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Birapport de quatre points
On fixe un corps K.

Rappel : PGL2(K) =

{
z 7→ az + b

cz + d
, ad − bc 6= 0

}
agit sur

P1(K) = K ∪ {∞}.
Proposition

Le groupe PGL2(K) agit transitivement sur les triplets de points
distincts de P1(K).

L’unique homographie h qui envoie (z1, z2, z3) sur (∞, 0, 1) est :

h(z) =

z3 − z1

z3 − z2
×

z − z2

z − z1
.

Définition
Le birapport de quatre points distincts (z1, z2, z3, z4) est

[z1, z2, z3, z4] = h(z4) =
z3 − z1

z3 − z2
× z4 − z2

z4 − z1
.
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Permutations des quatre points

Proposition

Soit λ = [z1, z2, z3, z4].

1. Le groupe symétrique S4 est le produit semi-direct du
sous-groupe S3 (agissant sur {1, 2, 3}) et du sous-groupe
normal K engendré par les doubles transpositions.

2. Le birapport λ est invariant par le groupe de Klein K.

3. L’orbite de λ sous le groupe symétrique S3 ' S4/K est :

e · λ = λ, (123) · λ =
λ− 1

λ
, (132) · λ =

−1

λ− 1

(12) · λ =
1

λ
, (23) · λ = 1− λ, (13) · λ =

λ

λ− 1
·

Exemple : [z1, z3, z2, z4] = 1− [z1, z2, z3, z4].



Critère de cocyclicité

Proposition

Soient z1, z2, z3, z4 quatre points distincts de C. Alors :

z1, z2, z3, z4 sont cocycliques ou alignés ⇐⇒ [z1, z2, z3, z4] ∈ R.

1−1

1

−1

0

z1

= e iθ1

z2

z3

z4

[
e iθ1 , e iθ2 , e iθ3 , e iθ4

]
=

e iθ3 − e iθ1

e iθ3 − e iθ2
×e iθ4 − e iθ2

e iθ4 − e iθ1
=

sin θ3−θ1
2

sin θ3−θ2
2

×
sin θ4−θ1

2

sin θ4−θ2
2
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Théorème (Ptolémée)

(zi )1≤i≤4 alignés ou cocycliques dans cet ordre SSI ac + bd = ef .

z1
z2

z3
z4

a

b

c

d
f

e

|z1 − z2| · |z3 − z4|+ |z1 − z4| · |z2 − z3| = |z1 − z3| · |z2 − z4|∣∣∣∣z1 − z2

z1 − z3
· z3 − z4

z2 − z4

∣∣∣∣+

∣∣∣∣z1 − z4

z1 − z3
· z2 − z3

z2 − z4

∣∣∣∣ = 1∣∣[z1, z4, z2, z3]
∣∣+
∣∣[z1, z2, z4, z3]

∣∣ = 1

On conclut par le cas d’égalité de l’inégalité triangulaire car...

[z1, z4, z2, z3] + [z1, z2, z4, z3] = 1.
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Distance de Hilbert sur un ouvert convexe

Soit C ⊂ Rn ouvert convexe ne contenant pas de droite.

x0 y0

x y

d(x , y) = ln[x , y , y0, x0] = ln
y − x0

x − x0

y0 − x

y0 − y
≥ 0.



Proposition

L’application d ainsi définie est une distance.
Les géodésiques sont les segments.

{
d(x , z)

= ln[x , z , z1, x1] = ln[x , z ′, y ′, x ′]

d(z , y)

= ln[z , y , y2, z2] = ln[z ′, y , y ′, x ′],

d(x , z) + d(z , y)

= ln
z ′ − x ′

x − x ′
y ′ − x

y ′ − z ′
y − x ′

z ′ − x ′
y ′ − z ′

y ′ − y

= ln
y − x ′

x − x ′
x − y ′

y − y ′

≥ ln
y − x0

x − x0

x − y0

y − y0
= d(x , y).

x y

z

x1

z1z2

y2

x0

y0

x ′ y ′

w

z ′
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Cinq modèles du plan hyperbolique

(0, 0, 0)

(−1, 0,−1)

PSL
2 (C)

point

idéal
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(0, 0, 0)
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p
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a
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1
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r

côn
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Structures conformes du plan
Cône des produits scalaires euclidiens dans R2 :

S ++
2 =

{(
a b
b d

)
: a + d > 0, ad − b2 > 0

}
.

Structures conformes : S ++
2 /R+∗ – demi-droites !

a

b

d

b

d

C2

C2 =

{(
1 b
b d

)
: 1 + d > 0, d − b2 > 0

}



L’intérieur de la parabole comme espace métrique
I Distance de Hilbert sur un convexe sans demi-droite.

