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Abstract

V.N. Remeslennikov proposed in 1976 the following problem: is any
countable abelian group a subgroup of the centre of some finitely presented
group 7 We prove that every finitely generated recursively presented group
G is embeddable in a finitely presented group K such that the centre of
G coincide with that of K. We prove also that there exists a finitely
presented group H with soluble word problem such that every countable
abelian group is embeddable in the centre of H. This gives a strong
positive answer to the question raised by V.N. Remeslennikov.

1 Introduction

V.N. Remeslennikov proposed in 1976 the following problem: is any count-
able abelian group a subgroup of the centre of some finitely presented group 7
The problem, which is natural in the context of Higman’s famous embedding
theorem, is listed recently as open [3, 8]. However in 1980, B.M. Hurley [5] an-
nounced, without proof, the following proposition which yields a positive answer
to the above problem: a necessary and sufficient condition for an abelian group
to be the centre of some finitely presented group is that it should be recursively
presentable. In this paper we prove various results on embeddings in finitely
presented groups which preserve the centre, including the proposition stated by
B.M. Hurley and the fact that there exists a finitely presented group H with
soluble word problem such that every countable abelian group is embeddable in
the centre of H. This gives of course a positive answer to the question raised
by V.N. Remeslennikov.

We shall now state the main results of the paper which will be proved in
Section 4,5,6, while Section 2 is devoted to presenting the terminology and the
tools used, and Section 3 contains preparatory propositions. The main results
of this paper are as follows.



Theorem I. Let G be a countable group. Then G is embeddable in a finitely
generated group K such that Z(G) = Z(K) and:

(1) If G is recursively presented and Z(G) is recursively enumerable in G,
then we can take K to be recursively presented.

(2) If G has a soluble word problem and Z(G) has a generalized soluble word
problem in G, then we can take K with soluble word problem.

Theorem II. Let G be a finitely generated recursively presented group. Then
G is embeddable in a finitely presented group K such that Z(G) = Z(K) and if
G has a soluble word problem, then we can take K with soluble word problem.

Corollary 1. An abelian group is the centre of a finitely presented group if and
only if it is recursively presentable.

Corollary 2. An abelian group is the centre of a finitely presented group with
soluble word problem if and only if it has a presentation admitting a soluble word
problem.

Corollary 3. There ezists a finitely presented group H with soluble word prob-
lem such that every countable abelian group is embeddable in the centre of H.

One can also deduce the following corollary which is a generalization of
Theorem II.

Corollary 4. Let G be a finitely generated recursively presented group. Let A
be a countable recursively presented abelian group. Then G is embeddable in a
finitely presented group K such that Z(K) = A and if G has a soluble word
problem and A has a presentation admitting a soluble word problem, then we
can take K with soluble word problem.

2 Preliminaries

The goal of this section is to fix the definitions that are going to be used and
to present the small cancellation theory over amalgamated free products. We
work in the following context. Let G1, G5 be groups and A a common subgroup
of G; and G3. One considers the free product of G; and G5 amalgamating the
subgroup A and one notes it F' = G x4 Go. We call G; and G5 the factors
of F. Then for every element w € F such that w ¢ A, there exists a sequence
(91, ,gn) of elements of G; U G2 such that w =g; - - - g,, and:

() gi, gi+1 come from different factors,

(ii) g: ¢ A.

A sequence which satisfies the conditions (i)-(i%) is called reduced. It is well

known that if (g1, -+, gn), (h1,- -, hy) are reduced sequences such that g1 - - - gn,
= hy -+ hym, then m = n. Then for every element w € F we define the length



of w denoted |w| by: |w| =0if w € A and |w| = n (if w ¢ A) where n is the
length of some reduced sequence (g1, -, gn) such that w =gy - - - gn.

Let w € F. A normal form of w is a sequence (g1, -, gn) such that
w = g1---gy and if w € A, then n = 1, otherwise (g1, --,9gn) is reduced.
Notice that an element w of F' can have several normal forms.

Let g=¢1---gn. Wesay that g = g1 -+ g, is in normal form if (g1, -+, gn)
is a normal form of g.

A normal form (g1,---,g,) of an element w is cyclically reduced if n = 1
or if g, and g; are in different factors. Then one normal form of w is cyclically
reduced if and only if all normal forms of w are cyclically reduced, which allows
us to define cyclically reduced elements.

A normal form (g1,---,gn) of an element w is weakly cyclically reduced
if n=1orif g,g1 ¢ A. Then one normal form of w is weakly cyclically reduced
if and only if all normal forms of w are weakly cyclically reduced. As before,
this allows us to define weakly cyclically reduced elements.

A subset W of F is symmetrized if:

(i) every element of W is weakly cyclically reduced,
(ii) if we W thenw™! e W,
(#91) every weakly cyclically reduced conjugate of every element of W is in

w.

Given a group G and a subset X C G, we denote by X*! the set X U
X 1. Let R be a subset of F such that every element of R is weakly cyclically
reduced. The symmetrized closure of R, denoted by W (R), is the smallest
symmetrized subset of F' which contains R. We denote by Wy(R) the set of
cyclically reduced conjugates of elements of R*!.

One has the following lemma that summarizes some properties of normal
forms and symmetrized sets.

Lemma 2.1 Let F = G1 x4 G5 be a free product with amalgamation.

(1) Let R be a subset of F' such that every element of R is weakly cyclically
reduced. Then the symmetrized closure of R is the set of all weakly cyclically
reduced conjugates of elements of R*'.

(2) If (g1, -, gn), (h1,- -, hy) are normal forms such that gy -+ g = hy -+ hy,

then there exists a sequence (ai, -+, an,ant1) of elements of A such that a; =
Gnt1 =1 and for everyi=1,--- n, g; = aihia;_ll. O
Let w,v € F with normal form (uq,---,uy,) and (vy,---,vy) respectively.

Let g = wv. We say that g is in semi-reduced form (u,v) if u,v; ¢ A. We
say that ¢ is in reduced form (u,v) if u,, v; are in different factors.

One of the objects of small cancellation theory is to see, when we have a
normal subgroup N of F, what conditions insure that N does not have short
elements and in particular guarantee N NGy = N NGy = 1, so that in the
quotient F/N short elements are not hurt.

Let W be a subset of F. An element b € F is said to be a piece (relative
to W) if there exists distinct elements wi,wy € W such that w; = bey and



wy = beo in semi-reduced form. This means that b is cancelled in the product
Woy Lw;.

For a positive real number A we define the following condition:

C'(A\) = if w € W is in semi-reduced form (b,c) where b is a piece then
|b] < Mw|. Further, for every w € W, |w| > (1/A).

In practice, to verify that a set W with W = W ~lsatisfies C’()), one takes
two elements wy, we of W such that wyws # 1 and one proves that the length
of the element which is cancelled in the product w;ws is smaller than A |w;| and
A |ws]. Using normal forms this is equivalent to the following;:

if w1 = amGm_1---a1 and we = by - - - by, are in normal forms and
ai---al.bl-ubi e UGQ,

then i < Am, i < An. (Of course also the condition for every w € W, |w| >
(1/A).)

