Variations on a Schwarzian theme

Christian DUVAL
CPT-UM

Congrès international en l'honneur de Claude Roger Institut Camille Jordan, Lyon 25-28 November 2009

- Tema
- 2 Var. 1: Schwarzian derivative and Lorentz surfaces
- 3 Var. 2: Schwarzian derivative and Finsler scalar curvature
- iggl@4 Var. 3 Schwarzian derivative & contact geometry of supercircle $\mathcal{S}^{1|1}$
- 5 Var. 4: The super Virasoro group $Vir(S^{1|1})$
- 6 Var. 5: The case of the supercircle $S^{1|N}$ with $N \ge 2$
- Coda

A tribute to Lagrange

If φ is a conformal mapping of \mathbb{C} , Lagrange introduces the function

$$S(\varphi) = -2\sqrt{\varphi'} \left(\frac{1}{\sqrt{\varphi'}}\right)''$$

in his treatise on the *cartes géographiques* — Vol IV des œuvres complètes — see [G-R07,O-T09].

This Lagrangian is, today, called the Schwarzian (derivative)

$$\mathrm{S}(arphi) = rac{arphi'''}{arphi'} - rac{3}{2} \left(rac{arphi''}{arphi'}
ight)^2$$

of φ and is an object of projective geometry.

A tribute to Lagrange

If φ is a conformal mapping of \mathbb{C} , Lagrange introduces the function

$$S(\varphi) = -2\sqrt{\varphi'} \left(\frac{1}{\sqrt{\varphi'}}\right)''$$

in his treatise on the *cartes géographiques* — Vol IV des œuvres complètes — see [G-R07,O-T09].

This Lagrangian is, today, called the Schwarzian (derivative)

$$\mathrm{S}(arphi) = rac{arphi'''}{arphi'} - rac{3}{2} \left(rac{arphi''}{arphi'}
ight)^2$$

of φ and is an object of projective geometry.

- Q: Does it appear/generalize in other geometrical contexts?
- A: Yes! See below ...

The properties of the Schwarzian

The Schwarzian $S(\varphi)$ measures, at each point x, the shift between a diffeomorphism $\varphi \in \mathrm{Diff}(S^1)$ and its approximating homography, $h \in \mathrm{PGL}(2,\mathbb{R}),^1$

$$\mathcal{S}(\varphi)(x) = (\widehat{h}^{-1} \circ \varphi)'''(x)$$

- It is a $PSL(2,\mathbb{R})$ -differential invariant for $Diff_+(S^1)$: $S(\varphi) = S(\psi)$ iff $\varphi = A \circ \psi$ where $A \in PSL(2,\mathbb{R})$.
- It is a non trivial 1-cocycle of $\mathrm{Diff}_+(S^1)$ with coefficients in the module of quadratic differentials $\mathcal{Q}(S^1)$:

$$\mathcal{S}(\varphi \circ \psi) = \psi^* \mathcal{S}(\varphi) + \mathcal{S}(\psi)$$

It has kernel $PSL(2, \mathbb{R})$.

¹sth $\hat{h}^{-1} \circ \varphi$ has the 2-jet of Id at x

The three geometries of the circle

Highlight an important classification result, see [Fuk87, O-T05, G-R07]:

Theorem

The cohomology spaces $H^1(\operatorname{Diff}_+(S^1), \mathcal{F}_{\lambda})$ are given by

$$H^1(\mathrm{Diff}_+(S^1),\mathcal{F}_\lambda) = \left\{ egin{array}{ll} \mathbb{R} & ext{if } \lambda = 0,1,2 \\ \{0\} & ext{otherwise} \end{array}
ight.$$

These 3 cohomology spaces are resp. generated by $\mathcal{E}, \mathcal{A}, \& \mathcal{S}$:

$$\mathcal{E}(\varphi) = \log(\varphi'), \qquad \qquad \mathcal{A}(\varphi) = d\mathcal{E}(\varphi)$$

and Schwarzian cocycle

$$S(\varphi) = \left(\frac{\varphi'''}{\varphi'} - \frac{3}{2} \left(\frac{\varphi''}{\varphi'}\right)^2\right) dx^2$$

Invariants of $E(1) \subset Aff_+(1) \subset PSL(2,\mathbb{R}) \subset Diff_+(S^1)$

The kernels of these 3 cocycles define resp. the Euclidean, affine, and projective groups, i.e., the **3 geometries** of the circle, whose *discrete* invariants are

• Euclidean invariant (translations): distance

$$[x_1, x_2] = x_2 - x_1$$

• Affine invariant (homotheties, translations): distance-ratio

$$[x_1, x_2, x_3] = \frac{[x_1, x_3]}{[x_1, x_2]}$$

Projective invariant (homographies): cross-ratio

$$[x_1, x_2, x_3, x_4] = \frac{[x_1, x_3][x_2, x_4]}{[x_2, x_3][x_1, x_4]}$$

Var. 1 The Schwarzian derivative and Lorentz surfaces

Var. 1 The Schwarzian derivative and Lorentz surfaces

- Prolonging to null infinity a "coboundary" of conformal group
- Looking at curvature of timelike Lorentz worldlines

The fourth geometry of Poincaré [K-S87, D-G2k]

Let $H^{1,1}\cong S^1\times S^1\setminus \Delta$ be hyperboloid of one sheet (of radius 1) in $\mathbb{R}^{2,1}$ (AdS space). Its induced Lorentz metric is

$$g_1 = \frac{4 d\theta_1 d\theta_2}{\left|e^{i\theta_1} - e^{i\theta_2}\right|^2}$$

- **1** Conf($H^{1,1}$) \cong Diff(Δ) with $\Delta \cong S^1$ conformal boundary.
- ② If $\varphi \in Conf_+(H^{1,1})$, then $\varphi^*g_1 g_1$ extends smoothly to $S^1 \times S^1$.
- **1-coboundary 1-coboundary 1-coboundary**

$$S_1(\varphi) = \frac{3}{2} \left(\varphi^* g - g \right) |\Delta|$$

 \Rightarrow non-trivial Diff₊(S¹) 1-cocycle $S_1(\varphi) = S_1(\varphi) d\theta^2 \in \mathcal{Q}(S^1)$:

$$S_{1}(\varphi) = \underbrace{\frac{\varphi'''}{\varphi'} - \frac{3}{2} \left(\frac{\varphi''}{\varphi'}\right)^{2}}_{S(\varphi)} + \frac{1}{2} \left(\varphi'^{2} - 1\right)$$

The fourth geometry of Poincaré (cont'd)

Holography: Conformal Lorentzian geometry of bulk $H^{1,1} \iff$ projective geometry of its conformal boundary, $\Delta \cong S^1$:

- Conf($H^{1,1}$) \cong Diff(S^1).
- $\operatorname{Isom}_+(H^{1,1}) \cong \operatorname{PSL}(2,\mathbb{R}).$
- $\bullet (\varphi^* \mathbf{g}_1 \mathbf{g}_1) | \mathbf{S}^1 \cong \mathcal{S}_1(\varphi).$
- $\operatorname{Conf}_+(H^{1,1})/\operatorname{Isom}_+(H^{1,1})$ is a $\operatorname{Vir}(S^1)$ coadjoint orbit with central charge c=1, and symplectic 2-form Ω coming from

$$\omega(\delta_1 \mathbf{g}, \delta_2 \mathbf{g}) = \frac{3}{2} \int_{\Delta} i_{\xi_1} L_{\xi_2} \mathbf{g}$$

where $g \in [g_1]$, $\delta_k g = L_{\xi_k} g \& \xi_k \in Vect(S^1)$.

