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Two types of “integrable” systems in this talk
» A vector field x = f(x) on a smooth manifold M
> APDE Ut: F(u,UX,Uxx,...)

“Explicit” solutions
» Rational solutions ; theta functions ; Schur polynomials
» Formal solutions ; Laurent series
» Univalent, periodic, quasi-periodic solutions
» Solitons, - - -

Applications
» Abelian varieties, moduli spaces
» Random permutations, brownian motions
» Minimal surfaces, - - -
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The Liouville theorem

» (M, w) a symplectic manifold of dimension 2n
» (Fq,..., Fp) independent functions in involution

Then for a generic point mg in M, the integral curve (solution) of
each Xf, starting from m can be determined by quadratures.

Functions in involution : all the Poisson brackets {F;, F;} =0,
where

OF 0G 9GdF
{F.Gr= Zaq, opi  99;0p;

in terms of canonical coordinates, w = Y7, dg; A dp;.



The Liouville theorem

» (M, w) a symplectic manifold of dimension 2n
» (Fq,..., Fp) independent functions in involution

Then for a generic point mg in M, the integral curve (solution) of
each Xf, starting from m can be determined by quadratures.

Functions in involution : all the Poisson brackets {F;, F;} =0,
where
OF 0G 0GOoF
{F.G} = Z

dqi op;  9q; Op;

in terms of canonical coordinates, w = Y7, dg; A dp;.

Independent functions : the open subset of M where the
differentials dF, dF», ..., dF, are independent is dense in M
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The Hamiltonian vector fields X : the w-duals to the dH :

oM oM
~ Opi oq;

qi i =

By quadratures : using only the three operations
1. Algebraic operations (inversion of linear systems).
2. Inverse function theorem.
3. Integration (of an exact differential form).

The integration :

1. Where the differentials are independent the vector fields X,
define an involutive, hence integrable, distribution.

2. On the integral manifolds, the forms w;, dual to the X, are
closed, hence locally exact, w; = df;.

3. By integration, then local inversion, the coordinates on the
integral manifolds can be expressed in terms of the t;.
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The Adler-Kostant-Symes theorem

» g=g. @ g_ Lie algebra splitting
» (-|-) symmetric, non-degenerate, ad-invariant
» A the algebra of ad-invariant functions

Then
(1) A Poisson bracket on C*°(g) is defined by

{F, G} (x) == (X[ [(VxF)+, (VxG)1] = [(VxF)-, (VxG)-])
(2) For H € A, the Hamiltonian vector field X} :
x =[x, (VxH)_]
(8) For xp € g and for small |¢[, let g, (f) and g_(t) be the smooth
curves in G, resp. G_ such that
exp(—tVx,H) = g+(1)"'g-(1)
with g+ (0) = e. Then the integral curve of Xy starting from xg
is given for small |¢| by
X(f) = Adg,(t)X0~



The Euler top : elliptic solutions

Rigid body spinning around a fixed point, which is its center of
gravity, with moments of inertia /1, b, I3. In terms of the angular
velocity Q :

hQy = (b — k)23

b = (k— 1)1
133 (/1 = /2)91 Qo

Without parameters :

U1 = U U3
Ug = U1l
U3 = Uuilo

Constants of motion : Hy := u? — U3 and Hy := u? — U2.



One uses the constants of motion to integrate : let u? — u3 = a and
u? — us = b then

(0n)? = uBu3 = (Uf — a)(uf - b).

Sn(U1)_/\/u1—a . b):t.

This integral is an elliptic integral and its inverse is an elliptic
function, uy = sn=1(t).



One uses the constants of motion to integrate : let u? — u3 = a and
u? — us = b then

(0n)? = uBu3 = (Uf — a)(uf - b).

Sn(U1)_/\/u1—a . b):t.

This integral is an elliptic integral and its inverse is an elliptic
function, uy = sn=1(t).

Main fact : the elliptic function sn~(t) is doubly periodic . . .over C.
It is a meromorphic function on the elliptic curve / elliptic Riemann
surface

y? = (x® — a)(x® - b).



