
Université Claude Bernard - Lyon 1 Semestre d’automne 2020-2021
Math 5 - Fiche 1 Cours : O. Kravchenko TD : O.Kravchenko, G.Perets

Rappels : Agèbre linéaire

Exercice 1. Pour les droites qui suivent, donner un de leurs points et un vecteur directeur, puis les
écrire sous forme paramétrique.

1. D1 la droite passant par (1, 1) et de vecteur normal (2,−3).

2. D2 =
{

(x, y) ∈ R2
∣∣ x = 3

}
.

3. D3 la droite d’équation x− 4y = 8.

4. D4 la droite d’équation y = 3x+ 5.

5. D5 la droite passant par (−1, 2) et (3, 1).

6. D6 la médiatrice du segment reliant (0, 2) et (−1, 1).

7. D7 =
{
M ∈ R2

∣∣∣ 〈 ~OM,u〉 = 3
}

où O est l’origine (0, 0) et u le vecteur (1, 1).

Exercice 2. Pour les droites qui suivent, donner un de leurs points et un vecteur normal, puis en
donner une équation.

1. D1 la droite passant par (3, 7) et de vecteur directeur (1,−1).

2. D2 = { (1, 4) + t(1, 0) | t ∈ R }.
3. D3 = { (2 + 3t, 4t) | t ∈ R }.
4. D4 la droite passant par (−1, 1) et (0, 1).

5. D5 la médiatrice du segment reliant (1, 2) et (−1, 0).

Exercice 3. Pour les droites et les plans qui suivent, donner une équation ou un système d’équations
et les écrire sous forme paramétrique. Expliquer dans chaque cas quelle est la dimesion de sous-espace
en question et pourquoi.

1. P1 le plan passant par (1, 1, 0) et de vecteur normal (0, 2,−3).

2. P2 le plan passant par (3, 0, 1) et de vecteurs directeurs (1,−1,−1) et (1, 2, 1).

3. P3 =
{

(x, y, z) ∈ R3
∣∣ x = 3

}
.

4. P4 le plan d’équation x− 4y = 8.

5. P5 le plan d’équation z = 3x− y + 5.

6. P6 le plan passant par (−1, 2, 0), (0, 1, 1) et (3, 1, 1).

7. P7 le plan médiateur du segment reliant (0, 0, 2) et (−4, 8, 4).

8. P8 =
{
M ∈ R3

∣∣∣ 〈 ~OM,u〉 = 3
}

où O est l’origine (0, 0, 0) et u le vecteur (1,−1, 1).

9. P9 =
{

(1, 4, 1) + t1(1, 0, 0) + t2(1, 1, 1)
∣∣ (t1, t2) ∈ R2

}
.

10. P10 =
{

(2 + 3t1 + t2, 4t1, 3− t2)
∣∣ (t1, t2) ∈ R2

}
.

11. D1 la droite passant par (3, 7, 1) et de vecteur directeur (1,−1,−1).

12. D2 = { (1, 0, 4) + t (1, 2, 3) | t ∈ R }.
13. D3 = { (2 + 3t, 4t, 4− t) | t ∈ R }.
14. D4 la droite passant par (−1, 0, 1) et (0, 0, 1).

15. D5 la droite passant par (1, 0, 0) et de vecteurs normaux (1, 0,−3) et (0, 1, 0).

16. D6 =
{

(x, y, z) ∈ R3
∣∣ x = 3 et y = z + 2

}
.
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17. D7 la droite d’équations x− 4y + z = 8, 2x+ 3y − z = 0.

18. D8 la droite d’équations y = 2x+ 8, z = 3x+ 5.

Exercice 4.
Soit C = {(x, y, z) ∈ R3| x− y+ z = 0 et 3x+ 2y+ 5z = 0} un sous-espace vectoriel de R3. Quelle

est la dimension de C ?

Exercice 5.
On se place dans R3 et on note u = (1, 1,−1), v = (1, 2, 1) Ecrire le vecteur w = (5, 8, 1) comme

combinaison linéaire de u et v.

Exercice 6.
Trouver une base du plan donné par l’équation B = {(x, y, z) ∈ R3| x+ y = 0}. Faire le lien avec

le fait que la dimension de B est 2 en explicitant tout vecteur de cet sous-espace comme combinaison
linéaire de vecteurs de la base.

Exercice 7.

On considère les matrices A =

(
1 2
0 3

)
et A =

(
4 5
7 6

)
. Calculer les produits AB et BA et

remarquer que AB 6= BA.

Exercice 8.
Soit l’application linéaire h : R2 → R2 de matrice

M =

(
1 −2
2 1

)
et u =

(
4
1

)
.

