The basis of all human culture is language, and mathematics is a special kind of linguistic activity. Yu. Manin Mathematics as profession and vocation, in Mathematics: Frontiers and Perspectives (V. Arnold et al, ed), AMS, 200, p. 154 Matveer

Géométrie-Topologie

23 03 2020

Exemples ObjC,) = Ensembles Mar(C) = applications Obj (C2) = groupes Mar (C2) = homomorphismes Obj (C3) = groupes abeliens par (C3) = homomorphismes Obj (Cy) - espaces topologíques Mor(C4) = applications continues Obj (C5) = espaces topologoques Mor (C5) = classes of homotopie. fe[A,B], notation f: A > B if Soient X, Y & C. On Lit que Xet X sont isomorphe si Fix>X et g: X => X t.g. fg = Idy et gf = Idx f,g - sont appelés isomorphisones Exemples catés: des ensembles les objets isomorphes ont le neue Cardinalité. i somorphismes = horné omosphismes

ates de groupes isom = isom. de group cates des esp topologiques avec les morphismes. Les applic homotoir que csomorpismes = èquivalence homo topi gue Soient C, et C2 deux catégories Notons F: Obj (C) -> Obj (C2) $X \mapsto F(X)$ Peroz V morphisme f: X -> X Jans C on associe fx: F(X) -> F(Y) dans C C'est un foncteur covariant de C, evers C2 si Si fest un moofhisme d'identité for l'est aussi si fg est bien défini alers (fg) * = f.g. Fonction contravariant F. Cy -> C2 f. X -> X ~ F(X) -> F(X) composition (fg) = 9 ft

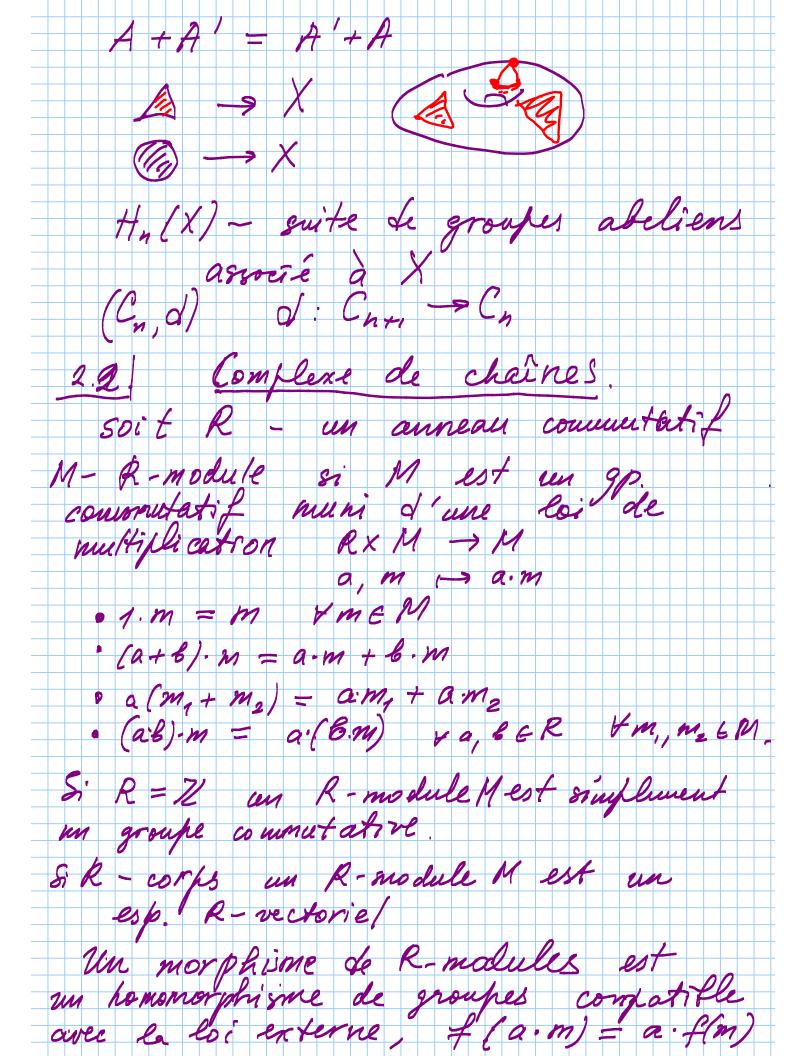
Exemples Catégorie des groupes -> Catégorie
des ensembles Foncteur d'oublie - foncteur covarient catégorie des espaces vectoriels espace vectoriel v L'espace des formes linéaires (= applications & (V, R), V& F: V -> W ms That I soit F: C, -> C2 - for efews Supposons que X, y de C, sont isonople alors F(X) et F(Y) le sont ausor. Si F(X) n'est pas isomorphe a F(X) alors X et Y ne sont pas isomorphe Preuve Soit F covariant.

isomorphismes entre X et X t.g fg = Idx et gf = Idx. alors déf. le foricteur on a fagn = ld F(y) et gufn = (dF(x) alors F(x) et F(x) sont isomorphy. applic standard Pour m.g. X, Y deux esp. topologiques sont distorets, il suffit de trouver une catégorie avec un poncteuz E de categorie des esp. topologiques vers cette autre categorie et compares F(X) et F(Y). Si F(X) er est pas isomorphe a F(Y) on conclut que X n'est pas i somorphe a / Rg. Si F(X) = F(X) on ne peut pas concluse que X=X Exemple 24 et 25 ne sont pas isomorphes car le fontéeux of oublie dans le cetégorie des ensemble Loune derex en sembles non- is omorphe "Nice" foncteur

1. Facile à calculez 2. Facice à distinguez les objets F(X) et F(Y) 3. Pas perdre beaucoup d'i, Foncteur d'homologie: Categorie des espaces topologiques 9 Categorie des equences des groupes abéliens