The Toda lattice : Moser’s integration

Lax equation

L=1]L B
where
b1 a 0
a b2
L=
bnf1 an—1
0 an—1 bn
0 ay 0
—-a; O
B =
0 an—1



Let f(A) := (Aly — L)pn then

n

o)=Y e

k=1

with r, > 0and 3" r2 = 1. This defines

L:(a1,...,an,b1,...,bn_1)<—>(/\1,...,/\n,r1,...

bijection and _
A= 0, i’,‘ = —\l.
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Let f(A) := (Aly — L)pn then

n

o)=Y e

k=1

with r, > 0and 3" r2 = 1. This defines

L:(a1,...,an,b1,...,bn_1)<—>(/\1,...,/\n,r1,...

bijection and _
A= 0, i’,‘ = —\l.

Inverse map : with continued fractions

7rn)



For example : if n = 2 then
by = —f12)\2 — I’22)\1
b, = I’12)\1 aF I’22)\2
ar = nr(AM—2XA)



KdV solitons

Korteweg-de Vries equation : u; = uuy + Uxxx-
Lax form : L; = [Li/2, L] where L= 86722 +u.

The KdV hierarchy : for nodd : L;, = [Li/z, L]



KdV solitons
Korteweg-de Vries equation : u; = uuy + Uxxx-

Lax form : L; = [Le'/2 L] where L= 86722 +u.

The KdV hierarchy : for nodd : L;, = [Li/z, L]

n-solitions : For J C I:={1,..., n} denote ¢, := ][], ¢; and
H,</€J (LZ) where ¢y,...,¢cpand kq, . . ., k, constants.

t1,t3,... ZchJexp (222/( /+1 t2/+1)

Jcl ied j=0

The function u := .283722 log7(t,t3,...,) is a solution of KdV.



KdV solitons and vertex operators

The n-soliton can be written in terms of vertex operators :

X(p, q) = exp (Z ) exp » (pqujat,
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KdV solitons and vertex operators
The n-soliton can be written in terms of vertex operators :

X(p.q) = exp (Z(d _ cﬂ')t;-) o0 (B0,

=1

= e X(ki,—ki)  genX(kn,—kn)q

Hence the vertex operator X(p, —p) permits to add a solition !



KP : theta solutions
KP = generalization of KdV
Uy = (Ut — Uly — Uxxx)x

There exists for every Riemann surface I' a solution of KP :
92
ulx,y,t) = ] log¥(ax + by + ct | 2)
Here, the theta function of Z € Mat(g x g) (symmetric, IZ > 0)
mi(1,21) g2mi(l,z)
Wz |2Z) = /Ezz:r e
The matrix Z associated to I' : the period matrix

Zj ::/wj.
-

1



Application : Schotky problem (1903)

Charaterize the variety of matrices Z which are the period matrix
of a Riemann surface.



Application : Schotky problem (1903)

Charaterize the variety of matrices Z which are the period matrix

of a Riemann surface.

Novikov conjecture (1981) : Z comes from a Riemann surface iff
82

X2 log¥(ax + by + ct | Z)

is a solution to the KP equation for some a, b, c.

In 1986 Shiota proves the conjecture.



Reduction : the Mumford system

Phase space Mj :

vy W
LW‘(U(A) —V(A)>

with U and W monic polynomials and
degV <degU =degW —-1=g.
The integrable vector fields (fori=1,2,...,9) :

ars 0= 10 (5), = (5., o]




The moment map

H: M — (2t
L) — det(L(\) — p) = p? = UNW(A) = V(N)?

For f(\) = H?:1 (A — \j), generic, the fiber above 2 — f(\) is
Jac(p? = f(M\)) \ ©.



The moment map

H: M — (2t
L) — det(L(\) — p) = p? = UNW(A) = V(N)?

For f(\) = H?:1 (A — \j), generic, the fiber above 2 — f(\) is
Jac(p? = f(M\)) \ ©.