1. Déterminez le vecteur v qui est image de u.

2. Déterminez le vecteur w qui a pour image u.

Exercice 9.
Déterminez les matrices des applications linéaires suivantes :

1. h1(x, y) = (2x− y, x),

2. h2(x, y) = (x− y, 0)

3. h3(x, y) = (x, y, x− y)

4. h4(x, y) = (x− y, y − x)

5. h5(x, y) = (0, y, x+ 2y)

6. h6(x, y, z) = (x+ 2y, z − 2y)

7. h7(x, y, z) = (z, y, x)

Exercice 10.
On considère l’espace vectoriel R2 avec la base canonique {e1, e2}. On peut presenter les vecteurs

de base e1, e2 comme vecteurs ayant les coordonnées (1, 0) et (0, 1).

1. Soit l’application linéaire h : R2 → R2 telle que h(2, 1) = (2,−3) et h(1,−1) = (3,−1).
Déterminez la matrice de h.

2. Soit l’application linéaire g : R2 → R2 telle que g(2, 1) = (1, 0) et g(1,−1) = (0, 1). Déterminez
la matrice de g.

3. Soit l’application linéaire r : R2 → R2 telle que r(1, 2) = (2,−3) et r(−1, 1) = (3,−1).
Déterminez la matrice de r.
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Université Claude Bernard - Lyon 1 Semestre d’automne 2020-2021
Math 5 - Fiche 2 Cours : O. Kravchenko TD : O.Kravchenko, G.Perets

Fonctions plusieurs variables. Extrema

Exercice 11.
Calculer les dérivées des fonctions suivantes :

1) x 7→ ln(x2 − 3x+ 2), 2) x 7→ 1

ln(1− lnx)
, 3) x 7→ e

1
ln x ,

4) x 7→ (1−x
1+x)π, 5) x 7→ cos(x

√
3), 6) x 7→ (cosx)tanx.

Exercice 12.
Soit f : (x, y) 7→ ecos(x

2y)

1. Calculer les derivés partielles de f : f ′x =
∂f

∂x
et f ′y =

∂f

∂y
au point (x0, y0).

2. Écrire le gradient de f au point (x0, y0).

3. Calculer
∂(f ′x)

∂y
et
∂(f ′y)

∂x
au point (x0, y0). Les comparer.

4. Écrire la formule de Taylor au point (x0, y0) = (1, π/2) à l’ordre 2.

Exercice 13.

Déterminer le développement de Taylor à l’ordre 3 en t = 1 de la fonction F (t) =

(
1

t2
+ 2t,

2

t
+ t2

)
.

En déduire la position de la courbe du plan C paramétrée par F par rapport à sa tangente en t = 1
(Est-elle plus haut que sa tangente ? Plus à gauche ?).

Exercice 14.
Écrire la formule de Taylor au second ordre pour chacune des fonctions suivantes au point (x0, y0)

donné.

1. f(x, y) = sin(x+ 2y), (x0, y0) = (0, 0) ;

2. f(x, y) =
1

x2 + y2 + 1
, (x0, y0) = (0, 0) ;

3. f(x, y) = e−x
2−y2 cosxy, (x0, y0) = (0, 0) ;

4. f(x, y) = sin(xy) + cos(xy), (x0, y0) = (0, 0) ;

5. f(x, y) = e(x−1)2 cos y, (x0, y0) = (1, 0).

Exercice 15.
Soit f une fonction définie sur une partie A de R2, et a ∈ R2. On dit qu’une fonction f présente en a

— un maximum local s’il existe un réel r > 0 tel que ∀u ∈ A, ‖u− a‖ ≤ r =⇒ f(u) ≤ f(a).
— un minimum local s’il existe un réel r > 0 tel que : ∀u ∈ A, ‖u− a‖ ≤ r =⇒ f(u) ≥ f(a).
— un extrémum local si elle présente en a un maximum local ou un minimum local.
— Montrer que si f présentey un extremum en a, alors les dérivées partielles de f en a sont nulles.

Un tel point (où les dérivées partielles s’annulent) est appelé point critique de f .
On suppose dans la suite que f est une fonction de classe C1 sur un ouvert U de R2, et soit a ∈ U .

1. Soit f la fonction définie sur R2 par f(x, y) = x2 + y2 − 2x − 4y. Montrer que f admet (1, 2)
pour seul point critique. En effectuant le changement d’origine x = 1 + X et y = 2 + Y et en
calculant f(1 +X, 2 + Y ), prouver que f admet un minimum local en (1, 2).
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2. Soit f la fonction définie sur R2 par f(x, y) = x3 + y3 − 6(x2 − y2).

(a) Montrer que f possède 4 points critiques.

(b) En calculant f(t, 0) et f(0, t), prouver que f n’admet pas d’extrémum en (0, 0), bien que ce
point soit un point critique.

(c) Ecrire la formule de Taylor à l’ordre 2 en (4, 0). En déduire que f admet un minimum local
en (4, 0).

(d) En s’aidant des questions précédentes, faire l’étude locale aux autres points critiques.

Exercice 16.
Déterminer les extrema locaux des fonctions suivantes :

1. f(x, y) = y2 − x2 + x4

4 ;

2. f(x, y) = x3 + y3 − 3xy ;

3. f(x, y) = x4 + y4 − 4(x− y)2.