Cours See Topro -2 Alzi bre: Complexes de chaîne alysis-situs.math.ons.fr/ Intro à l'homologie: Avant de nous embarquer dans cette aventure, fixons-nous quelques objectifs: nous voudrions définir un moyen d'associer à toute variété V et tout entier i un groupe abélien noté $H_1(V)$ (le i-ème groupe d'homologie de V) qui mesurera la « complexité topologique en dimension i » de V. Nous voulons que ces groupes d'homologie satisfassent au moins les trois propriétés suivantes: 1. Si deux variétés sont homéomorphes, ou même homotopiquement équivalentes, alors elles ont les mêmes groupes d'homologies (naturalité). 2. Les groupes d'homologie $H_1(\{pt\})$ d'un point (ou de \mathbb{R}^n) sont $\{0\}$, sauf si $i=0$ où $H_0(\{pt\}) = \mathbb{Z}$. 3. Les groupes d'homologie d'une union disjointe de deux variétés sont la somme directe des groupes d'homologies de chaque variété. Homotopiel: l'ensemble de lacebs basis en pf. Jonnel de lacebs Clemans dy e Somme s formel les de Clemans de Clemans de Clemans de X le points de X le pui les de X le X le pui les de X le X le pui les de X le X le X le pui les de X le X			cours			Geo Topo -2			•						
Avant de nous embarquer dans cette aventure, fixons-nous quelques objectifs : nous voudrions définir un moyen d'associer à toute variété V et tout entier i un groupe abélien noté $H_i(V)$ (le i -ème groupe d'homologie de V) qui mesurera la « complexité topologique en dimension i » de V . Nous voulons que ces groupes d'homologie satisfassent au moins les trois propriétés suivantes : $1. \text{Si deux variétés sont homéomorphes, ou même homotopiquement équivalentes, alors elles ont les mêmes groupes d'homologies (naturalité).}2. \text{Les groupes d'homologie } H_i(\{pt\}) \text{ d'un point (ou de } \mathbb{R}^n) \text{ sont } \{0\}, \text{ sauf si } i=0 \text{ où } H_0(\{pt\}) = \mathbb{Z}.3. \text{Les groupes d'homologie d'une union disjointe de deux variétés sont la somme directe des groupes d'homologies de chaque variété.}$			00:0						0.000			1 -1-1		L 0 A	
Avant de nous embarquer dans cette aventure, fixons-nous quelques objectifs : nous voudrions définir un moyen d'associer à toute variété V et tout entier i un groupe abélien noté $H_i(V)$ (le i -ème groupe d'homologie de V) qui mesurera la « complexité topologique en dimension i » de V . Nous voulons que ces groupes d'homologie satisfassent au moins les trois propriétés suivantes :				ne	32 0	12.		s m		X		ye_			
Avant de nous embarquer dans cette aventure, fixons-nous quelques objectifs : nous voudrions définir un moyen d'associer à toute variété V et tout entier i un groupe abélien noté $H_i(V)$ (le i -ème groupe d'homologie de V) qui mesurera la « complexité topologique en dimension i » de V . Nous voulons que ces groupes d'homologie satisfassent au moins les trois propriétés suivantes :	nalı	vsis-sit	us ma	ath cnrs	fr/										
Avant de nous embarquer dans cette aventure, fixons-nous quelques objectifs : nous voudrions définir un moyen d'associer à toute variété V et tout entier i un groupe abélien noté $H_i(V)$ (le i -ème groupe d'homologie de V) qui mesurera la « complexité topologique en dimension i » de V . Nous voulons que ces groupes d'homologie satisfassent au moins les trois propriétés suivantes : $ 1. \text{Si deux variétés sont homéomorphes, ou même homotopiquement équivalentes, alors elles ont les mêmes groupes d'homologies (naturalité).} $ $ 2. \text{Les groupes d'homologie } H_i(\{pt\}) \text{ d'un point (ou de } \mathbb{R}^n) \text{ sont } \{0\}, \text{ sauf si } i = 0 \text{ où } H_0(\{pt\}) = \mathbb{Z}. $ $ 3. \text{Les groupes d'homologie d'une union disjointe de deux variétés sont la somme directe des groupes d'homologies de chaque variété.} $								+							
Avant de nous embarquer dans cette aventure, fixons-nous quelques objectifs : nous voudrions définir un moyen d'associer à toute variété V et tout entier i un groupe abélien noté $H_i(V)$ (le i -ème groupe d'homologie de V) qui mesurera la « complexité topologique en dimension i » de V . Nous voulons que ces groupes d'homologie satisfassent au moins les trois propriétés suivantes : $ 1. \text{Si deux variétés sont homéomorphes, ou même homotopiquement équivalentes, alors elles ont les mêmes groupes d'homologies (naturalité).} $ $ 2. \text{Les groupes d'homologie } H_i(\{pt\}) \text{ d'un point (ou de } \mathbb{R}^n) \text{ sont } \{0\}, \text{ sauf si } i = 0 \text{ où } H_0(\{pt\}) = \mathbb{Z}. $ $ 3. \text{Les groupes d'homologie d'une union disjointe de deux variétés sont la somme directe des groupes d'homologies de chaque variété.} $		In	tro	à	1	hor	not	- دروی	e :						
voudrions définir un moyen d'associer à toute variété V et tout entier i un groupe abélien noté $H_i(V)$ (le i -ème groupe d'homologie de V) qui mesurera la « complexité topologique en dimension i » de V . Nous voulons que ces groupes d'homologie satisfassent au moins les trois propriétés suivantes :								٧							
voudrions définir un moyen d'associer à toute variété V et tout entier i un groupe abélien noté $H_i(V)$ (le i -ème groupe d'homologie de V) qui mesurera la « complexité topologique en dimension i » de V . Nous voulons que ces groupes d'homologie satisfassent au moins les trois propriétés suivantes :		Avant	de n	ous em	barquer	dans cett	e aventu	ıre, fixor	ns-nous	quelque	object	ifs : n	ous		
en dimension i » de V . Nous voulons que ces groupes d'homologie satisfassent au moins les trois propriétés suivantes :		voudri	ons d	éfinir ur	n moyen o	d'associer	à toute v	variété $oldsymbol{V}$	et tout	entier i	un grou	pe abél	lien		
trois propriétés suivantes :		7	100	C TO C									_		
1. Si deux variétés sont homéomorphes, ou même homotopiquement équivalentes, alors elles ont les mêmes groupes d'homologies ($naturalit\acute{e}$). 2. Les groupes d'homologie $H_i(\{pt\})$ d'un point (ou de \mathbb{R}^n) sont $\{0\}$, sauf si $i=0$ où $H_0(\{pt\})=\mathbb{Z}$. 3. Les groupes d'homologie d'une union disjointe de deux variétés sont la somme directe des groupes d'homologies de chaque variété.		CONTRACTOR OF THE PARTY OF THE				voulons q	ue ces gro	oupes d'h	nomolog	ie satisfa	ssent au	ı moins	les		
alors elles ont les mêmes groupes d'homologies ($naturalit\acute{e}$). 2. Les groupes d'homologie $H_i(\{pt\})$ d'un point (ou de \mathbb{R}^n) sont $\{0\}$, sauf si $i=0$ où $H_0(\{pt\})=\mathbb{Z}$. 3. Les groupes d'homologie d'une union disjointe de deux variétés sont la somme directe des groupes d'homologies de chaque variété.		crois p	. opin	cco surv	La ILCO								_		
2. Les groupes d'homologie $H_i(\{pt\})$ d'un point (ou de \mathbb{R}^n) sont $\{0\}$, sauf si $i=0$ où $H_0(\{pt\})=\mathbb{Z}.$ 3. Les groupes d'homologie d'une union disjointe de deux variétés sont la somme directe des groupes d'homologies de chaque variété.		1.								THE RESIDENCE OF STREET	nent équ	uivalen	tes,		
$H_0(\{pt\})=\mathbb{Z}.$ 3. Les groupes d'homologie d'une union disjointe de deux variétés sont la somme directe des groupes d'homologies de chaque variété.		-	alors	elles on	nt les mên	nes group	es d'hom	ologies (naturalite	é).			-		
3. Les groupes d'homologie d'une union disjointe de deux variétés sont la somme directe des groupes d'homologies de chaque variété.		2.				gie $H_i(\{j\})$	$pt\})$ d'ur	n point (o	u de \mathbb{R}^n) sont {0	}, sauf s	ii=0	où		
directe des groupes d'homologies de chaque variété.			$H_0($	$\{pt\}) =$	$=\mathbb{Z}.$								_		
		3	Les ,	groupes	d'homol	ogie d'un	e union	disjointe	de deu	x variét	és sont	la som	me		
Homotopie: l'ensemble des lacets Basés en pt sonné J: [9,1] -> X M Groupe d'homotopie 72° %, Lomologie Sommes forme lles de Chemins de X, de points de X et d'un opérateur d'qui envoir un chemin c vers la			dire	cte des g	roupes d	'homologi	es de cha	que vari	été.				_		
Homotopie: l'ensemble des lacets Basés en pt. Jonné J: [0,1] -> X My Groupe d'homotopie 72° /, Lomologie Sommes forme lles de Chemins de X, de points de X et d'un opérateur d'qui envoie un chemin c ves le															
Homotopie: l'ensemble des lacets Basés en ft. Sonné J: [0,1] -> X M Groupe d'homotopie 32° /, Lomologie Sommes formelles de Chemins de X, de points de X et d'un opérateur d'qui envoie un chemin c vers le										7					
Basés en pt fonné J: [0,1] -> X My Groupe d'homotopie 72° %, remologie Sommes forme lles de Chemins de X, de points de X et d'un opérateur d'qui envoir un chemin c ves la		You	040	hie		l'en	1 cem	fle	r d	el	Lac	et	•		
basis en pt. Sonne 2: [0,1] -> X Groupe d'homotopie 72° /; Lomologie Sommes formelles de Chemins de X, de points de X et d'un opérateur d'qui envoie un chemin c vers le	,							7				<u></u>			
J: [0,1] -> X No Groupe d'homotopie 32° %, romologie Sommes forme lles de chemins de X, de points de X et d'un opérateur d'qui envoir un chemin c vers le		sas	25	en		î f. 0	lon	re				2			
Di [0,1] -> X No Groupe d'homotopie 32° %; comologie Sommes forme lles de chemins de x, de points de X et d'un opérateur d'qui envoir un chemin c vers la					/					(K	4			
or Groupe d'homotopie 32°%; comologie Sommes formebles de chemins de x, de points de x et d'un opérateur d'qui envoir un chemin c vers la		7:		01	7 -	ر و۔									
omologie Sommes formelles de Chemins de x, de points de x et d'un opérateur d'qui			4	1 -	J										
comologie Sommes formelles de chemins de x, de points de x et d'un opérateur d'qui															
comologie Sommes formebles de Chemins de x, de points de x et d'un opérateur d'qui envoir un chemin c vers la		~	-)	Gr	ouh	Q C	1 h	em c	100	uie.		12 0			
comologie Sommes formebles de chemins de x, de points de x et d'un opérateur d'qui envoir un chemin c vers la		<u> </u>										20			
chemins de x, de points de x et d'un opérateur d'qui envoir un chemin c vers la			D	1120		C	and M	100		5m	10/	10		0	
chemins de x, de points de x et d'un opérateur d'qui envoir un chemin c vers la	10	المصاحب				00	10111	7		טו זו			, 4		
et d'un opérateur d'qui envoir un chemin c vers la	Ha	omo		1				_				1	1 4		
et d'un opérateur d'qui envoir un chemin c vers la	K	omo						7,	4 - '	~, <u>/</u> _		10	$ \chi$		
et a un operateur a qui envoir un chemin c vers le	Ka	omo be	m	îns	Se	X	, de	e	/Di	nt.	2 9	le	X		
envoie un chemin c vers la	K	he	m	îns	de	X	d	e	/Di	nt.	1	le	X	-	
more un chemin c vers to	Ha C	omo lie H	m	îns	de	X	iér	e ate	uz	nt.	<i>y a</i>	le 9	X		
	ta C	omo he H	m	ins	Lun	X	rép	ate	uz	nt.	7	10 9	X		

c (o


2.0,

1

c(1)

