Variations on a Schwarzian theme

Christian DUVAL CPT–UM

Congrès international en l'honneur de Claude Roger Institut Camille Jordan, Lyon 25-28 November 2009

Christian DUVAL CPT–UM (Aix-Marseille II) [Variations on a Schwarzian theme](#page-63-0) **ICJ, 26 November 2009** 1/40

 QQ

The South Book

and in

● ト

- [Var. 1: Schwarzian derivative and Lorentz surfaces](#page-7-0)
- [Var. 2: Schwarzian derivative and Finsler scalar curvature](#page-15-0)
- [Var. 3 Schwarzian derivative & contact geometry of supercircle](#page-24-0) S^{1|1}
- [Var. 4: The super Virasoro group](#page-52-0) Vir(S^{1|1})
- 6 [Var. 5: The case of the supercircle](#page-58-0) $S^{1|N}$ with $N \geq 2$

A tribute to Lagrange

If φ is a conformal mapping of \mathbb{C} , Lagrange introduces the function

$$
\mathrm{S}(\varphi)=-2\sqrt{\varphi'}\left(\frac{1}{\sqrt{\varphi'}}\right)''
$$

in his treatise on the *cartes géographiques* — Vol IV des œuvres complètes — see [G-R07,O-T09].

This Lagrangian is, today, called the Schwarzian (derivative)

$$
\mathrm{S}(\varphi)=\frac{\varphi'''}{\varphi'}-\frac{3}{2}\left(\frac{\varphi''}{\varphi'}\right)^2
$$

of φ and is an object of projective geometry.

A tribute to Lagrange

If φ is a conformal mapping of \mathbb{C} , Lagrange introduces the function

$$
\mathrm{S}(\varphi)=-2\sqrt{\varphi'}\left(\frac{1}{\sqrt{\varphi'}}\right)''
$$

in his treatise on the *cartes géographiques* — Vol IV des œuvres complètes — see [G-R07,O-T09].

This Lagrangian is, today, called the Schwarzian (derivative)

$$
\mathrm{S}(\varphi)=\frac{\varphi'''}{\varphi'}-\frac{3}{2}\left(\frac{\varphi''}{\varphi'}\right)^2
$$

of φ and is an object of projective geometry.

- Q: Does it appear/generalize in other geometrical contexts?
- A: Yes! See below ...

The properties of the Schwarzian

The Schwarzian $S(\varphi)$ measures, at each point x, the shift between a diffeomorphism $\varphi\in{\rm Diff}({\rm S}^1)$ and its approximating homography, $h\in \mathrm{PGL}(2,\mathbb{R}),^1$

$$
\mathcal{S}(\varphi)(x) = (\widehat{h}^{-1} \circ \varphi)^{\prime\prime\prime}(x)
$$

- It is a PSL(2, \R)-differential invariant for $\mathrm{Diff}_+(\mathrm{S}^1)$: $\mathcal{S}(\varphi)=\mathcal{S}(\psi)$ iff $\varphi = A \circ \psi$ where $A \in PSL(2, \mathbb{R})$.
- It is a non trivial 1-cocycle of $\mathrm{Diff}_+(\mathrm{S}^1)$ with coefficients in the module of quadratic differentials $\mathcal{Q}(\mathrm{S}^1)$:

$$
\mathcal{S}(\varphi \circ \psi) = \psi^* \mathcal{S}(\varphi) + \mathcal{S}(\psi)
$$

It has kernel $PSL(2, \mathbb{R})$.

¹sth \widehat{h}^{-1} ◦ ϕ has the 2-jet of Id at *x*

The three geometries of the circle

Highlight an important classification result, see [Fuk87, O-T05, G-R07]:

Theorem

The cohomology spaces $H^1(\mathrm{Diff}_+(\mathrm{S}^1), \mathcal{F}_\lambda)$ are given by

$$
H^1(\text{Diff}_+(S^1),\mathcal{F}_\lambda)=\left\{\begin{array}{ll} \mathbb{R} & \text{ if } \lambda=0,1,2\\ \{0\} & \text{ otherwise } \end{array}\right.
$$

These 3 cohomology spaces are resp. generated by $\mathcal{E}, \mathcal{A}, \&\ S$:

$$
\mathcal{E}(\varphi) = \log(\varphi'), \qquad \qquad \mathcal{A}(\varphi) = d\mathcal{E}(\varphi)
$$

and Schwarzian cocycle

$$
\mathcal{S}(\varphi) = \left(\frac{\varphi'''}{\varphi'} - \frac{3}{2}\left(\frac{\varphi''}{\varphi'}\right)^2\right)dx^2
$$

E

 Ω

イロト イ押ト イヨト イヨト

Invariants of $E(1) \subset Aff_+(1) \subset PSL(2,\mathbb{R}) \subset Diff_+(S^1)$

The kernels of these 3 cocycles define resp. the Euclidean, affine, and projective groups, i.e., the **3 geometries** of the circle, whose *discrete* invariants are

Euclidean invariant (translations): distance

$$
[x_1, x_2] = x_2 - x_1
$$

• Affine invariant (homotheties, translations): distance-ratio

$$
[x_1, x_2, x_3] = \frac{[x_1, x_3]}{[x_1, x_2]}
$$

• Projective invariant (homographies): cross-ratio

$$
[x_1, x_2, x_3, x_4] = \frac{[x_1, x_3][x_2, x_4]}{[x_2, x_3][x_1, x_4]}
$$

Var. 1 The Schwarzian derivative and Lorentz surfaces

Var. 1 The Schwarzian derivative and Lorentz surfaces

- Prolonging to null infinity a "coboundary" of conformal group
- Looking at curvature of timelike Lorentz worldlines

The fourth geometry of Poincaré [K-S87, D-G2k] Let $H^{1,1} \cong \mathrm{S}^1 \times \mathrm{S}^1 \setminus \Delta$ be hyperboloid of one sheet (of radius 1) in $\mathbb{R}^{2,1}$ (AdS space). Its induced Lorentz metric is

$$
g_1=\frac{4\,d\theta_1 d\theta_2}{\left|e^{i\theta_1}-e^{i\theta_2}\right|^2}
$$

- **1** Conf $(H^{1,1}) \cong$ Diff(Δ) with $\Delta \cong S^1$ conformal boundary.
- 2 If $\varphi\in \mathrm{Conf}_+(H^{1,1}),$ then $\varphi^*\mathrm{g}_1-\mathrm{g}_1$ extends smoothly to $\mathrm{S}^1\times \mathrm{S}^1.$

³ "Prolongation" to ∆ of phoney 1-coboundary

 $\mathcal{S}_1(\varphi) = \frac{3}{2} \left(\varphi^* \mathrm{g} - \mathrm{g} \right) |\Delta$

 \Rightarrow non-trivial Diff $_+(\mathrm{S}^1)$ 1-cocycle $\mathcal{S}_1(\varphi) = \mathrm{S}_1(\varphi)$ d $\theta^2 \in \mathcal{Q}(\mathrm{S}^1)$:

$$
S_1(\varphi)=\underbrace{\frac{\varphi'''}{\varphi'}-\frac{3}{2}\left(\frac{\varphi''}{\varphi'}\right)^2}_{S(\varphi)}+\frac{1}{2}\left(\varphi'^2-1\right)
$$

 Ω

 $(0.8, 0.8)$ $(0.8, 0.2)$ $(0.8, 0.2)$

The fourth geometry of Poincaré (cont'd)

Holography: Conformal Lorentzian geometry of bulk $H^{1,1}$ \Longleftrightarrow projective geometry of its conformal boundary, $\Delta \cong \mathrm{S}^1$:

- $\text{Conf}(H^{1,1}) \cong \text{Diff}(S^1).$
- Isom₊ $(H^{1,1}) \cong PSL(2, \mathbb{R})$.
- $(\varphi^*g_1-g_1)|S^1\cong \mathcal{S}_1(\varphi).$
- $\text{Conf}_+(H^{1,1})/\text{Isom}_+(H^{1,1})$ is a $\text{Vir}(\mathrm{S}^1)$ coadjoint orbit with central charge $c = 1$, and symplectic 2-form Ω coming from

$$
\omega(\delta_1g,\delta_2g)=\tfrac{3}{2}\!\!\int_{\Delta}\!i_{\xi_1}L_{\xi_2}g
$$

where
$$
g \in [g_1]
$$
, $\delta_k g = L_{\xi_k} g \& \xi_k \in \text{Vect}(S^1)$.
• Etc.