Etc.

Curvature of worldlines in Lorentz surfaces

Consider a curve $x \mapsto y = \varphi(x)$ and its graph in $\mathbb{R}^{1,1} = (\mathbb{R}^2, g = dxdy)$. If velocity $v = \partial/\partial x + \varphi'(x)\partial/\partial y$ is *timelike*, i.e., $g(v, v) = \varphi'(x) > 0$, the Frenet curvature $\varrho = \sigma(v, a)/g(v, v)^{\frac{3}{2}}$, with $a = \nabla_v v$ (acceleration) and $\sigma = dx \wedge dy$, reads

$$\varrho(\mathbf{X}) = (\varphi'(\mathbf{X}))^{-\frac{3}{2}} \varphi''(\mathbf{X}).$$

Then

$$\varrho'(x)\sqrt{\varphi'(x)} = \frac{\varphi'''(x)}{\varphi'(x)} - \frac{3}{2}\left(\frac{\varphi''(x)}{\varphi'(x)}\right)^2$$

Curvature of worldlines in Lorentz surfaces

Consider a curve $x \mapsto y = \varphi(x)$ and its graph in $\mathbb{R}^{1,1} = (\mathbb{R}^2, g = dxdy)$.

If velocity $v = \partial/\partial x + \varphi'(x)\partial/\partial y$ is *timelike*, i.e., $g(v,v) = \varphi'(x) > 0$, the Frenet curvature $\varrho = \sigma(v,a)/g(v,v)^{\frac{3}{2}}$, with $a = \nabla_v v$ (acceleration) and $\sigma = dx \wedge dy$, reads

$$\varrho(\mathbf{X}) = (\varphi'(\mathbf{X}))^{-\frac{3}{2}} \varphi''(\mathbf{X}).$$

Then

$$\varrho'(x)\sqrt{\varphi'(x)} = \frac{\varphi'''(x)}{\varphi'(x)} - \frac{3}{2}\left(\frac{\varphi''(x)}{\varphi'(x)}\right)^2$$

- Q: Does this relationship generalize to curved Lorentz surfaces?
- A: Yes, provided . . .

Curvature of worldlines in Lorentz surfaces (cont'd)

Theorem [D-O2k]

Let $\varphi \in \mathrm{Diff}_+(\mathbb{R}P^1)$, and let ϱ be curvature of its graph in $\mathbb{R}P^1 \times \mathbb{R}P^1$ with metric g = g(x, y) dx dy, and t be *proper time*, then

$$d\varrho dt = S(\varphi)$$

iff

$$g = \frac{dxdy}{(axy + bx + cy + d)^2}$$

with $a, b, c, d \in \mathbb{R}$.

Metric of constant curvature K = 8(ad - bc) on $\Sigma = \mathbb{R}P^1 \times \mathbb{R}P^1 \setminus \Gamma$ is projectively equivalent to

$$g = \begin{cases} \frac{dxdy}{K} & (K = 0) \\ \frac{8}{K} \frac{dxdy}{(x - y)^2} & (K \neq 0) \end{cases}$$

Curvature of worldlines in Lorentz surfaces (cont'd)

Ghys' theorem ('95) — "The Schwarzian derivative $S(\varphi)$ of a diffeomorphism φ of $\mathbb{R}P^1$ has at least 4 distinct zeroes" — hence corresponds to the 4-vertex theorem for closed timelike curves in $\Sigma \subset \mathbb{R}P^1 \times \mathbb{R}P^1$ with the above metric.

Var. 2 The Schwarzian derivative and Finsler geometry

Var. 2 The Schwarzian derivative and Finsler geometry

- Check out metrics of scalar curvature, e.g., Numata metrics
- Specialize the flag curvature to the ...1-dim case

Schwarzian derivative & Finsler scalar curvature (I)

A Finsler structure on a smooth manifold *M* is defined by a "metric"

$$F:TM \to \mathbb{R}^+$$

whose restriction to $TM \setminus M$ is strictly positive, smooth, and sth $F(x, \lambda y) = \lambda F(x, y)$ for all $\lambda > 0$; Hessian $g_{ij}(x, y) = \left(\frac{1}{2}F^2\right)_{y^iy^j}$ is assumed positive definite. The fundamental tensor

$$g = g_{ij}(x, y) dx^i \otimes dx^j$$

defines a sphere's worth of Riemannian metrics on each $T_x M$. Also

$$\ell = \ell^i \frac{\partial}{\partial x^i}, \quad \text{with} \quad \ell^i(x, y) = \frac{y^i}{F(x, y)}$$

is a distinguished unit section of $\pi^*(TM)$, i.e., $g_{ij}(x,y)\ell^i\ell^j=1$, where $\pi:TM\setminus M\to M$.

Schwarzian derivative & Finsler scalar curvature (II)

Unlike Riemannian case, \nexists canonical linear connection on $\pi^*(TM)$. Example: Chern connection $\omega_j^i = \Gamma_{jk}^i(x,y)dx^k$ uniquely characterized by (i) symmetry: $\Gamma_{jk}^i = \Gamma_{kj}^i$, and (ii) almost "metric transport": $dg_{ij} - \omega_i^k g_{jk} - \omega_i^k g_{ik} = 2C_{ijk}\delta y^k$.²

²Here, $C_{ijk}(x,y) = \left(\frac{1}{4}F^2\right)_{y^iy^jy^k}$ (Cartan tensor), $\delta y^i = dy^i + N^i_j dx^j$, with $N^i_i(x,y) = \gamma^i_{jk}y^k$ (Ehresmann connection), where γ^i_{jk} formal Christoffel symbols.