We will use frequently the following principal theorem.

Theorem 2.2 [6, Theorem 11.2, Chapter V| Let F = G1%4 G2 be a free product
with amalgamation, W be a symmetrized subset of F' and let N be the normal
closure of W in F. Suppose that W satisfies C'(X) with A < . If w € N, with
w # 1, then w = usv in reduced form where there is a cyclically reduced r € W,
with r = st in reduced form and |s| > (1 — 3\)|r|.

In particular, the natural map 7: F — F/N embeds each factor of F. O

We need also the following theorem.

Theorem 2.3 [6, Theorem 2.8, Chapter IV] Let F' = G4 G5 be a free product
with amalgamation. Let u = uy---u, be a cyclically reduced element of F
where (u1,- -+, upn) s a normal form and n > 2. Then every cyclically reduced
conjugate of u can be written as ava~! where a € A and v is the product of
some cyclic permutation of (uy,- -+, uy).

Lemma 2.4 Let F = G x4 Gy be a free product with amalgamation. Let \,a
be positive real numbers such that A< «. Let R be a subset of F' which satisfies:
(1) Every element of R is cyclically reduced.
(2) For everyr € R, Mr|+ 1 < «lr|, and |r| > é
If Wo(R) satisfies C'(X), then W(R) satisfies C' ().

Proof

Observe that since every element of R is cyclically reduced and for every
r € R, |r| > L, then every element w of W(R) satisfies |w| > 1.

By Lemma 2.1 (1), we know that the elements of W(R) are the weakly
cyclically reduced conjugates of elements of R*!. Let wy,ws € W(R) such
that wywe # 1. We are going to prove that if some element is cancelled in the
product wyws, then its length is smaller than « |w;| and o |wsl.



We have to consider two cases. The first case where w,wy are not cyclically
reduced, and the second case where w; cyclically reduced and ws is not cyclically
reduced. The other cases can be reduced to the previous ones, or they are
obvious as the case where w1, ws are cyclically reduced.

Let wqy = aq---a, and wy = by - - - b, in normal form. Since w; and wy are
weakly cyclically reduced we have a,a1 ¢ A and b,,b; ¢ A.

Case (1). wy and wy are not cyclically reduced.
We can write

wy, = a;l(anal)ag e Qp_1Gy and wy = bfnl (binb1)bo -+ by—1bp.

Since ana; ¢ A and b,,b; ¢ A, and a,, a; are in the same factor, b, by
are in the same factor, the elements (a,a1)as - ap—1, (bypb1)ba - - - by—1 are in
reduced form and are cyclically reduced. We see that they are conjugates of
elements of R*!. Now consider how there can be cancellation in the product
wyws. If there is no cancellation we have the result. If |apb1| = 1, then the
length of any piece is smaller than 1, and since 1 < a|wy|, 1 < «a|ws|, we get
the desired conclusion.

Now suppose that a,b; € A and let v = a,b;. We see that by - - - by—1 (bnb1)
and by - - - by _1(byby )y~ ! are cyclically reduced conjugates of some element of
R*!. Then

wirwe = a;l((anal)ag e an_l)’)/bz cee bm_l(bmbl)bl_l

= a7 ((anan)az - an_1)7b2 b1 (bb1 )y .

Let
T = (anal)az crlp—-1, T2 = ’Yb2 ce bm—l(bmbl)’yil-

Then r; and 7o are in Wy(R). It is enough to look at pieces in the product
riro.

Since wiwe # 1, r1rg # 1. By hypothesis Wy(R) satisfies C’(\). Therefore,
if d is a piece in the product of 71 and ry, then |d| < A|r1| and |d| < A|rs|. But
it is not difficult to see that the corresponding piece in the product of w; and
wo is of length |d| + 1. Then

l[d|+1 < Alri|+ 1, |d|+1<Are|+1,

also,
ld|+1<a(lri]+1), [d+1<a(lra]+1).

But |wy| = |r1| + 1 and |ws| = |ra] + 1. Thus we get the desired conclusion.

Case (2). w; is not cyclically reduced and ws is cyclically reduced.

The proof is similar to the previous one. In this case we see that w; =
a; (anai)as -+ an_1a, and wy = biby---by,_1by,. As before since an,a; ¢ A
and a,, a1 are in the same factor, then the element (a,aq)as---a,—1 is in
reduced form and it is a cyclically reduced conjugate of an element of R*!. If



there exists cancellation in the product of w; and ws then a,b; € A. As before
put v = a,b;. We have

W1Wo = a;l((anal)ag e an,l)’ybg e bmflbm.blbfl

= a; ' ((ana1)ag -~ an_1)vbs - - byp—1bmbry ' an.

We see also that by - - - by_1b,mb1y~ ! is a cyclically reduced conjugate of
some element of R*!.

As in the previous case, if d is a piece in the product of 1 = (anai)as - - an—1
and ro = by -+ by _1byb1.y 7L, then |d| < A|r1| and |d| < A|rz|. But, as before,
the corresponding piece in the product of wy and wy is of length |d| + 1. Then

dl+1 < Ar|+1, [dl+1<Ara|+1,

also,
ld| +1 < a(jri| +1), |dl+1<alr.
But |wi| = |r1| + 1 and |ws| = |r2|, and thus we get the result.
Therefore, W(R) satisfies C’(«). O

The proof of the following lemma can be extracted from elsewhere, but for
completeness we provide a proof.

Lemma 2.5 Let F = G %4 G2 be a free product with amalgamation such that
Gy # A and Gy # A. Then Z(F) < Z(A).

Proof

Let g € Z(F) and let (g1, -+, gn) be a normal form of g. Suppose that |g| >
2. Since g € Z(F) we have gg;; ' = g 'g, hence g1 -+~ gn_19," - 95 "97 “gn = 1.
Since g,—1 and g, are in different factors and n > 2, we see that

g1 Gn—19n " 95 97 gnl = 1,

which is a contradiction.

Suppose now |g| = 1. Suppose g € G;. Since Gy # A, there exists ¢’ €
Gy \ A. Then gg'g~1¢g’~! = 1, which is a contradiction because the sequence
(9,9,971, 971 is reduced. As Gy # A, the argument apply when g € Go.
Hence |g| = 0. Therefore Z(F) < A and consequently Z(F) < Z(A). O

We finish this section with some properties (and definitions) of recursively
presented groups and groups with soluble word problem. Let X = {z;|i € N}.
A countable group G is said recursively presented, if G has a presentation G =
(X|P(X)) such that P(X) is recursively enumerable; and it is said to have a
soluble word problem, if it has a presentation G = (X|P(X)) for which the set
of words w(z) on X*! such that w(z) = 1 in G is recursive. A subgroup H < G
is said to have a soluble generalized word problem in G, if the set of words w(Z)
such that w € H is recursive, and is said recursively enumerable in G if the set
of words w(Z) such that w(z) € H is recursively enumerable.