 Ω

 \mathcal{A} and \mathcal{A} in the \mathcal{A} in the \mathcal{A} in the \mathcal{A}

Curvature of worldlines in Lorentz surfaces

Consider a curve $x \mapsto y = \varphi(x)$ and its graph in $\mathbb{R}^{1,1} = (\mathbb{R}^2, \mathrm{g} = \textit{dxdy}).$ If velocity $v = \partial/\partial x + \varphi'(x)\partial/\partial y$ is *timelike*, i.e., $g(v, v) = \varphi'(x) > 0$, the Frenet curvature $\varrho = \sigma(\bm{\nu}, \bm{a}) / g(\bm{\nu}, \bm{\nu})^{\frac{3}{2}}$, with $\bm{a} = \nabla_{\bm{\nu}} \bm{\nu}$ (acceleration) and $\sigma = dx \wedge dy$, reads

$$
\varrho(x)=(\varphi'(x))^{-\frac{3}{2}}\varphi''(x).
$$

Then

$$
\varrho'(x)\sqrt{\varphi'(x)}=\frac{\varphi'''(x)}{\varphi'(x)}-\frac{3}{2}\left(\frac{\varphi''(x)}{\varphi'(x)}\right)^2
$$

Curvature of worldlines in Lorentz surfaces

Consider a curve $x \mapsto y = \varphi(x)$ and its graph in $\mathbb{R}^{1,1} = (\mathbb{R}^2, \mathrm{g} = \textit{dxdy}).$ If velocity $v = \partial/\partial x + \varphi'(x)\partial/\partial y$ is *timelike*, i.e., $g(v, v) = \varphi'(x) > 0$, the Frenet curvature $\varrho = \sigma(\bm{\nu}, \bm{a}) / g(\bm{\nu}, \bm{\nu})^{\frac{3}{2}}$, with $\bm{a} = \nabla_{\bm{\nu}} \bm{\nu}$ (acceleration) and $\sigma = dx \wedge dy$, reads

$$
\varrho(x)=(\varphi'(x))^{-\frac{3}{2}}\varphi''(x).
$$

Then

$$
\varrho'(x)\sqrt{\varphi'(x)}=\frac{\varphi'''(x)}{\varphi'(x)}-\frac{3}{2}\left(\frac{\varphi''(x)}{\varphi'(x)}\right)^2
$$

Q: Does this relationship generalize to curved Lorentz surfaces? • A: Yes, provided ...

Curvature of worldlines in Lorentz surfaces (cont'd) Theorem [D-O2k]

Let $\varphi\in\mathrm{Diff}_+(\mathbb{R}P^1),$ and let ϱ be curvature of its graph in $\mathbb{R}P^1\times\mathbb{R}P^1$ with metric $g = g(x, y) dx dy$, and *t* be *proper time*, then

 $d\rho$ *dt* = *S*(φ)

iff

$$
g = \frac{dxdy}{(axy + bx + cy + d)^2}
$$

with $a, b, c, d \in \mathbb{R}$.

Metric of constant curvature $K=8(ad-bc)$ on $\Sigma=\mathbb{R}P^{1}\times\mathbb{R}P^{1}\setminus\Gamma$ is projectively equivalent to

$$
g = \begin{cases} \frac{dxdy}{8} & (K = 0) \\ \frac{8}{K} \frac{dxdy}{(x - y)^2} & (K \neq 0) \end{cases}
$$

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{B}

Curvature of worldlines in Lorentz surfaces (cont'd)

Ghys' theorem ('95) — "*The Schwarzian derivative S(* φ *) of a diffeomorphism* φ *of* ℝ*P*¹ *has at least* 4 *distinct zeroes*" — hence corresponds to the 4**-vertex theorem** for closed timelike curves in $\Sigma \subset \mathbb{R}P^1 \times \mathbb{R}P^1$ with the above metric.

Var. 2 The Schwarzian derivative and Finsler geometry

Var. 2 The Schwarzian derivative and Finsler geometry

Check out metrics of scalar curvature, e.g., Numata metrics

• Specialize the flag curvature to the ... 1-dim case

Schwarzian derivative & Finsler scalar curvature (I)

A Finsler structure on a smooth manifold *M* is defined by a "metric"

 $\mathcal{F}: \mathcal{TM} \rightarrow \mathbb{R}^+$

whose restriction to $TM \setminus M$ is strictly positive, smooth, and sth $\mathcal{F}(x,\lambda y)=\lambda \mathcal{F}(x,y)$ for all $\lambda >0;$ Hessian $\text{g}_{ij}(x,y)=\big(\frac{1}{2}\big)$ $\frac{1}{2}\mathsf{F}^2\big)_{\mathsf{y}^i\mathsf{y}^j}$ is assumed positive definite. The fundamental tensor

$$
g = g_{ij}(x, y) dx^i \otimes dx^j
$$

defines a *sphere's worth of Riemannian metrics* on each *TxM*. Also

$$
\ell = \ell^i \frac{\partial}{\partial x^i}
$$
, with $\ell^i(x, y) = \frac{y^i}{F(x, y)}$

is a distinguished unit section of $\pi^*(TM)$, i.e., $\mathrm{g}_{ij}(x,y)\ell^i\ell^j=1$, where π : $TM \setminus M \rightarrow M$.

 Ω

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{B} \rightarrow \mathcal{B}$

Schwarzian derivative & Finsler scalar curvature (II)

Unlike Riemannian case, ∄ canonical linear connection on π^{*} (TM). Example: Chern connection $\omega^i_j = \Gamma^i_{jk}(x,y)$ dx^k uniquely characterized by (i) symmetry: $\Gamma^i_{jk} = \Gamma^i_{kj}$, and (ii) almost "metric transport": $dg_{ij} - \omega_i^k g_{jk} - \omega_j^k g_{ik} = 2 C_{ijk} \delta y^k.$

 2 Here, $C_{ijk}(x,y)=\left(\frac{1}{4}F^2\right)_{y^iy^jy^k}$ (Cartan tensor), $\delta y^i=dy^i+N^i_jd x^j,$ with $N_j^j(x,y) = \gamma_{jk}^j y^k$ (Eh[r](#page-17-0)esmann connec[t](#page-19-0)ion), where γ_{jk}^j for[mal](#page-17-0) [Ch](#page-19-0)r[is](#page-18-0)t[of](#page-20-0)[f](#page-14-0)[el](#page-15-0) [s](#page-23-0)ym[b](#page-23-0)[ol](#page-24-0)[s.](#page-0-0) Ω Christian DUVAL CPT–UM (Aix-Marseille II) [Variations on a Schwarzian theme](#page-0-0) ICJ, 26 November 2009 15/40

Schwarzian derivative & Finsler scalar curvature (II)

