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Abstract

We present a generalization of forcing in model theory which allows
the construction of finitely generated models. This is used to prove a par-
ticular compactness theorem, and an omitting type theorem, for models
generated by n elements. We study also some properties of finitely gen-
erated models of a countable theory having, up to isomorphism, at most
ℵ0 finitely generated models.

1 Introduction

Let L be a countable first order langauge. A model M is said to be n-
generated if it can be generated by n elements, i.e. there exists a1, · · · , an in
M such that for every a ∈ M we have a = τ(a1, · · · , an) in M for some term
τ(x1, · · · , xn) of L.

In the study of some classes of finitely generated models, in particular in
group theory, we are confronted to construct finitely generated models. The
absence of a compactness theorem for such classes make their study difficult.
One can see in general that one can not have a compactness theorem for finitely
generated models analogue to the usual one of first order languages. Here an
example in group theory which show this: suppose towards a contradiction that
the compactness theorem for finitely generated models is true, i.e. for every
theory T , if every finite subset of T has a finitely generated model then T has a
finitely generated model. Supposing this we show the following property (*): for
every theory T , if M is a finitely generated model of T 0

∀ then M is embeddable
in a finitely generated model of T , where T 0

∀ is the set of universal sentences
which are true in every finitely generated model of T . Let M be a finitely
generated model of T 0

∀ , generated by the finite tuple a, and let Γ = T ∪ {φ(a) :
φ is free-quantifier such that M |= φ(a)} in the language L(a). Since M |= T 0

∀ ,
every finite subset of Γ has a finitely generated model. Thus, by our supposition,
Γ has a finitely generated model. Hence there exists a finitely generated model
of T which embeds M. But the property (*) is false because Z2 satisfies the
universal theory of Z but Z2 is not embeddable in a finitely generated model of
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the complete theory Th(Z) of Z, as every finitely generated model of Th(Z) is
isomorphic to Z and Z2 is not a subgroup of Z. Of course the above argument
works if we restrict our attention to n-generated models.

The present work takes his origin from a question of G.Sabbagh who asked
whenever there exists a complete theory of groups having 2ℵ0 finitely generated
nonisomorphic groups. This question is natural from the context of Theorem
4.10, who sate that the number α(T ) of nonisomorphic finitely generated models
of T is less than ℵ0 or equal to 2ℵ0 (Theorem 4.10 was also proved by A.Khelif).
One can extracted from the papers of F.Oger [5, 6, 7] that for every natural
number n there exists a complete theory T of groups such that α(T ) = n. Thus
the question when α(T ) = 2ℵ0 is interesting to complete the possible cases.

G.Sabbagh and A.Khelif asked also whenever a finitely generated pseudo-
finite group is finite. Recall that a group G is said to be pseudo-finite if it is a
model of the theory of all finite groups.

In both cases the beginning idea is to use forcing to construct potential
groups who answering above questions and to see if there is a ”reasonable”
version of compactness theorem for finitely generated models.

Forcing is a method of construction of models satisfying some properties
forced by some conditions. In general one can not force a model to be finitely
generated. Thus we must construct a form of forcing in which every ”generic”
model is finitely generated.

We give in this paper a generalization of forcing in model theory, which
include the usual one of Robinson-Barwise-Kiesler (cf. [2]), and which allows
to prove the following compactness theorem for n-generated models (for the
definition of τ -closeness see the beginning of section 4):

Theorem 1.1 Let T be τ -close theory in a countable language L such that every
finite subset of T has an n-generated model. Then T has a n-generated model.

We will also use this forcing to prove the following omitting type theorem
for n-generated models (for the notation see the beginning of section 4):

Theorem 1.2 Let T be an n-consistent theory in a countable language L. Let
(4i(xi))i∈N be a sequence of set of formula of L. If for every i ∈ N and for every
tuple τ of terms in L(C) there is no sentence φ(c) in L(C) which is n-consistent
with T such that:

T `n (φ(c) ⇒ ϕ(τ)), for every ϕ(xi) ∈ 4i,

then there is a n-generated model of T which omit 4i for every i ∈ N.

We have also the following result which give a necessary and sufficient con-
dition for a n-generated model to be prime of his theory:

Theorem 1.3 Let T be a complete theory in a countable language L having at
most ℵ0 n-generated models. Let M be a n-generated model of T . Then the
following properties are equivalent:
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(1) M is prime model of T.
(2) There is a formula θ(x1, · · · , xn) consistent in M such that if M |=

θ(b1, · · · , bn) then b1, · · · , bn generate M.

A theory T having a prime model has at most ℵ0 types, thus the condition
on T to have at most ℵ0 n-generated models is a necessary condition for the
exitance of prime model, as the complete diagram of a n-generated model of T
is a n-type.

The paper is organized as follows. In the next section we recall the basic
notions needed in the sequel. In section 3 we give a generalization of forcing
and we prove a Generic Model Theorem analogue to the one in [2]. Finally, in
section 4 we use the forcing to prove Theorem 1.1, Theorem 1.2 and Theorem
1.3. In that section we study also some properties of theory having at most ℵ0

n-generated models.
Throughout this paper every language considered in the sequel will be count-

able. Thus we let L be a fixed countable first order language. L is arbitrary but
is held fixed to simplify notation.

2 Background and Prerequisites

Our references books are [1],[3]. The majority of definitions given here are
also in [2], but for the reader’s convenience we recall them. The reader which is
familiar with [2] can go directly to the next section.

The set of formulas of L is the smallest set of words build in L containing
atomics formulas and closed by ∨, ¬ and the quantifier ∃x. The conjunction
φ ∧ ψ (respectively universal quantifier ∀xφ(x)) is regarded as abbreviation for
¬(¬φ ∨ ¬ψ) (respectively for ¬∃x¬φ). This convention is necessary to give a
complete definition of forcing in the next section, i.e. a definition which is valid
for all sentences.

The infinitary logic Lω1ω is built from L by allowing the infinite disjunction∨
Φ =

∨
φ∈Φ φ for any countable set Φ of formulas. As before we abbreviate∧

Φ =
∧

φ∈Φ φ for ¬∨
φ∈Φ ¬φ.

Let φ be a formula in Lω1ω. The set sub(φ) of subformulas of φ is defined
by induction on φ as follows.

If φ is atomic then sub(φ) = {φ},
sub(φ ∨ ψ) = sub(φ) ∪ sub(ψ) ∪ {φ ∨ ψ},
sub(¬φ) = sub(φ) ∪ {¬φ},
sub(∃xφ) = sub(φ) ∪ {∃xφ},
sub(

∨
Φ) =

⋃
φ∈Φ sub(φ) ∪ {∨ Φ}.

By a fragment we mean a set LA of formulas of Lω1ω such that:

(1) Every formula of L belongs to LA.
(2) LA is closed under ¬, ∃x, and finite disjunction.
(3) If φ(x) ∈ LA and τ is a term then φ(τ) ∈ LA.
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(4) If φ ∈ LA then every subformula of φ is in ÃLA.

Note that for every set Φ of formulas of Lω1ω, there is a least fragment LA

such that Φ ⊆ LA. Furthermore if Φ is countable then so is the least fragment
containing Φ. We will us the above property freely and without any reference
to it.

3 Generalized Forcing and generic models

Let C be a countable or finite non empty set of new constant symbols.
We note L(C) the first order language obtained by adding to L the constants
c ∈ C. If LA is a fragment we let L(C)A denote the set of all formulas obtained
from formula φ ∈ LA by replacing finitely many free variables occurring in φ by
constants c ∈ C. Thus L(C)A is the least fragment of L(C)ω1ω wich contains
LA. We start with the following definition.

Definition 3.1 A forcing property for the langauge L is a quadruple P =
〈P,≤, ∆, f〉 such that:

(i) 〈P,≤〉 is a partially ordered set with a least element 0.
(ii) ∆ is a set of terms without variables of the language L(C).
(iii) f is a function which associates with each p ∈ P a set f(p) of atomic

sentences of L(C).
(iv) Whenever p ≤ q, f(p) ⊆ f(q)
(v) Let σ and τ be terms of L(C) without variables and p ∈ P . Then:

(1) If (τ = σ) ∈ f(p), then (σ = τ) ∈ f(q) for some q ≥ p.
(2) If (τ = σ) ∈ f(p), φ(τ) ∈ f(p), where φ(x) is an atomic formula, then

φ(σ) ∈ f(q) for some q ≥ p.
(3) For some q ≥ p and for some term τ ′ ∈ ∆, (τ ′ = τ) ∈ f(q).