I Action linéaire de PSL2(R) par congruence sur S ++
2 :

g ·
(

a b
b d

)
= g

(
a b
b d

)
tg =

(
a′ b′

b′ d ′

)
.

I Action projective sur C2 par isométries !

g · (b, d) =

(
b′

a′
,

d ′

a′

)
.

q′ = (b′, d ′)

q = (b, d)
q0

q′0
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De la parabole C2 au demi-plan de Poincaré H (1)

Idée : considérer le cône isotrope de A =

(
a b
b d

)
∈ S ++

2 .

Pour (x , y) ∈ C2,

qA(x , y) = ax2 + 2bxy + dy 2

=
1

a

(
ax +

(
b + i

√
ad − b2

)
y

)(
ax +

(
b + i

√
ad − b2

)
y

)

D’où deux directions isotropes, les points cycliques :

[
a : −b ± i

√
ad − b2

]
=

[
1 : −b

a
± i

√
d

a
−
(b

a

)2
]
.

On choisit l’élément de R+∗A tel que a = 1 et le point cyclique qui
a une partie imaginaire > 0.



De la parabole C2 au demi-plan de Poincaré H (2)

Considérer le cône isotrope (complexe) !

PC : C2 −→ H = {z ∈ C, Im z > 0}
(b, d) 7−→ −b + i

√
d − b2

q′ = (b′, d ′)

q = (b, d)
q0

q′0

m′ = PC(q′)

m = PC(q)

m0 m′0



Métrique conforme sur le demi-plan de Poincaré

Définition

H =
{

z ∈ C, Im(z) > 0
}

est muni de la métrique

ds2 =
dx2 + dy 2

y 2
= −4

dz dz

(z − z)2
.

Sens : pour γ : [0, 1]→H , t 7→
(
x(t), y(t)

)
,

`(γ) =

∫
γ
ds =

∫ 1

0

√
ẋ(t)2 + ẏ(t)2

y(t)
dt,



Lemme
Le groupe PSL2(R) agit sur H par isométries.

I Action de PSL2(R) sur H car Im
az + b

cz + d
=

ad − bc

|cz + d |2
Im(z).

I Pour g ∈ PSL2(R) et γ : [0, 1]→H , on a : `(g · γ) = `(γ).

Évident pour Tu : z 7→ z + u (u ∈ R fixé).
Pour S : z 7→ −1/z , on pose z ′ = −1

z , d’où dz ′ = −dz
z2 et :

ds ′
2

= −4
dz ′ dz ′

(z ′ − z ′)2
= −4

dz
z2

dz
z2(

1
z −

1
z

)2
= −4

dz dz

(z − z)2
= ds2.

D’où : `(S · γ) = `(γ).
On conclut car S et les Tu engendrent PSL2(R)
(tTu = ST−uS−1 puis Gauss).



Géodésiques dans H

Définition
Géodésique de m à n : courbe γ qui réalise infγ `(γ).

Proposition

Les géodésiques sont sur les demi-droites verticales et les
demi-cercles orthogonaux à R. De plus,

d(m, n) = ln [m, n, n0,m0].

n

m

n0m0

γ(t) γ(t)

iY

i

i0



De la parabole au demi-plan : cône isotrope (3)

Proposition

L’application � point cyclique �

PC : C2 −→ H = {z ∈ C, Im z > 0}
(b, d) 7−→ −b + i

√
d − b2

divise les distances par 2.

Pour b = 0 = b′ et 0 < d < d ′, voici les distances :

DC2

(
(0, d)(0, d ′)

)
= ln[d , d ′,∞, 0] = ln

d ′

d
,

DH

(
PC(0, d),PC(0, d ′)

)
= ln

[
i
√

d , i
√

d ′,∞, 0
]

= ln

√
d ′√
d
.



De la parabole au demi-plan : cône isotrope (3)

Proposition

L’application � point cyclique �

PC : C2 −→ H = {z ∈ C, Im z > 0}
(b, d) 7−→ −b + i

√
d − b2

divise les distances par 2.

Équivariance : A =

(
1 b
b d

)
, Z =

(
PC(b, d)

1

)
, g ∈ PSL2(R) :

tZAZ = 0 ⇒ t
(
tg−1Z

)
gAtg

(
tg−1Z

)
= 0,

donc
PC
(
g · (b, d)

)
= tg−1 · PC(b, d).



De la parabole au demi-plan : cône isotrope (3)

Proposition

L’application � point cyclique �

PC : C2 −→ H = {z ∈ C, Im z > 0}
(b, d) 7−→ −b + i

√
d − b2

divise les distances par 2.

