy = lim S,
R

m—00,n—00
Propriété 116.

Linéarité. Soient f et g deux fonctions réelles continues sur R, alors

// M(z,y) + pg(z,y))dedy = A //fxyda:dy+u// (z,y)dzdy

(2) Croissance. Sment f et g deux fonctions réelles continues sur R, telles que
flz,y) < g(x,y), ,Y) € R, alors

/ fxydxdy<// (z,y)dzdy

On en déduit que
‘/ fz,y) dxdy‘ S/ |f(z,y)| dzdy
R R

(3) Théoréme de Fubini pour un rectangle. L’intégrale double d’une fonction
réelle continue f sur un rectangle R = [a,b] X [c, d] est égale a deux intégrales
simples successives :

//Rf(:v,y)dxdyz/Cd/ab(f(x,y)dx)dy:/ab/cd(f(x7y)dy)dx
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En particulier, si f(z,y) = g(z)h(y)

//Rﬂx,y)dxdy:/abgmdx-/cdh(y)dy

8.2. Aire d’une partie quarrable. Théoréme de Fubini. Pour définir 'intégrale
double sur une partie de R? qui n’est pas un rectangle on introduit la notion d’une
partie quarrable du plan.
Soit D une partie bornée de R? et R = [a,b] X [c,d] un rectangle qui la contient.
On appelle subdivison o de R, m-n rectangles R;; = [z, iv1] X [y;, Yj+1], Ti, y; € R
venant du partage de [a, b] en m segments et de [c,d] en n segments :

a=rg< 1< - <Typ=0b; c=y<yy<---<y,=d

pour m et n quelconques. Le rectangle R;;, est d’aire pu(R;;) = (xit1 — ;) - (Y541 — Yj)-
A toute subdivison ¢ de R on associe deux quantités qu’on appelle les sommes de
Darboux :

s(o) = Z (it1 — 1) - (Yj+1 — y;) et S(o) = Z (it1 — i) (Yj+1 — Y5)-
RijCD Rij ( D#0

Définition 117. On dit que D C R est quarrable si la borne supérieure des sommes

s(o) est égale a la borne inférieure des sommes S(o). Leur valeur commune donne
I’aire de D.

Remarque 118. Si D est une partie quarrable du plan alors la frontiere de D est
quarrable d’aire nulle. Ainsi, un disque ou un polygone sont des exemples de parties
quarrables, que ’on prenne ou non leur frontiere.

Définition 119. Une fonction f bornée sur une partie quarrable de R? est intégrable
si et seulement si la somme (aussi appelé une somme de Riemann)

Z f(ug,v;) Aire(R;)
Ri; N D#0

tend vers une limite finie indépendante du choix de (u;,v;) quand x; 11 —x; et y;41 —y;
tendent vers 0. Cette limite est appelée 'intégrale de f sur D :

//D f(z,y) dzdy.

Théoreme 120. Soit f : D — R une fonction continue et bornée sur une partie
quarrable du plan. Alors f est intégrable sur D.

Remarque 121. La propriété d’étre bornée est importante. C’est la méme chose
pour les fonctions d’une seule variable comme le montre 'exemple de la fonction 1/x
qui n’est pas bornée sur l'intervale |0, 1] : elle n’est pas intégrable!

Théoreme 122. Soit f : D — R wune fonction bornée sur une partie quarrable
du plan. Si l’ensemble des points de discontinuité de f est d’aire nulle alors f est
intégrable sur D.

Par ailleurs, I’aire d'une partie quarrable D C R? peut étre vue comme une intégrale
d’une fonction constante égale a 1 sur D :

Aire(D) = / /D dz dy
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Il est facile d’expliquer cela par un raisonnement géométrique - présenter le graphe
de la fonction 1 sur D et voir quel volume représente l'intégrale double.

Comment, en pratique, calcule-t-on les intégrales doubles sur une partie quarrable
du plan?

- Soit ¢ et ¢ deux fonctions continues sur [a, b] et soit

D = {(x,y) € R*| ¢() <y <(x)},
(Faire un dessin). Soit f une fonction réelle intégrable sur D. Alors, on a

/[ ramasan= | b ( /¢ :p:)f(:c,y)dy) dr.

Exemple 123. On calcule
I:// (z +y)*dedy
D

ou D est un triangle de sommets (0,0), (0,1) et (2,0). Alors ici
é(x) =0 et ¥(z) = —g +1, z€0,2).

2 [ p—x/241 2 . 7
I:/ (/ (w+y)2dy> dx:/ [(z +9)°])_, s dr = ¢
o \Jo 0

La variable x ayant exactement le méme statut que la variable y donc on peut calculer
la méme intégrale comme suit :

[ /01 (/OHy(x + y)Qdm) dy

et obtenir le méme résultat. Il faut faire attention aux bornes de l'intégrale. La valeur
de l'intégrale est un nombre - on ne peut pas avoir des fonctions pour des bornes pour
I'intégrale simple calculée en dernier.

Donc

8.3. Changement de variables dans une intégrale double. Matrice jaco-
bienne. Soit f une fonction continue sur un compact quarrable D C R2. Soit une
bijection notée A — D définie par :

(u,v) = (2 = ¢(u,v),y = P(u,v)),
¢ et 1 étant de classe C'. Alors,

D(z,y)
z,y)dxd :// o(u,v), Y(u,v du duv,
//Df( y)dzdy Af( (u,v), ¥(u,v) Dlu.0)
ggz: Z; = —gz —gz — —gi —gz est la valeur absolue du déterminant de la matrice

Jacobienne (définition 51) des dérivés premieres de 'application A — D.