The elements of P are called conditions of P. Since the set of terms of
L(C) contains at least C, the condition (v)(3) implies that ∆ is not empty.

This definition generalize the usual one in [2]. Indeed by taking ∆ = C
we find the notion of forcing developed in [2]. The principal difference is that
we introduce the set ∆ which allows us to better control the properties of the
generating set of generic models and we replace the condition: for some c,
(τ = c) ∈ f(q) for some q ≥ p, which appear in the definition of forcing in [2],
by the condition (v)(3) above.

Definition 3.2 Let LA be a fragment and P a forcing property. The relation
p ° φ in P, (defined relatively to the fragment LA), read p forces φ, is defined,
by induction on φ, for p ∈ P and φ ∈ L(C)A, as follows:

If φ is an atomic sentence, then p ° φ iff φ ∈ f(p).
p ° ¬φ iff there is no q ≥ p such that q ° φ.
p °

∨
Φ iff p ° φ for some φ ∈ Φ.

p ° ∃xφ(x) iff p ° φ(τ) for some term τ ∈ ∆.
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We see also here that the latter condition is modified and replace the con-
dition: p ° ∃xφ(x) iff p ° φ(c) for some c ∈ C, which appear in [2]. Thus
by taking ∆ = C we find the notion of p ° φ developed in [2]. We say that p
weakly forces φ, in symbols p °w φ, iff p forces ¬¬φ. We write p 1 φ (resp.
p 1w φ) to mean that p does not forces (resp. not weakly forces) φ.

From now on shall assume that LA is a countable fragment of Lω1ω and
P a forcing property of L. The sets LA and P are arbitraries but are fixed to
simplify notation. Note that L(C)A is also countable.

Definition 3.3 A subset G ⊆ P is said to be generic iff
(i) p ∈ G and q ≤ p implies q ∈ G.
(ii) p, q ∈ G implies that there exists r ∈ G with p ≤ r and q ≤ r.
(iii) For each sentences φ in L(C)A there exists p ∈ G such that either p ° φ

or p ° ¬φ
Here there is no difference with the corresponding definition of generic sets

in [2].

Definition 3.4 A model M is called a generic model (relatively to the forcing
property P and to the fragment LA) iff

(i) M is an L(C)-structure generated by the interpretations of the constants
symbols of C,

(ii) there is a generic set G which satisfies: every sentence φ in L(C)A which
is forced by some p ∈ G holds in M.

We say in that case that G generically-generate M. If p is a condition
we say that M is a generic model for p if there is a generic set G such that
p ∈ G and G generically-generate M. We will show in the end of this section
that by taking ∆ = C we find the generic models developed in [2].

Note that when C is finite, every generic model is finitely generated. Re-
mark also that since the notion of forcing depends of some countable fragment,
generic models depends also of some fragment.

We begin by the following lemma which unites some properties about forcing:

Lemma 3.5 We have the following properties:
(1) If p ≤ q and p ° φ then q ° φ.
(2) We can not have both p ° φ and p ° ¬φ.
(3) p °w φ iff for every q ≥ p there is a condition r ≥ q such that r ° φ.

Proof
(1) By induction on φ.
For φ atomic. The conclusion follows from f(p) ⊆ f(q).
For ¬φ. We have p ° ¬φ. Suppose towards a contradiction that q 1 ¬φ.

Then by definition of forcing: there is q′ ≥ q such that q′ ° φ. Therefore there
is q′ ≥ p such that q′ ° φ, thus p 1 ¬φ, which is a contradiction.

For
∨

Φ. Since p °
∨

Φ then p ° φ for some φ ∈ Φ. By induction q ° φ,
and by definition q °

∨
Φ.
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For ∃xφ(x). Since p ° ∃xφ(x) then p ° φ(τ) for some term τ ∈ ∆. By
induction q ° φ(τ), and by definition q ° ∃xφ(x).

(2) Obvious.
(3) p °w φ iff p ° ¬¬φ iff for every q ≥ p, q 1 ¬φ
iff for every q ≥ p, there exists r ≥ q such that r ° φ. ¤
Now we prove the principal theorem of this section:

Theorem 3.6 (Generic Model Theorem) For every p ∈ P there is a generic
model for p.

Theorem 3.6 is a direct consequence of the two following lemmas:

Lemma 3.7 Every p ∈ P belongs to a generic set.

Proof
The proof of this lemma is analogue to the one in [2], but for the reader’s

convenience we give the same proof here. Since L(C)A is countable, we can
enumerate L(C)A. Thus let (φn : n ∈ N) be an enumeration of L(C)A. Form
a chain of conditions p0 ≤ p1 ≤ · · · in P as follows. Let p0 = p. If pn ° ¬φn,
let pn+1 = pn, otherwise choose pn+1 ≥ pn such that pn+1 ° φn. The set
G = {q ∈ P : q ≤ pn for some n ∈ N} is generic and contains p. ¤

Lemma 3.8 Every generic set G generically-generate a model M.

Proof
The proof is sensibly different of the proof in [2]. Let T be the set of all

sentences of L(C)A which are forced by some p ∈ G. Then T has the following
properties for all sentences and all terms without variables in L(C)A.

(1) Exactly one of φ, ¬φ is in T .
Proof. Since G is generic there is p ∈ G such that p ° φ or p ° ¬φ.

Therefore φ ∈ T or ¬φ ∈ T . Suppose towards a contradiction that φ,¬φ ∈ T .
Then there exists p, q ∈ G such that p ° φ and q ° ¬φ. By the property (3) of
generic set, and by Lemma 3.5, we see that there is r ∈ G such that r ° φ and
r ° ¬φ. This contradict the property (2) of Lemma 3.5. ¤

(2)
∨

Φ ∈ T iff φ ∈ T for some φ ∈ Φ. This is obvious.

(3) ∃xφ(x) ∈ T iff φ(τ) ∈ T for some term τ ∈ ∆. This is also obvious.

(4) (i) For every term τ , (τ = τ) ∈ T .
(ii) For every term τ , there exists a term τ ′ ∈ ∆ such that (τ ′ = τ) ∈ T .
(iii) If (τ = σ) ∈ T then (σ = τ) ∈ T .
(iv) If (τ = σ), φ(τ) ∈ T where φ(x) is an atomic formula, then φ(σ) ∈ T .
Proof.
(i) Let τ be a term and let p ∈ P . We claim that there exists q ≥ p such

that q ° (τ = τ). By (v)(3) of definition of forcing there exists q1 ≥ p and
τ ′ ∈ ∆ such that (τ ′ = τ) ∈ f(q1). Now by putting φ(x) := (x = τ) we have
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φ(τ ′) ∈ f(q1). Thus, by (v)(2) of definition of forcing, we have φ(τ) ∈ f(q) for
some q ≥ q1 ≥ p. Therefore there exists q ≥ p such that q ° (τ = τ) and this
complete the proof of our claim.

Therefore every p ∈ P , p 1 ¬(τ = τ). Since G is generic there is r ∈ G such
that r ° (τ = τ), thus (τ = τ) ∈ T .

(ii) Let τ be a term and p ∈ P . By the property (v)(3) of the definition of
forcing there exist τ ′ ∈ ∆ and q ≥ p such that q ° (τ ′ = τ). Thus q ° ∃x(x = τ).
Therefore every p ∈ P , p 1 ¬∃x(x = τ). Since G is generic there is r ∈ G such
that r ° ∃x(x = τ), and thus ∃x(x = τ) ∈ T . Therefore, by (3), (τ ′ = τ) ∈ T
for some term τ ′ ∈ ∆.