Generic solution

UOk) = o« (79 [ i: } (Af + b))

O(Af + b)
V(A = o('; U(n)



Link KdV-Mumford

-, -, -,

Let (U(A, ), V(A t), W(A, t)) solution to the Mumford system,
UA) = A9+ Uy 12971+ + Uy, etc.
Then

- H? oa U+ (T

u(t) =2—lo -

(B := 255 log Up-1(D)
is a solution to the KdV hierarchy (with x = t;). For f(\) such that
p? = f()\) is smooth, one recovers the solutions in terms of theta
functions.



Algebraic integrability

In 1980 Adler and van Moerbeke introduced the notion of
algebraic integrability : an a.c.i. system is a complex integrable
system such that

(1) the generic fibers of the (complex) momentum map are affine
parts of complex algebraic tori C" /A

(2) the flow of the integrable vector fields is linear on these tori.



Algebraic integrability

In 1980 Adler and van Moerbeke introduced the notion of
algebraic integrability : an a.c.i. system is a complex integrable
system such that

(1) the generic fibers of the (complex) momentum map are affine
parts of complex algebraic tori C" /A

(2) the flow of the integrable vector fields is linear on these tori.

Example : the Mumford system is a.c.i.



Laurent solutions for a.c.i. systems

Theorem [Adler, van Moerbeke, V., 2004]

An a.c.i. system on a manifold M admits Laurent solutions which
depend on dim M — 1 free parameters.



Laurent solutions for a.c.i. systems

Theorem [Adler, van Moerbeke, V., 2004]

An a.c.i. system on a manifold M admits Laurent solutions which
depend on dim M — 1 free parameters.

Laurent solution of x; = f(xq,...,Xn) :
o0 .
()= aitt  i=1,....n
j=k

convergent for t € B(0;¢) \ {0}.



Application : obstruction to algebraic integrability

Let eg, &1, ..., e, € R such that
> €, €4,...,6 are dependent
> Vi:eg,...,&,...,e areindependent.

Let A = (a;) be its Cartan matrix

2(e,-\ej>
(ejlej)

ajj =

On C2(+1) the vector field V :

X=X-y y = Ax.



Application : obstruction to algebraic integrability

Let eg, &1, ..., e, € R such that
> €, €4,...,6 are dependent
> Vi:eg,...,&,...,e areindependent.

Let A = (a;) be its Cartan matrix

2(e,-\ej>
(ejlej)

ajj =

On C2(+1) the vector field V :

Theorem [Adler, van Moerbeke]

If V is a.c.i., then A is the Cartan matrix of an affine (twisted) Lie
algebra.



Application : projective embeddings of Kummer
surfaces (with L. Piovan)

For the Riemann surface I :

5 5
=TI =x) =D aix®,
it =0

Kum(T") := Jac(I')/(—1). Surface with 16 singular points.



Application : projective embeddings of Kummer
surfaces (with L. Piovan)

For the Riemann surface I :

5 5
=TI =x) =D aix®,
it =0

Kum(I') := Jac(I')/(—1). Surface with 16 singular points.
Embeddings as quartic surface in P3 :
(6363 + 0205) + 2B(0R% + 0303) + aB(0305 + 6263)
+2a1ap(0t1 — 0203) (6062 — 6163)
+2a3ay (0ot + 0203) (6003 — 6162)
—2a3ay(0ob2 + 0103) (0005 + 0162)
12660102605 = 0,

where a5 = \j, & = AkAimAin and & = Ak AjmAjn-



In terms of the o;

0 = (40305 — 05)03
+2[—2020501 + (0204 — 20105)02 + 20593]98
+[404 05012 — (204 + 05)95 + (405 — 20104)0102
—2040103 + 4030203]02
+2[—205913 4 20491292 + (0102 — 203)64 95
+0203 + 20,03 — 02016205 — 201050360
—(05 — 10102 + 0103)2.