On peut le voir en utilisant le calcul des formes différentielles. Si z = z(u,v) et y =
y(u,v) la 2-forme différentielle dx A dy s’exprime en du A dv par le calcul suivant
(dans le contexte des intégrales on n’écrit pas de symbole de produit A) :

[ Ox Ox dy dy
drdy = (%dtu— %dv) . (%du—l— %dv)

= %@dudv—ka—x@dvdu: (8x3y &an) dudv

Oou Ov ov Ou

Oudv Ovou
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Exemple 124. Si on effectue un changement linéaire des variables :
o(u,v) = au+ bv, Y(u,v) = cu+ dv
alors, la fonction intégrée n’est modifiée que par le facteur
lad — be|,

(valeur absolue du déterminant). Lorsque ce déterminant est 1 (pour une rotation par
exemple), la fonction intégrée reste inchangée. Ce changement de variables linéaire
envoie un carré [0,1] x [0,1] vers le parallélogramme P engendré par les vecteurs

( Z ) et ( cci ) . Donc en particulier
Aire(P) = / dedy = / lad — be| dudv = |ad — b
P [0,1]x[0,1]

Exemple 125. Changement en coordonnées polaires. Soit [0, 00[x [0, 27r[— R? une
bijection entre les coordonées polaires et cartésiennes données par

(r,t) — (z =rcost,y = rsint).
D(z,y)
D(u,v)

Calculer I = [/ I y*dxdy sur D, disque de centre (0,0) de rayon R. Le calcul direct
est assez long :

1= [ ([P dy) de= [52 ([ 2 dy) ax

= [R20f3) de = 4 [FVRE = 2?)P da

X
gt | — 2 2
‘3{1 &’—rcost—i-rsmt—r.

= 4 ff/z R3sin® §(—Rsin6)df = 3 R* OTF/Q sin! df = =1
ou on utilise le changement de variables
r=Rcosf, 0<0<n/2, dx=—Rsinfdf, R*—2?= R*(1—cos’f) = R?sin’6.
On utilise aussi la linéarisation de sin? 6 :

0 _—io\ 4 40 _ 0210 | G _ o—2i0 —4i6 1 1 3
sinA‘H:(%) =6 ¢ +16 € te :§Cos49—§(30529+§

Ce calcul a l'air assez long et fort utile, mais a ’aide d’'un changement de variables
sous l'intégrale double on arrive au résultat plus rapidement : les coordonnées polaires
transforment le rectangle en disque. Ici on a un disque et donc :

A={(rt)eR*|0<r<Ret0<t<2r}— D={(zy) € R’|2* +y* < R’}
D’ou

R 2 4 2m 4

R 1 —cos2t R

I://T2Sin2t7“dtd7":/ r3dr-/ sin?tdt = / e P
A 0 0 4 0 2 4
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8.4. Volume. Intégrales triples. Pour certaines parties £ C R3 et certaines fonc-
tions f : E — R on définit un nombre réel noté

I= //Ef(x,y,z)dxdydz

et appelé l'intégrale de f sur E.

Définition 126. Un compact élémentaire A de R? est une partie de R? de 1'une des
formes suivantes :
(1) A(:v,y) = {(.Z‘,y,Z) < R3| (bl(xuy) Sz < ¢2<I,y)7 0f1(l’,y) €D - partie
quarrable de R? et ¢y, ¢ — fonctions continues surD}
2) A, = {(z,y,2) €ER3}| a<2z<b, ou(x,y) € D(z) = la projection
sur le plan zy de Uintersection de A et du plan passant par (0,0, z)
et parallele au plan zy}
(3) P =[a,b] x [c,d] X [e, f], dans ce cas on dit aussi que c’est un pavé de R3.
Théoréme 127. (de Fubini) Soit A un compact élémentaire de R3 et f(x,y,z) une
fonction continue sur A.

(1) Si A est de type A,y alors

Fla,y,2) dedydz = ¢2($’y)f(x,y,z)dz dz dy
A D \ Y ¢1(z,y)

(intégration par "piles”)

(2) Si A est de type A, alors

///Aﬂx’y’z)dxdydzzfab (/D(Z)f(w,y,Z)dxdy> dz

(intégration par "tranches”)
(3) Si A =a,b] x [e,d] x [e, f] alors

[l penrie= [([([ ) )
LU (o) w) -

En particulier, le volume de A est 'intégrale triple sur A de la fonction 1 :

Volume de A = /// drdydz
A

Les intégrales triples sont des intégrales de 3-formes différentielles. Pour les 3-formes
différentielles on peut calculer ce qui ce passe si on change les variables. Supposons
que z,y et z soient des fonctions de variables u, v et w telles qu’on a les formules

= z(u,v,w), y=ylu,v,w), z=z(u,v,w).

Ce sont des formules de changement de variables - ¢’est-a-dire une transformation qui
a un point m de coordonnées u,v et w associe le point de coordonnées x,y et z. Le
jacobien du changement de variable est le déterminant

‘D(x,y,z) dz/0u Ox/O0v Ox/0w

- = | Jy/Ou QOy/ov Jy/ow
o) 92jou 0z/00 02)0w
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Alors, si le domaine A est transformé par ce changement de variables en A’, la 3-forme
différentielle dx dy dz doit étre changée a ’aide du Jacobien et on obtient la formule
suivante :

// flx,y, 2z dxdydz—//A/f (u,v,w), (uvw)z(uvw))‘gézgwi

8.5. Coordonnées cylindriques. Coordonnées sphériques. Prima facie, les
coordonnées cylindriques sont r, ¢ et z telles que

du dv dw

x =rcost, y=rsint, z =z, avec 7’ =z +y*, t €0, 2n]
On obtient

D(z,y,2)|
D(r,t,z) |

Exemple 128. Le volume de la partie A du cylindre d’équation 2% + y? — ax < 0
(o @ > 0) comprise entre le plan zy et le plan d’équation z = 1 s’obtient grace
a la formule de changement de variables : A est transformée par les coordonnées
cylindriques en

A ={(r,t,2)| t €]0,2x], r € [0,acost], z € [0,1]

2 acost 2
/// dxdydz—/ / rd’rdt/ dz—/ acost

/”1—#008225 _a7r
2

Alors,

Les coordonnées sphériques sont (6, ¢, r) telles que
(26)
g :[0,7] x [0,27] X [0, +00] — R3
0,0,7) — g(0,0,r) = (rsinfcos ¢, rsinfsin ¢, r cos ).

9. CHAPITRE IX. COURBES ET INTEGRALES CURVILIGNES

9.1. Courbes de R?. Théoréme des fonctions implicites pour les courbes de
R2. Une courbe I' de R? peut étre définie de plusieurs facons différentes.
A) Forme explicite y = f(z) ou f: I - R, I C R,

I'={(z,y)|z €I CRy=f(z)}.

