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Rappels : Agebre linéaire

Exercice 1. Pour les droites qui suivent, donner un de leurs points et un vecteur directeur, puis les
écrire sous forme paramétrique.

1.
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D; la droite passant par (1,1) et de vecteur normal (2, —3).
Dy={(z,y) eR? |z =3}

D3 la droite d’équation x — 4y = 8.

D, la droite d’équation y = 3x + 5.

Ds la droite passant par (—1,2) et (3,1).

D¢ la médiatrice du segment reliant (0,2) et (—1,1).

D; = {M € R? ‘ (OM,u) = 3} ou O est origine (0,0) et u le vecteur (1,1).

Exercice 2. Pour les droites qui suivent, donner un de leurs points et un vecteur normal, puis en
donner une équation.

1.

D; la droite passant par (3,7) et de vecteur directeur (1, —1).

2. Dy ={(1,4) +t(1,0) [t e R}.

3. D3 ={(2+3t,4t) |t e R}.

4.

5. D5 la médiatrice du segment reliant (1,2) et (—1,0).

D4 la droite passant par (—1,1) et (0,1).

Exercice 3. Pour les droites et les plans qui suivent, donner une équation ou un systeme d’équations
et les écrire sous forme paramétrique. Expliquer dans chaque cas quelle est la dimesion de sous-espace
en question et pourquoi.

1.
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Py le plan passant par (1,1,0) et de vecteur normal (0,2, —3).

P le plan passant par (3,0, 1) et de vecteurs directeurs (1,—1,—1) et (1,2,1).

Ps = {(az,y,z) e R3 } x:?)}.

P4 le plan d’équation z — 4y = 8.

P5 le plan d’équation z = 3z — y + 5.

Ps le plan passant par (—1,2,0), (0,1,1) et (3,1,1).

P7 le plan médiateur du segment reliant (0,0,2) et (—4,8,4).

Pg = {M eR3 ) <O_M,u> = 3} ou O est Porigine (0,0,0) et u le vecteur (1,—1,1).

P9 = {(1a4a1) +t1(17070) +t2(17171) ‘ (tlatQ) € RQ }

CPro = { (243t + t2,4t1,3 — t2) | (t1,t2) € R? }.

. Dy la droite passant par (3,7,1) et de vecteur directeur (1,—1,—1).

Dy ={(1,0,4) +1(1,2,3) |t eR}.

.D3s={(2+3t,4t,4—1t) |t eR}.

. Dy la droite passant par (—1,0,1) et (0,0,1).

. Ds la droite passant par (1,0,0) et de vecteurs normaux (1,0,—3) et (0, 1,0).
. D ={(z,y,2) €R? ‘ r=3ety=z+2}.



17. D7 la droite d’équations x — 4y + z =8, 2z + 3y — 2 = 0.
18. Dg la droite d’équations y = 2z + 8, z = 3x + 5.

Exercice 4.
Soit C' = {(7,9,2) € R3}| 2 —y+ 2 =0 et 3z + 2y + 52 = 0} un sous-espace vectoriel de R?. Quelle
est la dimension de C'?

Exercice 5.
On se place dans R? et on note u = (1,1, —1), v = (1,2, 1) Ecrire le vecteur w = (5,8,1) comme
combinaison linéaire de u et v.

Exercice 6.

Trouver une base du plan donné par I'équation B = {(z,y, 2) € R?| z +y = 0}. Faire le lien avec
le fait que la dimension de B est 2 en explicitant tout vecteur de cet sous-espace comme combinaison
linéaire de vecteurs de la base.

Exercice 7.

On considere les matrices A = <é §> et A = <Z; Z) . Calculer les produits AB et BA et

remarquer que AB # BA.