Schwarzian derivative & Finsler scalar curvature (II)

Unlike Riemannian case, \nexists canonical linear connection on $\pi^*(TM)$. Example: Chern connection $\omega_j^i = \Gamma_{jk}^i(x,y)dx^k$ uniquely characterized by (i) symmetry: $\Gamma_{jk}^i = \Gamma_{kj}^i$, and (ii) almost "metric transport": $dg_{ii} - \omega_i^k g_{ik} - \omega_i^k g_{ik} = 2C_{iik}\delta y^k$.²

 $ug_{ij} - \omega_i g_{jk} - \omega_j g_{ik} = 2 \sigma_{ijk} \sigma_j .$

Using "horizontal derivatives" $\delta/\delta x^i=\partial/\partial x^i-N_i^l\partial/\partial y^j$, one gets hh-Chern curvature

$$R_{j\ kl}^{\ i} = \frac{\delta}{\delta x^{k}} \Gamma_{jl}^{i} + \Gamma_{mk}^{i} \Gamma_{jl}^{m} - (k \leftrightarrow l)$$

and flag curvature (for the flag $\ell \wedge \nu$ with $\nu \in T_x M$) by

$$K(x, y, v) = \frac{R_{ik}v^iv^k}{g(v, v) - g(\ell, v)^2},$$
 where $R_{ik} = \ell^j R_{jikl} \ell^l$

²Here, $C_{ijk}(x,y) = \left(\frac{1}{4}F^2\right)_{y^iy^jy^k}$ (Cartan tensor), $\delta y^i = dy^i + N^i_j dx^j$, with $N^i_j(x,y) = \gamma^i_{jk}y^k$ (Ehresmann connection), where γ^i_{jk} formal Christoffel symbols.

Schwarzian derivative & Finsler scalar curvature (III)

Finsler structure (M, F) of scalar curvature $\iff K(x, y, v)$ is independent of the vector v, i.e.,

$$R_{ik} = K(x, y)h_{ik} \tag{*}$$

with $h_{ik} = g_{ik} - \ell_i \ell_k$ the "angular metric", $\ell_i = g_{jj} \ell^j$.

Example: The Numata Finsler structure: $F(x,y) = \sqrt{\delta_{ij}y^iy^j + f_{x^i}y^i}$, where $M = \left\{x \in \mathbb{R}^n \,\middle|\, \sum_{i=1}^n (f_{x^i})^2 < 1\right\}$, and $f \in C^\infty(M)$. The flag curvature reads *provocatively*

$$K(x,y) = -\frac{1}{2F^2} \left[\frac{1}{F} f_{x^i x^j x^k} y^i y^j y^k - \frac{3}{2} \frac{1}{F^2} \left(f_{x^i x^j} y^i y^j \right)^2 \right]$$

Schwarzian derivative & Finsler scalar curvature (III)

Finsler structure (M, F) of scalar curvature $\iff K(x, y, v)$ is independent of the vector v, i.e.,

$$R_{ik} = K(x, y)h_{ik} \tag{*}$$

with $h_{ik} = g_{ik} - \ell_i \ell_k$ the "angular metric", $\ell_i = g_{jj} \ell^j$.

Example: The Numata Finsler structure: $F(x,y) = \sqrt{\delta_{ij}y^iy^j + f_{x^i}y^i}$, where $M = \left\{x \in \mathbb{R}^n \,\middle|\, \sum_{i=1}^n (f_{x^i})^2 < 1\right\}$, and $f \in C^\infty(M)$. The flag curvature reads *provocatively*

$$K(x,y) = -\frac{1}{2F^2} \left[\frac{1}{F} f_{x^i x^j x^k} y^i y^j y^k - \frac{3}{2} \frac{1}{F^2} \left(f_{x^i x^j} y^i y^j \right)^2 \right]$$

Idea: Investigate the case n = 1.

Schwarzian derivative & Finsler scalar curvature (IV)

Although Eq. (*) trivially satisfied, the flag curvature admits a nontrivial prolongation to this 1-dim case, where F(x,y) = |y| + f'(x)y with -1 < f'(x) < +1 on $M \subset \mathbb{R}P^1$. Its restrictions to $T^\pm M \cong M \times \mathbb{R}^\pm_*$ read $F_\pm(x,y) = \varphi'_\pm(x)y > 0$, where

$$\varphi'_{\pm}(x) = f'(x) \pm 1 \tag{*}$$

implying $\varphi_{\pm} \in \mathrm{Diff}_{\pm}(\mathbb{R}P^1)$, with $|\varphi'_{\pm}(x)| < 2$.

Schwarzian derivative & Finsler scalar curvature (IV)

Although Eq. (*) trivially satisfied, the flag curvature admits a nontrivial prolongation to this 1-dim case, where F(x,y) = |y| + f'(x)y with -1 < f'(x) < +1 on $M \subset \mathbb{R}P^1$. Its restrictions to $T^\pm M \cong M \times \mathbb{R}^\pm_*$ read $F_\pm(x,y) = \varphi'_\pm(x)y > 0$, where

$$\varphi'_{\pm}(x) = f'(x) \pm 1 \tag{*}$$

implying $\varphi_{\pm} \in \mathrm{Diff}_{\pm}(\mathbb{R}P^1)$, with $|\varphi'_{\pm}(x)| < 2$.

Theorem [Duv08]

The 1-dim Numata Finsler structure induces a Riemannian metric, $g(\varphi)=\varphi^*(dx^2)$, where $\varphi\in \mathrm{Diff}(\mathbb{R}P^1)$ is as in (*). The flag curvature is

$$K = -rac{1}{2}rac{\mathsf{S}(arphi)}{\mathsf{g}(arphi)}$$

with $S(\varphi)$ the Schwarzian quadratic differential of φ .

Var. 3 The Schwarzian derivative and contact geometry of $S^{1|1}$

Var. 3 The Schwarzian derivative and contact geometry of $S^{1|1}$

- Seek super geometric versions of the Euclidean, affine, and projective invariants of S¹. Super cross-ratio?
- What are then the 1- cocycles associated with super extensions of Diff(S¹)? Super Schwarzian derivative?

Var. 3 The Schwarzian derivative and contact geometry of $S^{1|1}$

- Seek super geometric versions of the Euclidean, affine, and projective invariants of S¹. Super cross-ratio?
- What are then the 1- cocycles associated with super extensions of Diff(S¹)? Super Schwarzian derivative?
- How can one relate theses new geometric objects?
- Classification of the geometries of the supercircle!

The supercircle $S^{1|1}$

The supercircle $S^{1|1}$: the circle S^1 , endowed with (a sheaf of associative commutative $\mathbb{Z}/(2\mathbb{Z})$ -graded algebras, with sections) the superfunctions $C^{\infty}(S^{1|1}) = C^{\infty}(S^1)[\xi]$ where $\xi^2 = 0$ & $x\xi = \xi x$.