Indication. Il s’agit d’une application assez immédiate des résultats du cours. On cherche les points
critiques, puis on étudie la nature de ces points critiques.

Exercice 17. Rappel sur les matrices 2× 2
On considère les matrices

a.

(
1 −2
1 4

)
, b.

(
1 1
1 0

)
, c.

(
1 1
−1 3

)
, d.

(
1 1
1 1

)
, e.

(
2 2
2 3

)
, f.

(
R S
S T

)
1. Trouver les valeurs propres de ses matrices.

2. Quelles matrices peuvent être des matrices Hessiennes des fonctions ?

3. Étudier les extrema des formes quadratiques correspondantes.

Exercice 18.

Calculer les valeurs propres de la matrice

(
1 −2
−2 5

)
. Ecrire la forme quadratique correspon-

dante et trouver ses extrema.

Exercice 19.
Déterminer les extrema locaux et globaux des fonctions suivantes :

1. f(x, y) = 2x3 + 6xy − 3y2 + 2 ;

2. f(x, y) = y
(
x2 + (ln y)2

)
sur R×]0,+∞[ ;

3. f(x, y) = x4 + y4 − 4xy ;

Indication. La recherche des extrema locaux se fait suivant la méthode habituelle. Pour étudier
l’existence d’un extremum global, on pourra étudier f(x, y) − f(x0, y0) et démontrer que ceci garde
un signe constant, ou bien étudier le comportement de f aux bord de l’ensemble de définition.

Exercice 20. Dégénérés...
Déterminer les extrema locaux des fonctions suivantes. Est-ce que ce sont des extrema globaux ?

f(x, y) = x2 + y3; g(x, y) = x4 + y3 − 3y − 2; h(x, y) = x3 + xy2 − x2y − y3.

Exercice 21.
On considère une fonction de deux variables

f : (x, y) 7→ 2x3 − y2 + 2xy + 1

1. Déterminer les extrema relatifs de f sur R2.
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2. La fonction f possède-t-elle un maximum absolu sur R2 ? un minimum absolu ?

3. Representer le domain T = {(x, y) ∈ R2|(x ≤ 0) et (y ≤ 0) et (x+ y + 1 ≥ 0)}. Montrer que la
restriction de f à T admet le minimum et le maximum absolus que l’on calculera.

Exercice 22. Extrema sous contrainte
Soit f(x, y) = y2 − x2y + x2 et D = {(x, y) ∈ R2; x2 − 1 ≤ y ≤ 1− x2}.

1. Représenter D et trouver une paramétrisation de Γ, le bord de D.

2. Justifier que f admet un maximum et un minimum sur D.

3. Déterminer les points critiques de f .

4. Déterminer le minimum et le maximum de f sur Γ. En déduire le minimum et le maximum de
f sur D.

Exercice 23.
On se place sur une partie du plan D définie par l’inégalité y ≥

√
2x2. Montrer que le minimum

de la fonction f = x2 + y2 − xy sur D est égale à −5
8 .

Exercice 24. Extrema sur un compact
Pour chacun des exemples suivants, démontrer que f admet un maximum sur K, et déterminer ce

maximum.

1. f(x, y) = xy(1− x− y) et K = {(x, y) ∈ R2; x, y ≥ 0, x+ y ≤ 1};
2. f(x, y) = x− y + x3 + y3 et K = [0, 1]× [0, 1] ;

3. f(x, y) = sinx sin y sin(x+y) et K = [0, π/2]2 (le carré de coté π/2 avec les sommets aux points
(0, 0), (0, π/2), (π/2, π/2), (π/2, 0).)

Exercice 25. Volume et surface d’une boite ,
On désire fabriquer une boite ayant la forme d’un parallélépipède rectangle, sans couvercle sur

le dessus. Le volume de cette boite doit être égal à 0, 5m3 et pour optimiser la quantité de mâtière
utilisée, on désire que la somme des aires des faces soit aussi petite que possible. Quelles dimensions
doit-on choisir pour fabriquer la boite.

Indication. Notons x, y, z les trois dimensions. On doit minimiser une fonction de trois variables
en x, y et z, sous la contrainte de xyz = 0, 5. On peut donc remplacer z par son expression en fonction
de x et de y, et rechercher le minimum d’une fonction de deux variables.
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Université Claude Bernard - Lyon 1 Semestre d’automne 2020-2021
Math 5 - Fiche 3 Cours : O. Kravchenko TD : O.Kravchenko, G.Perets

Intégrales doubles. Changement de variables.

Exercice 26. L’aire d’un domaine D du plan est donnée par l’intégrale

∫∫
D

dxdy. Calculer l’aire

du domaine D suivant : D =
{

(x, y) ∈ R2; −1 ≤ x ≤ 1 et x2 ≤ y ≤ 4− x3
}
.

Exercice 27.