(iii) If (τ = σ) ∈ T then there is p ∈ G such that p ° (τ = σ). Suppose
towards a contradiction that (¬(σ = τ)) ∈ T . Then there is q ∈ G such that
q ° ¬(σ = τ). Since G is generic there is r ∈ G such that: r ° (τ = σ) and
r ° ¬(σ = τ). Now by the property of forcing (v)(1) there is r′ ≥ r such
that r′ ° (σ = τ), and this a contradiction with r ° ¬(σ = τ). Therefore
(σ = τ) ∈ T .

(iv) Can be proved similarly using the property (v)(2) of the definition of
forcing. ¤

Let Γ be the set of all terms without variables of L(C). We define, on Γ, the
following relation:

τ ∼ σ iff (τ = σ) ∈ T.

Then one can check, using (4)(i)-(iv), that ∼ is an equivalence relation. Let
M = Γ/ ∼. We denote by τ̂ the class of τ . The function and relation symbols
and constants symbols of L are interpreted in M in such a way that:

F (τ̂1, · · · , τ̂n) = τ̂p iff (F (τ1, · · · , τn) = τp) ∈ T .
R(τ̂1, · · · , τ̂n) iff R(τ1, · · · , τn) ∈ T .
If d a constant symbol of L then we interpret d in M by d̂.

By (4)(i)-(iv) we see that this definitions are unambiguous. This make M
an L-structure, generated by the interpretations of the constants symbols of C.

Let us show that: for each sentence φ in L(C)A, M |= φ iff φ ∈ T .
We do this by induction on φ.
For φ atomic. The results follows from the definition of the L-structure M.
For ¬φ. Let ¬φ ∈ T . Suppose that M |= φ, then by induction we have

φ ∈ T , which is a contradiction. Therefore M |= ¬φ. Now if M |= ¬φ, then φ
is not in T , therefore ¬φ ∈ T .

For
∨

Φ. If M |= ∨
Φ then M |= φ for some φ ∈ Φ. By induction φ ∈ T ,

thus by (2)
∨

Φ ∈ T . Now if
∨

Φ ∈ T then by (2) φ ∈ T for some φ ∈ Φ.
Therefore, by induction, M |= φ and thus M |= ∨

Φ.
For ∃xφ(x).
If M |= ∃xφ(x), then M |= φ(τ) for some term τ . By (4)(ii), there is some

term τ ′ ∈ ∆ such that (τ ′ = τ) ∈ T . By induction M |= (τ ′ = τ). Since
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M |= φ(τ) then M |= φ(τ ′). By induction φ(τ ′) ∈ T . By (3), ∃xφ(x) ∈ T . The
converse is obvious.

This completes the proof that M is a generic model generically-generated
by G. ¤

Now we prove the following Lemma.

Lemma 3.9 We have the followings properties:
(1) p ° ∀xφ(x) iff for every term τ and every q ≥ p there is r ≥ q such

that r ° φ(τ).
(2) p °w φ iff φ holds in every generic model for p.
(3) If M is a generic model then for every x ∈M there exists τ ∈ ∆ such

that M |= (x = τ).

Proof
(1) By definition ∀xφ(x) is the sentence ¬∃x¬φ(x).
p ° ∀xφ(x) iff p ° ¬∃x¬φ(x) iff
there is no q ≥ p such that q ° ∃x¬φ(x) iff
for every q ≥ p, for every term τ ∈ ∆, q 1 ¬φ(τ) iff
for every q ≥ p, for every term τ ∈ ∆, there is r ≥ q such that r ° φ(τ).
Therefore if for every term τ and every q ≥ p there is r ≥ q such that

r ° φ(τ), then p ° ∀xφ(x).
We prove the inverse implication. Let p ° ∀xφ(x), let q ≥ p and let τ be

a term. Let M be a generic model for q, generically-generated by G. Then
M |= ∀xφ(x), and thus M |= φ(τ). Therefore, since G is generic, there exists
r ≥ q such that r ° φ(τ).

(2) If p °w φ then by Lemma 3.5(1) for every q ≥ p there is a condition
r ≥ q such that r ° φ. Therefore if G is a generic set containing p there is no
r ∈ G such that r ° ¬φ. Thus φ is true in all generic models for p.

Suppose now that φ is true in all generic models of p. Let q ≥ p. Since φ is
true in all generic models of q there exists r ≥ q such that r ° φ. By Lemma
3.5 (1) p °w φ.

(3) Let M be generic model generically-generated by G and let x ∈ M.
Then there exists a term τ such that x = τ in M. Therefore M |= ∃y(y = τ)
and thus there exists r ∈ G such that r ° ∃y(y = τ). Therefore there exists
a term τ ′ ∈ ∆ such that r ° (τ ′ = τ). Therefore M |= (τ ′ = τ) and thus
M |= (x = τ ′). ¤

We finish this section by showing how to obtain the usual forcing from our
version. We have seen earlier that by taking ∆ = C we find the usual notion
of forcing property and the usual notion of the relation p ° φ. It is sufficient
to show that, in case ∆ = C, the generic models in our sense coincide with
those given in [2]. Obviously, in case ∆ = C, every generic model in sense of
[2] is a generic model in our sense. Thus we show that, always in case ∆ = C,
that every generic model in our sense is a generic model in sense of [2], i.e. we
show that if M is a generic model in our sense then M is exactly the set of all
interpretations of the constants symbols of C.
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Let M be a generic model. By Lemma 3.9 for every x ∈ M there exists
a term τ ∈ ∆ such that M |= (x = τ). Since we have ∆ = C then for every
x ∈ M there exists c ∈ C such that M |= (x = c). Therefore M is the set of
interpretations of the constant symbols of C, and thus M is a generic model in
the sense of [2].

4 Application to n-generated models

We let C = c = {c1, · · · , cn} finite. We begin by useful definitions which are
the adaptation to the context of n-generated models of the usual one in first
order logic.

Definition 4.1 Let T (c) be a theory in L(C) and φ(c) a sentence in L(C).

(1) Let M be a model and a ∈Mn. We say that (M, a) is a n-generated model
of T (c) and we write M |= T (a) if a generate M and M |= ϕ(a) for every
sentence ϕ(c) ∈ T (c). The theory T (c) is said to be n-consistent if it has
a n-generated model, i.e. there is a n-generated model M generated by some
n-tuple a such that M |= T (a). We say that φ(c) is n-consistent with T (c) if
T (c) ∪ {φ(c)} is n-consistent.

(2) We write T (c) `n φ(c) to mean that for every n-generated model, generated
by a n-tuple a we have M |= φ(a) whenever M |= T (a).

(3) We say that T (c) is τ-close if the following property holds: for every for-
mula φ(x, c) in L(C), if for every term τ there is a finite subset S ⊆ T (c)
such that S `n φ(τ, c) then there exists a finite subset S′ ⊆ T (c) such that
S′ `n ∀xφ(x, c).

(4) Let 4(c, x) be a set of formulas of L(C) whose free variables are among x
where the length of x is finite and equal to m. We say that 4(c, x) is a principal
set relatively to T (c) (or simply principal set if there is no ambiguity) if there
exists a sentence φ(c) of L(C) and a finite m-tuple of terms τ(c) of L(C) such
that:

T (c) ∪ {φ(c)} is n-consistent and

T (c) `n (φ(c) ⇒ ϕ(c, τ(c))), for every ϕ(c, x) ∈ 4(c, x).

Note that the tuple c play a particular role in our definition, as it is always
regarded like a generating tuple.

4.1 Compactness and Omitting types

In this subsection we prove the following two theorems which are more general
version of Theorem 1.1 and Theorem 1.2 enounced in the introduction:

Theorem 4.2 (Compactness) Let T (c) be a τ -close theory in L(C) such that
every finite subset of T (c) is n-consistent. Then T (c) is n-consistent.
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Theorem 4.3 (Omitting types) Let T (c) be a n-consistent theory in L(C). Let
(4i(c, xi) : i ∈ N) be a sequence of (countable) sets of formulas of L(C) where
the length of xi is finite. If for every i ∈ N the set 4i(c, xi) is not a principal
set relatively to T (c) then there is a n-generated model M of T (c) which omit
4i for every i ∈ N, i.e. M is generated by some n-tuple a such that M |= T (a)
and M |= ∀xi

∨
ϕ∈4i

¬ϕ(a, xi), for every i ∈ N.

First we prove the following lemma:

Lemma 4.4 Let T (c) be a theory in L(C).