Si f est dérivable en z € I alors I' possede une tangente au point my = (¢, yo), ol
yo = f(xo). L’équation de cette tangente est

y— Yo = f'(x0)(z — o).
B) Forme paramétrique (cf. Définition 46)

Définition 129. Une partie de RP, ' est une courbe s’il existe une application
continue v d’un intervalle [a,b] C R dans I C RP. Si cette application est bijective,
~ est appelé un arc de courbe. Le couple (T',v) est appelé une courbe paramétrée. Si
v(a) = v(b) mais y(t1) # (t2) pour tous les points t; # ty de [a,b] la courbe T' est
appelée une courbe fermée ou un circuit fermé.
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Les courbes planes sont des courbes dans R2. Les courbes gauches sont des courbes
dans R3.
Soit

x =g(t)
t) =
v(t) { y = h(t)
olt g,h : [a,b] = R, [a,b] C R. Alors, la fonction (¢) a valeurs dans R? sur un
intervalle [a, b] définit T, une courbe paramétrée dans R? :

I'={(z,y)lx = g(t),y = h(t); t € [a,b]}.

On dit que y(t) = (g(t), h(t)) est une représentation paramétrique de la courbe.
La méme courbe peut avoir des représentations différentes, par exemple, les pa-
ramétrisations

v ={ 8 24 ek a6 =

définissent le méme segment sur la droite y = 2z.
Pour une courbe

r =s/2

Y —s , s €10,2]

sous la forme de déterminant d’une matrice

r—x9 ¢(to) _ 0
y—yo h(to)

Ce qui donne
g (to)(x — o) — f'(to)(y — vo) = 0.

n(t
Si (¢'(to), ' (to)) = (0,0) la tangente peut exister également, sa pente est thr? ,((tog
—to g'{to

lorsque cette limite existe.

Définition 130. On note I'" un arc d’une courbe avec un sens de parcours indiqué.
On dit qu’on choisit 'orientation de I' quand on choisit le sens de parcours. On
dénote par I'" un arc d’une courbe qui est le méme que I'" mais avec un sens de
parcours opposé. Soit v : [a,b] — I' une paramétrisation de I'. On dit que v est
compatible avec lorientation de I'" si le point 7(¢) se déplace dans le sens de parcours
de I'" lorsque le parametre croit de a a b.

Exemple 131. Soit I' une partie de la droite y = x sur l'intervalle [0, 2] parcourue
du point (2,2) vers le point (0,0). Deux paramétrisations

tel0,2], ’V(t):<i) et“(t):(gj)

se distinguent par 'orientation : p est compatible avec I't tandis que 7 a une orien-
tation opposée.

C) Forme implicite : par une équation cartésienne

I'={(z,y) € D|f(z,y) =0}ou f : D =R, DCR%
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Dans ce cas, sous certaines conditions, ¢’est possible de se ramener a la forme explicite.
On cherche a exprimer y en fonction de = par y = ¢(x) localement, i.e. au voisinage
d’un point de la courbe (zg, yo).

Théoréme 132. (Des fonctions implicites pour les courbes.) Soit D C R* et f : D —
R une fonction de classe C* sur D. Soit (xg,y0) € D avec

f(@o,y0) =0 et g—i(xo,yo) # 0.

Alors il existe I C R un intervalle ouvert de centre xy et J C R, un intervalle ouvert
de centre 1, tels que

(1) Vo € I, f(z,y) = 0 posséde une unique solution y € J notée y = ¢(x) (en
particulier yo = ¢(xo)).

(2) En particulier, ¢ : I — J est dérivable sur I avec

Exemple : f(z,y) = 22 +y*>—1, g—g = 2y. Pour le point (zg,70) = (0,1) de la courbe

f(z,y) =0ona g—;’(o, 1) = 2 - le théoreme s’applique, d’ou l'existence d’une fonction

¢ : I — J. On peut prendre les intervalles I =] — 1, 1] et J =]0, 2[. Dans ce cas simple
on peut expliciter ¢(x) = /1 — 22. Pour la dérivée on vérifie que
2
T T L(x,y)
¢'(r) = - = =3

V1_$2_ Y g_gjj(xvy)

L’intérét du théoreme réside dans les cas oul on ne peut pas expliciter ¢, mais ou
néanmoins on peut construire le graphe en utilisant les valeurs des tangentes.
En utilisant la formule de Taylor, on a

flz,y) = f(zo,90)
"’g—i(%o,yo)(f —x0) + g—i(xo,yw(y — o) + o(y/|z — zo> + |y — vo|?)

La ligne de niveau 0 de f définit une courbe implicitement. (¢, yo) appartient a cette
courbe si f(zg,yo) = 0. La différentielle en ce point décrit bien le comportement de
la courbe :

(27) %(1’07%)(% — ) + 8_f<x07 Yo)(y — yo) = 0.

ox oy
C’est une équation de la droite tangente. Si on peut résoudre cette équation linéaire
par rapport a y (i.e. %(Cﬂo,yg) # 0) alors la courbe f(z,y) = 0 est proche de la
droite (27) dans un voisinage suffisamment petit. On peut espérer pouvoir résoudre
f(z,y) = 0 comme une relation explicite entre y et .

Remarque 133. Si %(:co,yo) # 0 le théoreme des fonctions implicites appliqué en
permutant le role de x et y donne une application ¢ : J — [ et au voisinage de
(20, y0) 'équation de la courbe est z = 9 (y).
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9.2. Droite tangente, plan normal & une courbe paramétrée de R3. Une
courbe paramétré dans l'espace, appelée aussi ”courbe gauche”, est donnée par une
application vectorielle :

x(t)
y&)=1| y) |, telCR
z(t)
Le vecteur directeur de la droite tangente au point de la courbe (xg, yo, 20) = (2 (o), y(to), 2(to))
est donné par la dérivée de v :

— '
v (to) = | ¥ (to)
Z/

La droite tangente T' passe par (o, Yo, 20) et parallele au vecteur 7'(¢y). Cela signifie
que chaque vecteur Poﬁ passant du point Py = (¢, Yo, 20) au point P = (x,y,z) € T
est colinéaire au vecteur 7' (¢y). En coordonnées cela donne 1’équation de la droite :

r—1x9 = ka'(ty)
y—y = ky'(to) |, keR
z—2zy = kZ'(to)

ﬁ
k est ici un coefficient de proportionnalité entre les vecteurs Poﬁ et 7' (o). Cette
variable k dépend de la position du point P sur la droite et quand k& parcourt R, le

point P parcourt la droite tangente. Si toutes les coordonnées de 7' (¢y) sont non-nulles
on peut réécrire I’équation de la droite sans k :

T—To Y—Y _ 22— %0

#(t))  y(to)  2(to)’
Le plan normal, orthogonal a la courbe au point de la courbe (zo, o, 20), ce qui

en pratique signifie orthogonal a la tangente en ce point, est donné par la relation
suivante :

(28)

(o) - (x — o) +y'(to) - (v — o) + 2 (t0) - (z — 20) = 0.