Soit D le domaine : D =
{

(x, y) ∈ R2; x ≥ 0, y ≥ 0, x+ y ≤ 1
}
. Calculer

∫∫
D
f(x, y)dxdy dans

les cas suivants : a) f(x, y) = x2 + y2 b) f(x, y) = xy(x+ y).

Exercice 28. Changer l’ordre d’intégration dans les intégrales suivantes :

a)

∫ 2

0

∫ 2x

x
f(x, y)dxdy b)

∫ 2

−6

∫ 2−x

(x2/4)−1
f(x, y)dxdy c)

∫ 1

0

∫ x2

x3
f(x, y)dxdy

Exercice 29. a) Calculer

∫∫
D

(x − y)dxdy où D est une partie du plan délimitée par les droites

d’équation : x = 0, y = x+ 2, y = −x.
b) Calculer la même intégrale au moyen du changement de variables défini par : u = x+y, v = x−y.

Exercice 30. Passer en coordonnées polaires x = r cos θ, y = r sin θ dans l’intégrale double∫∫
Ω
f(x, y)dxdy pour : a) le disque x2 + y2 ≤ a2, b) le disque x2 + y2 ≤ ax(a > 0),

c) l’anneau a2 ≤ x2 + y2 ≤ b2, d) le triangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x.

Exercice 31. Calculer les intégrales suivantes en passant en coordonnées polaires.

I =

∫∫
x2+y261

1

1 + x2 + y2
dxdy et J =

∫∫
D

(x2 + y2) dxdy

où D =
{

(x, y) ∈ R2; x2 + y2 − 2x ≤ 0
}
.

Exercice 32. Cetre de gravité
Soit (x0, y0) le centre de gravité d’une surface Ω placée dans le plan Oxy de densité ρ(x, y). Alors

x0 =
1

M

∫∫
Ω
ρxdxdy et y0 =

1

M

∫∫
Ω
ρydxdy, où M =

∫∫
Ω
ρdxdy.

Si la surface est homogène (ρ est constant) dans les formule de centre de gravité on peut mettre ρ = 1.
a)Trouver le centre de gravité d’un demi-disque homogène de rayon R. b) Trouver le centre de gravité
d’une surface plane délimitée par les courbes ay = x2, x+ y = 2a (a > 0).

Exercice 33. Moments d’inértie
Soient Ix, Iy les moments d’inértie d’une surface Ω placée dans le plan Oxy par rapport aux axes

Ox et Oy. Alors

Ix =

∫∫
Ω
ρy2dxdy et Iy =

∫∫
Ω
ρx2dxdy,

où ρ est la densité de la surface. Si on met ρ = 1 on obtient les moments d’inértie géométriques.

1. Trouver les moments d’inértie géométriques de la surface délimitée par la courbe y = sinx entre
les droites x = 0 et x = π.

2. On considère une surface homogène délimitée par la parabole 4y = x2, et par la droite y = x.
Trouver son aire et son moment d’inértie géométrique par rapport à l’axe Oy.
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Université Claude Bernard - Lyon 1 Semestre d’automne 2020-2021
Math 5 - Fiche 4 Cours : O. Kravchenko TD : O.Kravchenko, G.Perets

Courbes. Intégrales curvilignes

Rappel : Tangente et plan normale à une courbe dans R3. Longueur d’une courbe

— Une courbe Γ ⊂ R3 peut être définie par des équations paramétriques :

Γ = {(x, y, z) ∈ R3 t.q.


x = x(t)
y = y(t)
z = z(t)

t ∈ [a, b] ⊂ R.

On peut l’écrire de façon suivante - Γ ⊂ R3 est paramétrée par la fonction γ : [a, b] → R3 :
γ(t) = (x(t), y(t), z(t)). Au point P0 de la courbe pour t = t0 ∈ [a, b] on a P0(x0, y0, z0) =
(x(t0), y(t0), z(t0)) et
— les équations de la tangente sont

x− x0

∂x/∂t(t0)
=

y − y0

∂y/∂t(t0)
=

z − z0

∂z/∂t(t0)

— les équations du plan normal (orthogonal à la tangente et passant par P0) sont

∂x

∂t
(t0)(x− x0) +

∂y

∂t
(t0)(y − y0) +

∂z

∂t
(t0)(z − z0) = 0.

— La longeur d’une courbe paramétrée γ : [a, b] → Γ ∈ R3, où γ(t) = (x(t), y(t), z(t)) est donné
par l’intégrale curviligne

L(Γ) =

∫ b

a

√
(x)′2(t) + (y)′2(t) + (z)′2(t) dt

Exercice 34. Droite.∗
Trouver une paramétrization qui parcours le segment de la droite y = 2x+ 1 du point A(0, 1) au

point B(1, 3), γ1 : [0, 1]→ (AB) et une autre γ2 : [0, 1]→ (BA) qui va dans le sens opposé.

Exercice 35. Trouver les équations de la tangente et du plan normal à la courbe

1. ∗ x = t, y = t2, z = t3 au point t = 1.