Exercice 8.
Soit I'application linéaire h : R? — R? de matrice

we(3 ) e (1)

1. Déterminez le vecteur v qui est image de wu.

2. Déterminez le vecteur w qui a pour image wu.

Exercice 9.
Déterminez les matrices des applications linéaires suivantes :

1. hi(z,y) = (22 —y,x)

2. ho(z,y) = (z —y,0)

3. h3(z,y) = (z,y, —y)

4 ha(z,y) = (2 —y,y — )

5. hs(z,y) = (0,y,z + 2y)

6. he(z,y,2) = (z + 2y, z — 2y)
7. hr(z,y,2) = (2,9, 2)

Exercice 10.
On considere I'espace vectoriel R? avec la base canonique {e1, e2}. On peut presenter les vecteurs
de base e1, eo comme vecteurs ayant les coordonnées (1,0) et (0, 1).
1. Soit 'application linéaire h : R? — R? telle que h(2,1) = (2,-3) et h(1,—1) = (3,-1).
Déterminez la matrice de h.
2. Soit I'application linéaire g : R? — R? telle que g(2,1) = (1,0) et g(1,—1) = (0,1). Déterminez
la matrice de g.
3. Soit I’application linéaire r : R? — R? telle que (1,2) = (2,-3) et 7(—1,1) = (3,—1).
Déterminez la matrice de 7.
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Fonctions plusieurs variables. Extrema

Exercice 11.
Calculer les dérivées des fonctions suivantes :

1
1) x~In(2?-3x+2), 2) me, 3) T el
4) z+— (L‘L—i)”, 5) — cos(zV3), 6) x> (cosz)tn®,

Exercice 12.
2
Soit f : (z,y) - e5@Y)

1. Calculer les derivés partielles de f: f. = gf et fgj = gf au point (xg,yo)-
€x Yy

2. Ecrire le gradient de f au point (o, Y0)-

oy ., o)
dy Oz
4. Berire la formule de Taylor au point (zq, o) = (1,7/2) & l'ordre 2.

3. Calculer au point (xo,yo). Les comparer.

Exercice 13.

1 2
Déterminer le développement de Taylor a l'ordre 3 en t = 1 de la fonction F'(t) = (tQ + 2, n + t2> .

En déduire la position de la courbe du plan C paramétrée par F' par rapport a sa tangente en t = 1
(Est-elle plus haut que sa tangente ? Plus a gauche 7).

Exercice 14.
Ecrire la formule de Taylor au second ordre pour chacune des fonctions suivantes au point (xg, yo)
donné.

1. f($,y) = Sin(l‘ + 23/), (‘TOJJO) = (O’O)§

1
2. flz,y) = PN (z0,90) = (0,0);

3. flz,y) =e Y coszy, (z0,50) = (0,0);
f(a,y) = sin(zy) + cos(zy), (x0,y0) = (0,0);
- fla,y) = @V cosy, (z0,40) = (1,0).

S

Exercice 15.

Soit f une fonction définie sur une partie A de R?, et a € R%. On dit qu'une fonction f présente en a
— un maximum local 8’1l existe un réel » > 0 tel que Vu € A, |lu—al <r = f(u) < f(a).
— un minimum local sl existe un réel 7 > 0 tel que : Vu € A, |[u —a| <r = f(u) > f(a).
— un extrémum local si elle présente en a un maximum local ou un minimum local.
— Montrer que si f présentey un extremum en a, alors les dérivées partielles de f en a sont nulles.

Un tel point (ou les dérivées partielles s’annulent) est appelé point critique de f.
On suppose dans la suite que f est une fonction de classe C' sur un ouvert U de R?, et soit a € U.

1. Soit f la fonction définie sur R? par f(z,y) = 2 4+ y? — 22 — 4y. Montrer que f admet (1,2)
pour seul point critique. En effectuant le changement d’origine x =1+ X et y =2+ Y et en
calculant f(1+ X,2+Y), prouver que f admet un minimum local en (1,2).



2. Soit f la fonction définie sur R? par f(x,y) = 23 + y® — 6(z? — 32).
(a) Montrer que f possede 4 points critiques.

(b) En calculant f(¢,0) et f(0,t), prouver que f n’admet pas d’extrémum en (0,0), bien que ce
point soit un point critique.

(c) Ecrire la formule de Taylor a l'ordre 2 en (4,0). En déduire que f admet un minimum local
en (4,0).

(d) En s’aidant des questions précédentes, faire I’étude locale aux autres points critiques.

Exercice 16.
Déterminer les extrema locaux des fonctions suivantes :

L f(a,y) =y? =2+ 5

2. f(z,y) = 2*+y° — 3uy;

3. fla,y) =a* +y' — 4z —y)*
Indication. 11 s’agit d’une application assez immédiate des résultats du cours. On cherche les points
critiques, puis on étudie la nature de ces points critiques.

