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Three classical theorems, Pappus (∼ 300 A.D.), Pascal (1639)
and Briançon (1806):
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Concerning the subtitle, a New Testament parable, in Luke’s

version, reads:

And no one puts new wine into old wineskins; otherwise

the new wine will burst the skins and will be spilled, and

the skins will be destroyed. But new wine must be put

into fresh wineskins. And no one after drinking old wine

desires new wine, but says, “The old is good”.

We discovered eight (new?) configuration theorems of projec-

tive geometry (‘old wine’) by computer experimentation (‘new

wineskins’); most of the proofs are also by a computer algebra

system. And we believe, this old (wine) is good.
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A polygon P ⊂ RP2 is a cyclically ordered collection {p1, ..., pn} of

points, its vertices. The sides {l1, ..., ln} are the lines li = pipi+1

in RP2. The dual polygon P ∗ ⊂ (RP2)∗ has vertices {l1, ..., ln};
the sides of the dual polygon are {p1, ..., pn} (considered as lines

in (RP2)∗. One has: (P ∗)∗ = P .

Let Pn and P∗n be the sets of n-gons in RP2 and (RP2)∗. Define

the k-diagonal map Tk : Pn → P∗n: for P = {p1, ..., pn}, let

Tk(P ) = {p1pk+1, p2pk+2, . . . , pnpk+n}.

Then Tk is an involution. The map T1 is the projective duality.

Extend the notation: Tab = Ta ◦ Tb, Tabc = Ta ◦ Tb ◦ Tc, and so on.
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Theorem 1:

(i) If P is an inscribed 6-gon, then P ∼ T2(P ).

(ii) If P is an inscribed 7-gon, then P ∼ T212(P ).

(iii) If P is an inscribed 8-gon, then P ∼ T21212(P ).

(and it doesn’t continue!)
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Theorem 2: If P is a circumscribed 9-gon, then P ∼ T313(P ).

Theorem 3: If P is an inscribed 12-gon, then P ∼ T3434343(P ).
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Theorem 4:

(i) If P is an inscribed 8-gon, then T3(P ) is circumscribed.

(ii) If P is an inscribed 10-gon, then T313(P ) is circumscribed.

(iii)* If P is an inscribed 12-gon, then T31313(P ) is circum-

scribed.

(and it doesn’t continue either!)
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Odds and Ends

(i) The Pentagram Map: T12.

Studied by R. Schwartz in

The pentagram map, Experim. Math. 1 (1992), 71–81;

The pentagram map is recurrent, Experim. Math. 10 (2001),

519–528;

Discrete monodromy, pentagrams, and the method of conden-

sation, J. Fixed Point Th. Appl. 3 (2008), 379–409;

and by V. Ovsienko, R. Schwartz and S. Tabachnikov in

Quasiperiodic motion for the pentagram map, E.R.A. 16, 2009,

1–8;

The pentagram map: a discrete integrable system, arXiv:0810.5605.
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(ii) Pentagons:
1) Every pentagon is inscribed and circumscribed.
2) Every pentagon is projectively equivalent to its dual.
3) The pentagram map is the identity: T12(P ) = P.
Thus 5-gons can be added to Theorem 1.

C.-F. Gauss studied self-polar pentagons in:
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(iii) Palindroms: in all the theorems, the words w are palindromic
and the maps Tw are involutions.

(iv) Self-dual polygons: are classified in
D. Fuchs, S. Tabachnikov. Self-dual polygons and self-dual
curves, Funct. Anal. & Other Math., 2 (2009), 203–220.

For odd n, the space of projective equivalence classes is n − 3-
dimensional, just like the moduli space of inscribed (or circum-
scribed) n-gons. Theorem 1 (ii) can be rephrased:

P is an inscribed heptagon iff T2(P ) is projectively self-dual.

Theorem 2 can be also rephrased:

P is an inscribed nonagon iff T3(P ) is projectively self-dual.
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(v) Relabeling: Relabel the vertices of a dodecagon as follows:
i 7→ 5i. Then Theorem 4 (iii), which reads:
If P is an inscribed dodecagon then T131313(P ) is also inscribed,
transforms to:
If P is an inscribed dodecagon then T535353(P ) is also inscribed.

And so on.