2. x = t− 2, y = 3t2 + 1, z = 2t3, au point où celle-ci coupe le plan yOz.

Exercice 36. ∗ Une particule se déplace dans l’espace et son movement décrit une courbe

x(t) = 4 cos t, y(t) = 4 sin t, z(t) = 6t.

Trouver les valeurs absolues de la vitesse et de l’accélération au temps t = 0 et t =
π

2
. Trouver aussi

les equations de la droite tangente et du plan normale dans chaqune de ces points.

Exercice 37. ∗ Pour x ∈ [0, 1], calculer la longueur de la courbe y = x3/2.

Exercice 38. ∗
Calculer la longueur de la courbe paramétrée γ : [0, 2]→ R2 définie par

γ(t) :=

(
−4

3
t3 + t− 2, 2t2 + 7

)
.

Exercice 39. Calculer la longueur de la courbe paramétrée γ : [0, π]→ R2 définie par
γ(t) := (cos t+ cos2 t, sin t+ sin t cos t).

Exercice 40. Soit Γ une courbe paramétrée par % := %(t) et θ := θ(t) en coordonnées polaires, où
t ∈ [a; b].

7



1. Montrer que la longueur de Γ est ∫ b

a

√
%′2 + %2θ′2dt.

2. Soit γ la courbe d’équation polaire % := 2(1 + cos θ) pour θ dans [−π;π]. Donner une pa-
ramétrisation en coordonnées polaires de cette courbe et calculer sa longueur.

Exercice 41. ∗ Pour r > 0 fixé, soit Γr la courbe d’équation
x2

2
+
y2

3
= r2.

1. Quelle est la nature de Γr ? Donner une paramétrisation.

2. Soit f : R2 → R la fonction définie par f(x, y) := x3 + xy2. Donner la valeur de f en un point
de la courbe.

3. La fonction f a-t-elle un maximum et un minimum sur la courbe ? Si oui, calculer chacun en
fonction de r.

4. Soit E la partie du plan d’équation
x2

2
+
y3

3
≤ 1. Quelles sont les valeurs maximale et minimale

de f sur E ?

Exercice 42.

1. Paramétrer la courbe d’équation 9x2 + 4y2 − 8y = 32

2. Montrer que le point de coordonnée

(
1,

2 + 3
√

3

2

)
appartient à la courbe et trouver le vecteur

tangent en ce point.

3. Trouver le maximum et le minimum sur la courbe de la fonction f(x, y) := x2 − (y − 1)2.

Exercice 43. Soit γ(t) := (3 cos t, 5 sin t, 4 cos t), t ∈ [0, π] une représentation paramétrique d’une
courbe Γ de R3.

1. Montrer que la valeur absolue du vecteur tangent ne dépend pas de t.

2. Écrire l’équation de la droite tangente au point A

(
3

2
,
5
√

3

2
, 2

)
.

3. Déterminer les coordonnées du point d’intersection de Γ avec le plan yz.

Exercice 44. ∗ Calculer l’intégrale curviligne∫
C
xydy

où C est l’arc de cercle défini par x := cos t et y := sin t, t variant de 0 à π.

Exercice 45. ∗
1. Écrire une équation de la droite D passant par les points (1, 1) et (2, 4).

2. Calculer la valeur de l’intégrale ∫
C

(y − x)dx+ (y + x)dy,

où C est un segment de la droite D entre les points (1, 1) et (2, 4).

Exercice 46.
Calculer l’intégralede la fonction f(x, y, z) = ln(x+ y + z) sur Γ, le segment de droite joignant le

point (1, 1, 1) au point (2, 3, 4).
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Université Claude Bernard - Lyon 1 Semestre d’automne 2020-2021
Math 5 - Fiche 5 Cours : O. Kravchenko TD : O.Kravchenko, G.Perets

Surfaces. Intégrales de surface

Rappel. Plan tangent et droite normale à une surface.
Les équations du plan tangent et de la normale à la surface F (x, y, z) = 0 au point P0(x0, y0, z0) sont

∂F

∂x

∣∣∣∣
P0

(x− x0) +
∂F

∂y

∣∣∣∣
P0

(y − y0) +
∂F

∂z

∣∣∣∣
P0

(z − z0) = 0 et
x− x0

∂F/∂x(P0)
=

y − y0

∂F/∂y(P0)
=

z − z0

∂F/∂z(P0)
.

Exercice 47. ∗
Trouver les équations du plan tangent et de la normale à la surface donnée au point indiqué :

1. surface z = 3x2 + 2y2 − 11, au point (2, 1, 3);

2. surface x2 + 3y2 − 4z2 + 3xy − 10yz + 4x− 5z − 22 = 0, au point (1,−2, 1).

Exercice 48. ∗
Montrer que les surfaces définies par les équations
x2 + 4y2 − 4z2 − 4 = 0 et x2 + y2 + z2 − 6x− 6y + 2z + 10 = 0 sont tangentes au point (2, 1, 1).