Ici on utilise le produit scalaire de la tangente et du vecteur Poéi, passant du point
Py = (x0, 90, 20) au point @ = (z,y, z) du plan. Le plan est normal quand le produit

scalaire ' (tg) - Py vaut 0.

Exemple 134. Cherchons les équations de la tangente et du plan normal a la courbe
donnée par les relations paramétrique :

au point (xg,v0,20) = (1,1,1), t = 1. On a 2’ = 1, ¢ = 2t, 2/ = 3t?, donc au
point (1,1,1), le vecteur directeur de la tangente est égal a (1,2, 3). L’équation de la
tangente est

L—To _Y—Y 22— %

1 2 3

et celle du plan normal

1-(x—x0)+2-(y—yo) +3-(2—2)=0.
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Derniere remarque ici a propos de la dimension. La droite est un objet de dimension
1, donc pour écrire une équation d’une droite dans R? il faut deux relations linéaires
indépendantes, car 1 = 3 — 2. Quand on utilise une variable supplémentaire k pour
écrire une équation d’une droite, on a 4 variables et 3 relation linéaires : 4 — 3 = 1.

Un plan dans I'espace R? est donné par une seule équation linéaire, du point de
vue de la dimension car la dimension du plan est 2 =3 — 1.

9.3. Longueur d’une courbe. Abscisse curviligne. Un arc de courbe est orienté
par le choix de I'un des deux sens de parcours possible, ce qui revient a distinguer les

vecteurs tangents opposés £’ (¢). Pour calculer la longueur d’un arc de la courbe I'
on partage la courbe en n morceaux et on cherche la somme des longueurs. Quand
n — oo les morceaux de la courbe deviennent petits et presque des segments donc

Z | M M| = Z 17 (tie1) — 7 ()] = Z |7 () || (b — 1)

on peut substituer a la longueur d’un morceau M; M, ,; la longueur du vecteur tangent
17"(t;)|| au point M; = ~(t;). En considérant des subdivision de plus en plus fines et
en passant a la limite en noo on obtient la sommation continue qui définit la longueur :
I’arc de courbe I' donné par la parametrisation 7 : [a,b] — R3, ~(t) = (z(t), y(t), 2(t))

a pour longueur
b —
/
= [ 17 e

Théoreme 135. La longueur d’un arc d’une courbe est bien définie - elle ne dépend
pas de la paramétrisation.

Soit p : [ug, us] — [a,b], p(u) = ¢ une fonction dérivable p'(u) # 0, pour u € [ug, ug],
et a = p(ugq),b = p(uy). On ale méme arc de courbe I avec une nouvelle représentation
paramétrique p(u) = y(p(u)). Montrons que L(I') = fuf |p/ (u)|du. En effet,

d,u dfy dt
du df du
uf dy dt dy dt b Ildy
L) = Y du = du = SIS ) = [ || E2]] ae
o= [ wona= [fGe = [Tl (&) - L6
On pose ds = |77t| dt = /2 + ¢ + 22 dt. On lappelle I'abscisse curviligne car

cette forme différentielle joue le méme role dans les intégrales sur les courbes que dx
sur les intégrales simples sur un intervalle.

Remarque 136. Dans R? une courbe paramétrée est donnée par

o={1Z 50 vo={ 52 1 Tel- Ve

Si la courbe est donnée par I'équation y = f(z), alors

0= 4l ) 1FOI= VIR
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9.4. Intégrale curviligne d’une fonction.

Définition 137. Soit f une fonction continue sur un domaine D C R? contenant une
courbe I') ¢ € [a,b]. L’intégrale curviligne de f sur I" est définie par

b
/Ff(:v,y,Z) ds:/ (), y(0), 2(0) 7' ()] dt

Exemple 138. Soit I' le cercle dans le plan z = 1 de centre (0,0,1) et de rayon
R > 0. On choisit une représentation paramétrique, pour t € [0, 27|

x(t) = Rcost 2'(t) = —Rsint
v(t) =< y(t)= Rsint 7F'(t)=<{ y'(t)= Rcost
z(t) = 1 Z(t)= 0

Ona |7'(t)] = VR?sin?t + R2cost = R. La longueur du cercle

L(F):/Fds:/o%w(t)ydt:/%Rdtzsz

0
Soit f(z,y,z) = #* = y? + 22, Sa restriction sur le cercle est

f(z,y,2)|lr = f(Rsint, Rcost,1) = R*cos®t + R*sin’t + 1= R* +1

et finalement l'intégrale curviligne vaut
2m
I = / (1+R)Rdt =27(1+ R*)R
0

9.5. Intégrale curviligne d’un champ de vecteurs = intégrale curviligne
d’une 1-forme différentielle.

Soit V' : D — R2 un champ de vecteurs continu sur une partie D C R? contenant
une courbe I' de paramétrisation y(t) : [a,b] — T.

Définition 139. L’intégrale
b
29 1= [ Vo7

du produit scalaire de 7(7(1&)) et du vecteur tangent a la courbe I' au point () :
b (t) est appelé I'intégrale curviligne d’un champ de vecteurs 7

L’intégrale (29) est indépendante de toute paramétrisation compatible avec 'orien-
tation de I'". Cette intégrale est souvent notée

= V. @
T+

ot ds = 7 ds est le ”vecteur de I'abscisse curviligne” - le vecteur unitaire 7 étant le

vecteur-directeur de la tangente au point donné de la courbe. Le vecteur 7 est orienté
dans le sens de parcours de la courbe. En particulier, si V' = P(z,y) i + Q(z,y) j

(30) I—/F+de+Qdy

- ¢’est une intégrale curviligne d’une 1-forme différentielle o formellement correspon-
dante au champ de vecteur coordonnée par coordonnée :

7:P(x,y)7+Q(x,y)7wa:de—l—Qdy
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Exemple 140. Soit y - l'arc de la parabole y = x? sur un segment [—2,2] et 7 =
- = e . —>
—y ¢ + 2 j . On peut calculer de deux fagon différentes l'intégrale I = fr Voo ds.