Lemma 2.6 Let G be a finitely generated group.

(1) If G is recursively presented, then Z(Q) is recursively enumerable in G
and it is recursively presented.

(2) If G has a soluble word problem, then Z(G) has a soluble word problem
and also a soluble generalized word problem in G.

Proof

Suppose that G is generated by a = {a1,--,a,}. Let W(g) be the set of
words over the set {y1, -,y }*'. Let V = {w(y) € W(y) | w(a) € Z(G)}.
Then clearly we have V = {w(g) € W(9) | [w(@),a;] =1,1 < i <n}.

(1) Since G is recursively presented the set {w(y) € W(y) | w(a) = 1}
is recursively enumerable and thus V' is recursively enumerable. Then Z(G) is
recursively enumerable in G. Now let us show that Z(G) is recursively presented.
Let (vi(g) | ¢ € N) be an enumeration of V. Let L be the set of words on
{v; | i € N}*! regarding it as a set of variables. Then the set

K =A{w(vi, -, vi,,) | w(vi (@), v, (@) = 1}

is recursively enumerable.
Let X = {z; | i € N}. If w(vy,---,v;,) is a word in L, let w(x;,, -+, 2;,,)
denote the word obtained by replacing each v;; by x;,. Let

P={w(x;, -,x;,) € L]w(vy, v, )€K},

and let H = (X|P). Then H is recursively presented and it is clear that it is
isomorphic to Z(G). Indeed,

HEw®y, -z, =1 ww,, ,z,) € PesGEw,, v, ) =1

(2) The proof is similar to the previous one. Since G has a soluble word
problem, V is recursive and then Z(G) has a generalized soluble word problem
in G. Similarly the set P is recursive and then the group H has a soluble word
problem. O

We are going to use a particular case of some results of C.R.J. Clapham [1, 2].
For this we will need the following definition. Let G be a finitely generated group
and H a subgroup of G. We call H strongly benign (A-strongly benign in the
vocabulary of C.R.J. Clapham) if the HNN-extension G* = (G,t|t 'ht = h |
h € H) can be embedded in a finitely presented K with soluble word problem
such that G and (G, t) have a generalized soluble word problem in K.

Lemma 2.7 [1, Corollary 3.8.1] Let G be a finitely generated group with soluble
word problem and @ a recursive isomorphism of a subgroup A into G such that
A and p(A) have generalized soluble word problem in G. Then the subgroup
(G,t7Gt) has a generalized soluble word problem in G* = (G,t | t~tat =
p(a), a € A).

Lemma 2.8 [2, Lemma 11.2] A subgroup of a finitely generated free group is
strongly benign if and only if it is recursive.



3 Preparatory propositions

Notation. Let (uy,---,u,) and (v1,---,v,) be a sequences. The notation
(ug,--,up) < (v1,- -, Uy,) means that there exists p such that (uq,---,u,) =
(Upa e a'Up+n—1)'

Proposition 3.1 Let F = G x4 G4 be a free product with amalgamation and
R a subset of F which satisfies:

(1) Every element of R is cyclically reduced and every r € R, satisfies |r| >
12.

(i) For every r € R and for every normal form (gi1,---,gn) of r there are
no i,j,1# j and o, B € A such that g;l = ag;f.

(ii7) The symmetrized set W (R) satisfies C'(\) with A < 5.

Let N be the normal closure of R in F and 7w : F — (F/N) the natural map.
Then n(Z(F)) = Z(F/N).

Remark. We see that if r € R and if there exists a normal form (g1, -, gn) of
r which satisfies the condition of (i), then every other normal form (hy,- -, hy)
of r satisfies also the condition of (ii). It is not difficult to see also that the same
property is true for any cyclic permutation of (g1, -+, gn) and for any normal
form for the inverse of r.

In order to prove Proposition 3.1 we will need the following lemma whose
proof is omitted as it follows easily by induction on n.

Lemma 3.2 Let FF = Gy x4 Go be a free product with amalgamation. Let
g = g1 gn in normal form, n > 2 and t € F such that |t| < 1. Suppose that
lgtg=1| > 3. Then there exists i € {1,---,n} and o€ F such that |a| = 1 and
gtg =g - ~giagi_l .- '91_1 is in normal form. O

Proof of Proposition 3.1 We suppose n(Z(F)) # Z(F/N), and we prove that
there exists r € R that does not satisfy the condition (it).

Let w(g) € Z(F/N) such that n(g) ¢ n(Z(F)). Let go € F be of minimal
length such that 7(go) = 7(g).

Since m(go) € Z(F/N), for every t € F such that |t| < 1, gotgy 't~ € N.
Since go ¢ Z(G) there exists tg € F, such that |tg] < 1 with gotogaltal # 1.

By Theorem 2.2, there exists w € W(R), cyclically reduced such that

lgotoge "t '] > (1 = 3X)|wl.

We have |gotogy | > |gotogs to | — 1 > (1 — 3\)|w| — 1. Since A < & and
|w| > 9 a simple count gives us (1 — 3\)|w| > %.9 = 6, hence |gotogy | > 3.
We have also |gotogy “ty*| < 2|go| + 2, and |gotogs “to '] > (1 — 3\)|w|, hence
|g0togaltal| > 6 and hence 2|gg| + 2 > 6 therefore |go| > 2. Therefore the
conditions of Lemma 3.2 are satisfied.



Let (a1,---,a,) be a normal form of go. By Lemma 3.2, there exists ¢ €
{1,---,n} and o € F, such that |a| = 1 and gotogy ' = a1 ---a;a; ' ---ayt is
in normal form.

We have three cases to consider: |a;'t;'| =0, |a; 'ty = 1, |a; 'ty = 2.
We are going to treat just the case |af1t51| = 0, the other cases can be treated
similarly.

Let v = ay 'ty '. We remark that i > 2 because |gotogg “to | > (1 —3\)|w|>
6. Then the sequence (a1,~-~,ai,a,a;1,--~,a2_1’y) is a normal form of h =
gotogy 1t0_ !, To simplify notations we denote the previous normal form of h by
(v1,v2,**, Um)-

By Theorem 2.2, there exists a normal form (ug,---,u,,) of h, there exists
a normal form (ws,---,w,) of w, there exists [ > (1 — 3\)|w| and there exists
p € {1,---,m} such that (up, -, upti—1) = (w1, -, wy).

By Theorem 2.3, there exists a € A and r where r is the product of a cyclic

permutation of some r’ € R*!, such that w = a~'ra.

Let (rq,--+,74) be a normal form of r. Then (a~'ry,---,7,a) is a normal
form of w and by Lemma 2.1, there exists a sequence (a1, - - a441) of elements

of A such that

-1
J+1

_ ; . _ -1, —1 _ -
wj = ayrja; g for j# 1,5 # ¢, and w1 = ana” may ,we = agreacg .

Similarly there exists a sequence (81, -+, Bm+1) of elements of A such that
U; = 6]‘Ujﬂj_+11. Then

() BpoByiis s Boric1vpria By ) = (e rag - armiag ).

