LIE ALGEBROIDS AS SUPERMANIFOLDS
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Abstract

The notions of

a Lie algebroid

a Lie-Rinehart pair

a supermanifold with a homological vector field
an odd Poisson manifold

a Gerstenhaber algebra

a ()-manifold

turn out to describe more or less the same objects. This talk is an attempt to establish
the equivalences.

1. INTRODUCTION.

The purpose of this talk is to show that several notions floating around are in
fact one and the same. The notions which we discuss are: Lie algebroids [3] and
supermanifolds with homological vector fields [9]. There is also a purely algebraic
reformulation of Lie algebroids which does not require the presence of a manifold:
Lie-Rienhart pair [6].

The notion of a Lie algebroid is an analogue of the Lie algebra of a Lie group for
differentiable groupoids. It combines the properties of a Lie algebra and a tangent
bundle to a manifold. Lie algebroids recently became quite popular in symplectic
geometry, representation theory etc. There are certain interesting examples so it is
bit mroe than just a complicated way to talk about the Lie structure on the tangent
bundle.

We will not make it explicite here that Lie algebroids are ()- manifolds, but hope
it should be clear to the conosseurs of [1].

Definition 1.1. Lie algebroid is a smooth vector bundle A — M with

e a Lie algebra structure on the space I'(A) of smooth sections of A,
e a bundle map o : A — T'M called an anchor of the Lie algebroid A, such that
— the anchor « defines a Lie algebra morphism T'(A) — X(M), vector fields
(i.e. sections of T'M, the Lie algebra structure given by the commutator);
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— for f € C®(M),X,Y € I'(A) a sort of a Leibniz rule is required:
X, /V] = fIX. Y]+ a(X)()Y:

This way the sections of A get a C'*°-module structure. Moreover the anchor defines
the morphism of Lie algebras as C'**-modules.

2. EXAMPLES

o Lie algebra. M is a point. Then A is just a Lie algebra, the anchor here is 0.

e Bundle of Lie algebras. The anchor is again 0.

o Cotangent Lie algebroid. Let M be a Poisson manifold with the Poisson bivector
field: # € A*’TM. Then 7 defines an anchor map 7 : T*M — T'M by 7,(§,) =

£pam,. the bracket is defined as follows:

[€,m] = db(&;n) + (&) adn — 7 (n)adE

o Atiyah algebroid. [3]

o Lie algebroid of a differentiable groupoid. Given a Lie groupoid (G, s, ), consider
the normal bundle along the base of the groupoid, with section right -invariant
s-vertical vector fields. Lie bracket then comes from the Lie bracket on the
Lie(G) and the anchor is given by T't whatever it is.

o Tangent Lie algebroid. T'M is a Lie algebroid with o = id. It can be seen as the
Lie algebroid of the Lie groupoid M x M. Notice that a Lie algebroid determines
and is determined by a neighborhood of the identity section in the groupoid.

e Transformation algebroid. [3]

Generalization: Lie-Rinehart pair (g, ), where g is a Lie algebra and a C-module,
while (' is an associative commutative algebra and a g-module, plus certain compati-
bility conditions. Lie algebroid A — M is a Lie-Rinehart pair with g = I'(M, A) and
C=C>(M).

3. LIE ALGEBROID COHOMOLOGY
The anchor together with a Lie bracket defines the Lie algebroid differential
dy: T(AF1A") = T(A*RAY)
Indeed, let £ € T'(A*~1A*) then
dAb(Xy A A X)) = Y (=D a(X)EXL Ao A XA A X)

+Z(_1)i+1—15()(1 Ao X X A XG)
i<j
It is not too difficult to verify that d4 = 0. This differential defines the Lie algebroid

cohomology with trivial coefficients. Lie algebroid cohomology is a reasonable defi-
nition. In the case of a Lie algebra considered as a Lie algebroid, the Lie algebroid
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cohomology coincide with the Chevalley-Eilenberg cohomology. The tangent Lie alge-
broid cohomology coincide with the deRham cohomology of the underlying manifold.
For a Poisson manifold the Lie algebroid cohomology of the cotangent algebroid give
the Poisson cohomology.