(1) Let Γ(c) = {φ(c) : T (c) `n φ(c)}. If T (c) is n-consistent then Γ(c) is τ -close.

(2) Suppose that every finite subset of T (c) is n-consistent and let:

P = {p : p is a finite set of sentences in L(C) and S ∪ p is n-consistent

for every finite subset S ⊆ T (c)}.
For every p ∈ P define f(p) = {ϕ(c) : ϕ atomic and ϕ(c) ∈ p}. Then the
quadruple P = (P,≤,∆, f) with ≤ is the inclusion relation ⊆ and ∆ is the set
of all terms of L(C) is a forcing property. We call P the canonical forcing
property of T (c).

Remark 4.5 (1) means that in ”some sense” the condition of τ -closeness is a
necessary condition for a theory T (c) to be n-consistent.

Proof

(1) Let φ(x, c) be a formula of L(C) such that for every term τ there is a finite
subset S ⊆ Γ(c) such that S `n φ(τ, c) and prove that there exists a finite
subset S′ ⊆ Γ(c) such that S′ `n ∀xφ(x, c). We claim in fact that we have
∀xφ(x, c) ∈ Γ(c). Let (M, a) be a n-generated model of T (c). Then M |= Γ(a)
and therefore for every term τ(c) we have M |= φ(τ(a), a). Since M is finitely
generated by a we have M |= ∀xφ(x, a). Thus we have proved that if M is
generated by a such that M |= T (a) then M |= ∀xφ(x, a). By definition of Γ(c)
this implies that ∀xφ(x, c) ∈ Γ(c). This terminate the proof of our claim and
on the same time the proof of (1).

(2) First notice that (P,≤) is partially ordered with a least element ∅. Now if
p ⊆ q then we notice also that f(p) ⊂ f(q). Thus it is sufficient to prove the
properties (v)(1)-(3) of the definition of forcing property.

Let τ, σ be a terms of L(C) without variables and p ∈ P .
(v)(1) Let (τ = σ) ∈ f(p). By putting q = p ∪ {(σ = τ)} we see that q ∈ P

and that q has the required properties.
(v)(2) Let (τ = σ) ∈ f(p), φ(τ) ∈ f(p) where φ(x) is an atomic formula.

Then as before by putting q = p∪ {φ(σ)} we see that q ∈ P and φ(σ) ∈ f(q) as
required.
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(v)(3) By taking τ ′ = τ and q = p∪ {τ = τ} we see as before that q has the
desired properties.

Thus P = (P,≤,∆, f) is a forcing property as claimed. ¤
To prove Theorem 4.2 we need the following lemma:

Lemma 4.6 Let T (c) be a τ -close theory such that every finite subset of T (c) is
n-consistent. Let LA be a countable fragment in Lω1ω and let P be the canonical
forcing property of T (c). Then for every sentence φ of L(C) we have:

(1) For every p in P , if p ° φ then p ∪ {φ} is n-consistent.
(2) For every p in P , if p `n φ then p °w φ.

Proof
The proof is by induction on φ and we prove (1) and (2) simultaneously.

(i) φ is atomic.
(1) Since p ° φ then φ ∈ f(p) therefore p ∪ {φ} is n-consistent.
(2) Let q ≥ p and let r = q ∪ {φ} then φ ∈ f(r) and r ∈ P , as p `n φ.

Therefore by Lemma 3.5 p °w φ as required.

(ii) φ = ¬ϕ.
(1) We have p ° ¬ϕ. Suppose towards a contradiction that p ∪ {¬ϕ} is not

n-consistent, and thus p `n φ. By induction hypothesis (2), we have p °w ϕ. So
there exists q ≥ p such that q ° ϕ, a contradiction with p ° ¬ϕ. Thus p∪{¬ϕ}
is n-consistent.

(2) We have p `n ¬ϕ. Suppose towards a contradiction that p 1w ¬ϕ. Then
by Lemma 3.5 there is q ≥ p such that for every q′ ≥ q, q′ 1 ¬ϕ. Therefore
q 1 ¬ϕ and thus there exists r ≥ q such that r ° ϕ. By induction r ∪ {ϕ} is
n-consistent. But since r ≥ q ≥ p and p `n ¬ϕ, we have ¬ϕ ∧ ϕ is n-consistent
which is a contradiction. Thus p °w ¬ϕ as required.

(iii) φ = ϕ1 ∨ ϕ2.
(1) Since p ° ϕ1 ∨ ϕ2 we have p ° ϕ1 or p ° ϕ2. The conclusion follows by

induction.
(2) We have p `n ϕ1∨ϕ2. Suppose towards a contradiction that p 1w ϕ1 ∨ ϕ2.

Then as before by Lemma 3.5 there exists q ≥ p such that q ° ¬(ϕ1 ∨ ϕ2). Let
M be a generic model for q. Then M |= ¬(ϕ1∨ϕ2), therefore M |= (¬ϕ1∧¬ϕ2)
and thus M |= ¬ϕ1 and M |= ¬ϕ2. Hence there exists r ≥ q such that r ° ¬ϕ1

and r ° ¬ϕ2.
Now suppose that for every finite subset S ⊆ T (c), S ∪ r ∪ {ϕ1} is n-

consistent. Then r ∪ {ϕ1} ∈ P , and thus by induction r °w ϕ1, a contradiction
with r ° ¬ϕ1.

Now suppose that there exists a finite subset S0 ⊆ T (c) such that S0∪r∪{ϕ1}
is not n-consistent. Then for every finite subset S ⊆ T (c), S ∪ r ∪ {¬ϕ1} is n-
consistent. Since p `n ϕ1∨ϕ2 and r ≥ p we have for every finite subset S ⊆ T (c),
S∪r∪{ϕ2} is n-consistent. Then r∪{ϕ2} ∈ P , and thus by induction r °w ϕ2,
and this is a contradiction with r ° ¬ϕ2.

Hence our initial supposition is false, thus p °w ϕ1 ∨ ϕ2.
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(iv) φ = ∃xϕ(x).
(1) Since p ° ∃xϕ(x), there is some term τ ∈ ∆ such that p ° ϕ(τ). By

induction p ∪ {ϕ(τ)} is n-consistent, therefore p ∪ {∃xϕ(x)} is n-consistent.
(2) p `n ∃xϕ(x). Suppose towards a contradiction that p 1w ∃xϕ(x), thus

there is some q ≥ p such that q ° ¬∃xϕ(x). Let M be a generic model for q.
Then M |= ∀x¬ϕ(x). Hence there exists r ≥ q such that r ° ∀x¬ϕ(x).

Suppose towards a contradiction that there is some term τ0 such that for
every finite subset S ⊆ T (c), S∪r∪{ϕ(τ0)} is n-consistent. Then r∪{ϕ(τ0)} ∈ P ,
and by induction we have r °w ϕ(τ0). Since r ° ∀x¬ϕ(x), by Lemma 3.9 for
every term τ there exists r′ ≥ r such that r′ ° ¬φ(τ) and thus r′ ° ¬φ(τ0) for
some r′ ≥ r. A contradiction with r °w ϕ(τ0).

Therefore for every term τ , there is a finite subset Sτ ⊆ T (c) such that
Sτ ∪ r `n ¬ϕ(τ). Therefore we have: for every term τ , there is a finite subset
Sτ ⊆ T (c) such that Sτ `n (

∧
φ∈r φ ⇒ ¬ϕ(τ)). Since T (c) is τ -close there

is some finite subset S ⊆ T (c) such that S `n ∀y(
∧

φ∈r φ ⇒ ¬ϕ(y)), thus
S `n (

∧
φ∈r φ ⇒ ∀y(¬ϕ(y)) and thus S ∪ r `n ∀y(¬ϕ(y)). But, since p `n

∃xϕ(x) and r ≥ p we have a final contradiction.
Therefore our initial hypothesis is false, thus for every q ≥ p there exists

r ≥ q such that r ° ∃xφ(x). Hence p °w ∃xφ(x).
This complete the proof of the lemma. ¤

Lemma 4.7 Let T (c) be a τ -close theory such that every finite subset of T (c) is
n-consistent. Let LA be a countable fragment in Lω1ω and let P be the canonical
forcing property of T (c). Let M be a generic model relative to P and LA, and
let a be the interpretation of c in M. Then M |= T (a). Furthermore for every
p ∈ P there exists a generic model M such that M |= (

∧
θ∈p θ).