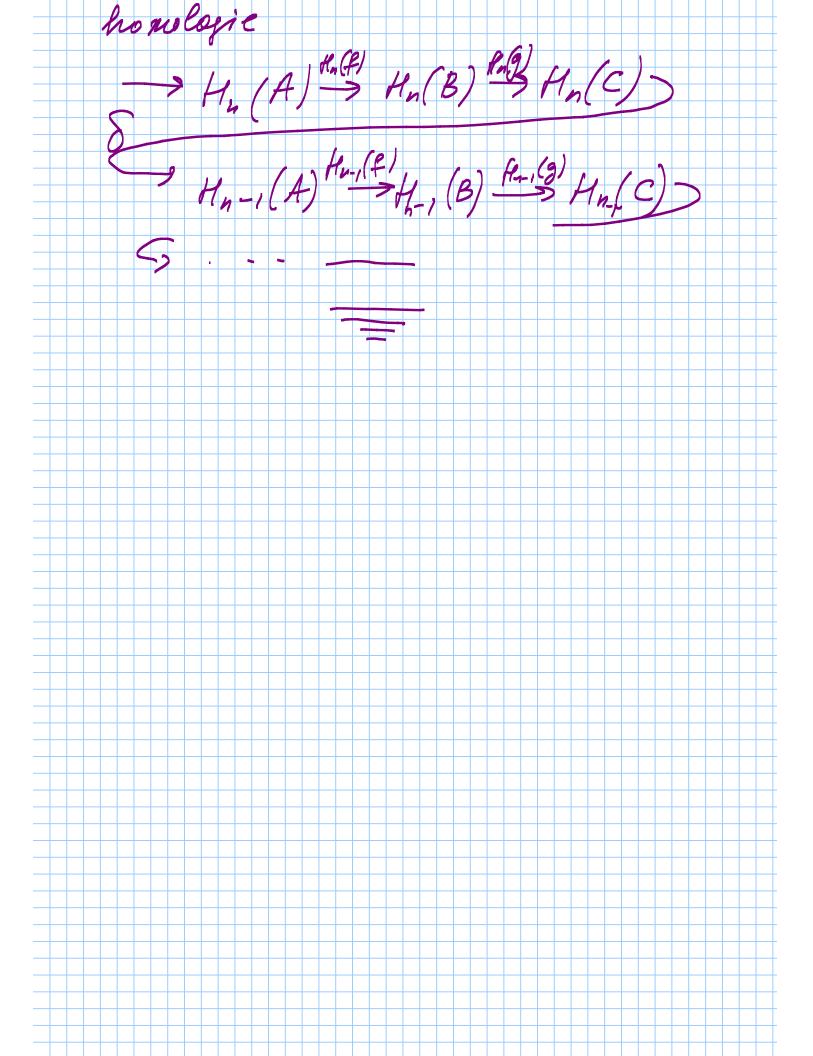
C:

+ 3C2

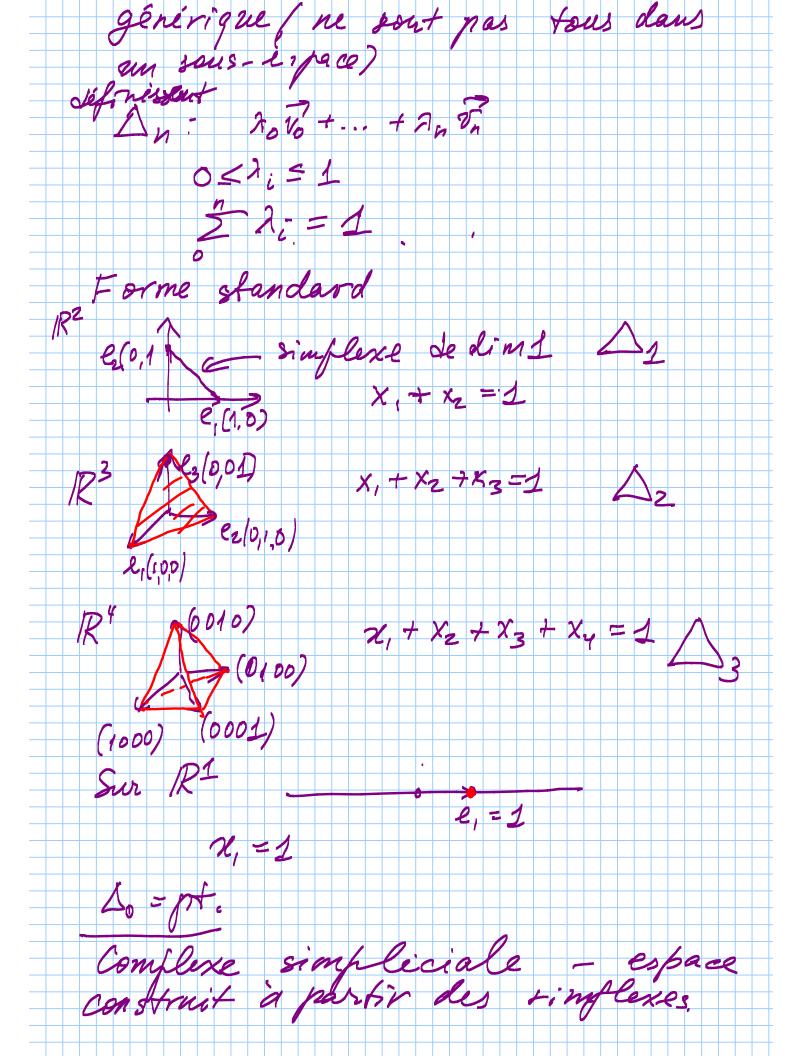
YaER, FMEM une suite de morphismes de R-modules,

M, fine M2 -> . - , Fine A > Mn+,

est dite enacte si l'on a Im $f_{K+1} = Ker f_{K}$ $f_{K+1} = f_{K+1}$ $f_{K+1} = f_{K+1}$ En particulier, 0 3 A =>
exacte Im g=0 = Kerf => f est injective A & B 40 Im f = Kerh = B => f est surjective. Det une suite exacte est une suite exacte 0 -> A 7-> B 8 C -> 0 1 fest injective 2. g-est surjective 3. Imf = Kerg1 Vh = 2 0 -> Z multy Z = Exemple:

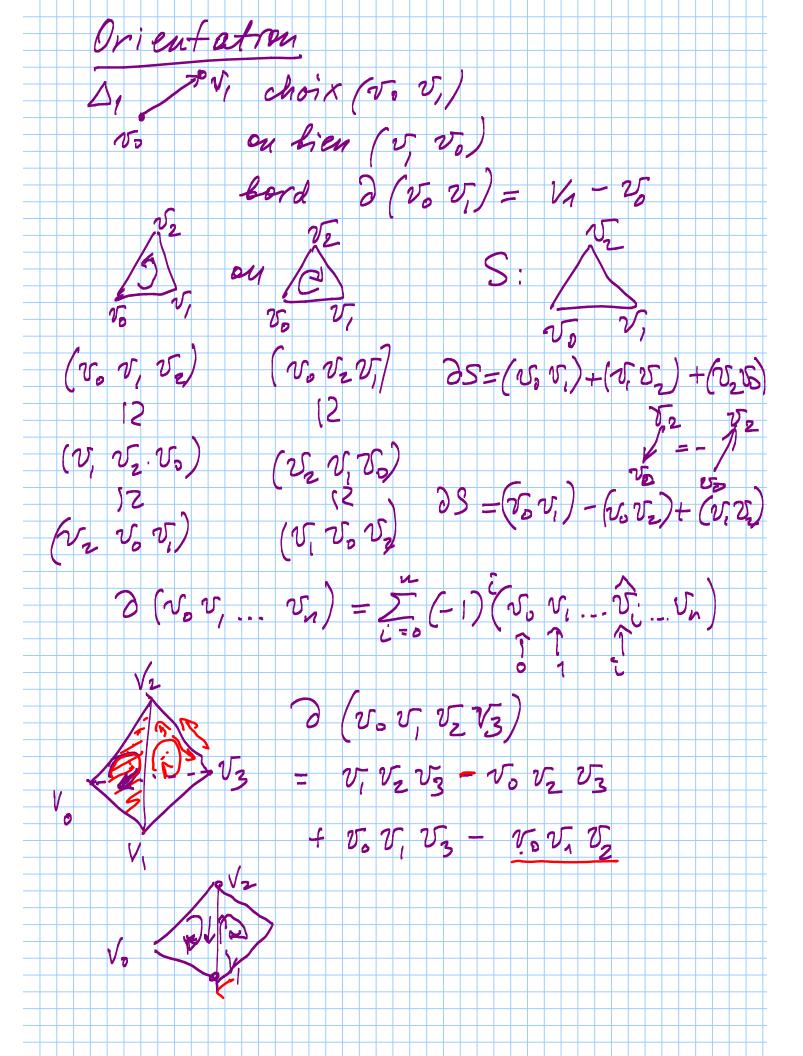

suite exacte courte de groupes 2. 2: M C> N $0 \longrightarrow M \xrightarrow{z} N \longrightarrow NM \longrightarrow 0$ 3. 0 > Kerp -> M P N -> 0 powjective Déf. Un complexe de chaînes (Co, d) est une suite de R-moderly Le morphimes de R-modules de la forme dno Cn dn Cn - 1 2 - 2 - 2 de C, do do avec [duodn+= 0], & n =1 Cn - R-modules du - différentielle, l'application Cycles de dég. n = Ker do $Z_n(C_n,d)=\ker(a_n:C_n\to C_{n-1})$ Bn (Cx, d) = Im (duti: Cu+(-> Cn) do du+1 = 0 => Bn C Zn Zn/Bn = Hn(Co, d) -n-ène

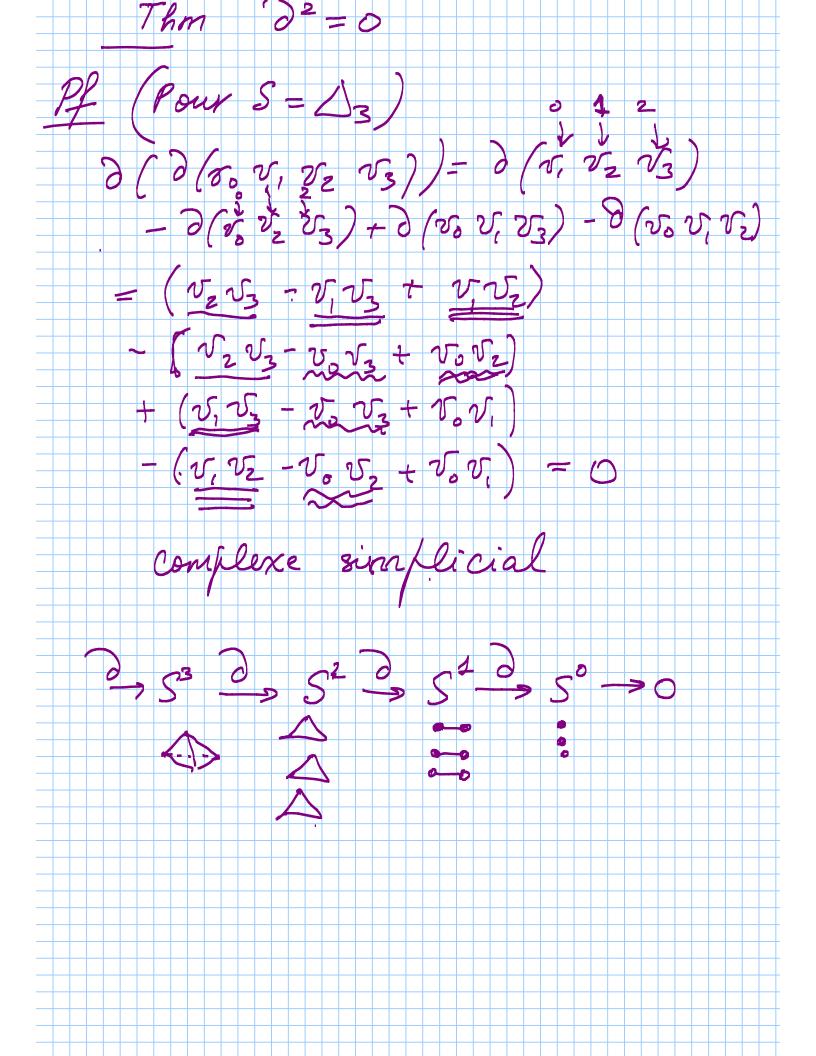
R-module d'homologie du conflexe (C_n,d) . Si $x \in Z_n$ alors [x] - l'image de x dans Zn/Bn X-representant de [X] [X] - la classe d'nomologie de X A (Cx, d) on associ une suite infruie de R-modules Ho (G, d/, H, (Co, d) ... Ha (G, d)... Dél Morphione de complexes de chaines f: (As, d) -> (Ba, d') dny Andu An-, dus d'u+5 B n d 25 B a - 1 d 3 - 1 + une ouite de morphismes de R-molde $f_n: A_n \rightarrow B_n, t, g \rightarrow A_n \xrightarrow{d_n} F_{n-1}$ for do = dofn the / for Si X E An est un cycle alors $f_n(x) \in B_n$ est aussi un cycle. $(d_n f_n(x) = 0)$


Si $y \in A_n$ est un bord $(\exists z \in A_{n+1} + C_n)$ $(\exists z \in A_n)$ alors fn(y) e Bn est aussi un bord: P(dn+12) = dn+1 fn+12-le
15 Sord. alors tout morphisme de morphisme Le R-modelles on tre les groupes d'homologie. Hn(f): Hn(Ao,d) -> Hn(Bo,d) $H_n(f)([x]) = [f_n(x]]$ $H_n(id) = id$ $-A_n \xrightarrow{d_n} A$ $H_n(g \circ f) - H_n(g) - H_n(g) \xrightarrow{B_n} A$ Sef Sifet 9 sont - End" ch phismes de CRS de chaînes 4n-1 -> f,g: (An,d)-(Bn,d') ful gu ful gu- $\rightarrow B_n \xrightarrow{d_n} B_n$ une homotopie h entre f

est la donnée d'une sui se Le morplimes de R-modules - Anti An In An-1-> hu fin v gu hat PV 18 Bnt, dati Bn -> Bn-1 fu-gn=hodn+dohn pour thzo On page h., =0 f-g = hod + doh Prop. Si clier morphismes de oxs Le Charpes f,g. (As,d) -> (Bs,d) sont homotopes, yes induisent la meme applieation en homologie. Demo: Si X E An-cycle $f_n(x) - g_n(x) = d_{n+1}h_n(x) + h_{n-1}d_n(x)$ D'où l'égalité

d'homologie associées: [fn(x)] = /gn(x) sél une suite enate courte de complexe de chaînes 0 -> An & Ba & Cx -> 0 est la donnée de trois complexes de chaines Ao, Bo, Co et de deux morphomes de «s de chaines 0 > An + Bn 92 Cn >0 est une sut te exacte courte $0 \rightarrow f_{n+1} \rightarrow$ Thue (Lemme du serpent) Si 0 -> 40 £> 80 £> Co-> 0 est une rute exacté courte de complexes de chaînes, on lui associe une suite exacte longue en