(vi) A similar theorem: R. Schwartz has a theorem in Discrete
monodromy, pentagrams, and the method of condensation that
can be rephrased as follows:

If P is a 4n-gon inscribed into a degenerate conic then

(T1T2T1T2 . . . T1)(P ) (4n− 3 terms)

is also inscribed into a degenerate conic.
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The Pentagram Map

Two spaces: Pn, space of closed n-gons; dim = 2n− 8;
Tn, space of twisted n-gons; dim = 2n:
φ : Z → RP2 s.t. φ(k + n) = M ◦ φ(k); ∀k.

M is the monodromy.

Twisted polygons φ1 and φ2 are equivalent if there is Ψ ∈ PGL(3,R)
such that φ2 = Ψ ◦ φ1. Then M2 = ΨM1Ψ

−1.

Main Theorem: The Pentagram Map on Tn is completely inte-
grable:
1). There are 2[n/2] + 2 algebraically independent integrals.
2). There is an invariant Poisson structure of corank 2 if n is
odd, and corank 4 if n is even, such that the integrals Poisson
commute.

14



Corner coordinates: left and right cross-ratios x1, y1, . . . , xn, yn.
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Cross-ratio: [t1, t2, t3, t4] = (t1−t2) (t3−t4)
(t1−t3) (t2−t4)

.
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The map T12(x, y) = (x∗, y∗) is given by:

x∗i = xi
1− xi−1 yi−1

1− xi+1 yi+1
, y∗i = yi+1

1− xi+2 yi+2

1− xi yi
.

Two consequences:

1). Hidden scaling symmetry

(x1, y1, ..., xn, yn) 7→ (tx1, t−1y1, ..., txn, t−1yn)

commutes with the map.
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2). “Easy” invariants:

On =
n∏

i=1

xi, En =
n∏

i=1

yi,

and, for even n,

On/2 =
∏

i even

xi +
∏

i odd

xi, En/2 =
∏

i even

yi +
∏

i odd

yi.

These are the Casimir functions of the Poisson bracket.
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Monodromy invariants:

O2
nEn(Tr M)3

detM
=

[n/2]∑
k=1

Ok

are polynomials in (xi, yi), decomposed into homogeneous com-

ponents; likewise, for Ek with M−1 replacing M (with negative

weights).

They are algebraically independent.

Poisson bracket:

{xi, xi+1} = −xi xi+1, {yi, yi+1} = yi yi+1,

and the rest = 0. The Jacobi identity is automatic.
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Inscribed polygons

Computer experiments suggest: if a (twisted) polygon is in-

scribed into a conic then Ek = Ok for all k (and the same for

circumscribed polygons). Why??

Theorem: the space of inscribed n-gons is a coisotropic sub-

space of the Poisson manifold Tn.

This leads to a Poisson mapping of the moduli space of twisted

n-gons in RP1 which takes the left corner coordinates xi to the

right ones yi (this is also given by rational functions).

Conjecture: this map is completely integrable for each n.
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Continuous limit

Object of study: the space P of non-degenerate twisted param-
eterized curves in RP2 modulo projective equivalence:

γ(x + 1) = M(γ(x)).

Lift so that ∣∣∣Γ(x)Γ′(x)Γ′′(x)
∣∣∣ = 1.

Then

Γ′′′(x) + u(x)Γ′(x) + v(x)Γ(x) = 0.

Thus P identifies with the space of linear differential operators
on R:

A =
(

d

dx

)3
+ u(x)

d

dx
+ v(x),

where u and v are smooth 1-periodic functions.
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Rewrite as

A =
(

d

dx

)3
+

1

2

(
u(x)

d

dx
+

d

dx
u(x)

)
+ w(x)

where w(x) = v(x) − u′(x)
2 (sum of a skew-symmetric and zero-

order symmetric operators).

The functions u and w are projective-differential invariants of

the curve γ (“projective curvature” and “projective length ele-

ment”).

Want to study Pn → P as n →∞.
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Construction:

!(x) !(x+")

!(x-")
! (x)"

It turns out that

uε = u + ε2ũ + (ε3), wε = w + ε2w̃ + (ε3),

giving the flow: u̇ = ũ, ẇ = w̃.
A computation reveals :

u̇ = w′, ẇ = −
u u′

3
−

u′′′

12
,
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or

ü +

(
u2

)′′
6

+
u(IV )

12
= 0,

the Boussinesq equation!

The continuous limit of the scaling is:

u(x) 7→ u(x), w(x) 7→ w(x) + t.
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Happy Birthday, Claude!
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