Let1 us Shovslz that (vp, -, vpri—1) £ (a1, -, a;, ) and (vp, -+, vpyi—1) £
(aya; ", a5 7).

Su;l)pose thixt (Vps -+, Upi—1) < (a1,---,a4,a) or that (vp, -, vppi—1) <
(avai_ 7"'70’2_ 7)

Then for some k, z we have (vpy1,- -+, Vpyi—2) = (ak, - -,ag). By () we get

(ag, - 0,) = (Up+17 T ->’Up+172)
= (5;4}10127"2061@”7 = ',»31:4:1_2&1—17“l—106f15p+l—1)-
Then

1 —1 —1 ~1 1y a1
go = a1~ ap—1.(B,1 (a2ra0s ) Bpr2Byia + Bpti—28, 1y o(Cu—1mi—1ay )8, 5 )

-1 —1\ -1
gy = Ay ap1 (B py (aore ooy ) B, 1) e an,

Since 7 (ry -+ ri—1) = w(ry eyt ") we find

m(go) = m(ar -~ ap—1.(B, Ly (ory gt e B, ) gy - an).

Let

1

-1 1 1 _—1\ -1
d=a1-~-ak_1.(ﬁp+1(agr1 R e )Bp+171).a9¢+1--~an.



Since [ > (1 —3))|r|, and A < § then I — 2> (1 —3)\)|r| =2 > 2|r| — 2 and
since |r| > 12 a simple count shows us that, Z|r| —2 > $|r|, hence I —2 > %|r|.
Therefore we have \rl_qu_l ~or7 ' < g—1+2< 3|r|. Then we have
|d| = |a1 - ak—1~(ﬁ;_&1(0427"1717‘q_1 - rlilalil>ﬁpj:l—1)'a’$+l - an| <
(k=1)+(qg—14+2)+(n—2x)

< (k=1)+ 37|+ (n— ).

Since |go| = (k— 1) + (I — 2) + (n — 2) and [ — 2 > %|r| we have |d| < |go|.

We have 7(d) = 7(g) = m(go) and |d| < |go|- This contradicts the fact that
the length of gg is minimal.

Hence there exist k, j such that (v, -+, vppi—1) = (ak, - -+, @, @, ai_l, e a]-_l).
Therefore we see that there exist i1, i3 and d, u € A such that ory, p=r;, ! which
contradicts Condition (4). O

Definitions. Let F' = G x4 G2 be a free product with amalgamation and R a
subset of F'.
(1) Let C be a set of normal forms. We say that C' defines explicitly R or
that R is explicitly defined by C if :
(i) If (c1,---,¢n) € C, then ¢y -+ - ¢, € R
(ii) For every r € R*!, there exists a normal form (c1,---,c,) € C such
that r =c¢1---cp.
(2) For every set C of normal forms we denote by C the set of all cyclic
permutation of elements of C.
(3) Let C be a set of normal forms and A a positive real number such that
A < §. We define L(C, A) to be

L(C,)\) ={(g,ce,) e FxCxNl|c=(c1, - ,¢cn), (1=3\)n<Il<n,
Ja, B € A, such that agB8 =c;---¢}.

Proposition 3.3 Let F = Gy x4 G5 be a free product with amalgamation and
R a subset of F', explicitly defined by C, such that:
i) G1 and Gy have a soluble word problem.

i
1) Every element of R is cyclically reduced.
2) The symmetrized set W(R) satisfies C'(\) with A < &.
3) For every n € N, the set {c € C'| |c| < n} is finite.
4) The map defined by p(n) = {c € C | |c| < n} is recursive.
5) The set L(C, \) is recursive.
6) There exists an algorithm which for every (g,c,1) € L(C,\) produces
(o, B) € A? such that agB =cy--- .

Let N be the normal closure of R in F. Then F/N has a soluble word
problem.

(
(
(
(
(
(
(
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Lemma 3.4 Let F = Gy x4 G2 be a free product with amalgamation and R a
subset of F', explicitly defined by C, and such that every element of R is cyclically
reduced. Suppose that W(R), the symmetrized closure of R, satisfies C'(\) with
A< é. Let N be the normal closure of R in F'. Let w € N, with w # 1, and let
(g1, -+, 9n) be a normal form of w. Then there exist i, 1 <i <mn, c € C and
l € N, such that (g; - giti—1,¢,1) € L(C,\). We call ¢ a witness of w.

Proof

By Theorem 2.2, there exists » € W(R) cyclically reduced such that r = s.t
in reduced form and w = wusv in reduced form and |s| > (1 — 3\)|r|. To
simplify notations we write w = uy « -+ Uy, 7 = v1 - - - Uy, Where (ug,- -, uy,) and
(v1,- -+, Up,) are normal forms and (u;, - -+, Ujpi—1) = (v1,- -, v1), L > (L1=3N)|r|.
By Lemma 2.1, there exists a sequence (o, - - -, &, t1) of elements of A such that
Gi = 0uU; 00 +11. Since r € W(R) is cyclically reduced, by the conjugacy theorem
(Theorem 2.3), there exists 7 a cyclic permutation of an element of R*! and

~v € A such that r = yrgy~!. Since C defines explicitly R, there exists ¢ =

(c1,+++,cm)€ C such that (c1,- -, cy) is a normal form of ro. Therefore we see
that the sequence (yei, -+, ¢y~ !) is a normal form of r, hence by Lemma 2.1,
there exists a sequence (1, -, Bm+1) of elements of A such that v; = ﬁiciﬁi_fl,

for i # 1 and i # m, vy = 6170162_1 and v, = Bmemy ;L}H. A simple

count shows us that ¢; -+ g;41-1 = ayu; - - ui+l_1a;_1[ = q;f1ycr - - clﬁlfi_lla;_ll.
Therefore (g; - giyi—1,¢,1) € L(C, \).

Proof of Proposition 2.3 In this proof the natural map = : I — F/N is
written m(w) = w. Let w € F/N written as a word in the generators of F'//N.
Since F' has a soluble word problem, one can determine if w = 1 or no. If it is the
case, then w = 1. Otherwise, since A has a generalized soluble word problem,
one can calculate a normal form (g1, -+, ¢gn,) of w. If w € N, then by Lemma 3.4,
there exists i, 1 <i<mn,c€ Candl € N, such that (g; ---giy1_1,¢,1) € L(C, \).
We see that we must have |c¢| < % Since the map ¢(n) = {c € C | || < n}
is recursive we compute the set K = {c € C'| |¢| < %} which is finite. Then
we compute all cyclic permutations of elements of K. For every a €K, for every
I such that 1 <1< |a|, I > (1 — 3))|a|, and for every i such that i +1—1 < mn,
let us check whether (g;---giti—1,a,1) € L(C,\). Since L(C,\) is recursive
the above procedure is recursive. If at every stage the answer to the question
(gi* " Giti—1,a,1) € L(C,\) isno, then w ¢ N and hence w # 1. If at some stage
the answer to the question (g; - - - gi+i—1,a,1) € L(C, A) is yes, by (6), there exists
an algorithm which produces a, 5 € A such that ¢; - g;11—1 = aay -+ - q; 5. Put
wy = g1 -gi.(Jz_ch,_n1 . ~-al_+115_1.gl+1 -+ gn. Then we see that w = w7 and
|w1| < |w]. Then we will redo the same thing for wj.