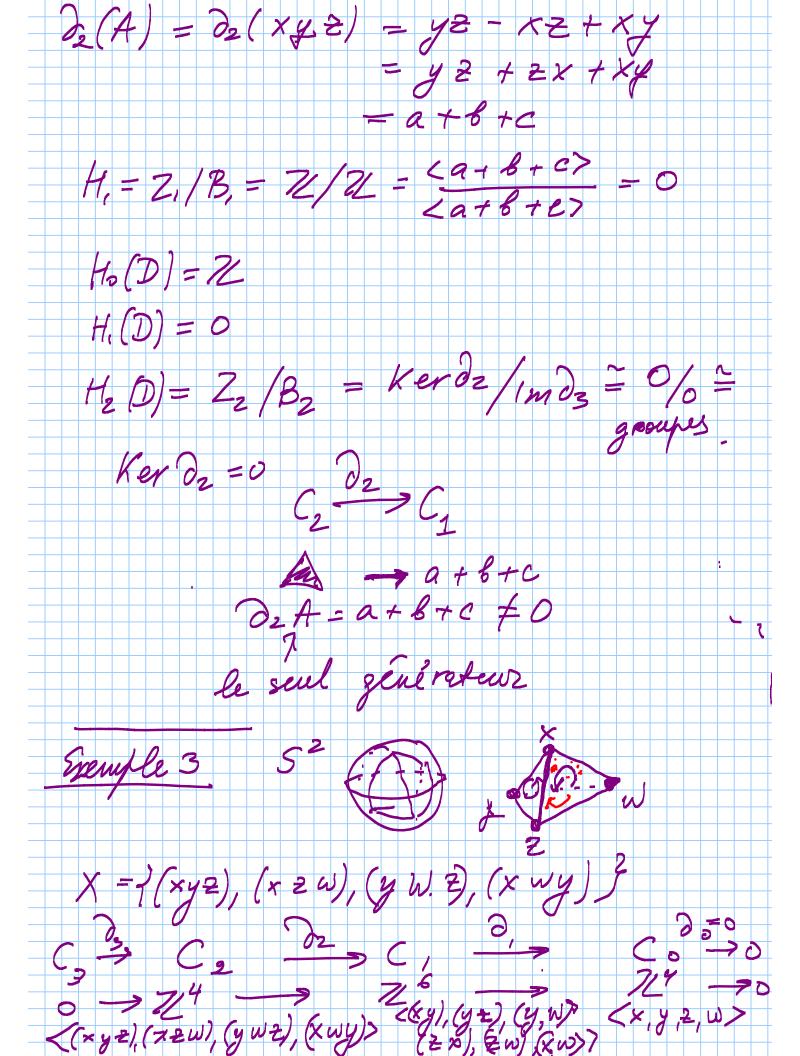



Chapitre 3 complexe simplicial Simplice - généralisation d'un triangle 2, + 2 (2-3,) paramétrise la droite l, (1-2), + 7 /2 = 2, 0, 72 /2 l, entre v, et vz., 2-coordonnée our ce segment メニスパナカママンナスでる V3 $\int 0 \leq \lambda_i \leq 1$ $(\lambda_i + \lambda_2 + \lambda_3 = 1$ ées baryentriques de triange 4 verturs fetraedre 0 < > = 1 + 22 + 23 +27 =1 3-5 mplexe Lans 1R n-simplexe dans R "
n+1) pts vo, ..., vn en position

Règles Edius 2 smf de deux simplexes Face of un simplesse Ses PCS f. g. ses sommes Par exemple: Faces: dim

s=A2 x, y, dim3 Am 0: x, y, 2, W 1: xy, x2, xw y2, 2w, yw dime: xy2, xyW 4 XZW, YZW sous enseubles rewner Faces

Chapitre 4. Exemples de calcul X-espace roupes - chaînes plication de ford Vim 2 Din Ci Di Ci-1 di · 2+,= 0 Z, = Kerd, CI - groupe de De C C1 - groupe de D_ 0 02 = 0 $B, \subseteq Z, car$ H:= Z, /B, - le groupe quotsent groupe commetatif, Exemples $H, \cong Z, \cong Z \oplus Z$, H_n =Zn/Bu Cercle X = 51 cercles Remplacer le


or homeomorflu o Squelette = 3 serments soumets & x, y, 23 segments Ja, 6, c3 = 2 a, 8, c, x, y, 2] 6ps de chaînes: pas de din2 x, y, 2 la+mb+nc dx+By+yz $x, y, \ge \rightarrow 0$ Zo = Ker do = Co, Bo = Imd, = (y-x, z-y, x-z)

Ho =
$$Z_0/B_0 = \langle x, y, \frac{27}{27}/y - x, 2 - y, x - \frac{27}{27} \rangle$$
On pense au quotient = poser tout

dans B_0 égal Q_0 .

 $D_0 = X_0 =$

Ho(S) = Z HE(S) = 0 HE>2 t par Bo=/md, X3 - X2 ... est alo 1m0, = < x - x, , x - x = ? $(x_1, x_2, x_3, x_4)/(x_2=x_1, x_3=x_4)$ A = (xy=) a, b, c $0, \pm < a + b + c$

$$H_{n} = \frac{2n}{B_{n}} = \frac{ker \partial n}{m \partial n+1}$$

$$H_{0}: Z_{0} = C_{0} = \langle x, y, z, w \rangle$$

$$B_{0} = \langle y - x, z - y, w - y, x - z, w - z, w - x \rangle$$

$$Z_{0}/B_{0} = Z = \langle x + B_{0} \rangle$$

$$H_{1}: Z_{1} = \frac{ker \partial n}{n \partial n}$$

$$Q(xy) + p(yz) + y(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + y(w - y) + \delta(x - z) + p(w - z) + q(wz)$$

$$Q(xy) + p(zz) + y(w - y) + \delta(x - z) + p(wz) + q(xw)$$

$$Q(xy) + p(yz) + y(w - y) + \delta(x - z) + p(wz) + q(xw)$$

$$Q(xy) + p(yz) + y(w - y) + \delta(x - z) + p(wz) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

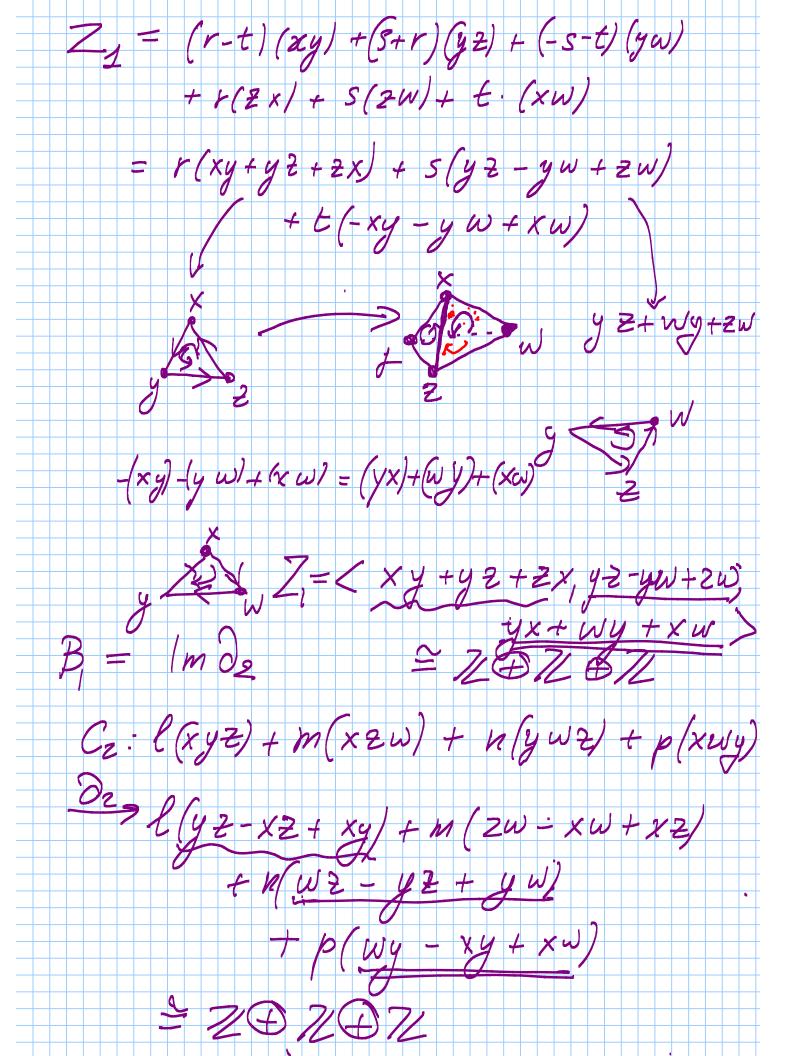
$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$