Premiere facon - via dz et dy

— — . crs .
A la place de champ de vecteur —y ¢ + x j on écrit une 1-forme différentielle
—ydx 4+ xdy. Donc l'intégrale curviligne devient

I:/ —ydxr + xdy
T+

On choisi une représentation «y : [-2,2] — I' par
[t e 1 de= 1-dt

2 2
I:/ —ydm—l—xdy:/ (—t2)dt+t-2tdt:/ (t?)dt = 16/3
T+

-2 -2

Donc

Deuxieme facon - directe via dt
On peut directement calculer 'intégrale par la formule (29) en réécrivant V (t) =

- = — —
—27 +tj et A () =17 +2t5 :

I:/2 7<t).7'<t)dt:/2<—t2.1+t.2t)dt:16/3.

2

Propriété 141. Propriétés de l’intégrale curviligne
— Si '~ est un chemin avec une orientation opposée a I'"

V.ds=— | V.d
r—= r+

— Soit T'y Ty la réunion de deux arcs de classe C'. Le choix d’orientations pour
I'; et I's fournit l'orientation pour leur réunion. On définit alors

/ ?@:/ 7-$+/ V. ds
rfur; v =

Remarque 142. Sens physique d’une intégrale curviligne : si 7(M ) représente une
force variable appliquée au point M du chemin I'", 'intégrale I est le travail de la force
V nécessaire pour déplacer une particule unitaire le long du chemin I't. L’intégrale
curviligne du champ V sur I'* est aussi appelé la circulation du champ V sur I'".

9.6. Théoreme de Poincaré et intégrale curviligne. Le théoreme de Poincaré
parle des conditions nécessaires et suffisantes pour qu’un champ de vecteurs soit
un champ de gradient (Théoreme 101) ou pour qu’une forme fermée soit exacte
(Théoreme 113). L’intégrale curviligne d’'un champ de gradient a des propriétés par-
ticulieres, a savoir :

—
Proposition 143. L’intégrale curviligne de champ de gradient 7 = gradf le long
d’un arc de courbe d’extremités A et B est égale a f(B) — f(A).

Démonstration. Montrons la proposition dans R?. Le champ

=, Of—=  Of—
7(x’y) _gradf_ 81‘ v+ ay J
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définit l'intégrale curviligne

/gr?ifis):/ A
r+ r+ O dy

Soit v : t — (x(t),y(t)),t € [a,b] une paramétrisation compatible de I't. En parti-
culier y(a) = A et v(b) = B. La restriction de la forme % dz + % dy sur I'* nous
donne :

of of _Of da ofdy ., (0fdz Of dy
6ardx+0ydy Oz dtdt+0y dtdt_(&t dt+8y dt) di
Y00 g, _

Donc,

b
/F s i = / af = [F(x(t), y(t)]. = F(B) — F(A).

a

O

L’intégrale ne dépend donc que des extremités du chemin d’intégration I't pas du
chemin lui-méme.

Proposition 144. Les propriétés suivantes d’'un champ 7 de vecteurs sont équivalentes :
— Il existe une fonction f telle que V = gradf
— Il existe une fonction f telle que V' - ds = df

— La circulation de V' d’un point A au point B est indépandente du chemin. Elle
ne dépend que de A et de B.

— La circulation du champ 7 le long de tout chemin fermé est nulle.

Exemple 145. Soit V le champ de vecteurs défini sur I'ouvert = R?\ {(0,0)} par

Viw,y) = Pla.y) T + Q) 7, - v

N Y
ou P(z,y) = 2P et Qz,y) = 2

On vérifie que 7 satisfait la condition nécessaire pour étre un champ de gradient :
oP_0Q _ y-z
dy  Oxr (22 + y?)?
On calcule la circulation de 7 sur le cercle unité C't paramétré comme suit :
v(t) = (cost,sint), t € [0,27], x(t) = cost, y(t) =sint.

Dans cette paramétrisation les différentielles sont dx = —sintdt, dy = costdt et les
coordonnées du champ
—y —sint x _cost

P(x(t), y(t) = Fip 1 Q(z(t), y(t)) = PN

Finalement, l'intégrale curviligne | o+ Pdz + Qdy se calcule

2m 2w
/ —sint(—sint) dt + costcost dt = / dt =27
0 0

et s’avere ne pas étre nulle. Par la Proposition 144, cela implique que ce champ 7
n’est pas un champ de gradient car la circulation le long du chemin fermé (le cercle
C*) n’est pas nulle!
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Par le théoreme de Poincaré on aurait pu anticiper cela car €2, le domaine de
définition de champ 7 n’est pas simplement connexe (Définition 99). En effet, le
cercle C'* est un chemin autour du point (0,0). Ce point étant exclu du domaine 2,
on ne peut pas ramener C'" & un point tout en restant dans €.

10. CHAPITRE X. THEOREMES DE STOKES : GREEN-RIEMANN,
OSTROGRADSKI...

10.1. Théoréme de Green-Riemann. Parfois on utilise la notation § pour une
intégrale sur une courbe fermée pour soulignier que le circuit est fermé.

Théoréme 146 (Green-Riemann). Soit D un compact de R? limité par un bord
C = 9(D) de classe C* par morceaux et P,Q : D — R des fonctions de classe C*.
On a

o f parsan [ (22w,

ot CT designe le bord C, orienté de sorte qu’un mobile parcourant C a toujours D a
sa gauche.