At the end of the process we have (w, wy, - - -, w;), such that |w;| < [w;—1]| <...
|wi| < |w| and w; does not have any witness in C. If w, = 1, then w € N,
otherwise w ¢ N. O
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4 Proof of Theorem I

Let G be a countable group generated by {a; | i € N\ {0}}. Let G; = G x (z|)
and G2 = Z(G) x (y|) where (z|) and (y|) are two copies of the free group on
one generator. Let F' = G xz(g) G2. By Lemma 2.5, Z(F') < Z(G), and since
Z(G) < Z(F), we find Z(F) = Z(G).

Let z1,29 € (z]), such that x1 # x9, x129 # 1, 1 # 1 and a9 # 1. Let for
every i € N\ {0},

80(i71)+1( )80(i71)+2 o

(%) wi = a; ' (z1y) z2y)(z1y 21y)* (22y).

It is clear that w; is cyclically reduced.

Let W(R) be the symmetrized closure of R = {w; | i € N\ {0}}. Let Wy(R)
be the set of cyclically reduced conjugates of elements of R*'. Now we show
that Wo(R) satisfies C”(15).

Let a1,as € Wy(R) such that aj.ae # 1. By Theorem 2.3, there exist
71,79 € RT! and a,b € Z(G) such that a; = a.rj.a™! and ay = b.rh.b~1 where
r], (resp. r5) is a cyclic permutation of 7y (resp. r3). Since a,b € Z(G), we
have a3 = r], and as = 15. Since ay.az # 1, we find r;.ry # 1. A classical
argument like the one used in the book of R.C. Lyndon and P.E. Schupp ([6],
p. 283 or p. 290) shows that Wy(R) satisfies C’'({). By Lemma 2.4, W(R)
satisfies C”(1/9).

Hence by Theorem 2.2, G is embedded into F/N .

We see that F//N is finitely generated. We see also that if G is recursively
presented and Z(G) is recursively enumerable in G then F/N is recursively
presented. It is not difficult to see that R satisfies the assumption of Proposition
3.1, hence Z(F/N) =n(Z(F)) = n(Z(Q)).

Now suppose that G has a soluble word problem and Z(G) has a generalized
soluble word problem in G.

Then we see that Z(G) has soluble generalized soluble word problem in
G2 = Z(G) x (y|). Hence F has a soluble word problem.

Let us show that W (R) satisfies the conditions of the Proposition 3.3. Let
Cp be the set of normal forms given in (x). Let C be the set obtained by adding
to Cy the set of normal forms of the inverses of the elements of Cy. Then it
is clear that C defines explicitly R. It is clear that R satisfies the conditions
(1)-(4) of Proposition 3.3.

It is sufficient now to show that L(C,\) is recursive and that there is an
algorithm which for every (g, ¢c,1) € L(C,\) produces («a, 3) € Z(G)? such that
agB=c1--q. B

Let (g,c,1) € FxCxN. Then it easy to see that we can calculate a sequence
(9o, gn) such that g = go - - - gn and:

(i) go € Z(G), (91, -, gn) is a normal form,
(i) if g; € G1 then g; = a;.a™ , n; € Z, a; € G\ Z(G) or o; = 1,
(ii7) if g; € Go then g; = yPi, p; € Z.

Let us prove the following claim:
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Claim. Let (go, -, gn) be a sequence which satisfies the conditions (4)-(#4¢)
and let (c,l) € C x N with ¢ = (c1,--+,¢,). Then the following properties are
equivalents:
(1) There ezist o, 8 € Z(G), such that ag =cy1--- .
(2) n =1 and one of the following conditions is satisfied:
(a) If there exists q such that ¢, = a; ‘'z then:
- For every k such that ¢, € {$1,$2,$;17$51}, ap = e and g = ci.
- For every k such that ¢, € {y,y~*}, gr = ck-
- agqa; € Z(G), and ™ = ;.
(b) If there exists q such that ¢, = xy *a; then:
- For every k such that ¢; € {xl,xg,xflwgl}, ai =e and g = Ck.
- For every k such that cx, € {y,y~*}, gr = cp-
- aqa;t € Z(@), and 2™ = xy.
(¢) If there is no q such that ¢, = a; ‘xy or cq = a7 "a; then :
- For every k such that ¢y, € {x1, 9,27 25"}, an = e and gi, = cy,.
- For every k such that ¢, € {y,y~'}, gr = cp.
If (a) is satisfied then if we take « = 1 and 3 = a; 'y, 'gy ' thenagB =c1---q.
If (b) is satisfied then if we take a = 1 and B = a;a;, 'gy " then agB = ci---¢.
If (¢) is satisfied then if we take o =1 and =gy then agf =c1---q.
Observe that there is at most one k£ such that ¢, = ai_lxl or ¢, = xl_lai.
Proof.
(1)=(2).
Let o, € Z(G) such that agB8 = ¢1---¢. Since o, € Z(G), we have
agfB = afg. Then
(aBgog1).g2 - gncy eyt = 1.

Since the sequence (a8g0g1, 92, -+, gn) is a normal form we must have n = I.

It is not difficult to see, by induction, that grc, ' € Z(G) for k =1,---,n.

We only treat the case (a), the other cases can be treated similarly.

(a) If there exists ¢ such that ¢, = a; 'z; then:

- Let k be such that ¢, € {z1, xg,xfl,xgl}. Since gkclzl € Z(@), we have
gk = ag.x™ = a.c,, where a € Z(G). Hence we must have oy = 1 and g = cx.

- Let k be such that ¢, € {y,y~!}. Since grc, ' € Z(G), gr = yP* = a.cy
where a € Z(G). Then this implies that a = 1 and g = yP* = ¢y.

- Since gy, ' € Z(G) then g4 = ag.z"s = a.a; *x; where a € Z(G). Hence
we have 2™ = 71 and ay.a; = a € Z(G).

(2)=(1).

It is sufficient to calculate. We treat only the case (a), the other cases can be
treated similarly. Suppose that (a) is satisfied. Then g --- gnc;, - -]t = 0.
Let a =1 and § = a;laglgal. Then agogy - - - gnc;, " - ~~cf15 = goaga; 3 = 1.
Hence agB8=c1---¢. O

Since F' has a soluble word problem and Z(G) has a generalized soluble word
problem in F' we see that the procedures (a)(b)(c) are recursive. Therefore we
see that L(C,\) is recursive and that there is an algorithm which for every
(g,¢,1) € L(C, \) produces (a, 3) € Z(G)? such that agB =c1--- . O
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5 Proof of Theorem II

The proof is in two stages. In the first stage, we prove the first part of the
theorem, that is if G is a finitely generated recursively presented group then G
is embeddable in a finitely presented group K such that Z(G) = Z(K). In the
second stage, we prove the second part of the theorem, that is if G has a soluble
word problem then we can take K with soluble word problem.