Exercice 17. Rappel sur les matrices 2 x 2
On considere les matrices

(1) (D) (i d) o

1. Trouver les valeurs propres de ses matrices.

)e(Gi) o

2. Quelles matrices peuvent étre des matrices Hessiennes des fonctions ?

—_
n
N »n
SN—

3. Etudier les extrema des formes quadratiques correspondantes.

Exercice 18.
-2

. 1 . .
Calculer les valeurs propres de la matrice ( 9 5 > . Ecrire la forme quadratique correspon-

dante et trouver ses extrema.

Exercice 19.
Déterminer les extrema locaux et globaux des fonctions suivantes :

1. f(x,y) = 223 + 62y — 3y? + 2;
2. f(z,y) = y(2* + (Iny)?) sur Rx]0, +oo;
3. flz,y) =2 +y* — day;
Indication. La recherche des extrema locaux se fait suivant la méthode habituelle. Pour étudier

Pexistence d’'un extremum global, on pourra étudier f(z,y) — f(xo,y0) et démontrer que ceci garde
un signe constant, ou bien étudier le comportement de f aux bord de ’ensemble de définition.

Exercice 20. Dégénérés...
Déterminer les extrema locaux des fonctions suivantes. Est-ce que ce sont des extrema globaux ?
flry) =2 +y% gla,y) =2t +y° =3y =2 hz,y) =2° +ay® — 2%y -y’

Exercice 21.
On considere une fonction de deux variables

f:(a;,y)»—>2:c3—y2+2xy+1

1. Déterminer les extrema relatifs de f sur R?.



2. La fonction f possede-t-elle un maximum absolu sur R? ? un minimum absolu ?

3. Representer le domain T' = {(z,y) € R?|(x < 0) et (y < 0) et (zx+y+1>0)}. Montrer que la
restriction de f a T" admet le minimum et le maximum absolus que ’on calculera.

Exercice 22. Extrema sous contrainte
Soit f(z,y) =y? —2?y+a?et D= {(x,y) €R? 22 -1 <y <1—2?}.

1. Représenter D et trouver une paramétrisation de I', le bord de D.
2. Justifier que f admet un maximum et un minimum sur D.

3. Déterminer les points critiques de f.
4

. Déterminer le minimum et le maximum de f sur I'. En déduire le minimum et le maximum de
fsur D.

Exercice 23.

On se place sur une partie du plan D définie par Iinégalité y > +/222. Montrer que le minimum
de la fonction f = 22 + y? — zy sur D est égale & —%
Exercice 24. Extrema sur un compact

Pour chacun des exemples suivants, démontrer que f admet un maximum sur K, et déterminer ce

maximum.
L f(z,y) =2y(l -z —y) et K ={(z,y) €R?* 2,y >0, z +y < 1};
2. flzyy) =2z —y+a>+y® et K=1[0,1] x [0,1];
3. f(x,y) = sinzsinysin(z+y) et K = [0,7/2]? (le carré de coté 7/2 avec les sommets aux points
(0,0),(0,7/2),(n/2,7/2),(7/2,0).)

Exercice 25. Volume et surface d’une boite |,

On désire fabriquer une boite ayant la forme d’un parallélépipede rectangle, sans couvercle sur
le dessus. Le volume de cette boite doit étre égal & 0,5m?> et pour optimiser la quantité de matiere
utilisée, on désire que la somme des aires des faces soit aussi petite que possible. Quelles dimensions
doit-on choisir pour fabriquer la boite.

Indication. Notons x,y, z les trois dimensions. On doit minimiser une fonction de trois variables
en x,y et z, sous la contrainte de xyz = 0,5. On peut donc remplacer z par son expression en fonction
de x et de y, et rechercher le minimum d’une fonction de deux variables.
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Intégrales doubles. Changement de variables. ‘

Exercice 26. L’aire d'un domaine D du plan est donnée par l'intégrale / / dxdy. Calculer 'aire
du domaine D suivant : D = {(m,y) eR? —1<z<leta?<y<4-— x3}. ¥
Exercice 27.