$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + \delta(zx) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + p(yw) + p(yw) + p(zw) + p(zw) + q(xw)$$

$$Q(xy) + p(yz) + p(yw) + p(yw) + p(zw) +$$

$$Z_{1}/B_{1} = Z^{3}/Z^{3} \stackrel{\sim}{=} 0$$

$$H_{2}(S^{2}) = 0$$

$$H_{2}(S^{2}) = Z_{2} = C$$

$$C_{3} \stackrel{\sim}{=} C_{2} \stackrel{\sim}{=} C_{1}$$

$$Ker \stackrel{\sim}{=} Z_{2} = Z_{2} \stackrel{\leftarrow}{=} Z_{3} \stackrel{\leftarrow}{=} Z_{4}$$

$$A = D$$

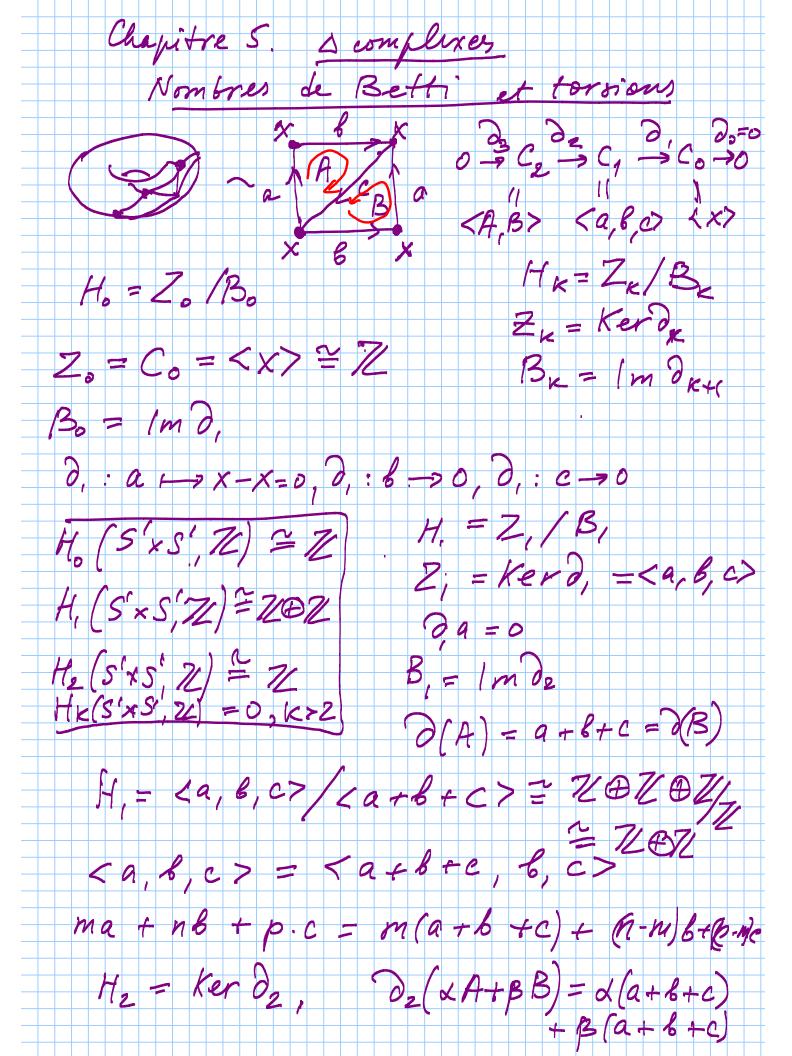
$$Z_{1} = (A + B + C + D) = 0$$

$$Z_{2} = (A + B + C + D) \stackrel{\sim}{=} Z$$

$$B_{2} = 0 \quad \text{Sonc} \quad H_{2}(S^{2}) = Z$$

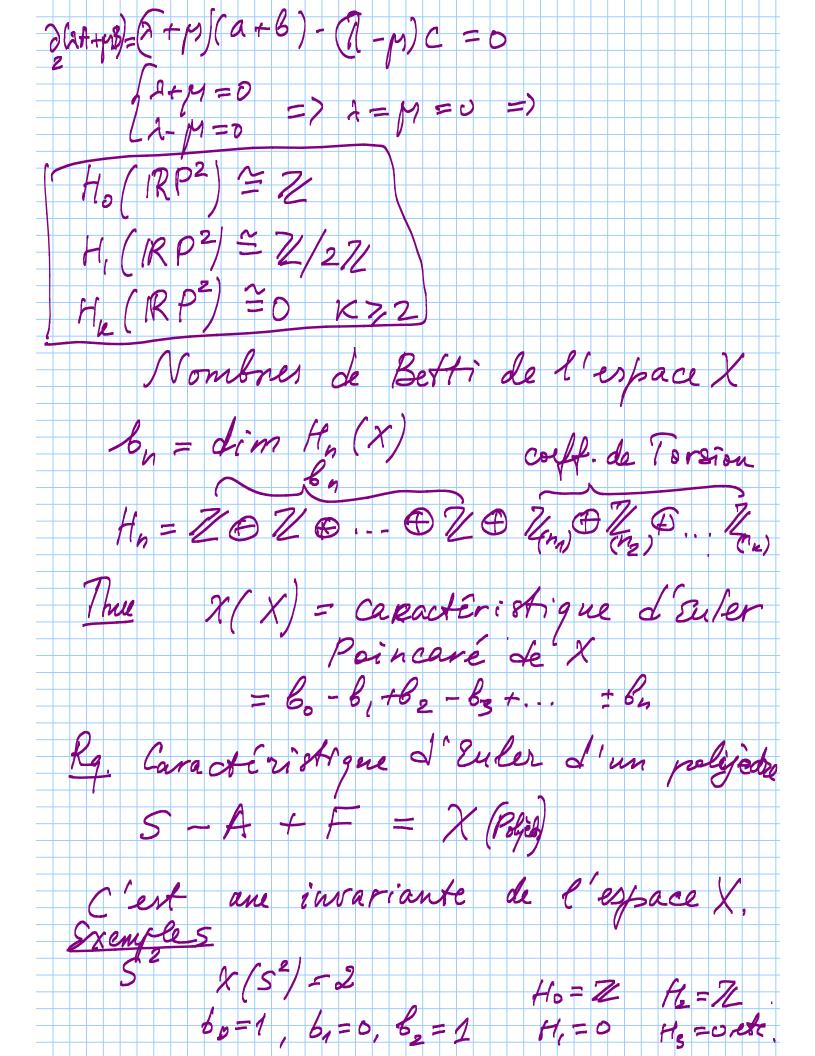
$$Eilenberg \quad \Delta - complexe$$

$$X = Z \quad X \stackrel{\circ}{=} Z$$


$$X = Z \quad X \stackrel{\circ}{=} Z$$

$$0 \to C_{2} \xrightarrow{\otimes_{2}} C_{1} \xrightarrow{\otimes_{1}} C_{0} \xrightarrow{\longrightarrow} 0$$

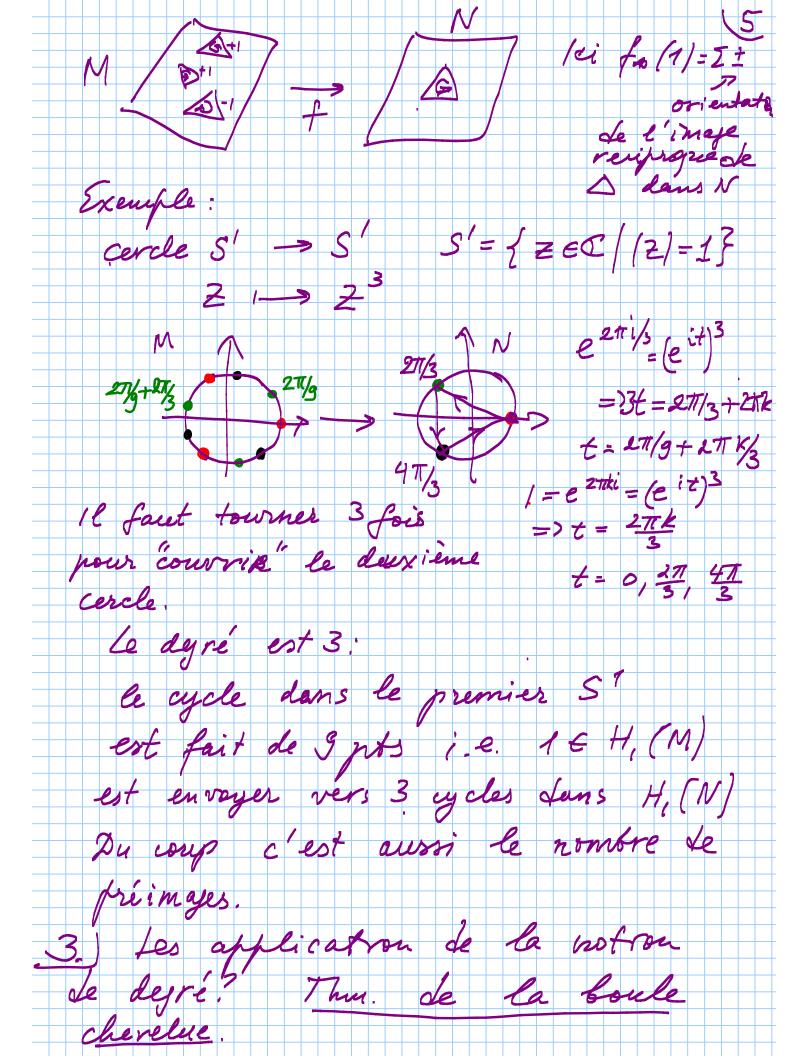
$$\langle A_{1}B_{2} \rangle \langle a_{1}, c_{1} \rangle \langle x_{1}y_{1} \rangle$$


