
MAKE IT YOURSELF STRONG HOMOTOPY STRUCTURE

OLGA KRAVCHENKO

Abstract

This are notes for the talk at the conference GAP III, in Perugia. We talk about a general definition
of a strong homotopy structure as a solution of a Maurer-Cartan equation on a corresponding
governing Lie algebra. We apply this philosophy to construct strong homotopy Lie bialgebras.

1. Basic example: strong homotopy associative algebra

Why is it called homotopy? In fact, the following general definition of chain homotopic maps is
used over and over again.

Definition 1. Two maps α and β between complexes (C, d) = · · · → A → B → C → · · · and
(C′, d′) = · · · → A′ → B′ → C ′ → · · · are called chain homotopic if there is a map h : C → C[−1]
such that

α− β = hd + d′h.

We could draw it diagrammatically as follows:

(1) · · · d // A
d //

αβ

²²

B
d //

αβ

²²

h

~~||
||

||
||

C
d //

αβ

²²

h

~~||
||

||
||

· · ·

· · · d′ // A′
d′ // B′ d′ // C ′

d′ // · · ·
This is a useful definition in many instances: for example to show that a complex is acyclic one

could look for a homotopy of the identity map to a zero map.
Let A = (⊕Ai, d) be a graded differential space, in other words a complex with a differential

d : Ai → Ai+1, (an element a ∈ Ai if its degree a = i.) Define a grading on the tensor powers of
A : A⊗n as follows

(2) (a1 + a2 + · · ·+ an) =
n∑

j=1

aj − n + 1.

Consider a map µ which acts from Ak+1⊗Al+1 → Ak+l+1, this map is of degree 0 with respect to
the chosen grading. Indeed, the degree of elements from Ak+1⊗Al+1 is (k+1)+(l+1)−2+1 = k+l+1,

so Ak+1 ⊗Al+1 ⊂ (A⊗2)k+l+1. In particular, if k = l = 0, an example of such a map will be a usual
multiplication on an ordinary ungraded vector space.

We say that the product µ : A ⊗ A → A is associative up-to homotopy if the maps µ(µ ⊗ Id) :
A⊗3 → A and µ(Id⊗ µ) : A⊗3 → A are homotopic in the sense of (1). That is, if there is a map µ3

of degree −1 which provides a homotopy of µ(µ⊗ Id)− µ(Id⊗ µ) to a zero map:

(3) · · · d // (A⊗3)i−1
d //

µ(µ⊗Id)−µ(Id⊗µ)

²²

(A⊗3)i
d //

²²

µ3
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(A⊗3)i+1
d //

²²

µ3
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· · ·

· · · d // Ai−1
d // Ai

d // Ai+1
d // ·
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The differential d : A → A we extend to act on the product A ⊗ A by the Leibniz rule. If we
denote µ(a ⊗ b) just by ab then µ(µ ⊗ Id)(a ⊗ b ⊗ c) = (ab)c and µ(Id ⊗ µ)(a ⊗ b ⊗ c) = a(bc) and
we have the following homotopy condition:

(4) (ab)c− a(bc) = dµ3(a⊗ b⊗ c) + µ3(da⊗ b⊗ c) + µ3(a⊗ db⊗ c) + µ3(a⊗ b⊗ dc)

We could look at it in a more general way. Namely, we define a lift of any map µk : A⊗k → A on
any tensor power product of A⊗n as follows:

(5) µ̂k =

{
0 if n < k∑n−k−1

r=0 (Id⊗r ⊗ µ⊗ Id⊗(n−k−r)) otherwise

Here Id denotes the identity map of the space A. In particular, for our map µ : A ⊗ A → A and
n = 3 it becomes µ̂(a1 ⊗ a2 ⊗ a3) = µ(a1 ⊗ a2)⊗ a3 − a1 ⊗ µ(a2 ⊗ a3).