Soit D le domaine : D = {(x,y) eER% >0, y>0, 4y < 1} . Calculer // f(x,y)dzdy dans
les cas suivants : a) f(x,y) = 22 + 3> b) f(z,y) = zy(z +y). i

Exercice 28. Changer 'ordre d’intégration dans les intégrales suivantes :
2 2z 1 pa?
a) / f(z,y)dzdy / / flz,y)dzdy ) / / f(z,y)dzdy
0 Jx 2/4)—1 0 Ja3

Exercice 29. a) Calculer / / (x — y)daxdy ol D est une partie du plan délimitée par les droites
d’équation : x = 0, y:m+2,Dy:—

b) Calculer la méme intégrale au moyen du changement de variables défini par : u = z+y, v = x—y.
Exercice 30. Passer en coordonnées polaires * = rcosf, y = rsinf dans l'intégrale double
// f(z,y)dzdy pour : a) le disque 2%+ y? < a?, b) le disque 22+ y? < ax(a > 0),

: c) l'anneau a? < 22 + 32 < b2, d) le triangle 0 <2 <1, 0<y<1-—ux.

Exercice 31. Calculer les intégrales suivantes en passant en coordonnées polaires.

1
I = —————dady et J = dxd
//962+yz<11+:v2+ 2 W © // w4y dedy

ou D = {(z,y) € R} 2?+y* — 22 < 0}.

Exercice 32. Cetre de gravité
Soit (x,yo) le centre de gravité d’une surface €2 placée dans le plan Ozxy de densité p(z,y). Alors

To = 77 // pxdzdy et yg = // pydxdy, ou M = // pdxdy.

Si la surface est homogene (p est constant) dans les formule de centre de gravité on peut mettre p = 1.
a)Trouver le centre de gravité d’un demi-disque homogene de rayon R. b) Trouver le centre de gravité
d’une surface plane délimitée par les courbes ay = 2%, 2 + y = 2a (a > 0).

Exercice 33. Moments d’inértie
Soient I, I, les moments d’inértie d'une surface ) placée dans le plan Ozy par rapport aux axes

Ozx et Oy. Alors
I, = // py2dady et I, = // prtdzdy,
Q Q

ol p est la densité de la surface. Si on met p = 1 on obtient les moments d’inértie géométriques.
1. Trouver les moments d’inértie géométriques de la surface délimitée par la courbe y = sin x entre
les droites x =0 et x = 7.

2. On considére une surface homogene délimitée par la parabole 4y = 22, et par la droite y = x.
Trouver son aire et son moment d’inértie géométrique par rapport a I’axe Oy.
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Courbes. Intégrales curvilignes

Rappel : Tangente et plan normale & une courbe dans R3. Longueur d’une courbe

— Une courbe I' C R? peut étre définie par des équations paramétriques :

x = x(t)
I ={(z,y,2) € R? t.q. y=y(t) tela,b CR.
z = z(t)

On peut I'écrire de facon suivante - I' C R3 est paramétrée par la fonction v : [a,b] — R3 :
v(t) = (x(t),y(t), 2(t)). Au point Py de la courbe pour t = ty € [a,b] on a Py(zo,yo,20) =
(z(to), y(to), z(to)) et

— les équations de la tangente sont

T — X0 Y—1% Z— 20

Ox/0t(tg)  Oy/ot(ty)  0z/0t(to)

— les équations du plan normal (orthogonal & la tangente et passant par Py) sont

%2 o)~ 20) + 2 o)y — o) + L to) (2 — ) = 0.

— La longeur d’une courbe paramétrée « : [a,b] — I' € R?, on v(t) = (z(t),y(t), 2(t)) est donné
par 'intégrale curviligne

b
L(T) = / V(@)2(t) + (9)2(1) + (2)(t) dt

Exercice 34. Droite.x
Trouver une paramétrization qui parcours le segment de la droite y = 2x + 1 du point A(0,1) au
point B(1,3), 71 : [0,1] — (AB) et une autre 72 : [0,1] — (BA) qui va dans le sens opposé.

Exercice 35. Trouver les équations de la tangente et du plan normal a la courbe

l.xx=t y=t>, z=t>aupointt=1.
2. x=t—2, y=3t2+1, 2z=2t3 au point ou celle-ci coupe le plan yOz.

Exercice 36. * Une particule se déplace dans I’espace et son movement décrit une courbe
x(t) =4cost, y(t)=4sint, z(t) = 6t.
T
Trouver les valeurs absolues de la vitesse et de ’accélération au temps t =0 et t = 7 Trouver aussi

les equations de la droite tangente et du plan normale dans chaqune de ces points.