$$H_{1} Z_{1} : \langle a_{1} + \beta_{1}B_{1} + \gamma_{1}C_{1} \rangle$$

$$= \langle (y_{1} - x) + \beta_{1}(x_{1} - y_{1}) + \langle (x_{1} - y_$$

$$\begin{array}{c} & (a+b+c)+\beta(a+b+c)=0 \quad \Rightarrow d=-\beta \\ \text{Ner} \, \partial_2 = \langle A-B \rangle \;\; , \;\; \text{can} \, \partial_3 = 0 \\ & \text{Aparte} \quad \text{Sous. groupes} \quad \text{de} \; Z \;\; \text{et} \;\; Z \oplus Z \\ \hline Z: \quad \Rightarrow \quad H=3Z \\ \hline -3z \quad \text{of} \;\; 2:3 \quad \Rightarrow \quad H=3Z \\ \hline Z/3Z \stackrel{\sim}{=} \{0,1,2\} \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text{det} \left(2,1\} = 3 \\ \hline Z \oplus Z/: \quad \Rightarrow \quad \text$$

Ho =
$$Z_0/B_0$$
, ker $Z_0 = C_0 = \langle x, y \rangle$
 $B_0 = Im \partial_1 = \langle x - y \rangle$
 $\partial_1(c) = x - x = 0$, $\partial_1(d) = g \cdot x \cdot \partial_1(b) = x - y$
 $\partial_1(ma + nb + p \cdot c) = m(y - x) + n(x - y)$
 $= (n - m)(x - y)$
 $\langle x, y \rangle = \langle x - y, y \rangle$
 $f_0 \cong Z \oplus Z / Z \cong Z$
 $f_1 = Z_1/B_1 - Z_1 = ker \partial_1 = \langle c, a + b \rangle$
 $f_2(a + b) = 0$
 $f_3 = Im \partial_2 = \langle a + b + c, a \in \gamma$
 $f_4 = Z_1/B_1 = \langle c, a + b + c \rangle + f_1(a + b - c)$
 $f_4 = Z_1/B_1 = \langle c, a + b + c \rangle / (a + b + c, a \in \gamma)$
 $f_4 = Z_1/B_1 = \langle c, a + b + c \rangle / (a + b + c, a \in \gamma)$
 $f_4 = Z_1/B_2 = Z_2/O \cong O/O \cong O/O \cong O/O \cong O/O$
 $f_4 = Z_2/B_2 = Z_2/O \cong O/O \cong O/O \cong O/O \cong O/O$


$$T^{2}=S^{2}\times S^{1}$$
 $\chi(T)=1-2+1=0$
 $H_{0}(T)=Z$
 $H_{1}(T)=Z^{2}=Z\oplus Z$
 $H_{2}(T)=Z$
 $H_{2}(T)=D$
 $K_{2}(T)=D$
 $K_{3}(T)=D$
 $K_{4}(T)=D$
 $K_{5}(T)=D$
 $K_{5}(T)=D$
 $K_{7}(T)=D$
 $K_{7}(T)=$

Chapitre 6. Variété Degré Boule cheveler 1. Variefe de Lim r C'est un esp. topologique M t.g. V x e M possède un voisinage l'homéom. à un somaine l'de 1Rª Soit Q. U - V cet homéonsonflisme est une carete Une carte donne des wordonnées Cocales sur X par 4(x) ER" collectron des carbes convrant M entierement s'appele un at las soit 4, 4 voisinages avec le cartes 9: 4 -> V et & U'-> V' et Z = UnU alors un changement des cartes sur Z '0) est bien téfiné: $\varphi'\varphi''$: $\varphi'(Z) \longrightarrow \varphi(Z)$ Variété est fite orientable si Loutes les changements Le cartes l'orientation (7.P. Jacobien de 41.8 est positif pour o couples 4, 8% Exemples:

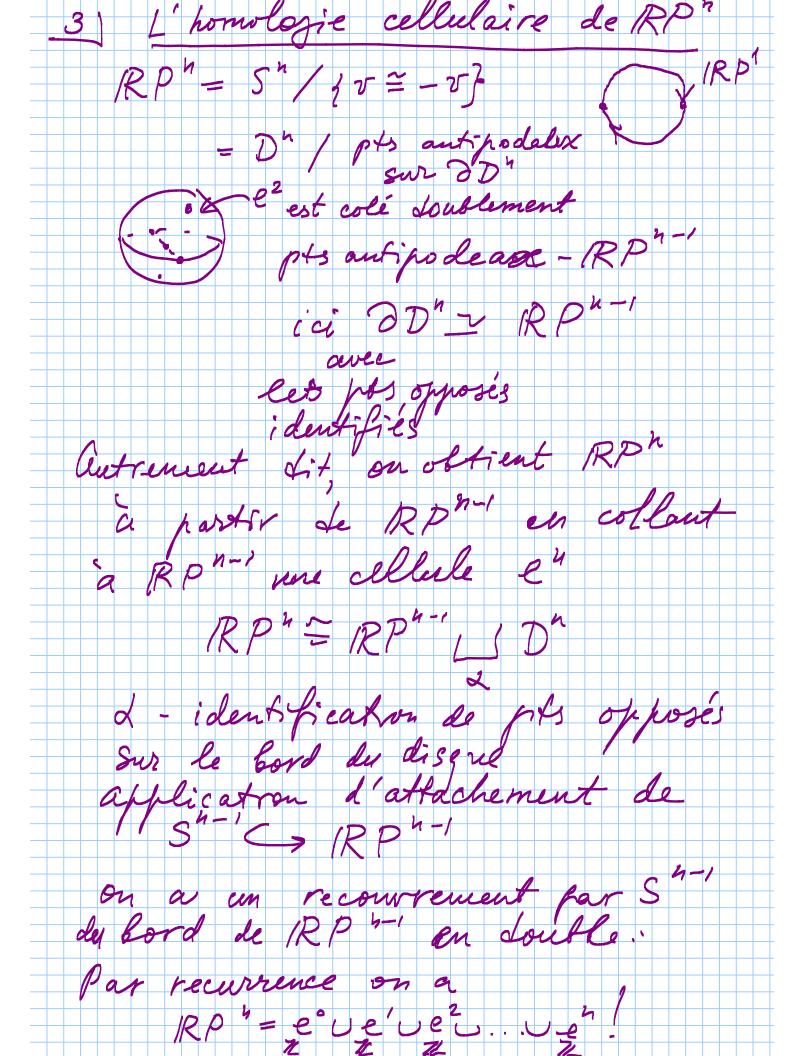
Sphère deux cartes - projections -du pôle Nord et du pôle Here ographiques N'importe quel point de la splive sauf N et 5 passède deux cat tes z et W - coord en haut et en bas avec des homion. entre les voisinage avec une relation z n = 1 (à vérifies) varieté des fonctions de varieté lisse --- lisses déférentiable --- différentrables Thy Toute variété M-comexe ferreée triangulée de dim n a $H_n(M) \cong \mathbb{Z}$ Si M est orientable et Hn (M)=0 sinon Demo 0=0,4, ... + 0m - somme des singlaxes Le dim maximale n, orientée de façon coherente 0 - Cn -> Cn -, -> ... >Co70 0 = 0 car fermée

Exemple triangulation d'un cercle s': une carte, une applic vers R2 (ici vers /k) donne l'orientator le bord a --- x -Z Comme c'est une variété vriéntable la somme des bord est 0. On a foujours une orientation compatible de sort que le bord de n-simplexe est 0, car tout s'annuel n'est pas férmé car ici O(6) = 1 + 0, c'est contractiós et H2(\$)=0 Si on n'a pas d'orientation coherents alors 0," + ... + om - complexe de dim M he font pas Le cycle, Lonc Ker on = 0 et on a Hn (M) = 0 Exemples IRP² ou une bouteille de non orientables Pas de bord, i.e. varietés fermées.