Exercice 49. Montrer que les surfaces définies par les équations xy+yz−4zx = 0 et 3z2−5x+y = 0
se coupe en angle droit au point (1, 2, 1).

Rappel A : Intégrale de surface d’une fonction
Soit f : R3 → R, (x, y, z) 7→ f (x, y, z) une fonction à valeurs réelles.
Soit Σ une surface donnée par une fonction vectorielle r : R2 → R3,

r (u,v) = x (u, v) i + y (u, v) j + z (u, v) k,

avec les coordonnées (u, v) qui parcourent D (u, v), le domaine de définition de la fonction r dans le
plan R2. On note i, j,k les vecteurs de la base de R3.

La fonction f (x, y, z) est considerée seulement dans les points de la surface S, à savoir,

f [r (u, v)] = f [x (u, v) , y (u, v) , z (u, v)] .

L’intégrale de surface d’une fonction f (x, y, z) sur la surface Σ est définie comme suit :∫∫
Σ

f (x, y, z) dS =

∫∫
D(u,v)

f (x (u, v) , y (u, v) , z (u, v))

∣∣∣∣∂r

∂u
× ∂r

∂v

∣∣∣∣ dudv,

où les derivées partielles
∂r

∂u
et
∂r

∂v
sont des fonctions vectorielles R2 → R3 :

∂r

∂u
(u, v) =

∂x

∂u
(u, v) i +

∂y

∂u
(u, v) j +

∂z

∂u
(u, v) k, et

∂r

∂v
(u, v) =

∂x

∂v
(u, v) i +

∂y

∂v
(u, v) j +

∂z

∂v
(u, v) k.

On considère le produit vectoriel
∂r

∂u
× ∂r

∂v
. Le vecteur

∂r

∂u
× ∂r

∂v

∣∣∣∣
(u,v)

est orthogonal à la surface

dans le point r (u, v). La valeur absolue dS =

∣∣∣∣∂r

∂u
× ∂r

∂v

∣∣∣∣ dudv est appelé l’élément de surface.

L’aire d’une surface Σ est donné par une intégrale de surface : A =
∫∫
Σ

dS.
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Cas particulier : si la surface est donnée par une équation z = z (x, y) , où z (x, y) est une fonction
C1 sur un domaine D (x, y) , l’intégrale de surface est donnée par

∫∫
Σ

f (x, y, z) dS =

∫∫
D(x,y)

f (x, y, z (x, y))

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dxdy.

Exercice 50. Calculer l’intégrale

∫∫
Σ

(x+ y + z) dS, où Σ est une partie du plan x+ 2y + 4z = 4,

telle que (x ≥ 0, y ≥ 0, z ≥ 0) .

Exercice 51. ∗ Calculer l’intégrale

∫∫
Σ

z2dS, où Σ est une surface d’un cône
√
x2 + y2 ≤ z ≤ 2.

Exercice 52. Soit Σ la surface paramétrée par l’application :

f : (u, v) ∈ X 7→ (u, v, uv),

où X est le disque unité de R2.

1. Dessiner grossièrement Σ.

2. Donner sous forme d’une intégrale sur X l’aire de la surface de Σ.

3. En utilisant les coordonnées polaires, calculer cette intégrale.

Exercice 53. ∗ Calculer l’intégrale

∫∫
Σ

(xy + yz + zx) dS, où Σ est une partie d’un cône

z =
√
x2 + y2 satisfaisant x2 + y2 ≤ 2ax.

Exercice 54. ∗ Trouver l’intégrale

∫∫
Σ

xdS, où la surface Σ est une partie de la sphère x2 +y2 +z2 =

a2, telle que x ≥ 0, y ≥ 0, z ≥ 0.

Exercice 55.
Soit C une courbe fermée plane paramétrée par f : [0, 1] → R2. Soit X ∈ R3, et Σ la surface

paramétrée par :
F : (u, v) ∈ [0, 1]× [0, 1], F (u, v) = f(u) + vX.

1. Représenter Σ.

2. Calculer le volume du cylindre délimité par Σ en fonction de l’aire délimitée par la courbe C
et des coordonnées de X.

3. Dans le cas où X est un vecteur vertical, calculer l’aire de Σ en fonction de la longueur de C.

Rappel : Intégrale de surface d’un champs de vecteurs
Soit Σ une surface. Soit n (x, y, z) le vecteur normale unitaire en point (x, y, z) de S. Le choix de

n (x, y, z) ou − n (x, y, z) est appellé l’orientation de S. Si Σ est un bord d’une partie bornée de R3

en chaque point il y a deux vecteurs normales opposés : exterieur et interieur. Si la surface est orientée
par la normale exterieure, alors∫∫

Σ

F (x, y, z) · dS =

∫∫
Σ

F (x, y, z) · ndS =

∫∫
D(u,v)

F (x (u, v) , y (u, v) , z (u, v)) ·
[
∂r

∂u
× ∂r

∂v

]
dudv;
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Sinon, si la surface est orientée par la normale intérieure il faut changer :

[
∂r

∂u
× ∂

∂v

]
en

[
∂r

∂v
× ∂r

∂u

]
,ce

qui change le signe de l’intégrale. La quantité dS = ndS est appelée l’élément vectoriel de la surface.
Le point · signifie le produit scalaire.