The supercircle $S^{1|1}$

The supercircle $S^{1|1}$: the circle S^1 , endowed with (a sheaf of associative commutative $\mathbb{Z}/(2\mathbb{Z})$ -graded algebras, with sections) the superfunctions $C^{\infty}(S^{1|1}) = C^{\infty}(S^1)[\xi]$ where $\xi^2 = 0$ & $x\xi = \xi x$.

- If (x, ξ) are local coordinates of (affine) superdomain, every superfunction writes

$$f(x,\xi) = f_0(x) + \xi f_1(x),$$
 where $f_0, f_1 \in C^{\infty}(S^1)$

- Parity: $p(f_0) = 0$, $p(\xi f_1) = 1$.
- Projection: $\pi: C^{\infty}(S^{1|1}) \to C^{\infty}(S^1)$ where $\ker(\pi)$: ideal generated by nilpotent elements.

The supercircle $S^{1|1}$

The supercircle $S^{1|1}$: the circle S^1 , endowed with (a sheaf of associative commutative $\mathbb{Z}/(2\mathbb{Z})$ -graded algebras, with sections) the superfunctions $C^{\infty}(S^{1|1}) = C^{\infty}(S^1)[\xi]$ where $\xi^2 = 0$ & $x\xi = \xi x$.

- If (x, ξ) are local coordinates of (affine) superdomain, every superfunction writes

$$f(x,\xi) = f_0(x) + \xi f_1(x),$$
 where $f_0, f_1 \in C^{\infty}(S^1)$

- Parity: $p(f_0) = 0$, $p(\xi f_1) = 1$.
- Projection: $\pi: C^{\infty}(S^{1|1}) \to C^{\infty}(S^1)$ where $\ker(\pi)$: ideal generated by nilpotent elements.
- Group of diffeomorphisms: $\operatorname{Diff}(S^{1|1}) = \operatorname{Aut}(C^{\infty}(S^{1|1}))$ consists of pairs $\Phi = (\varphi, \psi)$ of superfunctions sth $(\varphi(x, \xi), \psi(x, \xi))$ are new coordinates on $S^{1|1}$.

Vector fields & 1-forms of the supercircle

Vector fields $\operatorname{Vect}(S^{1|1}) = \operatorname{SuperDer}(C^{\infty}(S^{1|1}))$ with local expression

$$X = f(x,\xi)\partial_x + g(x,\xi)\partial_\xi$$
 where $f,g \in C^\infty(S^{1|1})$

NB: $\operatorname{Vect}(S^{1|1})$ is a $C^{\infty}(S^{1|1})_L$ -module locally generated by $(\partial_x, \partial_\xi)$ where $p(\partial_x) = 0$, $p(\partial_\xi) = 1$. It is also a Lie superalgebra with Lie bracket $[X, Y] = XY - (-1)^{p(X)p(Y)}YX$.

³Cohomological degree $|\cdot|$, parity p.

Vector fields & 1-forms of the supercircle

Vector fields $\operatorname{Vect}(S^{1|1}) = \operatorname{SuperDer}(C^{\infty}(S^{1|1}))$ with local expression

$$X = f(x,\xi)\partial_x + g(x,\xi)\partial_\xi$$
 where $f,g \in C^\infty(S^{1|1})$

NB: $\operatorname{Vect}(S^{1|1})$ is a $C^{\infty}(S^{1|1})_L$ -module locally generated by $(\partial_X, \partial_\xi)$ where $p(\partial_X) = 0$, $p(\partial_\xi) = 1$. It is also a Lie superalgebra with Lie bracket $[X, Y] = XY - (-1)^{p(X)p(Y)}YX$.

Differential 1-forms $\Omega^1(S^{1|1}) = C^{\infty}(S^{1|1})_R$ -module locally generated by dual basis $(dx, d\xi)$ where p(dx) = 0, $p(d\xi) = 1$. The module $\Omega^{\bullet}(S^{1|1})$ of differential forms is bigraded: our choice of *Sign Rule* is³

$$\alpha \wedge \beta = (-1)^{|\alpha||\beta| + p(\alpha)p(\beta)} \beta \wedge \alpha$$

³Cohomological degree $|\cdot|$, parity p.

Contact structure on supercircle $S^{1|1}$

It is given by direction of contact 1-form [Lei80]

$$\alpha = \mathbf{d}\mathbf{x} + \xi \mathbf{d}\xi$$

We have $d\alpha = \beta \wedge \beta$ where $\beta = d\xi$.

- Contact distribution, $ker(\alpha)$, generated by SUSY vector field

$$D = \partial_{\xi} + \xi \partial_{x}$$

- Contactomorphisms:4

$$K(1) = \{ \Phi \in \operatorname{Diff}(S^{1|1}) \mid \Phi^* \alpha = E_{\Phi} \alpha \}$$

Contact structure on supercircle $S^{1|1}$

It is given by direction of contact 1-form [Lei80]

$$\alpha = \mathbf{d}\mathbf{x} + \xi \mathbf{d}\xi$$

We have $d\alpha = \beta \wedge \beta$ where $\beta = d\xi$.

- Contact distribution, $ker(\alpha)$, generated by SUSY vector field

$$D = \partial_{\xi} + \xi \partial_{x}$$

- Contactomorphisms:4

$$K(1) = \{ \Phi \in \operatorname{Diff}(S^{1|1}) \, | \, \Phi^* \alpha = E_{\Phi} \, \alpha \}$$

Infinitesimal contactomorphisms:

 $k(1) = \{X \in \text{Vect}(S^{1|1}) \mid L_X \alpha = e_X \alpha\}$. Canonical Lie superalgebra isomorphism $k(1) \to C^{\infty}(S^{1|1}) : X \mapsto f = \langle X, \alpha \rangle$.

⁴One shows that $\Phi = (\varphi, \psi) \in K(1) \iff D\varphi = \psi D\psi$, with **multiplier** $E_{\Phi} = (\underline{P}\psi)^2$

Densities, 1-forms & quadratic differentials

Let $\mathcal{F}_{\lambda}(S^{1|1})$ be the K(1)-module of λ -densities $(\lambda \in \mathbb{C})$: $C^{\infty}(S^{1|1})$ endowed with (anti)action $\Phi_{\lambda}f = (E_{\Phi})^{\lambda}\Phi^{*}f$. Write $F \in \mathcal{F}_{\lambda}$ as $F = f\alpha^{\lambda}$.