Démonstration. D’abord on donne ici une démonstration dans le cas le plus simple.
Soit D un carré R de sommets (0,0), (1,0), (1,1) et (0,1) et supposons = 0. On

cherche a démontrer
j{ Pdx = —/ —dxdy
AR

Coté gauche de 1’égalité Pour calculer l’mtegrale curviligne |, ap I dx on oriente
le bord du carré OR contre 'aiguille du montre. On note le coté de R allant du
sommet (0,0) vers (1,0)I';, de (1,0) vers (1,1) — I'y, etc. Le bord du carré OR =
LUl YUrsYry. On peut paramétré les cotés I'; o de la facon suivante :

1 :[0,1] = Ty, ( t) de=0-dt, dy=1-d¢
1 :[0,1] = Ty, (0,1—15) de=0-dt, dy=1-dt

) dx =f0 P(t,0)

)dx :fo P(1,t)0 - dt—O

) da —fo P(1—t,1)dt=— [ P
fr (x,y)dx —fo P(0,1—-t)0-dt=0

Finalement le coté gauche est égal a

1 1
/ P(t,0) dt—/ P(t, 1) dt
0 0

Coté droit de 1’égalité

On calcule l'intégrale double par Fubini :

/ —dxdy——/o (/O g—jdy) dx——/ol(P(x,l)—P(x,O))dx

ce qui est exactement le coté gauche obtenu précédemment !
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Il est clair qu’on démontre de la méme fagon que

_ [[9Q
6RQ(:v,y)dy—//R e dr dy.

La démonstration se généralise facilement sur n’importe quelle partie quarrable de
R2. O

Remarque 147. L’intégrale curviligne du champ 7(9@, y) = P(x, y)7> + Q(x,y)7

est l'intégrale de la 1-forme différentielle correspondante
a = P(z,y)dzr + Q(z,y) dy.

On remarque que la 2-forme

est égale a da. La formule de Green-Riemman dans cette écriture devient

(32) ]gw)a: /[ ae.

Exemple 148. Calculer I'intégrale curviligne I le long de la boucle fermée C' constituée
par les deux arcs de parabole y = 22 et = y? décrite dans le sens direct avec

I= /(Qxy — 2?)dz + (x + y?)dy.
c
Vérifier le résultat en utilisant la formule de Riemann.

Important! La formule de Green-Riemann marche seulement dans des domaines
fermés et bornés par une courbe fermée - on n’a pas de formule reliant les intégrales
doubles aux intégrales curvilignes sur un chemin quelconque. La formule de Green-
Riemann est vraie seulement pour des chemins fermés.

10.2. Applications (calcul d’aire, théoréme de Poincaré). L’aire d'un domaine
de R? grace au théoréme de Green-Riemann s’exprime par une intégrale curviligne

1
Az’reD:/ dxdy:—f —ydx—i—xdy:—j{ ydx:?{ zdy
D 2 Jap) a(D) a(D)

Exemple 149. Soit D le domaine défini entre la parabole y = 22 et la droite y = 4.
On cherche 'aire de D. On peut la trouver en calculant I'intégrale curviligne de champ
de vecteurs 7 = —y 1 +xJ . Lebord est une réunion de I' et I'; ou I est la parabole
de paramétrisation (t,t%),t € [—2,2] et I'; la droite de paramétrisation (2 — ¢,4). De
I’exemple 140 on a

2 2
I—jé —yda:+xdy—/ (—tz)dt+t-2tdt—/ (t*)dt = 16/3
T+

—92 —2
et sur la droite 'y onax =2 —1t, y =4, donc dv = —dt, dy =0- dt et
2

I:/+—yd$+xdy:/2(—4)(—dt)+(2—t)(0-dt):/ 4dt = 16

2 -2

Le résultat pour l'intégrale curviligne sur le chemin fermé est

1 4
/ —ydx+xdy:—6+16:6—.
IO 3 3
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On vérifie que

f —ydx+xdy:2// dx dy.
ryr: D
2 4 2 372
2
// dxdy:/ / dydx:/ (4—x2)dx:[4x_x_] _ 32
D —2 Jz2 -2 3 _9 3

ce qui est exactement la moité de I'intégrale curviligne.

Soit la forme différentielle « = Pdz + Q dy sur D C R? fermée. C'est-a-dire que

_[(0Q 0P B
da—(% 8_y) drdy = 0.

Par la formule de Green-Riemann (31) on voit que cela implique que

£+de+Qdy_// (@—8—];) dedy =0

et cela sur n’importe quel chemin fermé C*. La seule condition sur C'* est que le
chemin C* doit étre le bord d’'un domaine quelconque D!

La formule de Green-Riemann éclaire un autre coté du théoreme de Poincaré - une
1-forme fermée sur un domaine D a son intégrale sur toute courbe fermée contenue
dans D égale a zero. Par conséquent elle est exacte (cf. 141). Par exemple, pour la
forme

_ xdy —ydx
T
on arrive en changeant des variables en coordonnées polaires (z,y) — (r,t) :
r =rcost, y =rsint
a obtenir
dr = drcost —rsintdt, dy = drsint 4 rcostdt et par conséquent w = dt.

Il apparait que w est exacte par cette formule! Or si on calcule son intégrale sur
un circuit fermé autour de l'origine comme on a fait dans 'exemple 145 on voit
que l'intégrale n’est pas nulle et par conséquent la forme n’est pas exacte. Ce qui
est correct c’est que w est exacte localement, mais pas globalement, partout dans
R?\ (0, 0). Le plus grand ouvert sur lequel on peut obtenir le changement de variables
continu (z,y) — (r,t) est le complémentaire dans le plan R? d’une demi-droite issue
de l'origine, mais pas le plan entier ni le plan privé de I'origine.

10.3. Surfaces. Intégrale de surface de fonctions réelles. L’idée de base est la
méme que pour les intégrales curvilignes, mais au lieu d’intégrer sur un arc de courbe
on integre sur une surface. C’est par une intégrale de surface qu’on calcule

— l'aire d’une surface (’aire d’une sphere, par exemple)

— le flux d’un champ de vecteurs a travers une surface
Une surface S de R? peut étre définie de différentes facons :

— a) Forme explicite par une équation de la forme z = f(z,y) ou f: D - R, D C

R?,

S={(z,y,2)| (v,y) € D CR* 2 = f(z,y)}.
Une paraboloide de révolution z = 22 + 3% en est un exemple.
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— b) Forme implicite par une équation de la forme F(z,y,z) = 0 ou F : E —
R, E C R?,

S={(z,y,2) € ECR? F(z,y,2) = 0}.
La sphere de R? de centre 1'origine et de rayon R en est un exemple :

?+y*+ 2" =R

— ¢) Forme paramétrique par une représentation paramétrique
g :DCR?> — SCR3

(u,v) = g(u,v) = (z,y,2)
Exemple 150. S - une sphere de centre l'origine et de rayon R
[0,7] x [0,27] — S CR?
0,0) — g(0,¢) = (Rsinf cos ¢, Rsinfsin ¢, R cos 6)

Soit m le point de S de parametres 6 et ¢.
— (a) Lorsque ¢ est fixé et que 6 varie dans [0,7] m décrit un demi-cercle. Un
vecteur-tangent a ce demi-cercle au point m est

39
00

— (b) Lorsque 6 est fixé et que ¢ varie dans [0, 27|, m décrit un cercle. Un vecteur-
tangent a ce cercle au point m est

%
d¢

(33) g

= (Rcosfcos ¢, Rcosfsin ¢, —Rsinf)

= (—Rsinfsin ¢, Rsin 6 cos ¢, 0)

On note

(9 (9
ﬁ@@—ﬁA£

ce vecteur s’il est non nul est normal a la sphere au point m. Le point m € S est
appelé un point régulier de la surface si ce vecteur est non nul en m.