Remark 3.1. The Lie algebroid structure on the bundle A — M is equivalent to the
derivation d4 of the exterior algebra I'(AA*) of degree 1 and square 0.

4. SUPER-STUFF

Consider a super-space, that is a space with a Z, grading V = V5 & V;. Elements
of Vo have degree 0, and they are called even, while elements of V| have degree 1, and
they are called odd. Basic principle for a super-objects is the rule of signs [5]. If in
some formula of usual algebra there are monomials with interchanged terms, then in
the corresponding formula in super-algebra every interchange of neighboring terms
, say x and vy, is accompanied by the multiplication of the monomial by the factor
(—1)%, where & = degz, = degy

What are algebraic functions on a super-space V7 Symmetric polynomials in even
and odd variables:

S(Voe Vi) = T(VodVi)/{ay — (=1)"ya = 0}
= TW/{zy—yz =0} @ TVi/{zy + yz =0}
= SWeAW

If we take analytic functions instead of algebraic we get C*(Vo+V;) = C*(V5)®@AV;
by the Taylor decomposition since the elements of V; are nilpotent.

A smooth m-manifold can be defined as an object obtained from domains in R™
pasted together by means of smooth transformations. This definition can be formu-
lated in a purely algebraic way. Namely, one can identify a domain U C R™ with
the algebra C*(U) of all smooth functions on U and a smooth map of U to V with
a homomorphism of C*(V') to C*°(U). Such an algebraic construction is generalized
as follows. By definition we identify an (m|n)-super-domain U, with a Zj-graded
algebra C*(U) @ A", where U is a domain in R™ and A" is a Grassman algebra in n
generators &', ..., &". (This is a passage from [8]).

There is one important functor on the category of super-spaces — the parity change
functor II. It is defined (IIV)q = V4, (IIV); = 1§

Now back to algebroids. Here we follow [7]. We will view T'(A¥~1 A*) as the algebra
of functions on the super-manifold I A, where II is a parity change functor applied
to each fibre.

Let {:z:i}l-:17...7dimM be a coordinate chart on /' C M, and {e“}a=1’wrk‘4 be a local
basis of sections of A* over U (dual to a basis {e,} of sections of A). Denote by £* the
corresponding generators of the Grassman algebra ['(U; AA*). Then {(z%,£%)} give a
coordinate chart on ITA with the transformation law inherited from the vector bundle
A*. The derivation d4 can be viewed as an (odd) vector field on ITA, satisfying

[da,da] = 2d% =0,
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where the bracket denotes a super-commutator. Such vector field is called homologi-
cal.

Definition 4.1. The odd vector field X on a super-manifold is called homological if
(X, X]=2X%*=0.

Many objects in various branches of mathematics can be described and studied in
terms of homological vector fields.

Example 4.2. differential forms on M can be viewed as functions on II'T'M. Polyvec-
tor fields on M can be viewed as functions on II7T*M. On IIT M there is an odd global
vector field D such that for each differential form w on M viewed as a function on
T M, Dw = dw. Here d is just the deRham differential. Clearly, D* = 0. The deRham
differential is a homological vector field on a super-manifold II7T'M = (M, AT*M).

Since a super-manifold is defined algebraically there exist different notations for a

super-manifold: ITA and (M, AA*).