Densities, 1-forms & quadratic differentials

Let $\mathcal{F}_{\lambda}(S^{1|1})$ be the K(1)-module of λ -densities $(\lambda \in \mathbb{C})$: $C^{\infty}(S^{1|1})$ endowed with (anti)action $\Phi_{\lambda}f = (E_{\Phi})^{\lambda}\Phi^{*}f$. Write $F \in \mathcal{F}_{\lambda}$ as $F = f\alpha^{\lambda}$.

- The $C^{\infty}(S^{1|1})_R$ -module $\Omega^1(S^{1|1})$ of 1-forms is generated by α et β .

Densities, 1-forms & quadratic differentials

Let $\mathcal{F}_{\lambda}(S^{1|1})$ be the K(1)-module of λ -densities $(\lambda \in \mathbb{C})$: $C^{\infty}(S^{1|1})$ endowed with (anti)action $\Phi_{\lambda}f = (E_{\Phi})^{\lambda}\Phi^{*}f$. Write $F \in \mathcal{F}_{\lambda}$ as $F = f\alpha^{\lambda}$.

- The $C^{\infty}(S^{1|1})_R$ -module $\Omega^1(S^{1|1})$ of 1-forms is generated by α et β .
- The $C^{\infty}(S^{1|1})_R$ -module $\mathcal{Q}(S^{1|1})$ of quadratic differentials is generated by $\alpha^2 = \alpha \otimes \alpha$ et $\alpha\beta = \frac{1}{2}(\alpha \otimes \beta + \beta \otimes \alpha)$.

Densities, 1-forms & quadratic differentials

Let $\mathcal{F}_{\lambda}(S^{1|1})$ be the K(1)-module of λ -densities $(\lambda \in \mathbb{C})$: $C^{\infty}(S^{1|1})$ endowed with (anti)action $\Phi_{\lambda}f = (E_{\Phi})^{\lambda}\Phi^{*}f$. Write $F \in \mathcal{F}_{\lambda}$ as $F = f\alpha^{\lambda}$.

- The $C^{\infty}(S^{1|1})_R$ -module $\Omega^1(S^{1|1})$ of 1-forms is generated by α et β .
- The $C^{\infty}(S^{1|1})_R$ -module $\mathcal{Q}(S^{1|1})$ of quadratic differentials is generated by $\alpha^2 = \alpha \otimes \alpha$ et $\alpha\beta = \frac{1}{2}(\alpha \otimes \beta + \beta \otimes \alpha)$.

Proposition

Both $\Omega^1(S^{1|1})$ and $\mathcal{Q}(S^{1|1})$ are K(1)-modules; they admit the decomposition into K(1)-submodules:

$$\Omega^1(S^{1|1}) \cong \mathcal{F}_{\frac{1}{2}} \oplus \mathcal{F}_1, \qquad \qquad \mathcal{Q}(S^{1|1}) \cong \mathcal{F}_{\frac{3}{2}} \oplus \mathcal{F}_2$$

The projections $\Omega^1(S^{1|1}) \to \mathcal{F}_{\frac{1}{2}}$ (resp. $\mathcal{Q}(S^{1|1}) \to \mathcal{F}_{\frac{3}{2}}$) are given by $\alpha^{\frac{1}{2}}\langle D, \cdot \rangle$, and the corresponding sections by $\alpha^{\frac{1}{2}}L_D$ (resp. $\frac{2}{3}\alpha^{\frac{1}{2}}L_D$).

Orthosymplectic group, Euclidean & affine subgroups

It is the subgroup $\operatorname{SpO}(2|1) \subset \operatorname{GL}(2|1)$ of symplectomorphisms of $(\mathbb{R}^{2|1}, d\varpi)$ where $\varpi = \frac{1}{2}(pdq - qdp + \theta d\theta)$; one has⁵

$$h = \begin{pmatrix} a & b & \gamma \\ c & d & \delta \\ \alpha & \beta & e \end{pmatrix} \in SpO(2|1)$$

The group $\operatorname{SpO}(2|1)$ preserves 1-forme $\varpi = \frac{1}{2}p^2\alpha$ (where $p \neq 0$); it thus acts by contactomorphisms via the projective action on $S^{1|1}$:

$$\widehat{h}(x,\xi) = \left(\frac{ax+b+\gamma\xi}{cx+d+\delta\xi}, \frac{\alpha x+\beta+e\xi}{cx+d+\delta\xi}\right)$$

The Berezinian is $Ber(h) = e + \alpha \beta e^{-1}$ and $SpO_{+}(2|1) = Ber^{-1}(1)$, super-extension of $Sp(2, \mathbb{R}) = SL(2, \mathbb{R})$.

with $ad - bc - \alpha\beta = 1$, $e^2 + 2\gamma\delta = 1$, $\alpha e - a\delta + c\gamma = 0$, $\beta e - b\delta + d\gamma = 0$.

Orthosymplectic group, Euclidean & affine subgroups (cont'd)

One uses the local factorization

$$\operatorname{SpO}_{+}(2|1)\ni h=\left(\begin{array}{ccc}1&0&0\\\tilde{c}&1&\tilde{\delta}\\\tilde{\delta}&0&1\end{array}\right)\underbrace{\left(\begin{array}{ccc}\tilde{a}&0&0\\0&\tilde{a}^{-1}&0\\0&0&1\end{array}\right)}_{\operatorname{Aff}(1|1)}\underbrace{\left(\begin{array}{ccc}\epsilon&\tilde{b}&-\tilde{\beta}\\0&\epsilon&0\\0&\epsilon\tilde{\beta}&1\end{array}\right)}_{\operatorname{Aff}(1|1)}$$

where $(\tilde{a}, \tilde{b}, \tilde{c}, \tilde{\beta}, \tilde{\delta}) \in \mathbb{R}^{3|2}$, with $\epsilon^2 = 1$, $\tilde{a} > 0$.

Orthosymplectic group, Euclidean & affine subgroups (cont'd)

One uses the local factorization

$$\operatorname{SpO}_{+}(2|1)\ni h=\left(\begin{array}{ccc}1&0&0\\\tilde{c}&1&\tilde{\delta}\\\tilde{\delta}&0&1\end{array}\right)\underbrace{\left(\begin{array}{ccc}\tilde{a}&0&0\\0&\tilde{a}^{-1}&0\\0&0&1\end{array}\right)}_{\operatorname{Aff}(1|1)}\underbrace{\left(\begin{array}{ccc}\epsilon&\tilde{b}&-\tilde{\beta}\\0&\epsilon&0\\0&\epsilon\tilde{\beta}&1\end{array}\right)}_{\operatorname{Aff}(1|1)}$$

where $(\tilde{a}, \tilde{b}, \tilde{c}, \tilde{\beta}, \tilde{\delta}) \in \mathbb{R}^{3|2}$, with $\epsilon^2 = 1$, $\tilde{a} > 0$.