Stage 1. !

Let G be a finitely generated and recursively presented group. Clearly we
may assume that G is non-abelian. Let {ai,---,a,} be a generating set of G.
Let

GO = <sz‘ Zilgz =g, g€ Z(G)>

Since G is recursively presented, we can apply Lemma 2.6 and then Z(G)
is recursively enumerable in G. Hence Gy is recursively presented. Since G
is non-abelian, by Lemma 2.5, it is easy to see that Z(Gg) = Z(G). The
group G is generated by the set {a1,- -, an, 2z}. Hence there is an isomorphism
v:Fx/R =Gy, where Fy is the free non-abelian group of rank n+ 1 with basis
X ={x1, -, Zp,Tns1}, and R is the normal closure of the presentation (which
is recursively enumerable) of Gy and v satisfies v(Z;) = a;, for i = 1,---,n and
V(Zp11) = z where Z; is the class of x; relative to the subgroup R. Let

Fr=(Fx,d d*rd=r, r € R).

By Higman’s embedding theorem Fr is embeddable in a finitely presented
group say H. Without loss of generality we can assume that x1,- -+, Zn, Tpi1
are included among the generating symbols of the given presentation of H. If
w is a word in the generators of Fx, let w denote the word of G obtained by
replacing each z; by a; for i =1,---,n and z,41 by 2.

In Fg the subgroup L generated by Fx and d~'Fxd is the free product of
Fx and d~'Fxd with R amalgamated.

Define a homomorphism ¢ : L — Go by ¢(w) = w and ¢(d~twd) = 1. Since
the two definitions agree on the amalgamated part, ¢ is well-defined.

Consider the group H x Gy. We shall use the ordered pair notation to denote
elements of this group. Viewing L as a subgroup of H, we consider the subgroup
L x Z(Gy). Define a map ¢ : L x Z(Go) — H x Go by ¥((l,9)) = (I,¢(1).9).
Let us show that v is an injective homomorphism. We have

Y((l1,91)-(l2, 92)) = ¥((l1.l2, 91.92)) = (ll2, #(lal2).91.92)

Y((l1,91))%((l2, 92)) = (I1, #(l).g1)-(l2, ¢(l2)-92) = (lil2, #(11).9190(l2)-g2)-

Since 91,92 € Z(GQ) we have (b(h).gﬂb(lz).gg = ¢(ll).¢(l2).g1.gg, and since (]5
is an homomorphism we have ¢(11).¢(l2) = ¢(l1.l2). Hence ¥((l1, g1).(l2, g2)) =

IThe beginning of the proof in this stage is inspired by the proof of Higman’s embedding
theorem, more precisely the Higman’s Rop Trick.
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¥((li, 01))w((l2,92)). Hence 9 is an homomorphism and it is clear that 1 is
injective.
Therefore we can form the HNN-extension

K = (H x Go,s| s (1,9)s = (1,¢(1).9), L € L, g € Z(Gyp)).

Viewing G as a subgroup of Gy and hence as a subgroup of H x Gy we can
form the following free product with amalgamation

T =K+ G x (t]).

We notice that we view I' as a free product with amalgamation and not as
an HNN-extension. Let

r= (s 2)tat?2t3z - - 2150,

Let N be the normal closure of {r} in T". Let us show that I'/N can be finitely
presented. A set of defining relations for I'/N can be obtained by taking the
union of the following relations:

(1) The defining relations for H.

(2) The relation s = ztzt?zt3z - - - 2180,

(3) The relations saying that the generators of Gy commute with the gener-
ators of H.

(4) The relations saying that the generators of G commute with t.

(5) The defining relations for Gy.

(6) The relations s~1(1,g)s = (I, $(1).g), for a set of generators of L, and
for every g € Z(Gy).

It is clear that I'/NV is finitely generated. We now introduce a set of relations
denoted by (7), which is a subset of (6):

(7) s7X(1,1)s = (1, 6(1)), where 1 belongs to a finite generating set of L.

We are going to prove that the relations (5)-(6) follow from the relations
(1)-(4) and (7), and this will show that I'/N is finitely presented since (1)-(4)
are finite as well as (7).

First we prove that the relations (5) follow from the relations (7) and (1)-
(4). Let w be a word on the generators of Gy such that w = 1. Then the
corresponding word w on the generators of Fx is in R. Now from (7) we have

s Hw, 1)s = (w, p(w)),

and by definition of ¢ we find s~ (w, 1)s = (w,w). Since d"'wd = w (which is
a consequence of (1)) we have

(w, 1) = (d"'wd, 1).
But by the definition of ¢ and from (7),

sTHd 'wd, 1)s = s7H(w, 1)s = (w, p(d" wd)) = (w, 1) = (w, D),
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and hence w = 1 follows.

Now let us show that the relations (6) follow from the relations (7) and (1)-
(5). By (5) we get that every g € Z(Gy) satisfies gz = zg. By (4) we find that
every g € Z(Gp) satisfies gt = tg. Hence by (2) we get that every g € Z(Gy)
satisfies gs = sg, which can be written as (1,g)s = s(1,g) in the ordered pair
notation. Now

sTHlg)s =571, 1)(L,g)s.
Hence

s (lg)s =57 (1, 1)s(1, ),
and by the relations (7),

s7H(l,9)s = (1, 6(1)-(L, 9)-

Hence s71(I,9)s = (I,6(l).g), for a set of generators of L, and for every
g € Z(Gp). This completes the proof of the fact that I'/N is finitely presented.

Now we show that the natural map = : I' — I'/N is injective on G and that
we have Z(T'/N) = w(Z(Gy)). Since Z(G) = Z(Gp) and G < Gy this completes
the proof.

By Lemma 2.5, Z(I') < Z(G). If g € Z(G), then we see that g commutes
with ¢. From the presentation of K, it is also clear that g commutes with s and
all the generators of H. Hence Z(G) < Z(T') and thus Z(G) = Z(T"). We prove
now the following claim.

Claim 1. Let a,b € {z,271,5712,27 s} and o, 8 € G. Then
acb = inT ifand only if a=b"" and a = 8 € Z(G).

Proof.

If a =b"! and a = 8 € Z(G), then clearly aab = f3.

We see that if aab = 3, then a = a718b~! and so it is sufficient to prove
the claim for a € {z,s71z}.

If a = zand b = s~z (resp. b = z7's) this implies that the sequence
(2a,571,2871), (vesp. (zaz™l,s,B71)), is not reduced in the HNN-extension
K, which is clearly a contradiction. So if @ = z then b € {z,271}. Now if b = 2,
the sequence (z,, z,371) is not reduced in the HNN-extension Gy, which is a
contradiction. So if a = z then b = z~!. Hence the sequence (z,a, 271, 371) is
not reduced in the HNN-extension Gy, so a € Z(G), and hence o = 3.