Unlike Riemannian case, ∄ canonical linear connection on π^{*} (TM). Example: Chern connection $\omega^i_j = \Gamma^i_{jk}(x,y)$ dx^k uniquely characterized by (i) symmetry: $\Gamma^i_{jk} = \Gamma^i_{kj}$, and (ii) almost "metric transport": $dg_{ij} - \omega_i^k g_{jk} - \omega_j^k g_{ik} = 2 C_{ijk} \delta y^k.$

Using "horizontal derivatives" $\delta/\delta x^i = \partial/\partial x^i - N^j_i$ *i* ∂/∂*y j* , one gets hh-Chern curvature

$$
R_{j\;kl}^{\;i}=\frac{\delta}{\delta x^k}\Gamma_{jl}^i+\Gamma_{mk}^i\Gamma_{jl}^m-(k\leftrightarrow l)
$$

and **flag curvature** (for the flag $\ell \wedge v$ with $v \in T_xM$) by

$$
K(x, y, v) = \frac{R_{ik}v^iv^k}{g(v, v) - g(\ell, v)^2}, \quad \text{where} \quad R_{ik} = \ell^j R_{jikl} \ell^l
$$

 2 Here, $C_{ijk}(x,y)=\left(\frac{1}{4}F^2\right)_{y^iy^jy^k}$ (Cartan tensor), $\delta y^i=dy^i+N^i_jd x^j,$ with $N_j^j(x,y) = \gamma_{jk}^j y^k$ (Eh[r](#page-17-0)esmann connec[t](#page-19-0)ion), where γ_{jk}^j for[mal](#page-18-0) [Ch](#page-20-0)r[is](#page-18-0)t[of](#page-20-0)[f](#page-14-0)[el](#page-15-0) [s](#page-23-0)ym[b](#page-23-0)[ol](#page-24-0)[s.](#page-0-0) QQQ Christian DUVAL CPT–UM (Aix-Marseille II) [Variations on a Schwarzian theme](#page-0-0) ICJ, 26 November 2009 15 / 40

Schwarzian derivative & Finsler scalar curvature (III)

Finsler structure (M, F) of scalar curvature $\iff K(x, y, v)$ is independent of the vector *v*, i.e.,

$$
R_{ik}=K(x,y)h_{ik} \qquad \qquad (*)
$$

with $h_{ik} = \mathrm{g}_{ik} - \ell_i \ell_k$ the "angular metric", $\ell_i = \mathrm{g}_{ij} \ell^j.$

Example: The Numata Finsler structure: $F(x,y) = \sqrt{\delta_{ij}y^i y^j} + f_{x^i}y^i,$ where $M = \left\{ x \in \mathbb{R}^n \mid \right\}$ $\sum_{i=1}^n{(f_{\mathsf{x}^i})^2} < 1$ $\Big\},$ and $f \in C^\infty(M).$ The flag curvature reads *provocatively*

$$
K(x,y) = -\frac{1}{2F^2} \left[\frac{1}{F} f_{x^i x^j x^k} y^j y^j y^k - \frac{3}{2} \frac{1}{F^2} \left(f_{x^i x^j} y^j y^j \right)^2 \right]
$$

 Ω

SALES AND STATE

Schwarzian derivative & Finsler scalar curvature (III)

Finsler structure (M, F) of scalar curvature $\iff K(x, y, v)$ is independent of the vector *v*, i.e.,

$$
R_{ik}=K(x,y)h_{ik} \qquad \qquad (*)
$$

with $h_{ik} = \mathrm{g}_{ik} - \ell_i \ell_k$ the "angular metric", $\ell_i = \mathrm{g}_{ij} \ell^j.$

Example: The Numata Finsler structure: $F(x,y) = \sqrt{\delta_{ij}y^i y^j} + f_{x^i}y^i,$ where $M = \left\{x \in \mathbb{R}^n \, \Big| \, \sum_{i=1}^n {(f_{\!x^i})^2} < 1 \right\}$, and $f \in C^\infty(M).$ The flag  curvature reads *provocatively*

$$
K(x,y) = -\frac{1}{2F^2} \left[\frac{1}{F} f_{x^i x^j x^k} y^j y^j y^k - \frac{3}{2} \frac{1}{F^2} \left(f_{x^i x^j} y^j y^j \right)^2 \right]
$$

Idea: Investigate the case $n = 1$.

Schwarzian derivative & Finsler scalar curvature (IV) Although Eq. $(*)$ trivially satisfied, the flag curvature admits a nontrivial prolongation to this 1-dim case, where $F(x, y) = |y| + f'(x)y$ with $-1 < f'(x) < +1$ on $M \subset \mathbb{R}P^1.$ Its restrictions to $\mathcal{T}^\pm M \cong M \times \mathbb{R}^\pm_*$ read $\mathcal{F}_\pm(\mathsf{x},\mathsf{y}) = \varphi'_\pm(\mathsf{x})\mathsf{y} > 0$, where

$$
\varphi'_{\pm}(x) = f'(x) \pm 1 \tag{*}
$$

 Ω

 $\mathsf{implying}\ \varphi_\pm\in\mathrm{Diff}_\pm(\mathbb{R} P^1),\, \mathsf{with}\ |\varphi_\pm'(x)|< 2.$

Schwarzian derivative & Finsler scalar curvature (IV) Although Eq. $(*)$ trivially satisfied, the flag curvature admits a nontrivial prolongation to this 1-dim case, where $F(x, y) = |y| + f'(x)y$ with $-1 < f'(x) < +1$ on $M \subset \mathbb{R}P^1.$ Its restrictions to $\mathcal{T}^\pm M \cong M \times \mathbb{R}^\pm_*$ read $\mathcal{F}_\pm(\mathsf{x},\mathsf{y}) = \varphi'_\pm(\mathsf{x})\mathsf{y} > 0$, where

$$
\varphi'_{\pm}(x) = f'(x) \pm 1 \tag{*}
$$

 $\mathsf{implying}\ \varphi_\pm\in\mathrm{Diff}_\pm(\mathbb{R} P^1),\, \mathsf{with}\ |\varphi_\pm'(x)|< 2.$

Theorem [Duv08]

The 1-dim Numata Finsler structure induces a Riemannian metric, $\mathsf{g}(\varphi)=\varphi^*(d\mathsf{x}^2)$, where $\varphi\in\mathrm{Diff}(\mathbb{R}P^1)$ is as in ($*$). The flag curvature is

$$
\mathcal{K}=-\frac{1}{2}\frac{\mathsf{S}(\varphi)}{\mathsf{g}(\varphi)}
$$

with S(φ) the Schwarzian quadratic differential of φ .

Var. 3

The Schwarzian derivative and contact geometry of *S* 1|1

Var. 3

The Schwarzian derivative and contact geometry of *S* 1|1

- Seek super geometric versions of the Euclidean, affine, and projective invariants of S¹. Super cross-ratio?
- What are then the 1- cocycles associated with super extensions of $\mathrm{Diff}(\mathrm{S}^1)$? Super Schwarzian derivative?

Var. 3

The Schwarzian derivative and contact geometry of *S* 1|1

- Seek super geometric versions of the Euclidean, affine, and projective invariants of S¹. Super cross-ratio?
- What are then the 1- cocycles associated with super extensions of $\mathrm{Diff}(\mathrm{S}^1)$? Super Schwarzian derivative?
- How can one relate theses new geometric objects?
- Classification of the geometries of the supercircle!