Si la surface Σ est donnée par une équation z = z (x, y) , où z (x, y) où z est une fonction C1 sur
D (x, y) , alors l’intégrale de F sur Σ est donnée par une des formules suivantes. Si Σ est oriénté par
la normale exterieure (la composante de k est positive), alors∫∫

Σ

F (x, y, z) · dS =

∫∫
Σ

F (x, y, z) · ndS =

∫∫
D(x,y)

F (x, y, z) ·
(
−∂z
∂x

i− ∂z

∂y
j + k

)
dxdy;

Si Σ est oriénté par la normale intérieure (la composante de k est négative), alors il faut changer(
−∂z
∂x

i− ∂z

∂y
j + k

)
en

(
∂z

∂x
i +

∂z

∂y
j− k

)
, ce qui mène au changement de signe de l’intégrale avec la

normale exterieure. En coordonnées cela se resume comme suit.
Soit F(x, y, z) = (P (x, y, z) , Q (x, y, z) , R (x, y, z)) un champs de vecteurs et soit n la normale

unitaire à la surface Σ dont les coordonnées sont donnés par les angles avec les axes Ox,Oy,Oz : n =
(cosα, cosβ, cos γ) alors le produit scalaire F · n est égale à

F · n = F (P (x, y, z) , Q (x, y, z) , R (x, y, z)) · n (cosα, cosβ, cos γ) = P cosα+Q cosβ +R cos γ.

L’intégrale de surface alors∫∫
Σ

(F · n) dS =

∫∫
Σ

(P cosα+Q cosβ +R cos γ) dS.

Puisque cosα · dS = dydz et aussi cosβ · dS = dzdx, cos γ · dS = dxdy, on a la formule suivante :∫∫
Σ

(F · n) dS =

∫∫
Σ

(P cosα+Q cosβ +R cos γ) dS =

∫∫
Σ

Pdydz +Qdzdx+Rdxdy.

Si la surface Σ est donné par r (x (u, v) , y (u, v) , z (u, v)) , la dernière formule devient alors

∫∫
Σ

(F · n) dS =

∫∫
Σ

Pdydz +Qdzdx+Rdxdy =

∫∫
D(u,v)

∣∣∣∣∣∣
P Q R
∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

∣∣∣∣∣∣ dudv,
où (u, v) ∈ D ⊂ R2.

Exercice 56. ∗
Calculer l’intégrale du champs F (x, y, z) = (x,−1, z) sur l’intérieur de la surface Σ, donnée par

l’équation z = x cos y, où 0 ≤ x ≤ 1,
π

4
≤ y ≤ π

3
.

Exercice 57. ∗
Trouver l’intégrale F (x, y, z) = (y, x, z) sur la surface Σ, donnée par

r (u, v) = (cos v, sin v, u) , 0 ≤ u ≤ 2,
π

2
≤ v ≤ π.

Exercice 58. ∗
Trouver le flux du champs de vecteurs F = y ·i−x ·j+z ·k à travers de la surface conique exterieure

z =
√
x2 + y2, 0 ≤ z ≤ 2.

Exercice 59. ∗
Trouver le flux du champs de vecteurs
F (x, y, z) = −y · i+x · j−z ·k à travers de la sphère unitaire orientée à l’interieur x2 +y2 +z2 = 1.
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Théorèmes de Green-Riemann, Stokes, Ostrogradsky-Gauss

Rappel 1 : Théorèmes de Green-Riemann et de Stokes (rotationnel)
Soient D un domain de R2 et C = ∂D, le bord de D. Soit P,Q : D → R deux fonctions C1. Alors,

la formule de Green-Riemann relie l’intégrale curviligne avec l’intégrale double :∮
C

Pdx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dxdy.

Remarques :
— Le cercle autour de l’intégrale

∮
indique que l’intégrale est prise sur un circuit fermé.

— si Q = x et P = −y, Aire(D) =

∫∫
D

dxdy =
1

2

∮
C

(xdy − ydx).

— s’il existe une fonction u(x, y) telle que
∂u

∂x
= P,

∂u

∂y
= Q, on remarque qu’on a Pdx+Qdy = du

et du coup
∮
C Pdx+Qdy = 0.

— la consequence de la remarque precedente est que l’intégrale curviligne de Pdx+Qdy = du sur
un parcours C menant d’un point A au point B depend que de A et de B et ne depend pas de

parcours choisi entre A et B. En effet,

∫
C

du = u(B)− u(A).