Exercice 37. x Pour z € [0,1], calculer la longueur de la courbe y = z:%/2.

Exercice 38. x
Calculer la longueur de la courbe paramétrée ~ : [0, 2] — R? définie par

4
y(t) == <—3t3 +t—2,2t2 + 7).

Exercice 39. Calculer la longueur de la courbe paramétrée v : [0, 7] — R? définie par
y(t) := (cost + cos? t,sint + sint cost).

Exercice 40. Soit I' une courbe paramétrée par ¢ := o(t) et 6 := 6(t) en coordonnées polaires, out
t € [a;b].



1. Montrer que la longueur de I' est
b
/ /02 1 02024t
a

2. Soit v la courbe d’équation polaire ¢ := 2(1 + cos 6) pour # dans [—m;7]. Donner une pa-
ramétrisation en coordonnées polaires de cette courbe et calculer sa longueur.

2 2
x
Exercice 41. x Pour r > 0 fixé, soit I, la courbe d’équation e + L

3

1. Quelle est la nature de I';. 7 Donner une paramétrisation.

2. Soit f: R? — R la fonction définie par f(x,y) := 2% + 2y%. Donner la valeur de f en un point
de la courbe.

3. La fonction f a-t-elle un maximum et un minimum sur la courbe? Si oui, calculer chacun en

fonction de 7.

2 3
x
4. Soit E la partie du plan d’équation > + L < 1. Quelles sont les valeurs maximale et minimale

3
de f sur E7?

Exercice 42.
1. Paramétrer la courbe d’équation 922 + 41? — 8y = 32

2+ 3v3

5 ) appartient a la courbe et trouver le vecteur

2. Montrer que le point de coordonnée (1,

tangent en ce point.

3. Trouver le maximum et le minimum sur la courbe de la fonction f(x,y) := 22 — (y — 1)2.

Exercice 43. Soit v(t) := (3cost,bsint,4cost), t € [0, 7] une représentation paramétrique d’une
courbe I' de R3.

1. Montrer que la valeur absolue du vecteur tangent ne dépend pas de t.

35\/§2>

2. Ecrire I’équation de la droite tangente au point A (2, >

3. Déterminer les coordonnées du point d’intersection de I' avec le plan yz.

Exercice 44. x Calculer l'intégrale curviligne

/ xydy
C

ou C' est 'arc de cercle défini par x := cost et y := sint, t variant de 0 & 7.

Exercice 45. *
1. Ecrire une équation de la droite D passant par les points (1,1) et (2,4).

2. Calculer la valeur de l'intégrale
/C(y —x)dz + (y + x)dy,
ou C' est un segment de la droite D entre les points (1,1) et (2,4).
Exercice 46.

Calculer l'intégralede la fonction f(x,y,2) = In(z +y + z) sur I, le segment de droite joignant le
point (1,1,1) au point (2,3,4).
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Surfaces. Intégrales de surface

Rappel. Plan tangent et droite normale a une surface.
Les équations du plan tangent et de la normale a la surface F'(z,y,z) = 0 au point Py(zo, 3o, 20) sont

oF oF oF T — X Y — Yo zZ— 2
T — o)+ — +—=1] (#—2)=0c¢et = = .
(=20 + 5, . =)+ 3, PO( 0) OF[0z(Py)  OF/0y(Py)  0F/92(P)

ox Py

Exercice 47. x
Trouver les équations du plan tangent et de la normale a la surface donnée au point indiqué :

1. surface z = 322 + 2y% — 11, au point (2, 1, 3);
2. surface 22 + 3y? — 422 + 32y — 10yz + 42 — 5z — 22 = 0, au point (1, —2,1).

Exercice 48. x
Montrer que les surfaces définies par les équations
22+ 4y? — 422 —4=0et 2% + y? + 2% — 62 — 6y + 2z + 10 = 0 sont tangentes au point (2,1, 1).

Exercice 49. Montrer que les surfaces définies par les équations zy+yz —4zx = 0 et 322 =5z +y =0
se coupe en angle droit au point (1,2,1).