The supercircle $S^{1|1}$

The supercircle S^{1|1}: the circle S¹, endowed with (a sheaf of associative commutative $\mathbb{Z}/(2\mathbb{Z})$ -graded algebras, with sections) the ${\sf superfunctions}\,\,C^\infty(S^{1|1})=C^\infty(S^1)[\xi]$ where $\xi^2=0$ & $x\xi=\xi x.$

The supercircle $S^{1|1}$

The supercircle S^{1|1}: the circle S¹, endowed with (a sheaf of associative commutative $\mathbb{Z}/(2\mathbb{Z})$ -graded algebras, with sections) the ${\sf superfunctions}\,\,C^\infty(S^{1|1})=C^\infty(S^1)[\xi]$ where $\xi^2=0$ & $x\xi=\xi x.$

- If (x, ξ) are local coordinates of (affine) superdomain, every superfunction writes

$$
f(x,\xi) = f_0(x) + \xi f_1(x), \quad \text{where} \quad f_0, f_1 \in C^\infty(S^1)
$$

- Parity:
$$
p(f_0) = 0
$$
, $p(\xi f_1) = 1$.

- Projection: $\pi:C^\infty(S^{1|1})\to \mathcal{C}^\infty(S^1)$ where ker (π) : ideal generated by nilpotent elements.

 Ω

4 何 ト 4 ヨ ト 4 ヨ ト ニ ヨ

The supercircle $S^{1|1}$

The supercircle S^{1|1}: the circle S¹, endowed with (a sheaf of associative commutative $\mathbb{Z}/(2\mathbb{Z})$ -graded algebras, with sections) the ${\sf superfunctions}\,\,C^\infty(S^{1|1})=C^\infty(S^1)[\xi]$ where $\xi^2=0$ & $x\xi=\xi x.$

 $-$ If (x, ξ) are local coordinates of (affine) superdomain, every superfunction writes

$$
f(x,\xi) = f_0(x) + \xi f_1(x), \quad \text{where} \quad f_0, f_1 \in C^\infty(S^1)
$$

- Parity:
$$
p(f_0) = 0, p(\xi f_1) = 1.
$$

- Projection: $\pi:C^\infty(S^{1|1})\to \mathcal{C}^\infty(S^1)$ where ker (π) : ideal generated by nilpotent elements.

- Group of diffeomorphisms: $\text{Diff}({\cal S}^{1|1}) = \text{Aut}({\cal C}^\infty({\cal S}^{1|1}))$ consists of pairs $\Phi = (\varphi, \psi)$ of superfunctions sth $(\varphi(x, \xi), \psi(x, \xi))$ are new coordinates on *S* 1|1 .

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Vector fields & 1-forms of the supercircle

 Vector fields $\mathsf{Vect}(\mathcal{S}^{1|1})=\mathsf{SuperDer}(\mathcal{C}^\infty(\mathcal{S}^{1|1}))$ with local expression

 $X = f(x, \xi)\partial_x + g(x, \xi)\partial_{\xi}$ where $^\infty(\mathcal{S}^{1|1})$

NB: Vect $(\mathcal{S}^{1|1})$ is a $C^\infty(\mathcal{S}^{1|1})_L$ -module locally generated by $(\partial_\mathsf{x},\partial_\xi)$ where $p(\partial_x) = 0$, $p(\partial_{\xi}) = 1$. It is also a Lie superalgebra with Lie $\text{bracket} [X, Y] = XY - (-1)^{p(X)p(Y)} YX.$

³Cohomological degree | · |, parity *p*.

Christian DUVAL CPT–UM (Aix-Marseille II) [Variations on a Schwarzian theme](#page-0-0) ICJ, 26 November 2009 20/40

Vector fields & 1-forms of the supercircle

 Vector fields $\mathsf{Vect}(\mathcal{S}^{1|1})=\mathsf{SuperDer}(\mathcal{C}^\infty(\mathcal{S}^{1|1}))$ with local expression

 $X = f(x, \xi)\partial_x + g(x, \xi)\partial_{\xi}$ where $^\infty(\mathcal{S}^{1|1})$

NB: Vect $(\mathcal{S}^{1|1})$ is a $C^\infty(\mathcal{S}^{1|1})_L$ -module locally generated by $(\partial_\mathsf{x},\partial_\xi)$ where $p(\partial_x) = 0$, $p(\partial_{\xi}) = 1$. It is also a Lie superalgebra with Lie $\text{bracket} [X, Y] = XY - (-1)^{p(X)p(Y)} YX.$

 $\mathsf{Differential\ 1-forms\ }\Omega^1(\mathcal S^{1|1})=\mathcal C^\infty(\mathcal S^{1|1})_R\text{-module locally generated by }$ d ual basis $(dx, dξ)$ where $p(dx) = 0$, $p(dξ) = 1$. The module $Ω[•](S^{1|1})$ of differential forms is bigraded: our choice of *Sign Rule* is³

$$
\alpha \wedge \beta = (-1)^{|\alpha||\beta| + p(\alpha)p(\beta)} \beta \wedge \alpha
$$

³Cohomological degree | · |, parity *p*.

Christian DUVAL CPT–UM (Aix-Marseille II) [Variations on a Schwarzian theme](#page-0-0) ICJ, 26 November 2009 20 / 40

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Contact structure on supercircle *S* 1|1

It is given by direction of contact 1-form [Lei80]

 $\alpha = dx + \xi d\xi$

We have $d\alpha = \beta \wedge \beta$ where $\beta = d\xi$.

- Contact distribution, $ker(\alpha)$, generated by SUSY vector field

 $D = \partial_{\xi} + \xi \partial_{x}$

- Contactomorphisms: 4

$$
\mathcal{K}(1)=\{\Phi\in\operatorname{Diff}(S^{1|1})\,|\,\Phi^*\alpha=E_\Phi\,\alpha\}
$$

 4 One s[h](#page-33-0)ows that $\Phi=(\varphi,\psi)\in \mathcal{K}(1)\Longleftrightarrow D\varphi=\psi D\psi,$ [w](#page-31-0)ith **m[u](#page-32-0)l[ti](#page-34-0)p[li](#page-24-0)[e](#page-51-0)[r](#page-52-0)** $E_{\Phi^{\pm}}=(D\psi)^2$ $E_{\Phi^{\pm}}=(D\psi)^2$.

Christian DUVAL CPT–UM (Aix-Marseille II) [Variations on a Schwarzian theme](#page-0-0) ICJ, 26 November 2009 21 / 40

Contact structure on supercircle *S* 1|1

It is given by direction of contact 1-form [Lei80]

 $\alpha = dx + \xi d\xi$

We have $d\alpha = \beta \wedge \beta$ where $\beta = d\xi$.

- Contact distribution, $ker(\alpha)$, generated by SUSY vector field

 $D = \partial_{\xi} + \xi \partial_{x}$

- Contactomorphisms: 4

$$
\textit{K}(1)=\{\Phi\in\text{Diff}(S^{1|1})\,|\,\Phi^*\alpha=E_\Phi\,\alpha\}
$$

- Infinitesimal contactomorphisms:

 $k(1) = \{X \in \text{Vect}(\mathcal{S}^{1|1}) \, | \, L_X \alpha = \bm{\mathit{e}}_X \alpha\}.$ Canonical Lie superalgebra isomorphism $k(1) \to C^\infty(S^{1|1})$: $X \mapsto f = \langle X, \alpha \rangle.$

 4 One s[h](#page-34-0)ows that $\Phi=(\varphi,\psi)\in \mathcal{K}(1)\Longleftrightarrow D\varphi=\psi D\psi,$ [w](#page-32-0)ith **m[u](#page-32-0)l[ti](#page-34-0)p[li](#page-24-0)[e](#page-51-0)[r](#page-52-0)** $E_{\Phi^{\pm}}=(D\psi)^2$ $E_{\Phi^{\pm}}=(D\psi)^2$.