Now if a = 571z and b = z (vesp. b = z7!) the sequence (571, zazB71),
(resp. (571, zaz71B71)), is not reduced in the HNN-extension K, which is
clearly a contradiction. So if a = s71z then b € {s712,27s}. Now if b =
5712, the sequence (s, za, s71, 371) is not reduced in the HNN-extension K,
which is a contradiction. So if @ = s71z then b = 2z~ 's. Hence the sequence
(s71,zaz71,s,871) is not reduced in the HNN-extension K, so zaz~ ! € L x
Z(@G). So there exists (I, g) € L x Z(G) such that zaz~! = l.g. So we must have
I=1and a =g € Z(G). Since s~ *zaz~'s = 3 we have a = 3. This completes
the proof. O
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Let Ry = {r}. Then we see easily, using the above claim, that R, satisfies
the conditions (4)-(i4) of Proposition 3.1. Therefore by Proposition 3.1 and
Theorem 2.2, it is sufficient to show that the symmetrized closure of Ry satisfies

e}
0

Since we view I' as a free product with amalgamation and not as an HNN-
extension, we see that |r| = 160. By Lemma 2.4, it is sufficient to show that

the set Wo(Rg) of cyclically reduced conjugates of the elements of {r} U {r=1}
satisfies C' ().

Let wy,ws € Wy(Rg) such that wjwe # 1. By the conjugacy theorem
(Theorem 2.3) there exists o, € G and 11,73 a cyclic permutations of ele-
ments of {r} U {r~!} such that w; = arja™! and wy = BroB~1. We can write
r1=aj---ap and ro = by - -+ b, where a;,b; € {2,271, t/,t7% s 12,27 1s}. Now
consider how there can be cancellation in the product wqws.

If there is a cancellation in the product w;ws we must have : a, and b, are
in the same factor and |a,a™0bi| = 1 or |a,a™*Bbi| = 0. Let us prove that
the length of any piece is at most 2.

If |a,a~!Bb1| = 1 then it is clear that the length of the piece which was can-
celled is 1. So we consider the case |a,a~13b1| = 0, so the case a,a~18b; € G.
Now if a,, € {z,271,571 2,27 s} and by € {t7%, ¢/}, we see that |a,a~18b1| = 1.
The same thing holds if a,, € {t7%,#/} and b; € {z,271,57 12,27 1s}. Therefore
we have the following two cases to consider.

Case (1). an,b; € {2,271, 572,27 1s}.
Since a,a~!'B8b; € G, by Claim 1 we have a,a"'8b; = a3, and o~ '3 €
Z(G), by =a;* . So

1 —1
Ap—1ap0” " Bbiby = ap_10” " Bba,

12,27 1s} we must have a,_1,b2 € {t',t77}. So

and since Qs b1 € {Z, z 1, S
-1 -1
Ap_10pQ ﬁblbz =« ﬂan_] 1)2.

Now if a,,_1.bo =1, then ry = a1 ---an_1.a, and r9 = a;l.a;il ---b,. But
a cyclic permutation of

(s_lz,t7 2,2, 2,18, 2, ,z,tSO)

or of
(t—8072—17 N -,z_l,t_3,z_l,t_2,z_1,t_1,z_1s)

is uniquely determined by the first two of its elements.
(To see what happens we illustrate the situation. If a,, = z and a,—1 = t*
then b; = 2~ ! and by = t~%. Therefore

o=t B0 i

py = 2 My ) L 80 1Ty (i)
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and then 7175 = 1.) So we have 7175 = 1. Since a3 € Z(G) we have
wiws = aa” ' Prirft =1,

so wiws = 1 which is a contradiction. Therefore a,_1.bo # 1 and hence
lan,—1c71Bbs| = 1. So the length of the piece which was cancelled is 2.

Case (2). a,, b € {t',t77}.
Since a,a~"1fb; € G, we have a,.b; = 1 and

An—1ana” " Bbiby = ay_107 " Bba.
Now if a,_1a718by € G, and since a,,_1,by € {2,271, 5712, 2715}, then by
Claim 1, we have a,_1a~'8by = a™ '8, and a8 € Z(G), by = a,*,. So as in
the previous case we find rir9 = 1. Since ™13 € Z(G) we get

wiwy = aa” BrireB =1,

and thus wywy = 1, which is a contradiction. Therefore a,,_1a~13by ¢ G and
hance |a,_1a~8bz| = 1. So the length of the piece which was cancelled is 2.

Now since |w1| = wz| = 160 and the maximal length of the piece which was
cancelled is 2, a simple count show that : 2 < 18 = L|w|. Hence Wy(Ry)
satisfies C’(75). This completes the proof of this stage. O

Stage 2.  Suppose that G has a soluble word problem. By Lemma 2.6, Z(G)
has a generalized soluble word problem in G. So G has a soluble word problem.
Hence R is a recursive subgroup of Fx. By Lemma 2.8, R is a strongly benign
subgroup. Hence Fr is embeddable in finitely presented group H; such that Fx
and (Fyx,d) have a soluble generalized soluble word problem in Hj.

It is clear that the proof of the stage 1 is independent of the choice of the
finitely presented group H. Therefore we apply the same construction and we
assume that H = H;.

Let us show that I' and Ry satisfy the conditions of Proposition 3.3. By
Lemma 2.7, the subgroup L = (Fx,d 'Fxd) has a generalized soluble word
problem in Fp = (Fx,d | d”'rd = r, r € R). It is easy to see that L has
a generalized soluble word problem in H. We see also that L x Z(G) has a
generalized soluble word problem in H X Gy.

Let us show that ¢ (L x Z(G)) has a soluble generalized soluble word problem
in HxGy. Let (h,g) in H x Gy. Since L has a generalized soluble word problem
in H, one can determine whether h € L. If h ¢ L then (h,g) ¢ ¥(L x Z(G)).
If h € L then we compute ¢(h) (¢ is clearly computable). Now if there exists
go € Z(G) such that ¢(h).go = g we must have ¢(h)~tg € Z(G). Since Z(G)
has a generalized soluble word problem in H x Gy we can determine whether
o(h)~1g € Z(G). T ¢(h)~'g ¢ Z(G) then (hg) ¢ V(L x Z(G)). If g(h) g €

Z(G) then
Y(h,¢(h) " g) = (h,¢(h)p(h) " g) = (h,g),
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and so (h,g) € ¥(L x Z(G)).

The maps 1,91 are computable and L x Z(G), ¢¥(L x Z(G)) have a gen-
eralized soluble word problem in H x Gg. Therefore K has a soluble word
problem and we can calculate the normal form relative to the structure of the
HNN-extension of K.

Hence the group G has a generalized soluble word problem in K. It also has
a generalized soluble word problem in G X (t]).

So I' has a soluble word problem and we can calculate the normal form
relative to its structure of free product with amalgamation.