Rappel A : Intégrale de surface d’une fonction
Soit f:R3 = R, (z,y,2)+ f(x,y,2) une fonction & valeurs réelles.
Soit ¥ une surface donnée par une fonction vectorielle r : R? — R3,

r(u,v) =z (u,v)i+y(uv)j+z(u,v)k,

avec les coordonnées (u,v) qui parcourent D (u,v), le domaine de définition de la fonction r dans le
plan R?. On note i, j, k les vecteurs de la base de R3.
La fonction f (z,y, z) est considerée seulement dans les points de la surface S, a savoir,

f[r(uvv)] :f[$(uav)>y(uvv)az(u>v)]'

L’intégrale de surface d’une fonction f (z,y, z) sur la surface ¥ est définie comme suit :

J[r@amas = [[16@v .= @) 5« o du,
b)) D(u,v)
. . : or Or . . 9 3
ol les derivées partielles a et v sont des fonctions vectorielles R* — R® :
u v
or ox . Oy . 0Oz or Oz . Oy . 0Oz
a (u,V) = a (u,V)1+ % (u,V)J =+ % (u,V)k, et a (u7V) = a (U.,V)l+ a (U.,V)J + a (u,V)k.
On considere le produit vectoriel @ X Q Le vecteur Q X @ est orthogonal a la surface
u v u Ov
5 5 (uv)
dans le point r (u,v). La valeur absolue dS = ({Tr X ({Tr dudv est appelé 1’élément de surface.
u v

L’aire d’une surface ¥ est donné par une intégrale de surface : A = [[dS.
by



Cas particulier : si la surface est donnée par une équation z = z (x,y), ou z (x,y) est une fonction
C! sur un domaine D (z,y), I'intégrale de surface est donnée par

/E/f(x,y,z)dS :D(/x{)f(x,y,z(x,y)) \/1+ (g;)2+ (g;)zdxdy.

Exercice 50. Calculer l'intégrale // (r +y+2)dS, ou X est une partie du plan = + 2y + 4z = 4,
!

telle que (z >0, y >0,z >0).

Exercice 51. * Calculer l'intégrale // 22dS, oul ¥ est une surface d’un cone /22 + 42 < z < 2.
by

Exercice 52. Soit X la surface paramétrée par ’application :
fi(u,v) e X — (u,v,uv),

oll X est le disque unité de R2.
1. Dessiner grossierement .
2. Donner sous forme d’une intégrale sur X l'aire de la surface de 3.

3. En utilisant les coordonnées polaires, calculer cette intégrale.

Exercice 53. « Calculer I'intégrale // (xy + yz + zx)dS, ou X est une partie d’un cone
X
2z = /a2 4 y? satisfaisant 22 + y? < 2ax.
Exercice 54. x Trouver 'intégrale / / xdS, oti la surface ¥ est une partie de la sphere a2 +71% + 2% =
by

a?, telleque >0, y >0, 2> 0.

Exercice 55.
Soit C une courbe fermée plane paramétrée par f : [0,1] — R2. Soit X € R3 et ¥ la surface
paramétrée par :
F: (u,v) €]0,1] x [0,1], F(u,v) = f(u) + vX.

1. Représenter X.

2. Calculer le volume du cylindre délimité par 3 en fonction de ’aire délimitée par la courbe C
et des coordonnées de X.

3. Dans le cas ot X est un vecteur vertical, calculer 'aire de ¥ en fonction de la longueur de C.

Rappel : Intégrale de surface d’un champs de vecteurs

Soit 3 une surface. Soit n (x,y, z) le vecteur normale unitaire en point (z,y, z) de S. Le choix de
n(z,y,2) ou —n(x,y,z) est appellé I'orientation de S. Si ¥ est un bord d'une partie bornée de R3
en chaque point il y a deux vecteurs normales opposés : exterieur et interieur. Si la surface est orientée
par la normale exterieure, alors

é/F(x,y,z)-dS:é/F(a:,y,z).ndS :D({{)F(m(u,v),y(u,v),z(u,v)). BZ x g;] dudv:

10



: . L o . or 0 Jr Or
Sinon, si la surface est orientée par la normale intérieure il faut changer : | — X —| en | — X —| ,ce
ou Ov ov  Ou

qui change le signe de l'intégrale. La quantité dS = ndS est appelée I’élément vectoriel de la surface.
Le point - signifie le produit scalaire.