Let $\mathcal{F}_\lambda(S^{1|1})$ be the $\mathcal{K}(1)$ -module of λ -densities ($\lambda\in\mathbb{C}$): $C^\infty(S^{1|1})$ endowed with (anti)action $\Phi_\lambda f = (E_\Phi)^\lambda \Phi^* f.$ Write $F \in \mathcal{F}_\lambda$ as $F = f \alpha^\lambda.$

 Ω

医单位 医单位

Let $\mathcal{F}_\lambda(S^{1|1})$ be the $\mathcal{K}(1)$ -module of λ -densities ($\lambda\in\mathbb{C}$): $C^\infty(S^{1|1})$ endowed with (anti)action $\Phi_\lambda f = (E_\Phi)^\lambda \Phi^* f.$ Write $F \in \mathcal{F}_\lambda$ as $F = f \alpha^\lambda.$

- The $C^\infty(S^{1|1})_R$ -module $\Omega^1(S^{1|1})$ of 1-forms is generated by α et $\beta.$

 Ω

REPAREM

Let $\mathcal{F}_\lambda(S^{1|1})$ be the $\mathcal{K}(1)$ -module of λ -densities ($\lambda\in\mathbb{C}$): $C^\infty(S^{1|1})$ endowed with (anti)action $\Phi_\lambda f = (E_\Phi)^\lambda \Phi^* f.$ Write $F \in \mathcal{F}_\lambda$ as $F = f \alpha^\lambda.$

- The $C^\infty(S^{1|1})_R$ -module $\Omega^1(S^{1|1})$ of 1-forms is generated by α et $\beta.$ - The *C*∞(*S* 1|1)*R*-module Q(*S* 1|1) of quadratic differentials is generated by $\alpha^2=\alpha\otimes\alpha$ et $\alpha\beta=\frac{1}{2}$ $\frac{1}{2}(\alpha\otimes \beta+\beta\otimes \alpha).$

 $\left\{A,B\right\}$, $\left\{A,B\right\}$, $\left\{A,B\right\}$, $\left\{B\right\}$

Let $\mathcal{F}_\lambda(S^{1|1})$ be the $\mathcal{K}(1)$ -module of λ -densities ($\lambda\in\mathbb{C}$): $C^\infty(S^{1|1})$ endowed with (anti)action $\Phi_\lambda f = (E_\Phi)^\lambda \Phi^* f.$ Write $F \in \mathcal{F}_\lambda$ as $F = f \alpha^\lambda.$

- The $C^\infty(S^{1|1})_R$ -module $\Omega^1(S^{1|1})$ of 1-forms is generated by α et $\beta.$ - The *C*∞(*S* 1|1)*R*-module Q(*S* 1|1) of quadratic differentials is generated by $\alpha^2=\alpha\otimes\alpha$ et $\alpha\beta=\frac{1}{2}$ $\frac{1}{2}(\alpha\otimes \beta+\beta\otimes \alpha).$

Proposition

Both $\Omega^1(\mathcal{S}^{1|1})$ and $\mathcal{Q}(\mathcal{S}^{1|1})$ are $\mathcal{K}(1)$ -modules ; they admit the decomposition into *K*(1)-submodules:

> $\Omega^1(\mathcal{S}^{1|1}) \cong \mathcal{F}_\frac{1}{2} \oplus \mathcal{F}_1,$ Q(S) $(\mathcal{F}_1^1) \cong \mathcal{F}_\frac{3}{2} \oplus \mathcal{F}_2$

The <mark>projections</mark> $\Omega^1(\mathcal{S}^{1|1}) \to \mathcal{F}_1$ (resp. $\mathcal{Q}(\mathcal{S}^{1|1}) \to \mathcal{F}_2$) are given by 2 2 $\alpha^{\frac{1}{2}}\langle D,\,\cdot\,\rangle$, and the corresponding sections by $\alpha^{\frac{1}{2}}L_D$ (resp. $\frac{2}{3}\alpha^{\frac{1}{2}}L_D$).

 Ω

4 0 8 4 4 9 8 4 9 8 4 9 8

Orthosymplectic group, Euclidean & affine subgroups

It is the subgroup $SpO(2|1) \subset GL(2|1)$ of symplectomorphisms of $(\mathbb{R}^{2|1},d\varpi)$ where $\varpi=\frac{1}{2}$ $\frac{1}{2}$ (*pdq* $-$ *qdp* $+$ θ *d* θ); one has⁵

$$
h = \left(\begin{array}{ccc} a & b & \gamma \\ c & d & \delta \\ \alpha & \beta & e \end{array}\right) \in \text{SpO}(2|1)
$$

The group SpO(2|1) preserves 1-forme $\varpi=\frac{1}{2}$ $\frac{1}{2}$ *p*² α (where $p \neq 0$); it thus acts by contactomorphisms via the projective action on $S^{1|1}\colon$

$$
\widehat{h}(x,\xi) = \left(\frac{ax+b+\gamma\xi}{cx+d+\delta\xi}, \frac{\alpha x+\beta+e\xi}{cx+d+\delta\xi}\right)
$$

The Berezinian is $\text{Ber}(h) = e + \alpha \beta e^{-1}$ and $\text{SpO}_+(2|1) = \text{Ber}^{-1}(1),$ super-extension of $Sp(2, \mathbb{R}) = SL(2, \mathbb{R})$.

⁵with *ad* − *bc* − αβ = 1, *e* ² + 2γδ = 1, α*e* − *a*δ + *c*γ [=](#page-37-0) 0[, β](#page-39-0)*[e](#page-37-0)* [−](#page-38-0) *[b](#page-23-0)*[δ](#page-24-0) [+](#page-51-0) *[d](#page-23-0)*[γ](#page-24-0) [=](#page-51-0) [0.](#page-0-0) 000

Orthosymplectic group, Euclidean & affine subgroups (cont'd)

One uses the local factorization

$$
\operatorname{SpO}_+(2|1) \ni h = \begin{pmatrix} 1 & 0 & 0 \\ \tilde{c} & 1 & \tilde{\delta} \\ \tilde{\delta} & 0 & 1 \end{pmatrix} \underbrace{\begin{pmatrix} \tilde{a} & 0 & 0 \\ 0 & \tilde{a}^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{Aff}(1|1)} \underbrace{\begin{pmatrix} \epsilon & \tilde{b} & -\tilde{\beta} \\ 0 & \epsilon & 0 \\ 0 & \epsilon\tilde{\beta} & 1 \end{pmatrix}}
$$

where $(\tilde{\mathbf{a}}, \tilde{\mathbf{b}}, \tilde{\mathbf{c}}, \tilde{\beta}, \tilde{\delta}) \in \mathbb{R}^{3|2}$, with $\epsilon^2 = 1$, $\tilde{\mathbf{a}} > 0$.

Þ

 Ω

4 同 下

Orthosymplectic group, Euclidean & affine subgroups (cont'd)

One uses the local factorization

$$
\operatorname{SpO}_+(2|1) \ni h = \begin{pmatrix} 1 & 0 & 0 \\ \tilde{c} & 1 & \tilde{\delta} \\ \tilde{\delta} & 0 & 1 \end{pmatrix} \underbrace{\begin{pmatrix} \tilde{a} & 0 & 0 \\ 0 & \tilde{a}^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{Aff}(1|1)} \underbrace{\begin{pmatrix} \epsilon & \tilde{b} & -\tilde{\beta} \\ 0 & \epsilon & 0 \\ 0 & \epsilon\tilde{\beta} & 1 \end{pmatrix}}
$$

where $(\tilde{\mathbf{a}}, \tilde{\mathbf{b}}, \tilde{\mathbf{c}}, \tilde{\beta}, \tilde{\delta}) \in \mathbb{R}^{3|2}$, with $\epsilon^2 = 1$, $\tilde{\mathbf{a}} > 0$.