On a une situation analogue pour une surface quelconque paramétrée par
g :DCR? — S, declasse C!
(u,v) = g(u,v) = (z,y,2)
On considere D une partie quarrable de R? et g de classe C! sur un ouvert de R?
contenant D. On note
ﬁ(u, v) = (99 N == 89

ou' v’
ce vecteur s'il est non nul est normal a la surface S au point (u,v).

La notion d’aire de la surface paramétrée par 7(u, v) avec (u,v) € D vient de la
considération suivante. La surface peut étre fractionnée en un nombre fini de parties
associées a des rectangles R;; = [u;, u; + Aju] x [v;,v; + Ajv] du plan de parametres
(u,v). L’aire de la portion de surface correspondant a R;; sera approchée par l'aire
d’un rectangle de cotés

od

0
?(ui,vj + Ajv) — ﬁ(ui,vj) ~ %Ajv et ?(uz + A, vj) — ?(ui,vj) ~ o

Il en résulte :

Aiu.

9, 0
A:ZHa—g ?|AUAU
i
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Ce qui, apres des fractionnements de plus en plus fins, aboutit a la définition précise
de 'aire avec une intégrale double. On note

oq 04q

dA = |52 A = | dud

et on l'appelle I’élément d’aire.
Voici un cas particulier : quand la surface est le graphe d'une fonction d’équation

z=h(z,y),on a:
— 2
Oh oh
A=,]|1 —
d +(8x> +(6’y> dx dy

Soit f:U <R, UCR3et SCU.Ona
fog :DCR?> - ScUCcCR?— R,
(u, ) — flg(u, v)).

On peut considérer 'intégrale double

- | /D F (g, )T (u,0)]] dudo

et démontrer que I est indépendante du choix de la représentation paramétrique g.
Pour calculer I'intégrale d'une fonction sur une surface on note

[—/SfdA

et on l'appelle intégrale de f sur la surface S.
En particulier, lorsqu’on prend pour f la fonction constante égale a 1 on obtient

S

Apres le choix d’une représentation paramétrique de S on calcule A(S) par

_ //D N (u, 0)]|| du do

Exemple 151. Sur la sphere de rayon R, la calotte sphérique S est I’ensemble des
points de coordonnées sphériques (R, 0, ¢) tels que 0 < § < . S a la représentation
paramétrique donnée par ’équation (33) de I’exemple 150. Le vecteur normal est

89/\09

3 No.0)=35n 50

(R?sin® f cos ¢, R? sin” § sin ¢, Rsin § cos 0),

et
IN(6,6)| = R?sin.

L’aire de la calotte vaut donc

SV, VP>

En particulier, pour o = 7, S est la sphere et son aire est 47 R2.
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Remarque 152. On remarque que si on change des variables par exemple, {z,y} en
{u,v} c’est exactement comme dans la section 8.3, la 2-forme :

D(z,y) Oxdy Oxdy

et on a le méme type de formule pour dy A dz et dz A dx. Le produit vectoriel :
r 07 B (ax dy Oydxr dydz 0z0y 0z0r Ox 8z)

a0 " \Gudv T 9udv Budv  Budv’ Gudv  dudv

oudv Oudv’ Oudv Oudv Oudv Oudv
Finalement,

de A dy =

(35) dA—a—ﬁ/\a—fdudv—da:/\dy+dy/\dz—|—dz/\da:

10.4. Intégrale de surface d’'un champ de vecteurs. Soit S une surface com-
portant deux faces distinctes. Elle est dite orientable.

En chaque point régulier, il existe deux vecteurs unitaires normaux opposés. Le
choix d’un de ces vecteurs 7+ oriente la surface S.

Soit 7 un champ de vecteurs continu sur S. Le flux d’un champ 7 a travers S est

I'intégrale de surface
/ V.itdA
S

_>
On peut noter 77+ dA = dA. De (35) on a
@:?dm/\ dy—f—?dy/\ dz+7dzA dx

— — —
Pour un champ de Vecteurs 7 = Pi +@Qj 4+ Rk et une surface S définie par
g(u,v) = (z,9,2), (u,v) € D C R

(36) /7 dA = //dedz+dedx+Rdxdy
S

Formule de la divergence - relie le flux de champ a travers une surface fermée a
I'intégrale triple de divergence de ce champ sur le domaine de R3 limité par cette
surface. Soit E un domaine de R® et S = O(F) la surface qui est le bord de FE.
Alors, la formule de la divergence (aussi appelée Ostrogradski et dans le contexte
éléctromagnétique - Gauss) est la suivante

(37) / 7-?4:/// divV dz dy dz

Exemple 153. Vérifions la formule d’ Ostrogradskl avec E - boule de R? de centre
O = (0,0,0) et de rayon R et 7 = P T +Q j —FRE> champ de vecteurs de composantes
P=2x Q =1y, R= 2z La frontiere de E est la sphere S de centre O et de rayon
R. On peut prendre la paramétrisation paramétrique de sphere (33) avec le vecteur

normal ﬁ(&, $) (34). Ce vecteur est dirigé vers l'extérieur, donc on note S* la sphere

orientée ainsi.
:/ V. N6, 6) dods
S+

On a
7(9(9, ®)) = (Rsinf cos ¢, Rsin 0 sin ¢, 2R cos 0),

son produit scalaire avec

ﬁ(@, $) = (R*sin’ f cos ¢, R? sin? fsin ¢, R sin 6 cos 0)
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est égal & R3(sin 6 + cos? fsin f). Finalement, 'intégrale recherchée est :