- Note that $E(1|1) = \{ \Phi \in \text{Diff}(S^{1|1}) \mid \Phi^* \alpha = \alpha \}$
- Also $\mathrm{Aff}(1|1) = \{ \Phi \in \mathrm{Diff}(S^{1|1}) \, | \, \Phi^* \alpha = a^2 \alpha, a \neq 0 \}$

Notion of p|q-transitivity [M-D08]

Extension of the notion of *n*-transitivity to supergroup actions.

Consider $E = E_0 \times E_1$ and canonical projections $p_0 \& p_1$. Two n-uplets $s = (s_1, \ldots, s_n)$ and $t = (t_1, \ldots, t_n)$ of distinct points of E are said p | q-equivalent, $s \stackrel{p|q}{=} t$, where $n = \max(p, q)$, if $p_0(s_i) = p_0(t_i)$ $\forall i = 1, \ldots, p$ and $p_1(s_i) = p_1(t_i) \ \forall i = 1, \ldots, q$.

Notion of p|q-transitivity [M-D08]

Extension of the notion of *n*-transitivity to supergroup actions.

Consider $E = E_0 \times E_1$ and canonical projections $p_0 \& p_1$. Two n-uplets $s = (s_1, \ldots, s_n)$ and $t = (t_1, \ldots, t_n)$ of distinct points of E are said p | q-equivalent, $s \stackrel{p|q}{=} t$, where $n = \max(p, q)$, if $p_0(s_i) = p_0(t_i)$ $\forall i = 1, \ldots, p$ and $p_1(s_i) = p_1(t_i) \ \forall i = 1, \ldots, q$.

The action $(h \mapsto \hat{h})$ of group G on E is said simply $p \mid q$ -transitive if for all $s = (s_1, \dots, s_n)$ and $t = (t_1, \dots, t_n)$, $\exists ! \ g \in G$ sth $\hat{g}(t) \stackrel{p \mid q}{=} s$.

Notion of p|q-transitivity [M-D08]

Extension of the notion of *n*-transitivity to supergroup actions.

Consider $E = E_0 \times E_1$ and canonical projections $p_0 \& p_1$. Two n-uplets $s = (s_1, \ldots, s_n)$ and $t = (t_1, \ldots, t_n)$ of distinct points of E are said p | q-equivalent, $s \stackrel{p|q}{=} t$, where $n = \max(p, q)$, if $p_0(s_i) = p_0(t_i)$ $\forall i = 1, \ldots, p$ and $p_1(s_i) = p_1(t_i) \ \forall i = 1, \ldots, q$.

The action $(h \mapsto \hat{h})$ of group G on E is said simply $p \mid q$ -transitive if for all $s = (s_1, \dots, s_n)$ and $t = (t_1, \dots, t_n)$, $\exists ! \ g \in G$ sth $\hat{g}(t) \stackrel{p \mid q}{=} s$.

Examples:

- The PSL(2, \mathbb{R})-action on S¹ is simply 3-transitive.
- The $SpO_{+}(2|1)$ -action on $S^{1|1}$ is 3|2-transitive.

Construction of the discrete invariants

Theorem

Let G act simply p|q-transitively on $E=E_0\times E_1$, and m be an n-uplet, $n=\max(p,q)$, of distinct points of E. The (n+1)-point function $I_{[m]}$ of E with values in E defined by

$$I_{[m]}(t_1,\ldots,t_{n+1})=\widehat{h}(t_{n+1})$$

where $\widehat{h}(t) \stackrel{p|q}{=} m$, and $t = (t_1, \dots, t_n) \in E^n \setminus \Gamma$ enjoys the properties:

- \bullet $I_{[m]}$ is G-invariant.
- ② If $\Phi \in E$! preserves $I_{[m]}$, then $\Phi = \widehat{g}$ for some $g \in G$.

Theorem I [M-D08]

• Euclidean invariant $I_e(t_1, t_2) = ([t_1, t_2], \{t_1, t_2\})$:

$$[t_1, t_2] = x_2 - x_1 - \xi_2 \xi_1,$$
 $\{t_1, t_2\} = \xi_2 - \xi_1$

• Affine invariant $I_a(t_1, t_2, t_3) = ([t_1, t_2, t_3], \{t_1, t_2, t_3\})$:

$$[t_1, t_2, t_3] = \frac{[t_1, t_3]}{[t_1, t_2]}, \qquad \{t_1, t_2, t_3\} = [t_1, t_2, t_3]^{\frac{1}{2}} \frac{\{t_1, t_3\}}{[t_1, t_3]^{\frac{1}{2}}}$$

• Projective invariant $I_p(t_1, t_2, t_3, t_4) = ([t_1, t_2, t_3, t_4], \pm \{t_1, t_2, t_3, t_4\})$, i.e., super cross-ratio:

$$[t_1, t_2, t_3, t_4] = \frac{[t_1, t_3][t_2, t_4]}{[t_2, t_3][t_1, t_4]},$$

$$\{t_1, t_2, t_3, t_4\} = [t_1, t_2, t_3, t_4]^{\frac{1}{2}} \frac{\{t_2, t_4\}[t_1, t_2] - \{t_1, t_2\}[t_2, t_4]}{([t_1, t_2][t_2, t_4][t_1, t_4])^{\frac{1}{2}}}$$

Theorem I (cont'd)

- If a contactomorphism $\Phi \in K(1)$ preserves the even part of I_e , or I_a , or I_p , then $\Phi = \widehat{h}$ for h in E(1|1), or Aff(1|1), or $SpO_+(2|1)$, respectively.
- If a bijection Φ of $S^{1|1}$ preserves I_e , or I_a , or I_p , then $\Phi = \widehat{h}$ for h in $E_+(1|1)$, or $Aff_+(1|1)$, or $SpO_+(2|1)$, respectively.

See [Aok88, Nel88, U-Y90, Man91, Gidd92] for pioneering introduction of super cross-ratio (super Riemann surfaces, superstrings, . . .)

Theorem I (cont'd)

- If a contactomorphism $\Phi \in K(1)$ preserves the even part of I_e , or I_a , or I_p , then $\Phi = \widehat{h}$ for h in E(1|1), or Aff(1|1), or $SpO_+(2|1)$, respectively.
- If a bijection Φ of $S^{1|1}$ preserves I_e , or I_a , or I_p , then $\Phi = \hat{h}$ for h in $E_+(1|1)$, or $Aff_+(1|1)$, or $SpO_+(2|1)$, respectively.