- Note that $\text{E}(1|1) = \{ \Phi \in \text{Diff}(\boldsymbol{S}^{1|1}) \, | \, \Phi^* \alpha = \alpha \}$

- Also $Aff(1|1) = {Φ ∈ Diff(S^{1|1}) | ∞[*]α = *a*²α, *a* ≠ 0}$

 Ω

ARACE

Notion of *p*|*q*-transitivity [M-D08]

Extension of the notion of *n*-transitivity to supergroup actions.

Consider $E = E_0 \times E_1$ and canonical projections p_0 & p_1 . Two *n*-uplets $s = (s_1, \ldots, s_n)$ and $t = (t_1, \ldots, t_n)$ of distinct points of *E* are said $p|q$ -equivalent, $s \stackrel{\rho|q}{=} t$, where $n = \max(p,q)$, if $p_0(s_i) = p_0(t_i)$ $∀i = 1, ..., p$ and $p_1(s_i) = p_1(t_i) ∀i = 1, ..., q$.

イ何 トマ ヨ トマ ヨ トー ヨー

Notion of *p*|*q*-transitivity [M-D08]

Extension of the notion of *n*-transitivity to supergroup actions.

Consider $E = E_0 \times E_1$ and canonical projections $p_0 \& p_1$. Two *n*-uplets $s = (s_1, \ldots, s_n)$ and $t = (t_1, \ldots, t_n)$ of distinct points of *E* are said $p|q$ -equivalent, $s \stackrel{\rho|q}{=} t$, where $n = \max(p,q)$, if $p_0(s_i) = p_0(t_i)$ $∀i = 1, ..., p$ and $p_1(s_i) = p_1(t_i) ∀i = 1, ..., q$.

The action $(h \mapsto \hat{h})$ of group *G* on *E* is said simply $p|q$ -transitive if for \mathbf{a} ll $\boldsymbol{s} = (s_1, \ldots, s_n)$ and $t = (t_1, \ldots, t_n),$ $\exists! \ g \in G \text{ sth } \hat{g}(t) \stackrel{\rho|q}{=} s.$

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{BA}

Notion of *p*|*q*-transitivity [M-D08]

Extension of the notion of *n*-transitivity to supergroup actions.

Consider $E = E_0 \times E_1$ and canonical projections p_0 & p_1 . Two *n*-uplets $s = (s_1, \ldots, s_n)$ and $t = (t_1, \ldots, t_n)$ of distinct points of *E* are said $p|q$ -equivalent, $s \stackrel{\rho|q}{=} t$, where $n = \max(p,q)$, if $p_0(s_i) = p_0(t_i)$ $∀i = 1, ..., p$ and $p_1(s_i) = p_1(t_i) ∀i = 1, ..., q$.

The action $(h \mapsto \hat{h})$ of group *G* on *E* is said simply $p|q$ -transitive if for \mathbf{a} ll $\boldsymbol{s} = (s_1, \ldots, s_n)$ and $t = (t_1, \ldots, t_n),$ $\exists! \ g \in G \text{ sth } \hat{g}(t) \stackrel{\rho|q}{=} s.$

Examples:

- The PSL $(2,\mathbb{R})$ -action on S^1 is simply 3-transitive.
- The SpO $_+(2|1)$ -action on $S^{1|1}$ is 3|2-transitive.

KET KALLAS YER EL VOO

Construction of the discrete invariants

Theorem

Let *G* act simply $p|q$ -transitively on $E = E_0 \times E_1$, and *m* be an *n*-uplet, $n = \max(p, q)$, of distinct points of *E*. The $(n + 1)$ -point function $I_{[m]}$ of *E* with values in *E* defined by

$$
I_{[m]}(t_1,\ldots,t_{n+1})=\widehat{h}(t_{n+1})
$$

where $\widehat{h}(t) \stackrel{p|q}{=} m$, and $t = (t_1, \ldots, t_n) \in E^n \setminus \mathsf{\Gamma}$ enjoys the properties: ¹ *I*[*m*] is *G*-invariant. 2 If Φ ∈ *E*! preserves $I_{[m]}$, then Φ = \widehat{g} for some $g \in G$.

 \equiv

 Ω

4 何 ト 4 重 ト 4 重 ト ー

Theorem I [M-D08]

• Euclidean invariant $I_e(t_1, t_2) = ([t_1, t_2], \{t_1, t_2\})$:

$$
[t_1, t_2] = x_2 - x_1 - \xi_2 \xi_1, \qquad \{t_1, t_2\} = \xi_2 - \xi_1
$$

• Affine invariant $I_2(t_1, t_2, t_3) = (\lbrack t_1, t_2, t_3 \rbrack, \{t_1, t_2, t_3\})$:

$$
[t_1, t_2, t_3] = \frac{[t_1, t_3]}{[t_1, t_2]}, \qquad \{t_1, t_2, t_3\} = [t_1, t_2, t_3]^{\frac{1}{2}} \frac{\{t_1, t_3\}}{[t_1, t_3]^{\frac{1}{2}}}
$$

• Projective invariant $I_p(t_1, t_2, t_3, t_4) = ([t_1, t_2, t_3, t_4], \pm \{t_1, t_2, t_3, t_4\}),$ i.e., super cross-ratio:

$$
[t_1, t_2, t_3, t_4] = \frac{[t_1, t_3][t_2, t_4]}{[t_2, t_3][t_1, t_4]},
$$

$$
\{t_1, t_2, t_3, t_4\} = [t_1, t_2, t_3, t_4]^{\frac{1}{2}} \frac{\{t_2, t_4\}[t_1, t_2] - \{t_1, t_2\}[t_2, t_4]}{([t_1, t_2][t_2, t_4][t_1, t_4])^{\frac{1}{2}}}
$$

a miller

в

 QQQ

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Theorem I (cont'd)

- **If a contactomorphism** $\Phi \in K(1)$ **preserves the even part of** $I_{\rm e}$ **, or** *I*_a, or *I*_p, then $\Phi = \hat{h}$ for *h* in E(1|1), or Aff(1|1), or SpO₊(2|1), respectively.
- If a bijection Φ of $S^{1|1}$ preserves I_e , or I_a , or I_p , then $\Phi = h$ for *h* in $E_{+}(1|1)$, or $\text{Aff}_{+}(1|1)$, or $\text{SpO}_{+}(2|1)$, respectively.

See [Aok88, Nel88, U-Y90, Man91, Gidd92] for pioneering introduction of super cross-ratio (super Riemann surfaces, superstrings, . . .)

イタト イミト イミトー

Theorem I (cont'd)

- **If a contactomorphism** $\Phi \in K(1)$ **preserves the even part of** $I_{\rm e}$ **, or** *I*_a, or *I*_p, then $\Phi = \hat{h}$ for *h* in E(1|1), or Aff(1|1), or SpO₊(2|1), respectively.
- If a bijection Φ of $S^{1|1}$ preserves I_e , or I_a , or I_p , then $\Phi = h$ for *h* in $E_{+}(1|1)$, or $\text{Aff}_{+}(1|1)$, or $\text{SpO}_{+}(2|1)$, respectively.

See [Aok88, Nel88, U-Y90, Man91, Gidd92] for pioneering introduction of super cross-ratio (super Riemann surfaces, superstrings, . . .)

Seek now the corresponding differential invariants ...

イロト イ押 トイラト イラト

The Cartan formula [Car37]

Consider $\Phi \in \mathrm{Diff} (\mathrm{S}^1) ,$ the flow $\phi_\varepsilon = \mathrm{Id} + \varepsilon X + O(\varepsilon^2)$ of a vector field *X*, and 4 points t_1 , $t_2 = \phi_{\epsilon}(t_1)$, $t_3 = \phi_{2\epsilon}(t_1)$, $t_4 = \phi_{3\epsilon}(t_1)$.