Si la surface ¥ est donnée par une équation z = z (z,y), ot z (z,y) ou z est une fonction C! sur
D (z,y), alors I'intégrale de F sur ¥ est donnée par une des formules suivantes. Si ¥ est oriénté par
la normale exterieure (la composante de k est positive), alors

// x,y,2) - dS = // x,y,2) -ndS = // T, 2 —%i — %J + k) dzdy;
or Oy

(2,y)
Si ¥ est oriénté par la normale intérieure (la composante de k est négative), alors il faut changer

0 0 0 0
(—zi = j+ k> en ((;1 + 8—2 k) , ce qui mene au changement de signe de l'intégrale avec la
x Y Y

normale exterieure. En coordonnées cela se resume comme suit.

Soit F(z,y,2) = (P(z,y,2),Q (x,y,2),R(z,y,2)) un champs de vecteurs et soit n la normale
unitaire a la surface 3 dont les coordonnées sont donnés par les angles avec les axes Ox, Oy, Oz : n =
(cos a, cos 3, cosy) alors le produit scalaire F - n est égale a

F-n=F(P(x,y,2),Q (z,y,2),R(z,y,2)) -n(cosa,cos B,cosy) = Pcosa+ Q cos f + Rcos~.

L’intégrale de surface alors

é/(F’n)dsz/E/(PCOSO‘+Q0055+RCOSV)dS

Puisque cosa - dS = dydz et aussi cos 5 - dS = dzdzx, cosvy - dS = dxdy, on a la formule suivante :

// (F-n)dS = //(Pcosa—i—QcosB%—Rcosy)dS://dedz—i—@dzdx—i—Rdxdy.
b by p)

Si la surface ¥ est donné par r (z (u,v),y (u,v), z (u,v)), la derniére formule devient alors

P Q R
//(F-n)dS://dedz+dedm+Rdxdy: // % % 2 | dud,
ox 0z
> D) D(uw) | dv a% ov
ot (u,v) € D C R2.

Exercice 56. x

Calculer 'intégrale du champs F (z,y,2) = (x,—1,2) sur Uintérieur de la surface ¥, donnée par
I’équation z = zcosy, ou 0 < x < 1, %
Exercice 57. x

Trouver l'intégrale F (z,vy, z) = (y,x, z) sur la surface ¥, donnée par

r (u,v) = (cosv,sinv,u), 0 <u < 2, g <v <.

Exercice 58. x
Trouver le flux du champs de vecteurs F = y-i—x-j+ 2 -k a travers de la surface conique exterieure

z=/x2+1y% 0<2<2

Exercice 59. *
Trouver le flux du champs de vecteurs
F(x,y,2) = —y-i+x-j— 2z -k & travers de la sphere unitaire orientée & l'interieur 22 +y% + 22 = 1.
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Math 5 - Fiche 6 Cours : O. Kravchenko TD : O.Kravchenko, G.Perets

Théoremes de Green-Riemann, Stokes, Ostrogradsky-(Gauss

Rappel 1 : Théorémes de Green-Riemann et de Stokes (rotationnel)
Soient D un domain de R? et C' = 9D, le bord de D. Soit P,Q : D — R deux fonctions C'. Alors,
la formule de Green-Riemann relie 'intégrale curviligne avec 'intégrale double :

%Pdm%—@dy = // (E)Q — 8P> dady.
ox
Remarques :

— Le cercle autour de I’ mtegrale indique que l'intégrale est prise sur un circuit fermé.

— si@Q =xet P=—y, Aire(D //dxdy—j{xdy—ydx).

ou 6u
— ¢'il existe une fonction u(x,y) telle que — = P, — = @, on remarque qu’'on a Pdz+Qdy = du

Ox " Oy
et du coup ¢, Pdz + Qdy = 0.
— la consequence de la remarque precedente est que l'intégrale curviligne de Pdz + Qdy = du sur
un parcours C' menant d’un point A au point B depend que de A et de B et ne depend pas de

parcours choisi entre A et B. En effet, / du = u(B) —u(A).
C
La version du théoreme de Green-Riemann en dimension 3 est appelé le théoreme de Stokes (ou de rota-

tionnel). Ce théoreme relie I'integrale de surface avec I'intégrale curviligne j(I{ F.dr= / (V xF)-dS,
ou C est le bord de la surface X, le rotationnel Iﬁ F=VxF:

_ _(OF _0Q\, . (OP OR\., (0@ OP
VxE= _<8y 8z>l+<8z 8x>'l+<893 8y>k

v §lo -
Qe
= §lo =

le rotationnel du champs F.
dex—i—Qdy—i—Rdz-// 8—R—8—Q dydz + 8—P—8—R dadz + 8—Q—8—P dady .
0z 0z Oz or Oy

Exercice 60. Utiliser la formule de Green-Riemann pour les calculs suivants :

1. Soit la courbe C un cercle donné par I’équation z? 4+ y? = a?. Calculer les intégrales :

1. fxydq: + (x 4+ y)dy, 2. jg (x —y)dz + (x +y)dy, 3. %aﬂydx — zy3dy.

C C C
2 2

2. Soit la courbe E un ellipse donné par I’équation £+% = 1. Calculer : j{ (x+y)de — (z —y)dy.
E
3. Soit la courbe T' un triangle ABC' de sommets A (a,0), B(a,a), D (0,a). Calculer 'intégrale :
nydx + (z +y)*dy.
T
4. Soit la courbe L un quart du cercle d’équation 2 +y? = a2, x > 0 et y > 0. Calculer l'intégrale :

f(y—x )dx—(:v—l—y)dy.

L
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dr — dy

5. Soit la courbe Q un carré A (1,0), B(0,1), D (—1,0), E (0,—1) . Calculer I'intégrale : ?{ n
rTy

6. Soit R le domaine délimité par l'astroide de I’équation = = acos’t, y = asin’t, 0 < t < 2.
Calculer son aire.

7. Trouver laire de ’ellipse définie paramétriquement : x = acost, y = bsint, 0 <t < 2.

Exercice 61. 5 3 -
0 0
@), , 0)
ox oy
(7,1) au point (5,2) est égale a 151. Quelle est la valeur de la méme intégrale si L est une partie d'une
parabole passant du point (7,1) au point (5,2).

dy, le long du segment de droite allant du point

Montrer que 'intégrale

Exercice 62.
Montrer que l'intégrale curviligne % yzdx + xzdy + xydz est égale a 0 le long tout le circuit fermé C.
C

Rappel 2 : Théorémes d’Ostrogradski-Gauss (formule de divergence)
Soit G un domaine de R? borné par une surface fermée 3. Soit

F(z,y,2) = (P(z,y,2),Q (x,y,2),R(z,y,2)),

un champs de vecteurs de classe C'. La formule d’Ostrogradski-Gauss (aussi appelé la formule de
divergence) donne un lien entre l'intégrale triple sur D et I'intégrale de surface sur ¥ :

//F ds = // (V-F)dv, ouVF—a—P+a—Q+8£
or Oy Oz

est la divergence du champs de vecteurs divF = V - F. Cette formule se reécrit

// Pdydz + Qdzdz + Rdzdy = /// (8P a—Q + {;R> dxdydz.

Dans le cas particulier quand P = z, Q = y, R = z, on trouve la formule pour le volume de G en
tant que l'intégrale de surface qui ’entoure X :

1
Vol(G) = 3 // xdydz + ydaxdz + zdxdy| .

Exercice 63.
A Daide du théoreme d’Ostrogradski-Gauss calculer 'intégrale [[F -dS pour le champs F et la
by

surface X suivants :

1. F = (23,94%,2%), et ¥ est une surface de sphere de I'équation x? + 32 + 22 = a? orienté a

I’exterieur.

2. F(z,y,2) = (x,9,2), et ¥ est une surface entourant le cylindre 22 + y? < a? entre les deux
plans z = —1, et z = 1.

3. F(x,y,2) = (:r3, Y3, 23) , et ¥ est une surface entourant le domaine borné par 22 +y? — 22 =0

et z =1.
F(z,y,2) = (2zy,8zz,4yz), et ¥ est une surface de tetrahedron de sommets O (0,0,0),
A(1,0,0), B(0,1,0), C(0,0,1).

5. F(x,y,2) = (2x2y,xz2,4yz) , ou X est une surface de parallélépipede formé par le domaine
entre les plans déquations z =0,z =1,y=0,y=2,2=0, z = 3.

13