See [Aok88, Nel88, U-Y90, Man91, Gidd92] for pioneering introduction of super cross-ratio (super Riemann surfaces, superstrings, ...)

Seek now the corresponding differential invariants ...

The Cartan formula [Car37]

Consider $\Phi \in \mathrm{Diff}(S^1)$, the flow $\phi_{\varepsilon} = \mathrm{Id} + \varepsilon X + O(\varepsilon^2)$ of a vector field X, and 4 points t_1 , $t_2 = \phi_{\varepsilon}(t_1)$, $t_3 = \phi_{2\varepsilon}(t_1)$, $t_4 = \phi_{3\varepsilon}(t_1)$.

The Schwarzian derivative of Φ is defined, via the cross-ratio, as the quadratic differential $\mathcal{S}(\Phi) \in \mathcal{Q}(S^1)$ appearing in

$$\frac{\Phi^*[\textit{t}_1,\textit{t}_2,\textit{t}_3,\textit{t}_4]}{[\textit{t}_1,\textit{t}_2,\textit{t}_3,\textit{t}_4]}-1=\langle \varepsilon X\otimes \varepsilon X,\mathcal{S}(\Phi)\rangle+\textit{O}(\varepsilon^3)$$

This formula (and its avatar for $\mathcal{A}(\Phi)$) admits a prolongation to the case of the supercircle; it leads to the following result:

Theorem II [M-D08]

The even Euclidean, affine and projective invariants \Rightarrow three 1-cocycles of K(1), with kernel E(1|1), Aff(1|1) et $SpO_+(2|1)$ resp:

• the Euclidean cocycle $\mathcal{E}:K(1)\to\mathcal{F}_0(\mathcal{S}^{1|1})$:

$$\mathcal{E}(\Phi) = \log E_{\Phi}$$

• the affine cocycle $\mathcal{A}:K(1)\to\Omega^1(\mathcal{S}^{1|1})$:

$$\mathcal{A}(\Phi) = d\mathcal{E}(\Phi)$$

• the projective cocycle (super Schwarzian) $\mathcal{S}: K(1) \to \mathcal{Q}(S^{1|1})$:

$$\mathcal{S}(\Phi) = \frac{2}{3} \, \alpha^{\frac{1}{2}} L_D \, \mathrm{S}(\Phi)$$

where

$$S(\Phi) = \frac{1}{4} \left(\frac{D^3 E_{\Phi}}{E_{\Phi}} - \frac{3}{2} \frac{D E_{\Phi} D^2 E_{\Phi}}{E_{\Phi}^2} \right) \alpha^{\frac{3}{2}}$$

Theorem II (cont'd)

Using the projections of $\mathcal{Q}(S^{1|1})$ to summands of densities, one obtains two new affine and projective 1-cocycles:

• the projection of the affine cocycle $A: \mathcal{K}(1) \to \mathcal{F}_{\frac{1}{2}}(\mathcal{S}^{1|1})$:

$$A(\Phi) = \alpha^{\frac{1}{2}} \langle D, \mathcal{A}(\Phi) \rangle = \frac{DE_{\Phi}}{E_{\Phi}} \alpha^{\frac{1}{2}}$$

• the projection of the Schwarzian cocycle S : $K(1) \to \mathcal{F}_{\frac{3}{2}}(\mathcal{S}^{1|1})$:

$$S(\Phi) = \alpha^{\frac{1}{2}} \langle D, S(\Phi) \rangle = \frac{1}{4} \left(\frac{D^3 E_{\Phi}}{E_{\Phi}} - \frac{3}{2} \frac{D E_{\Phi} D^2 E_{\Phi}}{E_{\Phi}^2} \right) \alpha^{\frac{3}{2}}$$

This expression is due to [Rad86]; see [Fri86, Coh87, G-T93].

Note the super Lagrange formula

$$S(\Phi) = -\frac{1}{2} E_{\Phi}^{\frac{1}{2}} D^3(E_{\Phi}^{-\frac{1}{2}}) \alpha^{\frac{3}{2}}$$

The three geometries of supercircle $S^{1|1}$

The 1-cocycles of k(1) (Lie superalgebra of hamiltonian vector fields of $(S^{1|1}, [\alpha])$) associated with \mathcal{E} , A et S are trivially the $c_i : k(1) \to \mathcal{F}_{i/2}$:

$$c_i(X_f) = (D^{i+2}f) \alpha^{i/2}$$
 $(i = 0, 1, 3)$

These are the 3 out of 4 generators of $H^1(k(1), \mathcal{F}_{\lambda})$ [A-BF03] the only ones which integrate as (non trivial) K(1)-cocycles.

Theorem [M-D08]

The cohomology spaces

$$H^1(K(1),\mathcal{F}_{\lambda}(S^{1|1})) = \left\{ egin{array}{ll} \mathbb{R} & ext{if } \lambda = 0,\,rac{1}{2},\,rac{3}{2} \ \{0\} & ext{otherwise} \end{array}
ight.$$

are resp. generated by \mathcal{E} , A et S. The cohomology spaces

$$H^{1}(K(1), \Omega^{1}(S^{1|1})) = \mathbb{R}$$
 et $H^{1}(K(1), \mathcal{Q}(S^{1|1})) = \mathbb{R}$

are resp. generated by A et S.

Var. 4 The super Virasoro group $Vir(S^{1|1})$

Var. 4 The super Virasoro group $Vir(S^{1|1})$

- The symplectic structure of $K(1)/\mathrm{SpO}_+(2|1)$
- The Bott-Thurston cocycle of *K*(1)

The Bott-Thurston cocycle of K(1)

We work out the super Virasoro group, $Vir(S^{1|1})$, via a distinguished affine-coadjoint orbit of K(1).

Consider the 1-form Θ of K(1) defined by the Berezin integral

$$\Theta(\delta_f \Phi) = \frac{1}{2} \int_{S^{1|1}} \!\! \mathrm{A}(\Phi) \, \delta_f \mathcal{E}(\Phi)$$

with $A = \alpha^{\frac{1}{2}} \langle D, A \rangle$ (resp. \mathcal{E}) the affine (resp. Euclidean) K(1) cocycle (recall $A = d\mathcal{E}$); also $\delta_f \Phi = \delta(\Phi \circ \Psi)$ with $\delta \Psi = X_f$ at $\Psi = \mathrm{Id}$, for some contact Hamiltonian $f \in C^{\infty}(S^{1|1})$.