La version du théorème de Green-Riemann en dimension 3 est appelé le théorème de Stokes (ou de rota-

tionnel). Ce théorème relie l’integrale de surface avec l’intégrale curviligne

∮
C

F · dr =

∫∫
Σ

(∇× F) · dS,

où C est le bord de la surface Σ, le rotationnel
−→
rot F = ∇× F :

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣ =

(
∂R

∂y
− ∂Q

∂z

)
i +

(
∂P

∂z
− ∂R

∂x

)
j +

(
∂Q

∂x
− ∂P

∂y

)
k

le rotationnel du champs F.∮
C
Pdx+Qdy +Rdz =

∫∫
S

{(
∂R

∂y
− ∂Q

∂z

)
dydz +

(
∂P

∂z
− ∂R

∂x

)
dxdz +

(
∂Q

∂x
− ∂P

∂y

)
dxdy

}
.

Exercice 60. Utiliser la formule de Green-Riemann pour les calculs suivants :

1. Soit la courbe C un cercle donné par l’équation x2 + y2 = a2. Calculer les intégrales :

1.

∮
C

xydx+ (x+ y) dy, 2.

∮
C

(x− y) dx+ (x+ y) dy, 3.

∮
C

x2ydx− xy2dy.

2. Soit la courbe E un ellipse donné par l’équation
x2

a2
+
y2

b2
= 1. Calculer :

∮
E

(x+ y) dx− (x− y) dy.

3. Soit la courbe T un triangle ABC de sommets A (a, 0) , B (a, a) , D (0, a) . Calculer l’intégrale :∮
T

y2dx+ (x+ y)2dy.

4. Soit la courbe L un quart du cercle d’équation x2+y2 = a2, x ≥ 0 et y ≥ 0. Calculer l’intégrale :∮
L

(
y − x2

)
dx−

(
x+ y2

)
dy.
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5. Soit la courbeQ un carréA (1, 0) , B (0, 1) , D (−1, 0) , E (0,−1) . Calculer l’intégrale :

∮
Q

dx− dy

x+ y
.

6. Soit R le domaine délimité par l’aströıde de l’équation x = a cos3t, y = a sin3t, 0 ≤ t ≤ 2π.
Calculer son aire.

7. Trouver l’aire de l’ellipse définie paramétriquement : x = a cos t, y = b sin t, 0 ≤ t ≤ 2π.

Exercice 61.

Montrer que l’intégrale

∮
L

∂(x2y3)

∂x
dx +

∂(x2y3)

∂y
dy, le long du segment de droite allant du point

(7, 1) au point (5, 2) est égale à 151. Quelle est la valeur de la même intégrale si L est une partie d’une
parabôle passant du point (7, 1) au point (5, 2).

Exercice 62.

Montrer que l’intégrale curviligne

∮
C

yzdx+ xzdy + xydz est égale à 0 le long tout le circuit fermé C.

Rappel 2 : Théorèmes d’Ostrogradski-Gauss (formule de divergence)
Soit G un domaine de R3 borné par une surface fermée Σ. Soit

F (x, y, z) = (P (x, y, z) , Q (x, y, z) , R (x, y, z)) ,

un champs de vecteurs de classe C1. La formule d’Ostrogradski-Gauss (aussi appelé la formule de
divergence) donne un lien entre l’intégrale triple sur D et l’intégrale de surface sur Σ :∫∫

Σ

F · dS =

∫∫∫
G

(∇ · F) dV , où ∇ · F =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

est la divergence du champs de vecteurs div F = ∇ · F. Cette formule se reécrit∫∫
Σ

Pdydz +Qdxdz +Rdxdy =

∫∫∫
G

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdydz.

Dans le cas particulier quand P = x, Q = y, R = z, on trouve la formule pour le volume de G en
tant que l’intégrale de surface qui l’entoure Σ :

V ol(G) =
1

3

∣∣∣∣∣∣
∫∫
Σ

xdydz + ydxdz + zdxdy

∣∣∣∣∣∣ .
Exercice 63.

À l’aide du théorème d’Ostrogradski-Gauss calculer l’intégrale
∫∫
Σ

F · dS pour le champs F et la

surface Σ suivants :

1. F = (x3, y3, z3), et Σ est une surface de sphère de l’équation x2 + y2 + z2 = a2 orienté à
l’exterieur.

2. F (x, y, z) = (x, y, z) , et Σ est une surface entourant le cylindre x2 + y2 ≤ a2 entre les deux
plans z = −1, et z = 1.

3. F (x, y, z) =
(
x3, y3, z3

)
, et Σ est une surface entourant le domaine borné par x2 + y2 − z2 = 0

et z = 1.

4. F (x, y, z) = (2xy, 8xz, 4yz) , et Σ est une surface de tetrahedron de sommets O (0, 0, 0) ,
A (1, 0, 0) , B (0, 1, 0) , C (0, 0, 1).

5. F (x, y, z) =
(
2x2y, xz2, 4yz

)
, où Σ est une surface de parallélépipède formé par le domaine

entre les plans déquations x = 0, x = 1, y = 0, y = 2, z = 0, z = 3.
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