Proof
Let φ(c) ∈ T (c). Suppose towards a contradiction that there exists a generic

model M generically-generated by G such that M |= ¬φ(a) where a is the
interpretations of the constants symbols c. Then there is p ∈ G such that
p ° ¬φ(c). Let q = p ∪ {φ(c)}. Then q ∈ P and by lemma 4.6 we have
q °w φ(c), this contradict the fact that p ° ¬φ(c).

Now let p ∈ P and let M be a generic model generically-generated by G
such that p ∈ G. Since p `n (

∧
θ∈p θ), by Lemma 4.6, p °w (

∧
θ∈p θ). Therefore

there is no q ≥ p such that q ° ¬(
∧

θ∈p θ). Therefore, since G is a generic set,
there exists r ∈ G such that r ° (

∧
θ∈p θ), and thus M |= (

∧
θ∈p θ). ¤

Proof of Theorem 4.2 The theorem is a mere consequence of the Lemma
4.7.

¤

Now we are going to prove Theorem 4.3. To do this we need the following
lemma:

Lemma 4.8 Let:
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Φ = ∀x1 · · · ∀xm

∨
i∈N ϕi(c, x1, · · · , xm), where ϕi(c, x1, · · · , xm) is in L(C).

Let T (c) be τ -close theory such that every finite subset of T (c) is n-consistent.
Let LA be a fragment such that Φ ∈ L(C)A, and let P be the canonical forcing
property of T (c). Then the following properties are equivalent:

(I) Φ holds in all generic models (relatively to LA and to P).
(II) For every finite tuple τ1, · · · , τm of terms and for every p ∈ P there is

i ∈ N such that T (c) ∪ p ∪ {ϕi(c, τ1, · · · , τm)} is n-consistent.

Proof
By Lemma 3.5 and Lemma 3.9, each of the following statements is equivalent:
(1) Φ holds in all generic models for 0.
(2) For every finite tuple τ1, · · · , τm of terms,

∨
i∈N ϕi(c, τ1, · · · , τm) holds in

all generic models for 0.
(3) For every finite tuple τ1, · · · , τm of terms, 0 °w

∨
i∈N ϕi(c, τ1, · · · , τm).

(4) For every finite tuple τ1, · · · , τm of terms, and for every p ∈ P there exists
q ≥ p and there exists i ∈ N such that q ° ϕi(c, τ1, · · · , τm).

Now we prove that (4) is equivalent to the following:
(5) For every finite tuple τ1, · · · , τm of terms, and for every p ∈ P there

exists q ≥ p and there exists i ∈ N such that: for every finite subset S ⊆ T (c),
S ∪ q ∪ {ϕi(c, τ1, · · · , τm)} is n-consistent.

Let us show that (4)⇒(5). Since q ° ϕi(c, τ1, · · · , τm), then for every finite
subset S ⊆ T (c) , S ∪ q ° ϕi(c, τ1, · · · , τm), as q′ = S ∪ q ∈ P and q′ ≥ q.
Therefore by Lemma 4.6, we have: for every finite subset S ⊆ T (c), S ∪ q ∪
{ϕi(c, τ1, · · · , τm)} is n-consistent. Thus we have (5).

We show now that (5)⇒(4). Since for every finite subset S ⊆ T (c), S ∪ q ∪
{ϕi(c, τ1, · · · , τm)} is n-consistent, then q ∪ {ϕi(c, τ1, · · · , τm)} ∈ P . By Lemma
4.6 we have q °w ϕi(c, τ1, · · · , τm). Therefore there is q′ ≥ q ≥ p such that
q′ ° ϕi(c, τ1, · · · , τm), thus we have (4).

Now (5) is clearly equivalent to the following:
(6) For every finite tuple τ1, · · · , τm of terms, and for every p ∈ P there exists

i ∈ N such that: for every finite subset S ⊆ T (c), S ∪ p ∪ {ϕi(c, τ1, · · · , τm)} is
n-consistent.

Now let us show that (6) is equivalent to the following:

(7) for every finite tuple τ1, · · · , τm of terms, for every p ∈ P , there is i ∈ N
such that: T (c) ∪ p ∪ {ϕi(c, τ1, · · · , τm)} is n-consistent.

Obviously we have (7)⇒(6).
We show (6)⇒(7). By (6) p∪{ϕi(c, τ1, · · · , τm)} ∈ P . Therefore, by Lemma

4.7, there exists a generic model M such that M |= (
∧

θ∈p θ)∧ϕi(c, τ1, · · · , τm).
Since, by the same Lemma, M |= T (c) the theory T (c)∪ p∪ {ϕi(c, τ1, · · · , τm)}
is n-consistent.

Therefore (1)⇔(7) and this complete the proof of the lemma. ¤
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Proof of Theorem 4.3 For every i ∈ N put:

4i(c, xi) = {ϕj(c, x1, · · · , xmi
) : j ∈ N},

where mi is the length of xi. For every i ∈ N let:

Φi = ∀x1 · · · ∀xmi

∨

j∈N
¬ϕj(c, x1, · · · , xmi

), where ϕj(c, x1, · · · , xmi
) ∈ 4i.

Let LA be a fragment such that L(C)A contains Φi for every i ∈ N.
Since T (c) is n-consistent by Lemma 4.4 the theory

Γ(c) = {φ(c) : T (c) `n φ(c)}

is τ -close (and T (c) ⊆ Γ(c)).
Since for every i ∈ N the set 4i is not a principal set then for every i and for

every mi-tuple τ of terms there is no sentence φ(c) of L(C) which is n-consistent
with T (c) such that:

T (c) `n (φ(c) ⇒ ϕ(c, τ)), for every ϕ(c, xi) ∈ 4i.

Therefore for every i ∈ N and for every tuple τ of terms there is no sentence
φ(c) of L(C) which is n-consistent with Γ(c) such that:

Γ(c) `n (φ(c) ⇒ ϕ(c, τ)), for every ϕ(c, x) ∈ 4i.

Therefore for every i ∈ N and for every finite tuple τ1, · · · , τm of terms, and
for every p ∈ P there exists j ∈ N such that Γ(c) ∪ p ∪ {¬ϕj(c, τ1, · · · , τm)}
is n-consistent where ϕj ∈ 4i, and P is the canonical forcing property of Γ(c)
(note that, by Lemma 4.7, for every p ∈ P the theory Γ(c) ∪ p is n-consistent).

Therefore by Lemma 4.8 every generic model, relatively to LA and P, satisfies
Φi for every i ∈ N. Thus every generic model, relatively to LA and P, omit 4i

for every i. By Lemma 4.7 every generic model is a n-generated model of Γ(c),
and thus a n-generated model of T (c). Thus T (c) has a n-generated model
which omit 4i for every i ∈ N. ¤

4.2 The number of n-generated models

Definition 4.9 Let T (c) be a theory in L(C). We denote by αn(T (c)) the
number of nonisomorphic n-generated models of T (c). If M is a model we
denote αn(M) the number αn(Th(M)). By α(T (c)) we denote the number of
finitely generated models of T (c) and by α(M) the number α(Th(M)).

We will prove the following:

Theorem 4.10 Let T (c) be a n-consistent theory. Then either αn(T (c)) ≤ ℵ0

or αn(T (c)) = 2ℵ0 . Furthermore α(T (c)) ≤ ℵ0 or α(T (c)) = 2ℵ0 .
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To do this we need some notions and a proposition from [4]. Let Φ be
sentence of Lω1ω and LA be a countable fragment of Lω1ω. We define an LA-n-
type to be a set p such that:

p = {ϕ(x1, · · · , xn) ∈ LA : M |= ϕ(a1, · · · , an)},

for some model M of Φ and some tuple a ∈Mn. The set of all LA-n-type of Φ
is denoted by Sn(LA, Φ). We need the following proposition:

Proposition 4.11 [4, Corollary 2.4] For every countable fragment LA the set
Sn(LA, Φ) is either countable or of power 2ℵ0 .