In terms of the o;

0 = (40305 — 05)03
+2[—2020501 + (0204 — 20105)02 + 20593]98
+[404 05012 — (204 + 05)95 + (405 — 20104)0102
—2040103 + 4030203]02
+2[—205913 4 20491292 + (0102 — 203)64 95
+0203 + 20,03 — 02016205 — 201050360
—(05 — 10102 + 0103)2.

Embedding as quartic in P? with 6 singuliar points :

Z Z NEXZNGNimAint20,0k = 0,

j=1 1<j<k<4
i k#i

where {i,j, k,m,n} = {1,2,3,4,5}.



Rational solutions (Mumford and KdV)

Before : if the curve p? = f(\) is smooth, solution to Mumford and
KdV in terms of theta fonctions.

Here : the other extreme : the very singular curve p? = X291, The
corresponding fiber of the momentum map H='(0) : the affine
variety of (U(\), V()\), W())) such that U\)W(X) — V(M\)? = 0.



Rational solutions (Mumford and KdV)

Before : if the curve p? = f(\) is smooth, solution to Mumford and
KdV in terms of theta fonctions.

Here : the other extreme : the very singular curve p? = X291, The
corresponding fiber of the momentum map H='(0) : the affine
variety of (U(\), V()), W())) such that U\)W()) — V(\)? = 0.

Theorem [Inoue, V., Yamazaki, 2009]

» H='(0) is stratified by g + 1 manifolds of dimension
0,1,...,9, generated by the integrable flows ;

» The g + 1 corresponding solutions are (explicit!) rational

functions ;
» Each stratum compactifies into the generalized Jacobian of
the curve ;2 = X+ where i =0,...,9;

» One recovers the rational solutions to the KdV hierarchy (for
every g).
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u(f) = 237212 log 4(f)
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7'2():§—t3
R S 5
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u(f) = 237212 log 4(f)
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The rational solutions of KdV for small g

—,

u(f) = 237212 log 4(f)

-
T2(t) = 3B
- B,
(t) ?S—T_ts‘i‘hts
A HO 2t 2t

_ A8 312 -
T4()—4725 105 bty + 15 +f1 Its t5 3 + f3t7

General formula : via Schur polynomials or via the theory of
generalized Jacobians.



Witten'’s conjecture / Kontsevich’s theorem

Mg,» moduli space of smooth curves of genus g with n marked
points. Mg » is an algebraic variety of dimension 3g — 3 + n.
Every marked point defined a line bundle £; on Mg . For

Y = (%, (pi)) € Mgnthefiberof £;at > is T;¥.

For di + - - - + d, = 3g — 3 + n one defines the intersection number

<7—d17—d2-'-7—dn> = /M C1(;C1)d1 /\"-/\C1(£n)dn
a,n

Generating function

n,
F N t'?o tg1 t2§+1 No _M Ny
(t) = E _—= . (ro°r" ... 7))
ng! ny! ny!

(ng,n1,...ng)

Theorem [Witten/Kontsevich (1990)]
The function u := 02F /02 is a solution to KdV.



Non-intersecting Brownian motions

1 by by b3 bpf 1 bp

NVY Y

N
P(t,E) ~ [ det(p(t,a;,x))det(p(1 — t,x, b)) [T o
EN

i=1
o (x—y)?/2t

t? X? -
p(t, x,y) —



A solution to KP

After coalescence and some transformations :

P(t, E) ~ det ((/ yl+/ey2/2e(éa+55)ydy>
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A solution to KP

After coalescence and some transformations :
P(t, E) ~ det </ yl+/ey2/ze(éa+55)ydy>

E 0<i<mq .

1<

Deformation :

o0
g 3 k
By — B — ) Saky
k=1

bsy — Eﬁ}’—ztﬁ,k}’k
k=1



A solution to KP

After coalescence and some transformations :
P(t, E) det((/y e gldet dy) o< i ) |
S
1<

Deformation :

00

x > K

a.y — aay_zsa,ky
k=1

Bﬁy — Eﬁy = Z tg’kyk
k=1

Theorem [Adler, van Moerbeke, V., 2008] One obtains a solution to
the (p + g)-KP hierarchy, where the s, x and the {5 x are time
variables.