This way we could say that Equation (4) defines the homotopy of the map µµ̂ to the zero map.
One could look further for a condition on the µ3, by defining its lift to A⊗4 : µ̂4(a1⊗a2⊗a3⊗a4) =

µ3(a1 ⊗ a2 ⊗ a3)⊗ a4 + a1 ⊗ µ3(a2 ⊗ a3 ⊗ a4). Then in its turn there is a higher homotopy for it if
there is another map µ4 of degree −2 such that

µµ̂3 + µ3µ̂ = dµ4 + µ4d

as shown on the diagram:

(6) · · · d // (A⊗4)i−1
d // (A⊗4)i

d // (A⊗4)i+1
d //

µ̂

²²

µ̂3
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§
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(A⊗4)i+2
d //

µ4
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· · ·

· · · d // (A⊗3)i−1
d // (A⊗3)i (A⊗3)i+1

µ3
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§
(A⊗3)i+2

d // · · ·

· · · d // (A⊗2)i−1 (A⊗2)i

µ

²²

(A⊗2)i+1
d //

µ

²²

(A⊗2)i+2
d // · · ·

· · · d // Ai−1
d // Ai

d // Ai+1
d // Ai+2

d // · · ·
A condition on µ4 will be given by a higher homotopy map µ5 : A⊗5 → A of degree −3. Similarly,
one could consider all higher homotopies µn : A⊗n → A of degree 2− n.

The lift (5) used to define the action of these maps on the any tensor power of A is the right one
for the construction of the associative structure up-to homotopy. There is an explanation in terms
of coderivations. On the other hand it is easier to see it in the dual picture which we will show in
the next section.

Anyway, here is a definition of a strong associative algebra (also known as A∞-algebra) in simple
terms (here we follow closely [5]):

Definition 2. An A∞-algebra over a field k is a Z-graded space

A = ⊕i∈ZAi

endowed with graded maps
µn : A⊗n → A,

of degree 2− n, satisfying the following equations.

• Firstly, µ1µ1 = 0, that is (A,µ1) is a differential complex.
• Secondly,

µ1µ2 = µ2µ1.

So µ1 is a graded derivation with respect to multiplication µ2.
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• Finally, we have for any n ≥ 1 :
∑

s+t=n+1

µtµs = 0

the maps µn act on A⊗k by their lifts given by formula (5), where by abuse of notation we omit the
difference between an initial map and a one with a hat.

Remark 3. We could make several general remarks:

• Homology of A, H∗A = H∗(A,µ1) has a structure of an associative algebra.
• If A is not graded, that is all An = ∅ for all n 6= 0 then A = A0 is an ordinary associative

algebra. Indeed, since µn is of degree 2− n all µn except µ2 have to vanish.
• If all µn = 0 for all n ≥ 3 then A is a differential graded associative algebra.
• All signs are actually taken care of by the lift (5). They do appear however as soon as we

write the action of µn on A⊗n as we have seen already in Equation (4).

If we endow the set of maps TA → A by a commutator Lie bracket then the conditions on maps
µn from Definition of the A∞-structure could be expressed as a Maurer-Cartan equation for the
operator

∑
µn, defined on TA using the lift (5).

To make sense out of this last idea let us pass to the dual picture.

2. Dual picture - (co)bar construction

We start here first by reproducing almost word by word Victor Ginzburg’s unpublished lectures
[3].

Let A be a finite dimensional space. Then we could consider its dual space A∗ = Homk(A, k)
and form a non-unital tensor algebra

TA∗ := A∗ ⊕ (A∗ ⊗A∗)⊕ · · · ⊕ (A∗)⊗m ⊕ · · · .

This is a free associative algebra on A∗ without a unit.

Proposition 4. Giving an associative algebra structure on A is equivalent to giving a map D :
TA∗ → TA∗ such that

(1) D2 = 0,

(2) D is a super-derivation of degree 1, that is D : (A∗)k → (A∗)k+1.

Proof. Given a multiplication map m : A⊗A → A and using canonical isomorphism of (A⊗A)∗ and
A∗ ⊗A∗ for a finite dimensional A we get the D to be the transpose operator m⊥ : A∗ → A∗ ⊗A∗.
Then it could be extended to a super-derivation on TA∗ by applying a super-Leibniz rule.