The reader can found some help about this also in [3].

Proof of Theorem 4.10 Let

Φ =
∧

ϕ∈T (c)

ϕ(c) ∧ ∀y(
∨

τ∈Ter

y = τ(c)),

where Ter is the set of all terms of L(C). Then Φ ∈ L(C)ω1ω and every model
of Φ is a n-generated model of T (c). Let LA be the set of all formulas of L(C).
Then LA is a countable fragment and by Proposition 4.11 Sn(LA, Φ) is countable
or of power 2ℵ0 .

Let M be a model of Φ and let a the interpretation of the constants symbols
c. Then the set

4(M, a) = {ϕ(x1, · · · , xn) ∈ LA : M |= ϕ(a1, · · · , an)}

is a LA-n-type.
Therefore if Sn(LA,Φ) is countable Φ has at most ℵ0 models, and if Sn(LA,Φ)

has a power 2ℵ0 then Φ must have 2ℵ0 models (and thus 2ℵ0 n-generated mod-
els), as any model of Φ realize at most a countable number of LA-n-type.

Now α(T (c)) ≤ ℵ0 whenever αn(T (c)) ≤ ℵ0 for every n ∈ N, and α(T (c)) =
2ℵ0 whenever αn(T (c)) = 2ℵ0 for some n ∈ N. ¤

We are going to see some consequence of the fact that αn(T ) ≤ ℵ0.

Theorem 4.12 Let T (c) be a n-consistent theory in L(C) such that αn(T (c)) ≤
ℵ0. Then there exist a n-generated model (N , a) of T (c) and a sentence φ(c)
in L(C) such that N |= φ(a) and for every n-generated model (K, b) of T (c) we
have (N , a) ∼= (K, b) if and only if K |= φ(b).
In other words we have:

(1) N |= φ(a),
(2) if K is a n-generated model, generated by the n-tuple b, such that K |=

T (b) and K |= φ(b) then the function defined by f(ai) = bi (for 1 ≤ i ≤ n)
extends to an isomorphism.

Definition 4.13 A model (N , a) of T (c) for which there exists a sentence φ
satisfying (1) and (2) above is called a pseudo-prime model of T (c).
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Proof
Let α = αn(T (c)) and let (Mi)i∈α be a representative list of all n-generated

models of T (c), up to isomorphism. For every i ∈ α let

Ω(Mi) = {a ∈Mn
i : a generate Mi, Mi |= T (a)},

and let
I = {(i, a) : i ∈ α, a ∈ Ω(Mi)}.

For every (i, a) ∈ I let

4(i,a) = {ϕ(c) : ϕ(c) is in L(C) such that Mi |= ϕ(a)}.

Suppose towards a contradiction that for every (i, a) ∈ I, 4(i,a) is not a
principal set. Since α ≤ ℵ0 the set I is at most countable. Then by the
omitting type theorem there is a n-generated model M of T (c) which omit
4(i,a) for every (i, a) ∈ I, i.e. M has a generating n-tuple b such that:

(∗) M |= T (b) and M |=
∨

ϕ∈4(i,a)

¬ϕ(b), for every (i, a) ∈ I.

Since M is a n-generated model of T (c) there is i0 ∈ α such that (M, b) ∼=
(Mi0 , d) for some generating n-tuple d of Mi0 . Now since M |= T (b) we have
Mi0 |= T (d) and thus (i0, d) ∈ I. Therefore

Mi0 |= ϕ(d) for every ϕ ∈ 4(i0,d),

and by (*)
Mi0 |=

∨

ϕ∈4(i0,d)

¬ϕ(d) as (M, b) ∼= (Mi0 , d),

which is a contradiction.
Therefore there is (k, a) ∈ I such that 4(k,a) is a principal set, i.e. there

exists a formula φ(c) such that:

T (c)∪{φ(c)} is n-consistent and T (c) `n (φ(c) ⇒ ϕ(c)), for every ϕ(c) ∈ 4(k,a).

We claim that Mk has the required properties (1) and (2). First of all we
have Mk |= φ(a). Indeed if Mk |= ¬φ(a) then ¬φ(c) ∈ 4(k,a), thus T (c) `n

(φ(c) ⇒ ¬φ(c)) and thus T (c) `n ¬φ(c) a contradiction with the n-consistency
of T (c) ∪ {φ(c)}. Therefore we have (1).

Now let K be a n-generated model, generated by a n-tuple b, such that
K |= T (b) and K |= φ(b). Then

K |= ϕ(b) for every ϕ ∈ 4(k,a), i.e. for every ϕ such that Mk |= ϕ(a),

and thus the function defined by f(ai) = bi (for 1 ≤ i ≤ n) extends to an
isomorphism. This complete the proof of the theorem. ¤
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Corollary 4.14 Let M be a n-generated model such that αn(M) ≤ ℵ0. Then
there exist a n-generated model N = 〈a1, · · · , an〉 such that M ≡ N and a
sentence φ(c1, · · · , cn) in L(C) such that N |= φ(a1, · · · , an), and: if K is a
n-generated model, generated by the tuple b1, · · · , bn, such that K ≡ M and
K |= φ(b1, · · · , bn) then the function defined by f(ai) = bi (for 1 ≤ i ≤ n)
extends to an isomorphism. ¤

We give now a sufficient condition to have αn(T ) = 2ℵ0 .

Definition 4.15 Let T (c) be a n-consistent theory and φ(c) a sentence of L(C).
Then φ is said to be n-complete if for every sentence ϕ(c) we have:

T (c) `n (φ(c) ⇒ ϕ(c)) or T (c) `n (φ(c) ⇒ ¬ϕ(c)).

Then we have:

Theorem 4.16 Let T be a n-consistent theory in L and suppose that there
exists a sentence θ(c) n-consistent with T such that T 0n (φ(c) ⇒ θ(c)) whenever
φ is a n-complete sentence. Then αn(T ) = 2ℵ0 .

We begin by the following.

Lemma 4.17 Let T be a n-consistent theory in L and N a n-finitely generated
model of T such that there exists a n-tuple a which generate N and n-complete
sentence φ(c) such that N |= φ(a). Then for every generating n-tuple b of N
there is a n-complete sentence φ0(c) such that N |= φ0(b).

Proof
Since φ(c) is a n-complete sentence and N |= φ(a), we have:

T `n (φ(c) ⇒ ϕ(c)) for every ϕ such that N |= ϕ(a).

Let b be a generating n-tuple of N . Then there is a finite tuple of terms
τ1(a), · · · , τn(a) such that N |= ∧i=n

i=1 (bi = τi(a)). We claim that the sentence

φ0(c) = ∃x(
∧i=n

i=1 (ci = τi(x)) ∧ φ(x))

is a n-complete one. We prove that:

(∗) T `n (φ0(c) ⇒ ϕ(c)) for avery ϕ such that N |= ϕ(b).

Let K be a n-generated model of T generated by the n-tuple d such that
K |= φ0(d). Then there is a n-tuple k in K such that

K |= (
i=n∧

i=1

(di = τi(k)) ∧ φ(k)).

Since K is generated by d and K |= (
∧i=n

i=1 (di = τi(k)), K is generated by k.
Since K |= φ(k) and k generate K the function defined by f(ai) = ki (for 1 ≤
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i ≤ n) extends to an isomorphism. Therefore for every sentence ϕ(c), K |= ϕ(d)
whenever N |= ϕ(b), as K |= (

∧i=n
i=1 (di = τi(k)) and N |= ∧i=n

i=1 (bi = τi(a)).
Thus we have (∗).

Let ϕ(c) be a sentence in L(C). Then either N |= ϕ(b) or N |= ¬ϕ(b).
Therefore by (*) we have

T `n (φ0(c) ⇒ ϕ(c)) or T `n (φ0(c) ⇒ ¬ϕ(c)),

and thus φ0(c) is a n-complete sentence as claimed. ¤

Remark 4.18
(1) In Lemma 4.17 one can not take T in L(C) because one can not ensure, in

the proof of that Lemma, that if K |= (
∧i=n

i=1 (di = τi(k))∧φ(k)) then K |= T (k).
(2) A model M is a pseudo-prime model of T if and only if there exist a

n-generating tuple a and a n-complete sentence φ(c) such that M |= φ(a).