(Rappel: pt de ford - n'importe guel voisinage contient des pts d'interieur de la vaniété et de l'exteterieurs) Pour une varieté non orientable il n'es a pas de cycles de dim n! Powr Klein: 20 = a+6+c 0 (mV+nD) +0 D= a-8-c pour m2+12+0 Donc H2 (Kee) = 0. Pour une variété Morientée fermée. non-connexe $H_n(M) = Z^m$ ou m-le nombre Les congresantes connexes emple RPM points de bord opposés identifies a triangulatron du coup — identifies de variété de bord, mais m0+nDn'est pas un cycle! Ker 2 = 0 =) H2(M)=0 Defor (Notron de degré) Soient M, N deux variétés fernées orientables de dim n Soit f.M -> N applic sinipliciale (preservante les simplexes) et application induite: fr(1) est appelé le desré de f.

il n'y a per de champos tanjent cans singularisé champs. savor 1: nonnul il y toujours un epi: un pt. dans lequel ene applies en voyant les pts vers et aussi Considerations Ses applications sont lég r = -1 non-homotopes dég id = 1 car le degré est preservée par homotopie. Supposons qu'il existe un changes Ce champs alors ou jeut "étirer" pour faire l'homotopie entre l'applic i dentitéet l'application antifadale. Son degré est (-1) n+1 dans 1R n+1 car

r: (2, 2, ..., 2n,) 1-> (-2,, -x2, ..., - 2n4,) Lonc chaque coordonnée donne (-1) d'où (-1) n +1 en tout. D'où la boule cheveler en Lon paire de s' car s'a R'11 donné har l'equation $\|(Z_1, ..., Z_{n+1})\| = 1$ Done 11+1 wordonnées donnant (-1 ve du levent de soult chevelue Foit f. S" -> S" and applic non surjective f: shosh on a a) dej id = 1 fa: $H_n(s^n) \rightarrow H_n(s^n)$ b) deg f = 0Sif a est yas surjective car alors fest freu définie Fur S' / 20 on 20 u'a pas de preixe 5 n f > 5 n 1 x o 3 cm s ra ct r le f=g homotopes => dejf=degg


deg fg = degf. deg g $y:S' \longrightarrow S''$ $(x_1, \dots, x_{n+1}) \longrightarrow (-x_1, -x_2, \dots, -x_{2n+1})$ 3) Si f n'a pas de pt fixe alons Leg f = (-1) "+1 Si $f(x) \neq x$ if x alors lomotopie de f a une applic autif i t \rightarrow (1-t) f(x) - tx passe pas C'origine. si f n'a pas de pts fixe $f(x) = \frac{(1-t) f(x) - tx}{|(1-t) f(x) - tx|}$ défini l'nomotopie de forers l'application autipodale (1-t)f(x)-tx-parametrise Le

ellulaire. relative cellulaire - o-cellules = pts On forme par les applications - interieur du disque l'= inférieur de D'(segment) les simplexes on Bord es de recollement a n n aux cellules

2 Homologie relative Soit A CX Soient $C_n(X, A) = C_n(X)/C_n(A)$ -elleles de X auxcellules de A près Course si A est ecrasé en un pt. $0 \longrightarrow A \longrightarrow X \longrightarrow X/A \longrightarrow 0$ Cn(x) -> Cn-, (x) se restraint à Cn(A) - Cu-, (A) - c'est bien defini L'homologie relative est donné pas les eycles relatives a parter d'une suite exacte courte on a une suite exacte Conque L'homologie par le Cenune de serpent Cn(x,A) -> Cn(x,A)

e cycle relatif to de Cn-, (A)
on regarde & E Cn(x/t-9. de Cn-, (A)
au lieu de de au lieu de 00=0 le bord relatif: cycle & est trivial

Su'te exacte longue: donne $\Rightarrow H_n(A) \rightarrow H_n(X) \rightarrow H_n(X,A)$ 9 Hn-1(A) -> Hu-1(X) \rightarrow $H_{o}(X,A) \rightarrow 0$ on utslise CW-complexe Hk(X" X"-1)=10 sik= k (a) Z026.0Z & k=n libre abelien avec # de Z = # de cellele K=n = 0 induit un isone.

L'homolgie S''seul prt. de RPMde par double IRPK-1 9>

En particulier, Ho (RP2)=Z H, (IRP') = Z/2Z He (IRP) = 0 Etudier He (CP) = 12, k-impair 70720 Notion d'homologie sinjulieres a le place de simplexes on regarde des applications des exs simpliciales vers les varietés Chaines: applic continues des simplexes vers X. Changement por rapport aux chaines simpliciales on ne se souie plus de sinjularités. mettre des applies de simplexes de toute

Chapitre 8. Homologie avec les coefficients G-gpabelien (on suit ice Matveer 1.16-1.18) Cn (K, G) 19, 5, +... + gx ox / o: -n-simplexes 3 complexe

complexe

ou n-celle les pous l'nomologie

chaînes

s'inplice s'nyuliers pous simplice singuliers pour l'homologie singulser e an (90) = ZE: 9 82 Si t K-dim N-1 On: Cn (K, G/ -> Cn-, (K, G) E: - le coefficient d'incidence (Si cle bord de o) $H_n(pt) = \begin{cases} 0, n \neq 0 \\ G, n = 0 \end{cases}$ $pt = 0 - cellule \\ (o-simple xe)$ > Cn+1 (K, G) = Cn (K, G) = Gn-, (K, G)> On On+1 =0 Hn(K,G) - gps d'honvlegie à coeffs Tout théorème d'avant (t.g. lenume Lu serpent, suite exacte d'un couple ex...)

coeffs un verselles I complice simplicial K. Hn(K,G) = Hn(K) & G & Hn(K) & G produit tensoriel torsion Rg. A & B est noté patfois TOR(A, B) Produit tensoriel Soit A, B-Leux ys (a, b) +> a & b défini de la con axiomatogue: 1, A &B = B & A 2, (A, OA2) & B = A, & B & A, & B 3. A 8 Zm - A/mA (ou Zm - Z/m Z et A lmA - gp quotient de A par les élians de forme ma/ Exemples: Ze & Zm = (Z/kZ) mZ Z & Zm = Z pgcd (m, k) 2/42 82/62 = 2/42/62=2/22 et si pgcd(m, k)=1 alors Z, o Zm = Z/Z=0 20 2/m/- 2/m/ Produit tensoriel est une opération naturely Car Cn (K, G) ~ Cn (K) & G

a009 = 90 -> Cn+, (K) & -> Cn(K) & 6 -> Ca-, (K) & -> Defn de produit borsson de A-et B 0 -> F, -> F2 >= A -> 0 une suite exacte avec des gps libres.

(exemple modèle A = 2/kZ(exemple modèle A = 2/kZo 2/kZo 2/kZcela forme une resolution libre de A(i.e. par les 775 des éléments sans relations t.g. Z) Produit tensoriel de 4 avec B: 27A*B\$, F, &B = 7 F2&B -> A &B -> 0 n'est plus une injection pour faire cette suite exacte on ralloge par A+B1. e. si Ker & ±0 alors pour que la snite reste exacte; l' faut que ln p = Ker L, on introduis

Axioms de 8: 1. A DB = B > A 2. (A, (B A2) * B = A * B (B) A2 *B 9. pueltiplication pas m donne o 4. ABB = TOTA STORB Tor A = { éléments Le A d'ordre fini: a E A , 7 m c o 1 g a m = 0 } dans ARB - se trouve les elements de FBB qui étaint li fres dans F mais en multipliant par & Barrébent d'être libres ZxZm=0, Zm & Zn = Zpgcd(m,n) Preuve See thus des coeffs universelles, lue observation our les complexes. C(K) est toujours une somme directe Les deux types de complexes!

E(m): =0 ->0 -> Z ->0 ->... $\Delta(m,k)$ $\rightarrow 0 \rightarrow Z^{*k}Z \rightarrow 0$ Ce qu'on dit que on tiagonalise la et représent

comme une matrice diagozale!) C(k,6)-C(k)&G donne alors les commes Le E(n) & G et D(m, k) & G D'où pour E(m)06 on a Le reste d'homs es H (E(m)) = Z et E(m/&G Loune D(m,k/86 le thus