Theorem 4.3 (Vaintrob [9]). Consider two super-manifolds associated with a bundle
A—-M: A = (M,AA*) and TA* = (M, AA). then the following three classes
of objects:

1. Lie algebroid structure on a vector bundle A — M

2. homological vector fields of degree 1 on a super-manifold I1A

3. odd linear Poisson structures on 11A*

Any vector field on ITA of degree 1, consists of two terms: derivations along the even
directions and derivation along odd directions. The condition d4 = 0 is equivalent
to:

e The derivation along the even directions defines the anchor,
e The derivation along the odd directions defines the Lie algebra structure on the
sections of the Lie algebroid

It could be verified directly. In local coordinates, we have
da = € 43(2)d, — SO (r)E€
where repeated indexes assume summation. Then the local expressions for the anchor
and the Lie bracket on A:
ale,) = Afl(af) Oy
[ea,er] = Cap(a) e

Conversely, for a bracket [-,] and for an anchor map o : A — T'M we can find the
functions C¢,(z) and A’ (z) which define the vector field dy.

The canonical duality between ITA and IIA* transforms £ into 0., and O into e,.
the vector field d4 becomes the odd bivector field on ITA* :

= A (2)0e, N Oyi — %Cib(x)ecaea A Oe, -
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A direct computation shows that = defines an odd Poisson structure on 11A%st. An-
other name for an odd Poisson structure is a Gerstenhaber algebra.

WHY THE WAY OF LOOKING AT LIE ALGEBROIDS AS SUPER-MANIFOLDS
WITH A HOMOLOGICAL VECTOR FIELD IS SO GREAT?

Why, indeed? The answer is that in the super-language it becomes natural and easy
to define the differential calculus on Lie algebroids (or ¢)-manifolds). In particular:

e morphisms of Lie algebroids
e modules over Lie algebroids
o deformations of Lie algebroids

See for example [9] and you may compare the ease with which a super-mathematician
treats the issues with the heavy machinery of traditional approach [4].

5. LIE ALGEBROID VIA GERSTENHABER ALGEBRA

Definition 5.1. A triple (g, [-, ], ) is called a Gerstenhaber algebra when
g = @©g* is a graded vector space;

[-,-]: gt A gltt — gFt!*! defines a Lie bracket;

w:gb A gl — g"t! defines an associative commutative product;

there is the Leibniz rule: [-,-] is a derivation of p.

Attention: in most of standard sources the bracket is of degree 0 and the product of
degree 1, it is consistent with our definition if instead of g we consider g[1], where
g[1]¥ = g**!. Consider for example the Schouten algebra (the algebra of polyvector
fields on a manifold: AT M). The Schouten algebra is an example of a Gerstenhaber
algebra with the product p being the exterior product. The Lie algebra structure on
the polyvector fields is obtained by the Leibniz rule from the Lie algebra structure
on the sub-algebra of vector fields and functions. The Lie algebra structure on vector
fields is given by the commutator, the Lie bracket of a vector field and a function is
a vector field applied to the function.

The standard practice is to place the vector fields in the degree 0, bivector fields
in degree 1, etc. The functions then are in degree —1.

We don’t move the degree — maybe we will regret it later.

Theorem 5.2. A vector bundle A — M is a Lie algebroid iff g = T'(M,AA) is a
Gerstenhaber algebra.

In fact, we see that it is nothing but the odd linear Poisson structure on the super-

manifold ITA.

6. APPENDIX

For completeness, we give here a definition in algebraic geometric terms taken from
Beilinson, Berstein [2]:

Definition 6.1. For a scheme X a Lie algebroid L on X is a (quasi-coherent) Ox-
module equipped with a morphism of Ox-modules o : I — Tx(where Tx = DerOx,
the tangent sheaf of X') and a C-linear pairing [-,-]: L ®c L — L such that
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e [-,-] is a Lie algebra bracket and o commutes with brackets,

o Forli,ly € L, f € Ox one has [ly, fls] = f[l1,ls] + o(l1)(f)ls.

Examples:

1. The tangent sheaf Tx, the map o = Idr,.

2. Assume that a Lie algebra g acts on X, i.e. we have a morphism of Lie algebras
a:g— Tx. Then gx = Ox ®c g becomes a Lie algebroid: o(f @ v) = fa(y),
the bracket is defined by [f1 @ 71, f2 @ 2] = fif2 @ [y1,7%2] + fra(n)(f2) © 2 —
faa(2)(f1) @m
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