2T T 1 3
I =R? / d<;5/ (sin @ 4 cos® § sin §)df = 67;R
0 0

oP 0 OR
D’autre part div7 =—+ —Q + — = 4. L’intégrale triple
or Oy 0z

4 167 R?
/// div7dxdydz:4/// dvdydz = 4 Volume(E) = 4 x ZrR’ = GZR .
E E

Formule du rotationnel relie I'intégrale curviligne du champ de vecteur sur un cir-
cuit fermé avec le flux de rotationel du méme champ a travers une surface dont le
circuit est le bord. La formule du rotationnel (aussi appelée formule de Stokes) est la
suivante

(38) 7-&5:// otV - dA
05=C+ S+

Autrement dit, la circulation du champ 7 le long de la courbe fermé C'* est égale

an flux de rotationnel de V' & travers une surface limitée par Ct (avec l'orientation
compatible). Cette formule est une reformulation de la formule de Green-Riemann
pour une courbe fermée dans R?.

Exemple 154. Ca serait bien de faire encore un exemple de calcul par la formule du
rotationnel.

10.5. Formule de Stokes générale : fa(D) w= [pdw.

L’intégration est une opération qui a un domaine de dimension k et a une k-forme
différentielle associe un nombre. Des exemples sont

— l'intégrale simple
/ f(x)dx
I

- associe un nombre a une 1-forme différentielle f(z) dz sur un segment I = [a, b]

de dimension 1.
// g(x,y)dz dy
D

— l'intégrale double
- associe un nombre a une 2-forme différentielle g(x,y)dx dy sur un domaine

D C R?
/// h(z,y, z)dzdydz
E

— l'intégrale triple
associe un nombre a une 3-forme différentielle h(z,y, z) dr dy dz sur un domaine
ECR?

— l'intégrale curviligne

/Fp(% y)dz + ¢(z,y) dy

associe un nombre & une 1-forme différentielle p(z,y)dz + ¢(z,y)dy sur une
courbe I' C R? ou bien

/ P(z,y,z)dz 4+ Q(z,y,2)dy + R(z,y, z) dz
C
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associe un nombre a une 1-forme différentielle P(x,y,z)dz + Q(z,y,z)dy +
R(z,y, z) dz sur une courbe C' C R®. Une courbe étant un objet de dimension 1
cela est possible.

— l'intégrale de surface

// P(z,y,2z)dydz + Q(x,y, z) dzdx + R(z,y, z) dz dy
S

associe un nombre & une 2-forme P(x,y, z) dy dz+Q(x, y, z) dz de+R(z,y, z) dx dy
dans R? sur une surface S € R3, objet de dimension 2.
Soit D un domaine fermé et borné de dimension ¢ dans R, on note (D) son bord
(qui est de dimension ¢ — 1.) Soit w une (¢ — 1)-forme dans R? (Définition 106). Alors,
la formule de Stokes générale est satisfaite :

(39) /6 e /D o

Les cas spéciaux de cette formule sont :
—qg=1, p=1- c’est le théoreme fondamental de I’analyse :

/ af = £(b) - f(a)

a

— q=2, p=2 - théoreme de Green-Riemann

— q¢=2, g=3 - théoreme de Stokes (du rotationnel)

— q¢=3, ¢ =3 - théoreme d’Ostrogradski (de la divergence)

La formule (39) donne une formulation élégante de plusieurs théoremes.

Elle présente une connection entre 'opération géométrique 0 qui a un domaine D
associe son bord J(D) et l'opération algébrique - d qui & une forme différentielle w
associe une forme différentielle dw. Selon la formule (39) ces deux opérations sont en
dualité!

Il faut remarquer que 0, 'opération de prendre le bord, est différente de la notion
topologique de prendre la frontiere. La notion de I'intérieur change avec la dimension,
a savoir, si on regarde un segment [a,b] dans R son intérieur est un segment ouvert
Ja, b[ et sa frontiere est deux points {a, b}. Le méme segment dans R? n’a pas de points
d’intérieur ! Tous les points de [a, b] sont des points frontiere.

Ici, soit D un domaine de dimension k& de RP. Si D est donné par sa forme pa-
ramétrique avec m équations paramétriques avec n variables, sa dimension est £ =
p+n—m.

Par exemple, pour une courbe de R, v(t) = (x(t),y(t), 2(t)) il y a m = 3 équations

= l’(t), Yy = y(t)7 Z = Z(t)

sur p = 3 variables de R, (z, ¥, 2) qui dépendent d’une variable ¢, en tout p +n = 4
variables, dont une, t, qu’on appelle libre. Donc dans R? la dimension d’une courbe
estp+n—m=1.

Un autre exemple, une surface paramétrée dans R? est donnée par 3 équations sur 5
variables (u, v, x,y, z), dont u, v sont des variables libres et z, y, z s’expriment a partir
de u,v. Cela donne que la dimension d’une surface dans R? est égale & 2 = 5 — 3.

Souvent un domaine de dimension p — 1 dans R? est appelé une hypersurface. Pour
définir une hypersurface dans RP? il faut une équation reliant p variables. Ou bien on
peut introduire p — 1 variables libres et avec p équations définir une hypersurface.
Une surface de R? en est un exemple.
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On peut resumer comme suit : la dimension d’un domaine est le nombre minimal
de variables indépendantes qui le définissent.

Ce qui suit ces considerations de dimension, c¢’est qu’un voisinage €2 d’un point X
de D de dimension k& dans RP peut étre de deux types :

() Q~UCRou(2) Q~V CcR xR

Les points de D avec le voisinge de type (1) sont des points intérieurs. Les points de
D avec le voisinge de type (2) sont des points du bord. (L’opération de prendre le
bord peut aussi étre définie a 'aide des simplexes et des chaines (cf. Chapitre 9 de
[3]), ce qui dépasse le programme de ce cours.)

On remarque que 9(9(D)) = ) pour tout domaine D. Cette propriété est en corres-
pondance avec la relation d(dw) = 0 pour toute forme différentielle w (Lemme 110).
Le théoreme de Stokes général dit qu'on peut ”échanger” une opération avec I'autre.

C’est un résultat tres profond qui relie 'analyse des objets géométriques par des
méthodes algébriques. C’est une pierre angulaire de ’analyse moderne.
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