Proof of Theorem 4.16 Suppose towards a contradiction that αn(T ) ≤
ℵ0. Let (Ni)i∈γ be a representative list of n-generated models of T , up to
isomorphism, such that: for every generating n-tuple a of Ni and for every
n-complete sentence φ(c), Ni |= ¬φ(a).

As in the proof of Theorem 4.12 for every i ∈ γ let

Ω(Ni) = {a ∈ N n
i : a generate Ni}, I = {(i, a) : i ∈ γ, a ∈ Ω(Ni)}.

For every (i, a) ∈ I let

4(i,a) = {ϕ(c) : ϕ(c) is in L(C) such that Ni |= ϕ(a)}.

Now let T ′ = T ∪ {θ(c)}. We claim that, for every (i, a) ∈ I, 4(i,a) is not a
principal set relatively to T ′, i.e. there is no sentence ψ(c) which is n-consistent
with T ′ such that:

T ′ `n (ψ(c) ⇒ ϕ(c)), for every ϕ(c) ∈ 4(i,a).

Indeed suppose that the opposite is true for some (i, a) ∈ I and for some
sentence ψ(c). Then

T `n (θ(c) ∧ ψ(c) ⇒ ϕ(c)), for every ϕ(c) ∈ 4(i,a),

and thus the sentence ξ(c) := θ(c) ∧ ψ(c) will be a n-complete sentence and
T `n ξ(c) ⇒ θ(c), which is a contradiction. Therefore for every (i, a) ∈ I, 4(i,a)

is not a principal set relatively to T ′ as claimed.
Since γ is at most countable, I is also at most countable and by the omitting

type theorem there is a n-finitely generated model M of T ′ (and thus of T )
generated by some n-tuple d such that M |= θ(d) and M omit every 4(i,a), i.e.

(∗) M |=
∨

ϕ∈4(i,a)

¬ϕ(d), for every (i, a) ∈ I.
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By (∗) we have (M, d) � (Ni, a) for every (i, a) ∈ I. But we have also:

T `n θ(c) ⇒ ¬φ(c) for every n-complete sentence φ.

Therefore M |= ¬φ(d) for every n-complete sentence φ. By Lemma 4.17 we
see that for every generating n-tuple m of M and for every n-complete sentence
φ(c), M |= ¬φ(m). Therefore (M, d) ∼= (Ni, a) for some (i, a) ∈ I, which is a
contradiction.

Thus our initial supposition is false and by Theorem 4.10 we have αn(T ) =
2ℵ0 . ¤

Corollary 4.19 Let T be a n-consistent theory in L such that αn(T ) ≤ ℵ0.
Then for every sentence ϕ(c) n-consistent with T there exists a n-complete sen-
tence φ(c) such that T `n (φ(c) ⇒ ϕ(c)). ¤

4.3 Pseudo-prime finitely generated models

Definition 4.20 Let T be a theory in L.
(1). We denote by Modn(T ) a representative list of all n-generated models of

T , up to isomorphism.
(2). Let E be a class of n-generated models of T and let M be a n-generated

model of T . We say that M is pseudo-prime over E if there exist a generating
n-tuple a of M and a sentence φ(c) in L(C) such that M |= φ(a) and for every
n-generated model (N , b) of T which is not isomorphic to any model of E we
have (M, a) ∼= (N , b) if and only if N |= φ(b).
In other words we have:

(1). M |= φ(a),
(2). if N is a n-generated model of T , generated by the n-tuple b, and

N |= φ(b) and N is not isomorphic to any model of E then the function defined
by f(ai) = bi(for 1 ≤ i ≤ n) extends to an isomorphism.

Thus the pseudo-prime models of T are juste the pseudo-prime models of T
over the class E = ∅.
(3). We define a sequence (Kγ(T ) ⊆ Modn(T ) : γ ∈ Ord) of classes of

n-generated model of T , where Ord is the class of all ordinals, as follows:
- K0(T ) = ∅,
- Kγ+1(T ) = Kγ(T ) ∪ {M ∈Modn(T ) : M is pseudo-prime over Kγ(T )},
- Kβ(T ) =

⋃
γ<β Kγ(T ) if β is a limit ordinal.

We let K(T ) =
⋃

γ∈OrdKγ(T ).
We want to show the following theorem which translate another consequence

of αn(T ) ≤ ℵ0.

Theorem 4.21 Let T be a n-consistent theory in L such that αn(T ) ≤ ℵ0.
Let M be a n-generated model of T . Then for every generating n-tuple a of
M there exists a formula φ(x) such that M |= φ(a) and such that for every
generating n-tuple b of M if M |= φ(b) then the function defined by f(ai) = bi

(for 1 ≤ i ≤ n) extends to an automorphism of M.
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The above theorem translate an ”internal” property of all n-generated mod-
els of a theory T having at most ℵ0 n-generated models. To prove it we begin by
proving the following two lemmas. From now we assume that T is a n-consistent
theory in L.

Lemma 4.22 Let E be a class of n-generated model of T and M a n-generated
model of T which is pseudo-prime over E. Then for every generating n-tuple b
of M there is a sentence ψ(c) of L(C) such that:

(1). M |= ψ(b),
(2). if N is a n-generated model of T , generated by the n-tuple d, and

N |= ψ(d) and N is not isomorphic to any model of E then the function defined
by f(bi) = di(for 1 ≤ i ≤ n) extends to an isomorphism.

Proof
The proof is analogue to the one of Lemma 4.17. Since M is pseudo-prime

over E there exists a generating n-tuple a of M and a sentence φ(c) of L(C)
such that:

(1). M |= φ(a),
(2). if N is a n-generated model of T , generated by the n-tuple h, and

N |= φ(h) and N is not isomorphic to any model of E then the function defined
by f(ai) = hi(for 1 ≤ i ≤ n) extends to an isomorphism.

Let b be a generating n-tuple of M. Then there is a finite tuple of terms
τ1(a), · · · , τn(a) such that M |= ∧i=n

i=1 (bi = τi(a)). Let:

ψ(c) = ∃x(
i=n∧

i=1

(ci = τi(x)) ∧ φ(x))

then M |= ψ(b). We claim that ψ(c) has the required properties.
Let N be a n-generated model of T , generated by the n-tuple p, and N |=

ψ(p) and N is not isomorphic to any model of E . Since N |= ∃x(
∧i=n

i=1 (pi =
τi(x)) ∧ φ(x)), there exists d1, · · · , dn such that:

N |= φ(d), N |=
i=n∧

i=1

(pi = τi(d)).

Since N is generated by p and N |= (pi = τi(d))(for 1 ≤ i ≤ n) then N is
generated by d. Since N |= φ(d) the function defined by f(ai) = di(for 1 ≤
i ≤ n) extends to an isomorphism. Thus the function defined by f(bi) = hi(for
1 ≤ i ≤ n) extends also to an isomorphism. ¤

Lemma 4.23 There is a least ordinal γ such that Kβ(T ) = Kγ(T ) for every
β ≥ γ(and thus K(T ) = Kγ(T )). If K(T ) 6= ∅ then for every M ∈ K(T )
there is an ordinal β such that M ∈ Kβ+1(T ) \ Kβ(T ). If αn(T ) ≤ ℵ0 then
K(T ) = Modn(T ).
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Proof
Since Modn(T ) has a cardinal at most 2ℵ0 , there is a least ordinal γ such

that Kγ+1 = Kγ . Then we have also, by definition of K(T ), that Kβ(T ) = Kγ(T )
for every β ≥ γ and thus K(T ) = Kγ(T ).

Suppose that K(T ) 6= ∅. If M ∈ K(T ) then M ∈ Kγ(T ) for some ordinal
γ. Let δ be the least ordinal such that M∈ Kδ(T ). Then we see, by definition
of K(T ), that δ is not a limit ordinal and that δ ≥ 1. Therefore by putting
δ = β + 1 we have M ∈ Kβ+1(T ) \ Kβ(T ), as δ is the least ordinal such that
M∈ Kδ(T ).