The Schwarzian derivative of Φ is defined, via the cross-ratio, as the quadratic differential $\mathcal{S}(\Phi) \in \mathcal{Q}(\mathrm{S}^1)$ appearing in

$$
\frac{\Phi^*[t_1,\,t_2,\,t_3,\,t_4]}{[t_1,\,t_2,\,t_3,\,t_4]}-1=\langle \varepsilon X\otimes \varepsilon X, \mathcal{S}(\Phi)\rangle+O(\varepsilon^3)
$$

This formula (and its avatar for $A(\Phi)$) admits a prolongation to the case of the supercircle; it leads to the following result:

4 何 ト 4 重 ト 4 重 ト ー

 \equiv

Theorem II [M-D08]

The even Euclidean, affine and projective invariants \Rightarrow three 1-cocycles of $K(1)$, with kernel $E(1|1)$, Aff(1|1) et SpO₊(2|1) resp:

the Euclidean cocycle $\mathcal{E}:\mathcal{K}(1)\rightarrow \mathcal{F}_0(\mathcal{S}^{1|1})$:

 $\mathcal{E}(\Phi) = \log E_{\Phi}$

the affine cocycle $\mathcal{A}:\mathcal{K}(1)\rightarrow \Omega^1(\mathcal{S}^{1|1})$:

 $A(\Phi) = d\mathcal{E}(\Phi)$

the projective cocycle (super Schwarzian) $\mathcal{S}:\mathcal{K}(1)\to \mathcal{Q}(\mathcal{S}^{1|1})$:

$$
S(\Phi) = \frac{2}{3} \alpha^{\frac{1}{2}} L_D S(\Phi)
$$

where

$$
S(\Phi) = \frac{1}{4} \left(\frac{D^3 E_{\Phi}}{E_{\Phi}} - \frac{3}{2} \frac{DE_{\Phi} D^2 E_{\Phi}}{E_{\Phi}^2} \right) \alpha
$$

Christian DUVAL CPT–UM (Aix-Marseille II) [Variations on a Schwarzian theme](#page-0-0) ICJ, 26 November 2009 30 / 40

3 2

Theorem II (cont'd)

Using the projections of $\mathcal{Q}(\mathcal{S}^{1|1})$ to summands of densities, one obtains two new affine and projective 1-cocycles:

the projection of the affine cocycle $\mathrm{A}: \mathcal{K}(1) \rightarrow \mathcal{F}_1(\mathcal{S}^{1|1})$: 2

$$
A(\Phi) = \alpha^{\frac{1}{2}} \langle D, A(\Phi) \rangle = \frac{DE_{\Phi}}{E_{\Phi}} \alpha^{\frac{1}{2}}
$$

the projection of the Schwarzian cocycle S : $\mathcal{K}(1) \rightarrow \mathcal{F}_{\frac{3}{2}}(\mathcal{S}^{1|1})$:

$$
S(\Phi)=\alpha^{\frac{1}{2}}\left\langle D,\mathcal{S}(\Phi)\right\rangle=\frac{1}{4}\left(\frac{D^{3}E_{\Phi}}{E_{\Phi}}-\frac{3}{2}\frac{DE_{\Phi}}{E_{\Phi}^{2}}\frac{D^{2}E_{\Phi}}{E_{\Phi}^{2}}\right)\alpha^{\frac{3}{2}}
$$

This expression is due to [Rad86]; see [Fri86, Coh87, G-T93].

Note the super Lagrange formula

$$
S(\Phi) = -\frac{1}{2} E_{\Phi}^{\frac{1}{2}} D^3 (E_{\Phi}^{-\frac{1}{2}}) \alpha^{\frac{3}{2}}
$$

Christian DUVAL CPT–UM (Aix-Marseille II) [Variations on a Schwarzian theme](#page-0-0) ICJ, 26 November 2009 31 / 40

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

The three geometries of supercircle S^{1|1}

The 1-cocycles of *k*(1) (Lie superalgebra of hamiltonian vector fields of $(\mathcal{S}^{1|1},[\alpha])$ associated with $\mathcal{E},$ A et S are trivially the c_i : $k(1)\rightarrow \mathcal{F}_{i/2}$:

$$
c_i(X_f) = (D^{i+2}f) \alpha^{i/2} \qquad (i = 0, 1, 3)
$$

These are the 3 out of 4 generators of $H^1(k(1),\mathcal{F}_\lambda)$ [A-BF03] the only ones which integrate as (non trivial) *K*(1)-cocycles.

Theorem [M-D08]

The cohomology spaces

$$
H^1(K(1),\mathcal{F}_\lambda(\mathcal{S}^{1|1})) = \left\{ \begin{array}{ll} \mathbb{R} & \text{ if } \lambda = 0, \frac{1}{2}, \frac{3}{2} \\ \{0\} & \text{ otherwise } \end{array} \right.
$$

are resp. generated by \mathcal{E} , A et S. The cohomology spaces

 $H^1(K(1), \Omega^1(\mathcal{S}^{1|1})) = \mathbb{R} \qquad \text{ et } \qquad H^1(K(1), \mathcal{Q}(\mathcal{S}^{1|1})) = \mathbb{R}$

are resp. generated by A et S .

Var. 4 The super Virasoro group Vir $(S^{1|1})$

Christian DUVAL CPT–UM (Aix-Marseille II) [Variations on a Schwarzian theme](#page-0-0) ICJ, 26 November 2009 33 / 40

Þ

 Ω

The South The

Var. 4 The super Virasoro group Vir $(S^{1|1})$

- The symplectic structure of $K(1)/SpO_{+}(2|1)$
- The Bott-Thurston cocycle of *K*(1)

 \mathbf{A} . The first set of \mathbf{A}

The Bott-Thurston cocycle of *K*(1)

We work out the super Virasoro group, Vir(*S* 1|1), via a distinguished **affine-coadjoint orbit** of *K*(1).

Consider the 1-form Θ of $K(1)$ defined by the Berezin integral

$$
\Theta(\delta_f \Phi) = \frac{1}{2} \int_{S^{1|1}} A(\Phi) \, \delta_f \mathcal{E}(\Phi)
$$

with $\bm A = \alpha^\frac{1}{2}\langle D,\mathcal A\rangle$ (resp. $\mathcal E)$ the affine (resp. Euclidean) $K(1)$ cocycle (recall $\mathcal{A} = d\mathcal{E}$); also $\delta_f \Phi = \delta(\Phi \circ \Psi)$ with $\delta \Psi = X_f$ at $\Psi = \text{Id}$, for some $\mathsf{contact}\;$ Hamiltonian $f\in C^\infty(S^{1|1}).$

Easy calculation yield

$$
\delta_f \mathcal{E} = \langle X_f, \mathcal{A} \rangle + f' \qquad \& \qquad \delta_f A = \alpha^{\frac{1}{2}} D \delta_f \mathcal{E}
$$

 Ω

イロト イ押ト イヨト イヨト ニヨ

The Bott-Thurston cocycle of *K*(1) (cont'd)

Theorem

The exterior derivative *d*Θ of the 1-form Θ of *K*(1), viz.

$$
d\Theta(\delta_f \Phi, \delta_g \Phi) = \frac{1}{2} \int_{S^{1|1}} \delta_f A(\Phi) \, \delta_g \mathcal{E}(\Phi) - (-1)^{p(f)p(g)} \delta_g A(\Phi) \, \delta_f \mathcal{E}(\Phi)
$$

descends to $S(K(1)) \cong K(1)/SpO_+(2|1)$, the *affine-coadjoint* orbit of the origin in $\mathcal{F}_\frac{3}{2} \subset k(1)^*$, as a symplectic 2-form Ω sth

$$
\Omega(X_f, X_g) = \int_{S^{1|1}} \langle S(\Phi), [X_f, X_g] \rangle + \int_{S^{1|1}} (D^5 f) g \alpha^{\frac{1}{2}}
$$

=
$$
S(\Phi) \cdot [X_f, X_g] + GF(X_f, X_g)
$$

where the Schwarzian, S, induces the Souriau cocycle, S, and GF is the Gelfand-Fuchs cocycle of *k*(1).