In the other direction: given a super-derivation on TA∗ we transpose its restriction to A∗ to get
the multiplication on A using identifications A∗∗ with A and (A∗ ⊗A∗)∗ with A⊗A.

We have to show now that the associativity of m is equivalent to D2 = 0. Since TA∗ is generated
by A∗ we need only to show that D2 : A∗ → A∗ ⊗ A∗ ⊗ A∗ is the zero map, the super-Leibniz rule
takes care of the rest. Consider some linear functional λ ∈ A∗. Then dλ ∈ A∗ ⊗ A∗ and we could
find η1, · · · ηn, ξ1, · · · ξn ∈ A∗ so that

dλ(a⊗ b) =

(
n∑

i=1

(ηi ⊗ ξi)

)
(a⊗ b) =

n∑

i=1

ηi(a)ξi(b).

On the other hand,

dλ(a⊗ b) = m⊥λ(a⊗ b) = λ(m(a, b)) = λ(ab).
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Using the fact that d is a super-derivation we get:

d(dλ)(a⊗ b⊗ c) = d (
∑n

i=1(ηi ⊗ ξi)) (a⊗ b⊗ c)
= (

∑n
i=1(dηi ⊗ ξi − ηi ⊗ dξi)(a⊗ b⊗ c)

=
∑n

i=1 dηi(a⊗ b)ξi(c)− ηi(a)(dξi)(b⊗ c)
=

∑n
i=1(ηi(ab)ξi(c)− ηi(a)ξi(bc))

= λ((ab)c)− λ(a(bc)) = λ((ab)c− a(bc)).

So if D2 = 0 we see that λ((ab)c − a(bc)) = 0 for every functional λ, hence (ab)c − a(bc) = 0, that
is m is associative. Conversely, we see that if m is associative, then D2 = 0. (We really copied here
from [3].) ¤

This complex (TA∗, D) is a dual of a bar-complex on associative algebras, that is why this section
is called how it is called.

Now, let the space A be a graded differential space A = (⊕Ai, Ai
d−→ Ai+1), that is, A is a complex:

(7) · · · d // Ai
d // Ai+1

d // · · ·
We take each Ai to be finite dimensional to be able to take dual spaces, and we would also want that
there is a number l ∈ Z such that Ai = ∅ for i ≤ l. Consider now TA∗ = T (⊕A∗i ). It inherits the
grading and the differential in the following way. The degree of k should be zero, and we assume that
the pairing <,>: A∗ ⊗A → k is of degree 0 as well, as a result (Ai)∗ is of degree −i : (Ai)∗ = A∗−i.

The differential on A∗ we define by the pairing as well: we want that if b = da, a ∈ Ai, b ∈ Ai+1,

and < a∗, a >= 1 and < b∗, b >= 1

1 =< b∗, da >=< d⊥b∗, a >,

from which we conclude that d⊥b∗ = a∗. Hence, d⊥ : A∗−(i+1) → A∗−i. We could lift it to act on TA∗

by a graded Leibniz rule.
To define an up-to homotopy structure the only thing missing now is the grading of the whole

TA∗. Of course we could just take the degree of the product of elements from A∗ to be the sum of
degrees. However for a concise definition it is useful to take into account also how many elements
are there in the product. Hence as a result we put the degree of (x1 ⊗ x2 ⊗ · · · ⊗ xk) ∈ (A∗)⊗k to
be

∑
xi + k − 1, which is consistent with the degree of (2). Finally, the definition of the strong

homotopy associative structure becomes

Proposition 5. Giving an strong homotopy associative algebra structure on A is equivalent to giving
a map Q : TA∗ → TA∗ such that

(1) Q2 = 0,

(2) Q is a graded derivation of degree 1, that is Q : (TA∗) → (TA∗)[1].

Proof. We have to repeat step by step the proof of Proposition 4. Starting form the statement that
any map A∗ → TA∗ could be extended to act on (A∗)⊗n by the Leibniz rule and so on. ¤

We could consider this Lie algebra A of derivations of the tensor algebra TA∗ as the governing
Lie algebra of an associative structure on A (Lie bracket is given by the commutator of operators
on TA∗). The A∞-structure then is a solution of Maurer-Cartan equation on A.