Now suppose that αn(T ) ≤ ℵ0 and let γ be the least ordinal such that
Kγ+1(T ) = Kγ(T ) = K(T ). By Theorem 4.12 T has a pseudo-prime model over
∅ thus K1(T ) 6= ∅ and therefore K(T ) 6= ∅. Therefore for every M ∈ Kγ(T )
there exist β such that M∈ Kβ+1(T )\Kβ(T ) and thus M is pseudo-prime over
Kβ(T ).

Suppose towards a contradiction that Kγ(T ) 6= Modn(T ). Since Kγ(T ) ⊆
Modn(T ) we have Modn(T ) \ Kγ(T ) 6= ∅. Let Kγ(T ) = (Mi : i ∈ ρ) where
|Kγ(T )| = ρ. For every i ∈ ρ let

Ω(Mi) = {a ∈Mn
i : a generate Mi},

and let
I = {(i, a) : i ∈ ρ, a ∈ Ω(Mi)}.

Then by Lemma 4.22, for every (i, a) ∈ I there exists a sentence φ(i,a)(c) in
L(C) satisfying the conditions of the definition of the fact that Mi is pseudo-
prime over the class Kβ(T ) where Mi ∈ Kβ+1(T ) \ Kβ(T ), i.e. Mi |= φ(i,a)(a)
and for every n-generated model (N , b) of T which not isomorphic to any model
of Kβ(T ) we have (Mi, a) ∼= (N , b) if and only if N |= φ(i,a)(b).

Let:
Γ(c) = T ∪ {¬φ(i,a)(c) | (i, a) ∈ I}

Since Modn(T ) \ Kγ(T ) 6= ∅, Γ(c) is n-consistent (in fact every n-generated
model Q in Modn(T ) \ Kγ(T ) generated by a n-tuple d satisfies Γ(d)).

Since every n-generated model of Γ(c) is a n-generated model of T and
αn(T ) ≤ ℵ0 we have αn(Γ(c)) ≤ ℵ0. Thus by Theorem 4.12, Γ(c) has a pseudo-
prime modelN . ThusN is a n-generated model of T and without lost generality
we may assume that N ∈Modn(T ).

We claim that N is a pseudo-prime model over Kγ(T ). Now there is a
generating n-tuple b of N such that N |= Γ(b) and a sentence φ(c) in L(C) such
that:

(1) N |= φ(b),
(2) ifQ is a n-generated model, generated by the tuple d, such thatQ |= Γ(d)

and Q |= φ(d) then the function defined by f(bi) = di(for 1 ≤ i ≤ n) extends to
an isomorphism.

First of all, since N |= Γ(a), N 6∈ Kγ(T ).
Now let Q be a n-generated model of T generated by the n-tuple d such

that Q is not isomorphic to any model of Kγ(T ) and Q |= φ(d). Since Q is
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not isomorphic to any model of Kγ(T ) we have Q |= Γ(d) and by the property
(2) above the function defined by f(bi) = di(for 1 ≤ i ≤ n) extends to an
isomorphism.

Therefore N is a pseudo-prime model over Kγ(T ) and thus N ∈ Kγ+1(T ) \
Kγ(T ), a contradiction with Kγ+1(T ) = Kγ(T ).

Therefore our initial supposition is false and thus we have Modn(T ) =
Kγ(T ) = K(T ). ¤

Definition 4.24 Let T such that αn(T ) ≤ ℵ0. Then by Lemma 4.23, there is
a least γ such that Kγ(T ) = Kγ+1(T ). We call that γ the hight of T . Since, by
Lemma 4.23, Modn(T ) = Kγ(T ) =

⋃
β≤γ Kβ(T ), we define the hight of a n-

generated model M of T to be the least ordinal β such that N ∈ Kβ+1(T )\Kβ(T )
where N ∼= M and N ∈Modn(T ).

Proof of Theorem 4.21 LetM be a n-generated model of T and let β be the
hight of M. Without lost generality we may assume that M∈Modn(T ). Thus
M is pseudo-prime model over Kβ(T ). By Lemma 4.22 for every generating n-
tuple a of M there is a sentence φ(c) such that:

(1) M |= φ(a),
(2) if N is a n-generated model of T , generated by the n-tuple b, and N |=

φ(b) and N is not isomorphic to any model of Kβ(T ) then the function defined
by f(ai) = di(for 1 ≤ i ≤ n) extends to an isomorphism.

By replacing in (2) N by M we find the required conclusions. ¤
Now we give a proof of the following theorem enounced in the introduction.

Theorem 4.25 Let T be a complete theory such that αn(T ) ≤ ℵ0. Let M be a
n-generated model of T . Then the following properties are equivalent:

(1) M is prime model of T.
(2) There is a formula θ(x1, · · · , xn) consistent in M such that if M |=

θ(b1, · · · , bn) then b1, · · · , bn generate M.

We use the following classical result:

Proposition 4.26 [1] Let M be a countable model. Then M is a prime model
of its theory iff for every m ∈ N, each orbit under the action of Aut(M) on
Mm is first-order definable without parameters.

Proof of Theorem 4.25
(1)⇒(2). Suppose that M is a prime model of its theory and let a1, · · · , an

generate M. Then there is some orbit On such that (a1, · · · , an) ∈ On. By
Proposition 4.26 On is definable by a first order formula θ(x1, · · · , xn). Now if
M |= θ(b1, · · · , bn) then there is an automorphism f such that f(ai) = bi (for
1 ≤ i ≤ n) and therefore we see that b1, · · · , bn generate M, thus we have (2).
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(2)⇒(1). Let a1, · · · , an in M such that M |= θ(a1, · · · , an). Then by
Theorem 4.21 there exists a sentence φ(c1, · · · , cn) in L(C) such that M |=
φ(a1, · · · , an), and if b1, · · · , bn generate M such that M |= φ(b1, · · · , bn) then
the function defined by f(ai) = bi (for 1 ≤ i ≤ n) extends to an automorphism.

Let Om be an orbit and (t1(a), · · · , tm(a)) ∈ Om. Let us show that Om is
defined by the following formula:

ψ(y1, · · · , ym) = ∃z1, · · · , ∃zn(φ(z1, · · · , zn) ∧ θ(z1, · · · , zn) ∧
i=m∧

i=1

yi = ti(z))

Let b1, · · · , bm ∈ Om, then there is an automorphism f such that f(ti(a)) =
bi for 1 ≤ i ≤ m. Therefore we have ti(f(a1), · · · , f(an)) = bi (for 1 ≤ i ≤ n),
and M |= φ(f(a1), · · · , f(an)) ∧ θ(f(a1), · · · , f(an)), thus M |= ψ(b1, · · · , bm).

Now let b1, · · · , bm ∈ M such that M |= ψ(b1, · · · , bm). Therefore there is
tuple d1, · · · , dn in M such that M |= φ(d1, · · · , dn)∧ θ(d1, · · · , dn)∧∧i=m

i=1 bi =
ti(d)). Hence d1, · · · , dm generate M and since M |= φ(d1, · · · , dn) there is an
automorphism f such that f(ai) = di (for 1 ≤ i ≤ n). Therefore f(ti(a)) =
ti(d) = bi (for 1 ≤ i ≤ n), thus (b1, · · · , bm) ∈ Om. ¤

Definition 4.27 A theory T is said to be n-categorical if αn(T ) = 1.

Examples
(1) Let F2 be the free non-abelian group on two generator. Then it is not

difficult to see that Th∀∃(F2) is 2-categorical.
(2) For every n, Th(Zn) is m-categorical for every m.

Corollary 4.28 Let T be a complete theory such that αn(T ) ≤ ℵ0. Suppose that
there exists a formula θ(x1, · · · , xn) such that: for every n-generated model M
of T and for every b1, · · · , bn in M if M |= θ(b1, · · · , bn) then b1, · · · , bn generate
M. Then T is n-categorical and his unique n-generated model is prime. ¤
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ment.Math.Helvetici 57 (1982) 469-480.

[6] F. Oger. Noncancellation and the number of generators, Communications
in Algebra, 26(1), 35-39 (1998).

[7] F. Oger. Cancellation and elementary equivalenc of finitely generated finite-
by-nilpotent groups, J.London Math.Soc. (2) 44 (1991) 173-183.

24