Pour (b, d) et (b′, d ′) quelconques, soit g ∈ PSL2(R) t.q. les
colonnes de tg−1 sont des bases orthonormées de (b, d) et (b′, d ′) :

DC2

(
(b, d), (b′, d ′)

)
= DC2

(
g · (b, d), g · (b′, d ′)

)
= DC2

(
(0, d̂), (0, d̂ ′)

)
= 2DH

(
PC(0, d̂),PC(0, d̂ ′)

)
= 2DH

(
tg−1 · PC(b, d), tg−1 · PC(b′, d ′)

)
= 2DH

(
PC(b, d),PC(b′, d ′)

)
.



Disque de Poincaré

D =
{

z ∈ C, |z | < 1
}
.

On a des biholomorphismes dans PGL2(C) :

H(m)

H(n)

H(p)

H(q)

z−i
z+i z�

Hoo

w � // i 1+w
1−w ii

0

n

m

p

q

NB : Métrique conforme sur D :
dzdz(

1− |z |2
)2

.



Disque de Klein

K =
{

(x , y) ∈ R2, x2 + y 2 < 1
}
,

muni de la distance de Hilbert.
La transformation projective dans PSL3(R) :(

x
y

)
=

( 2b
d+1
d−1
d+1

)
=

2 0 0
0 1 −1
0 1 1

 · (b
d

)
envoie la parabole sur le disque de Klein :

q′ = (b′, d ′)

q = (b, d)
q0

q′0



L’hyperbolöıde Q : ad − b2 = 1
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idéal

PSL3(
R)

projectio
n centra

le

(−1,
0,
−1)

projection centrale

(0, 0, 0)

in
tersection

p
lan

a
=

1

et
in

térieu
r

côn
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Invariants pour cinq points ?

Connu :

(P1)4
reg/PGL2 −→ X = P1 \ {∞, 0, 1}

PGL2 ·(a, b, c , d) 7−→ [a, b, c , d ]

Avec cinq points ?

(P1)5
reg/PGL2 −→ X 2 \

{
(x , x−1), x ∈ X

}
PGL2 ·(a, b, c, d , e) 7−→ ?



On fixe a, b, c , d , e ∈ P1(C) distincts. On pose

ā = [b, c, d , e]−1, b̄ = [c , d , e, a]−1, c̄ = [d , e, a, b]−1,

d̄ = [e, a, b, c]−1, ē = [a, b, c , d ]−1.

Lemme

ā · c̄ = 1− b̄, b̄ · d̄ = 1− c̄ , c̄ · ē = 1− d̄ , etc.,

b̄ d̄ 6= 1.

1

[b, c , d , e]
× 1

[d , e, a, b]
= [c , a, d , e] = 1− 1

[c , d , e, a]
.

Proposition

(ā, b̄, c̄, d̄ , ē) =

(
1− b̄

1− b̄ d̄
, b̄, 1− b̄d̄ , d̄ ,

1− d̄

1− b̄ d̄

)
.
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(ā, b̄, c̄, d̄ , ē) =
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.



Proposition

(ā, b̄, c̄, d̄ , ē) =

(
1− b̄

1− b̄ d̄
, b̄, 1− b̄d̄ , d̄ ,

1− d̄

1− b̄ d̄

)
.

Corollaire

Ψ : (P1)5
reg/PGL2

1:1−→ X 2 \
{

(x , x−1), x ∈ X
}

PGL2 ·(a, b, c, d , e) 7−→
(
b̄, d̄

)
On ramène (c , d , e) à (∞, 0, 1) par PGL2(C) puis

Ψ(a, b,∞, 0, 1) =
(1

a
,

b − a

b − 1

)
.

NB :

Ψ
(

x ,
1− xy

1− y
,∞, 0, 1

)
=
(1

x
,

1

y

)
.



Un groupe diédral d’ordre 5

Proposition (Gauss)

Soient

G : C2 99K C2

(s, t) 7−→
(
t,

1− s

1− st

) et H : C2 99K C2

(s, t) 7−→ (t, s)

Alors 〈G ,H〉 est un sous-groupe diédral d’ordre 5 de Aut
(
C(x , t)

)
.

Dém. :

(b̄, d̄) = Ψ(a, b, c , d , e) =⇒

{
G (b̄, d̄) = Ψ(c , d , e, a, b)

H(b̄, d̄) = Ψ(e, d , c , b, a).



Id

G

G2

G3

G4

HG4

H

HG3

HG

HG2

Id

G

G2

G3

G4

HG4

H

HG3

HG

HG2

Id

G

G2

G3
G4H

HG

HG2

HG3

HG4
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