A good exercise is to do the same construction to get a strong homotopy Lie algebra (otherwise
called an L∞-algebra). The governing algebra will be then the derivations of the exterior algebra
(see for example [7]).

This is the point where one could employ the machinery of operads. Namely, take an operad,
such that an algebra over it is of the type we are looking for. Then one needs to construct a free
resolution of it (this is sort of a bar-construction). Then algebras over this free resolution will be
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strong homotopy versions of the original algebras. Here we will not venture in this direction, we will
just refer to [2, 4, 8] for further explanations.

3. Q-manifold

In fact, the case of an L∞-algebra is quite special because it allows a geometric interpretation.
If we mimic what was just done for A∞-algebras (the bar-complex and so on) we see that instead

of the tensor algebra we need to take the algebra of exterior powers: after all, a Lie bracket on V is
just a map from V ∧ V → V.

Proposition 6. Giving an strong homotopy Lie algebra structure on a differential graded space
V = (⊕Vi, d) is equivalent to giving a map Q : ΛV ∗ → ΛV ∗ such that

(1) Q2 = 0,

(2) Q is a graded derivation of degree 1, that is Q : (ΛV ∗) → (ΛV ∗)[1].

Looks exactly the same as Proposition 5, but there is one thing different, namely the derivation
we define by the Leibniz rule is now with respect to a product ΛV ∗⊗ΛV ∗ → ΛV ∗ which is not any
more the concatenation product of the free tensor algebra, but the shuffle product on ΛV ∗.

Now to get geometric, ΛV ∗ should be identified with symmetric powers of a suspended space
sV ∗ = V ∗[1], which is defined component by component as sV ∗

i = V ∗
i+1. So ΛV ∗ = Sym(sV ∗) and

hence could be regarded as polynomial functions on some formal space.
Then maps Q : V ∗ → ΛV ∗ could be viewed as vector fields on a formal space on which ΛV ∗ is

an algebra of functions. Each term of such a map λk : V ∗ → ΛV ∗ becomes the k-coefficient in the
Taylor decomposition of a vector field Q.

When Q is of degree 1 and homological (that is Q2 = 0) Q defines an L∞-algebra structure on
V . At the same time it fits the definition of a Q-manifold from [1].

4. Self-made strong homotopy Lie bialgebra structure

To define a strong homotopy Lie bialgebra structure on V we need to find the corresponding
differential graded governing Lie algebra and then write a Maurer-Cartan equation on it.

Such a Lie algebra is known thanks to Kosmann-Schwarzbach [6]. On the space Λ(V ∗ ⊕ V ) =
ΛV ∗⊗ΛV the natural pairing (symmetric form) could be considered as a Lie bracket in the suspended
space s(V ∗ ⊕ V ).

A Lie bialgebra structure thus becomes written as a solution of Maurer-Cartan equation on this
graded Lie algebra

B =
+∞∑

p+q=0

Λp+1V ∗ ⊗ Λq+1V = (V ∗ ⊗ V ) ⊕ (V ∗ ⊗ V ∧ V ⊕ V ∗ ∧ V ∗ ⊗ V ) ⊕ · · · .

A Lie bialgebra structure on V, is given by θ ∈ V ∗ ⊗ V ∧ V (generating a cobracket) and
λ ∈ V ∗ ∧V ∗⊗V (generating a bracket). The commutator [λ+ θ, λ+ θ] lies in B2 : Λ3V ∗⊗V, V ∗⊗
Λ3V, and Λ2V ∗⊗Λ2V. Then λ+ θ defines a Lie bialgebra structure if the commutator is 0, that is
all three components of it in B2 must be equal to 0. This leads to three axioms of a Lie bialgebra:

a: Jacobi identity follows from [λ, λ] = 0, for the derived bracket given by {x, y} = [[λ, x]y].
b: Co-Jacobi identity follows from [θ, θ] = 0.

c: The cocycle condition translates as: [λ, θ] = 0.