Easy calculation yield

$$\delta_f \mathcal{E} = \langle X_f, A \rangle + f'$$
 & $\delta_f A = \alpha^{\frac{1}{2}} D \delta_f \mathcal{E}$

The Bott-Thurston cocycle of K(1) (cont'd)

Theorem

The exterior derivative $d\Theta$ of the 1-form Θ of K(1), viz.

$$d\Theta(\delta_f \Phi, \delta_g \Phi) = \frac{1}{2} \int_{S^{1|1}} \delta_f A(\Phi) \, \delta_g \mathcal{E}(\Phi) - (-1)^{p(f)p(g)} \delta_g A(\Phi) \, \delta_f \mathcal{E}(\Phi)$$

descends to $S(K(1)) \cong K(1)/SpO_+(2|1)$, the affine-coadjoint orbit of the origin in $\mathcal{F}_{\frac{3}{2}} \subset k(1)^*$, as a symplectic 2-form Ω sth

$$\Omega(X_f, X_g) = \int_{S^{1|1}} \langle S(\Phi), [X_f, X_g] \rangle + \int_{S^{1|1}} (D^5 f) g \alpha^{\frac{1}{2}}$$

$$= S(\Phi) \cdot [X_f, X_g] + GF(X_f, X_g)$$

where the Schwarzian, S, induces the Souriau cocycle, S, and GF is the Gelfand-Fuchs cocycle of k(1).

The super Virasoro group $Vir(S^{1|1})$

Now Θ fails to be K(1)-invariant; introduce hence the 1-form

$$\widehat{\Theta} = \Theta + dt$$

of $\widehat{K(1)} = K(1) \times \mathbb{R}$. Try and lift K(1) so as to preserve $\widehat{\Theta}$.

The super Virasoro group $Vir(S^{1|1})$

Now Θ fails to be K(1)-invariant; introduce hence the 1-form

$$\widehat{\Theta} = \Theta + dt$$

of $\widehat{K(1)} = K(1) \times \mathbb{R}$. Try and lift K(1) so as to preserve $\widehat{\Theta}$.

Corollary

The group K(1) of contactomorphisms of $(S^{1|1}, [\alpha])$ admits a lift as a group, $Vir(S^{1|1})$, of automorphisms of $(\widehat{K(1)}, \widehat{\Theta})$, whose group law is

$$(\Phi_{1}, t_{1})(\Phi_{2}, t_{2}) = (\Phi_{1} \circ \Phi_{2}, t_{1} + t_{2} \underbrace{-\frac{1}{2} \int_{S^{1|1}} \mathcal{E}(\Phi_{1} \circ \Phi_{2}) A(\Phi_{2}))}_{\mathbf{BT}(\Phi_{1}, \Phi_{2})}$$

with $\mathbf{BT} = \int_{\mathcal{S}^{1|1}} (\mathcal{E} \smile A)$ the **Bott-Thurston** cocycle of K(1), [Rad86].

Triple (S, GF, BT): super version of the "Trilogy of the moment" [Igl95].

Var. 5 The supercircle $S^{1|N}$

Var. 5 The supercircle $S^{1|N}$

- The Euclidean and affine cocycles of K(N)
- The Schwarzian cocycle of K(2)

The case of the supercircle $S^{1|N}$

For the supercircle $S^{1|N}$, endowed with the contact 1-form

$$\alpha = dx + \sum_{i,j=1}^{N} \delta_{ij} \, \xi^{i} d\xi^{j}$$

the invariants of $E_+(1|N)$, $A_+(1|N)$ and $\mathrm{SpO}_+(2|N)$ retain the same form as for N=1. However, the odd invariant $(I_p)_1$ is now determined up to the action of $\mathrm{O}(N)$. The corresponding differential invariants are

• Euclidean cocycle $\mathcal{E}: K(N) \to \mathcal{F}_0(S^{1|N})$:

$$\mathcal{E}(\Phi) = \log E_{\Phi}$$

• Affine cocycle $A: K(N) \to \Omega^1(S^{1|N})$:

$$\mathcal{A}(\Phi) = d\mathcal{E}(\Phi)$$

The case of the supercircle $S^{1|N}$

For the supercircle $S^{1|N}$, endowed with the contact 1-form

$$\alpha = dx + \sum_{i,j=1}^{N} \delta_{ij} \, \xi^{i} d\xi^{j}$$

the invariants of $E_+(1|N)$, $A_+(1|N)$ and $\operatorname{SpO}_+(2|N)$ retain the same form as for N=1. However, the odd invariant $(I_p)_1$ is now determined up to the action of O(N). The corresponding differential invariants are

• Euclidean cocycle $\mathcal{E}: K(N) \to \mathcal{F}_0(\mathcal{S}^{1|N})$:

$$\mathcal{E}(\Phi) = \log E_{\Phi}$$

• Affine cocycle $A: K(N) \to \Omega^1(S^{1|N})$:

$$\mathcal{A}(\Phi) = d\mathcal{E}(\Phi)$$

Remark: In Cartan's formula [\Rightarrow 1-cocycles of K(N)], $\Phi^*[t_1, t_2]$ is *no longer* proportional to $[t_1, t_2]$, up to $O(\varepsilon^3)$, for $N \ge 3$. The Schwarzian, $S(\Phi)$, is therefore not given by the Cartan formula if $N \ge 3$. But . . .

Theorem

The even cross-ratio $(I_p)_0$, and the Cartan formula yield the projective 1-cocycle $\mathcal{S}: K(2) \to \mathcal{Q}(S^{1|2})$

$$S(\Phi) = \frac{1}{6}\alpha^2 \left(D_1 D_2 S_{12} + \frac{1}{2} S_{12}^2 \right) + \frac{1}{2}\alpha(\beta^1 D_2 + \beta^2 D_1) S_{12} + \beta^1 \beta^2 S_{12}$$

with $S_{12} = 2 S(\Phi) \alpha^{-1}$ where

$$S(\Phi) = \left(\frac{D_2 D_1 E_{\Phi}}{E_{\Phi}} - \frac{3}{2} \frac{D_2 E_{\Phi} D_1 E_{\Phi}}{E_{\Phi}^2}\right) \alpha$$

The projection of quadratic differentials to 1-densities of $S^{1|2}$ returns the above Schwarzian derivative $S: \mathcal{K}(2) \to \mathcal{F}_1(S^{1|2})$.

The kernels of these cocycles coincide; they are isomorphic to $PC(2|2) = SpO(2|2)/\{\pm Id\}$.

Coda

- Classification of the geometries of $(S^{1|N}, [\alpha])$, where $N \ge 2$.
- Construction of the Bott cocycle of K(2) in the same vein.
- Detailed study of the Möbius supercircle $S_+^{1|1}$.6
- . . .

⁶Its superfunctions are defined as the smooth superfunctions of $\mathbb{R}^{1|1}$ invariant under $(x,\xi)\mapsto (x+2\pi,-\xi)$.