∍

 Ω

イロト イ押 トイラト イラト

The super Virasoro group Vir(S^{1|1})

Now Θ fails to be *K*(1)-invariant; introduce hence the 1-form

$$
\widehat{\Theta} = \Theta + dt
$$

of $K(1) = K(1) \times \mathbb{R}$. Try and lift $K(1)$ so as to preserve Θ .

 Ω

 \mathcal{L} and \mathcal{L} is a set of \mathcal{L}

The super Virasoro group Vir(S^{1|1})

Now Θ fails to be *K*(1)-invariant; introduce hence the 1-form

$$
\widehat{\Theta} = \Theta + dt
$$

of $\widehat{K}(1) = K(1) \times \mathbb{R}$. Try and lift $K(1)$ so as to preserve Θ .

Corollary

The group $\mathcal{K}(1)$ of contactomorphisms of $(\mathcal{S}^{1|1},[\alpha])$ admits a lift as a group, $\text{Vir}(S^{1|1})$, of automorphisms of $(\widehat{K(1)}, \widehat{\Theta})$, whose group law is

$$
(\Phi_1, t_1)(\Phi_2, t_2) = (\Phi_1 \circ \Phi_2, t_1 + t_2 - \frac{1}{2} \int_{S^{1|1}} \mathcal{E}(\Phi_1 \circ \Phi_2) A(\Phi_2))
$$

BT (Φ_1, Φ_2)

with $\textbf{BT} = \int_{\mathcal{S}^{1|1}} (\mathcal{E} \smile \text{A})$ the $\textbf{Bott-Thurston}$ cocycle of $\mathcal{K}(1)$, [Rad86].

Triple (S, GF, **BT**): super version of the "Trilog[y o](#page-56-0)f [t](#page-58-0)[h](#page-55-0)[e](#page-56-0)[m](#page-58-0)[o](#page-51-0)[m](#page-57-0)[e](#page-58-0)[n](#page-51-0)[t](#page-52-0)["](#page-57-0) [\[](#page-58-0)[Ig](#page-0-0)[l95](#page-63-0)].

Var. 5 The supercircle *S* 1|*N*

Christian DUVAL CPT–UM (Aix-Marseille II) [Variations on a Schwarzian theme](#page-0-0) ICJ, 26 November 2009 37 / 40

E

 QQ

押 トイヨ トイヨト

4 0 8

Var. 5 The supercircle *S* 1|*N*

- The Euclidean and affine cocycles of *K*(*N*)
- The Schwarzian cocycle of *K*(2)

The Second

The case of the supercircle *S* 1|*N*

For the supercircle $S^{1|N}$, endowed with the contact 1-form

$$
\alpha = dx + \sum_{i,j=1}^N \delta_{ij} \xi^i d\xi^j
$$

the invariants of $E_+(1|N)$, $A_+(1|N)$ and $SpO_+(2|N)$ retain the same form as for $N = 1$. However, the odd invariant $(I_n)_1$ is now determined up to the action of $O(N)$. The corresponding differential invariants are

Euclidean cocycle $\mathcal{E}:\mathcal{K}(\mathcal{N})\rightarrow \mathcal{F}_0(\mathcal{S}^{1|\mathcal{N}})$:

 $\mathcal{E}(\Phi) = \log E_{\Phi}$

Affine cocycle $\mathcal{A}:\mathcal{K}(\mathcal{N})\rightarrow \Omega^{1}(\mathcal{S}^{1|\mathcal{N}})$:

$$
\mathcal{A}(\Phi)=d\mathcal{E}(\Phi)
$$

 Ω

4 何 ト 4 ヨ ト 4 ヨ ト ニ ヨ

The case of the supercircle *S* 1|*N*

For the supercircle $S^{1|N}$, endowed with the contact 1-form

$$
\alpha = dx + \sum_{i,j=1}^N \delta_{ij} \xi^i d\xi^j
$$

the invariants of $E_+(1|N)$, $A_+(1|N)$ and $SpO_+(2|N)$ retain the same form as for $N = 1$. However, the odd invariant $(I_0)_1$ is now determined up to the action of $O(N)$. The corresponding differential invariants are

Euclidean cocycle $\mathcal{E}:\mathcal{K}(\mathcal{N})\rightarrow \mathcal{F}_0(\mathcal{S}^{1|\mathcal{N}})$:

 $\mathcal{E}(\Phi) = \log E_{\Phi}$

Affine cocycle $\mathcal{A}:\mathcal{K}(\mathcal{N})\rightarrow \Omega^{1}(\mathcal{S}^{1|\mathcal{N}})$:

 $A(\Phi) = d\mathcal{E}(\Phi)$

Remark: In Cartan's formula [⇒ 1-cocycles of *K*(*N*)], Φ ∗ [*t*1, *t*2] is *no longer* proportional to $[t_1, t_2]$, up to $O(\varepsilon^3)$, for $N \geq 3$. The Schwarzian, $S(\Phi)$, is therefore not given by the Cartan for[mul](#page-60-0)[a i](#page-62-0)[f](#page-59-0) $N \geq 3$ $N \geq 3$ $N \geq 3$ [.](#page-63-0) [B](#page-57-0)[u](#page-58-0)[t](#page-62-0) ... Ω

Theorem

The even cross-ratio $(I_p)_0$, and the Cartan formula yield the projective 1-cocycle $\mathcal{S}:\mathcal{K}(2)\rightarrow\mathcal{Q}(\mathrm{S}^{1|2})$

$$
\mathcal{S}(\Phi) = \frac{1}{6}\alpha^2 \left(D_1 D_2 S_{12} + \frac{1}{2} S_{12}^2 \right) + \frac{1}{2} \alpha (\beta^1 D_2 + \beta^2 D_1) S_{12} + \beta^1 \beta^2 S_{12}
$$

with $\mathrm{S}_{12} = 2\,\mathrm{S}(\mathrm{\Phi}) \alpha^{-1}$ where

$$
S(\Phi)=\left(\frac{D_2D_1E_{\Phi}}{E_{\Phi}}-\frac{3}{2}\frac{D_2E_{\Phi}D_1E_{\Phi}}{E_{\Phi}^2}\right)\alpha
$$

The projection of quadratic differentials to 1-densities of $S^{1|2}$ returns the above Schwarzian derivative S : $\mathcal{K}(2) \rightarrow \mathcal{F}_1(\mathrm{S}^{1|2}).$

The kernels of these cocycles coincide; they are isomorphic to $PC(2|2) = SpO(2|2)/\{\pm Id\}.$

÷

 Ω

イロト イ押ト イヨト イヨト

 \bullet . . .

- Classification of the geometries of $(S^{1|N}, [\alpha])$, where $N \geq 2.$
- Construction of the Bott cocycle of *K*(2) in the same vein.
- Detailed study of the Möbius supercircle $S^{1|1}_{+}$.⁶

 6 lts superfunctions are defined as the smooth superfunctions of $\mathbb{R}^{1\vert1}$ invariant under $(x, \xi) \mapsto (x + 2\pi, -\xi)$. α . The α - 3 Christian DUVAL CPT–UM (Aix-Marseille II) [Variations on a Schwarzian theme](#page-0-0) ICJ, 26 November 2009 40 / 40