For a graded space V we could define grading on the complex B by setting the degree of
x1x2...xk+2 ∈ Bk =

∑
p+q=k Λp+1V ∗ ⊗ Λq+1V to be

∑ |xi| − k + 1 where all xi ∈ V ∗ ⊕ V and
degree of xi is denoted |xi|.
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A strong homotopy Lie bialgebra structure is given by a solution of Maurer-Cartan equation on
B. Any element Q of degree 1 from B, satisfying an equation [Q,Q] = 0 defines a strong homotopy
Lie bialgebra structure. We could see Q as living in the double graded space B :

· · ·

4 Λ4V ∗ ⊗ V · · ·

3 Λ3V ∗ ⊗ V Λ3V ∗ ⊗ Λ2V · · ·

2 Λ2V ∗ ⊗ V Λ2V ∗ ⊗ Λ2V Λ2V ∗ ⊗ Λ3V · · ·

1 V ∗ ⊗ V V ∗ ⊗ Λ2V V ∗ ⊗ Λ3V V ∗ ⊗ Λ4V · · ·

(p + 1) � (q + 1) 1 2 3 4

That is Q =
∑

k≥1,l≥0 tkl, where tkl ∈ ΛkV ∗ ⊗ ΛlV.

This way the condition [Q,Q] = 0 gives a set of equation indexed by two numbers. For each
p ≥ 1, q ≥ 1 we get an equation:

(8)
∑

k+k′=p+1

∑

l+l′=q+1

[tkl, tk′l′ ] = 0,

The first one is

(9) [t11, t11] = 0

providing the equation which defines a differential d = adt11 on V. The next couple of equations for
p = 1, q = 2 and p = 2, q = 1 gives respectively:

(10) [t11, t12] = 0, [t11, t21] = 0,

which is a condition that d is a derivation of the cobracket and of the bracket. Next one p = 2, q = 2 :

(11) [t11, t22] + [t12, t21] = 0

is the condition o the cocycle which is up-to homotopy given by an element t22 ∈ Λ2V ∗ ⊗Λ2V. The
terms

The Jacobi identity holds also up-to homotopy only, this condition is given by the equation for
p = 3, q = 1 :

(12) [t11, t31] +
1
2
[t21, t21] = 0,

as well as the coJacobi identity - equation with p = 1, q = 3 :

(13) [t11, t13] +
1
2
[t12, t12] = 0.

Remark 7. (1) The homology of H∗V = H∗(V, d) is a Lie bialgebra.
(2) If V is not graded, that is all Vn = ∅ for all n 6= 0 then V = V0 is an ordinary Lie bialgebra.

Indeed, since tkl is of degree 2− (k + l − 1) all tkl except for t12 and t21 have to vanish.
(3) If all tkl = 0 for all k + l ≥ 3 then V is a differential graded Lie bialgebra.
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5. Final remarks

We have not given any motivations or examples but these are plenty in the literature - to mention
a few just for A∞ structures alone: topological origins in Stasheff’s early work, a nice example
of an A∞ structure on a Kähler manifold of Merkulov [9], interpretation of higher homotopies as
deformations by Penkva-Schwarz [10].

We have also left out a lot of useful things in the setup of strong homotopy structures. For
example a morphism of such algebras is a morphism of governing differential graded Lie algebras,
commuting with Q.

Another necessary thing to define is a notion of a module over, say, an A∞ algebra. For it we could
use a generalization of what Ginzburg calls a ”square zero” construction ([3]): Given an algebraic
structure P on A, define its action on M by saying that the projection A ⊗M → M is a P-map,
and all operations restricted on M are 0 and M is an ideal in AxM . (For the case of an associative
algebra it gives this square 0 condition M2 = 0.)

We have not mentioned the deformation problems either though it is easy to talk about them in
our setup...

To conclude: given a problem of defining a strong homotopy analogue of a certain (quadratic)
structure, the general somewhat simplified scheme of its solution is

1: Take a differential graded space and consider the original structure on it making sure that
the differential is a derivation with respect to the structure.

2: Find the governing graded Lie algebra, where the original structure has the first degree and
satisfies the ”square zero” condition: its Lie bracket with itself is 0.

2: Write the Maurer-Cartan equation on this dgLie algebra. Its solutions are what we are
looking for.
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