Therefore, it is sufficient to show that the Ry = {r} satisfies the conditions of
Proposition 3.3. Let C = {((s712),t, 2,12, -+, 2,t%9), (¢80, 271 ... ¢71 (27 1s)) ).
Then we see that C defines explicitly {r}. We see also that {r} satisfies the
conditions (1)-(4) of Proposition 3.3. Then it is sufficient to show that the set
L(C, )\) is recursive and there exists an algorithm which satisfies condition (6)
of Proposition 3.3. The conclusion will follows from a sequence of claims. We
need first the following claim.

Principal Claim. Let w € I with a normal form (ana1f1,- -, ananBy) where
a;,Bi € G and a; € {z,27 1,57 2,27 s,t 74 t7}. Then the following conditions
are equivalents:

(1) There exist a,b € G such that awb = ay - - ap.

(2) Let I = {i| a; € {2,271, 57 2,27 s}}. Then for everyi,j € I such that
1<j, one has (ﬁiai+15i+1ai+2 B -ﬁj,laj) S Z(G)

If (2) is satisfied, then

e ifa, € {z,27', 57 2,27 's}, then we can take a = o *.B,; - B et
and b = (1,

e ifa, € {t~",t'} and n =1, then we can take a = oy and b= [ *,

e ifa, € {t7",t'} and n > 2, then we can take a = o, ' .8 - B et
and b= (Bn_10,,3,) .

Proof.

(1)=(2). By induction on n. We consider two cases: a,, € {z,271, s~
and a,, € {t7*,t/}.

Case (I). a, € {2,271, 572,27 1s}. For n = 1, we have

2,27 1s}

awba;1 = aalalﬁlbafl =1,

and in this case, we find I = {1} and the property is true. It is not difficult to
see that we can take a = oy " and b= ;"
We go from n to n+ 1. We have

1 -1 —1 1 -1 _ 1

-1 — _
awba,  a," - a; " = ac1a1B1 - 0nGnBrny10ng1(Bryib)a,a, - ar =1,

and hence we must have anﬂ(ﬁnﬂb)a;}rl € (. Therefore by Claim 1 we have
Bni1b € Z(G). Since any1 € {2,271, 57 2,275} then a, € {t7, ¢/} and we
find

ac a1 -- an—l(ﬁn—1anﬁnan+1ﬂn+1b)a;i1 xx Cll_l =1,
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and thus we get (8n—10n8nQn110n4+10) € Z(G).

Since a, € {t7%,t/}, we have a,_; € {z,27},s7 12,27 1s}. We see that
the sequence (a1aifi,--+,0n—10n-1(Bn-1nBnn+1n+1)) satisfies the same
conditions of the Claim, and hence by induction hypothesis we get that for
every 4,5 € I such that ¢ < j< n —1, Biajp1---Bj—1a; € Z(G). Hence
Bittiy1 - Bn—1-10m—1 € Z(G).

Since Bpi1b € Z(G) and  (Bn-10nSBnnt1Bni1b) € Z(G) we find that
Br-10nfnant1 € Z(G). Hence for every i € I such that i < n + 1, we get

/Biai+1 o '/anlflanflﬁnflanﬁnan+1 S Z(G)u

and it is not hard to see that we can take a = a;; '3, %, --- B ta; and b = G, .

Case (I). a,, € {t~",t/}. For n = 1, we have awba;' = aaiaiBiba;’ =
ac181b = 1 and in this case I = () and the property is true. It is not hard to
see that we can take a = a; " and b = (Brazf2) " .

We go from n to n+ 1. We have

-1 1 -1 -1 -1 -1
awba, {10, a7 = a0 fn0n10n11(Bngib)a, 1a,” - a)

=q--- anan(ﬁnan_i_lﬂn_‘rlb)a;l e al_l = 1,

and hence we must have S,ap,+18,+10 € Z(G). We see that the sequence
(a1a1B1, -+, nan(Bnni1Pnt1)) satisfies the conditions of the case (I) and
hence for every i,j € I such that i < j< n, f;.qti+1--- Bj—1.a; € Z(G), and the
result follows. We easily see that we can take a = o, 8,587 tar ! and
b= (ﬂn—lanﬁn)il-

(2)=(1). The proof is a straightforward calculation. O

Claim 2. Let A(z) = {g € K | 3a,0 € G suchthat g = azB}. Then A(z)
is recursive and there exists an algorithm which for every g € A(z) produces
a, B € G such that g = azf.

Proof.

Let g € K. Then one can effectively calculate a normal form (in the HNN-
extension K) of g say bystbg - - - b, s*"b,+1 where ¢; = &1 and b; € H x Gy. If
n > 1, clearly g ¢ A(z). Thus we suppose ¢ € H x Gy. Therefore g = hgy,
where h € H and gy € Go. If h # 1, then g ¢ A(z). Hence g € Gy. Then
one can effectively calculate a normal form (in the HNN-extension Gg) of g say
b12°tbg -+ bp2°nbyy1 where ¢, = £1 and b; € G. If n > 2 then g ¢ A(z), and
if e = —1 then g ¢ A(z). Thus we suppose g = byzbs. Hence g € A(z). And
we see that the above procedure is effective and produces «a, f € G such that
g = azf. O

Clatm 3. Let

Q = {(h1,h2,91,92) | hi € H, g; € Go, Ja, B € G such that
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h1g18 thags = as™ 28}

Then Q is recursive and there exists an algorithm which for every (hy, ha, g1, 92) €
Q produces o, 3 € G such that h1g15 1 hags = as™128.

Proof. Let us show that the following properties are equivalent:

(1) (h1,h2,91,92) € Q.

(2) hi.ho =1, hi,ho € L, g1d(h2) € G, g2 € A(2), g2 = Mm272, 11 € Z(G)
and one can take o = g1¢(ha)v1, 0 = 751.

(1)=(2). Let o, 3 € G such that h1g1s thags = as™123.

Then the sequence (higi,s 1, haga37 1271 s,a™1) is not reduced in the
HNN-extension K and thus hage3~ 1271 € LxZ(G). So hy € Land g2~ 271 €
Z(@G). Hence g = 0203 € A(z), and d€ Z(G). Therefore

h1g18_1h2g2ﬂ_12_1801_1 = h1g1h2¢)(h2)504_1 = 1,

and so h1hy = 1 and g1¢(h2) = ad~ ' € G.
(2)=(1) Let 8 = v, *. Then

h1g1s thagaB 27 s = higis thayizyeyy t2 s =

= hlglsilhg’}/ls

= h1g1ha¢(h2)y1 = g2¢(h2)n1 = @ € G,

and this ends the proof of the equivalence (1)<(2).

Since L has a generalized soluble word problem in H, and A(z) is recursive
and there exists an algorithm which for every g € A(z) produces a, 8 € G such
that ¢ = az(, the conclusion follows from the above equivalence. O

Claim 4. For every a € {z,271,57 2,27 s}, the set A(a) = {g € K | 3o, €
G such that g = aaf} is recursive and there exists an algorithm which for every
g € A(a) produces o, 3 € G such that g = aaf3. Also for every a € {t~*,t7}, the
set A(a) ={g € Gx(t]) | Jo,B € G such that g = aaf} is recursive and
there exists an algorithm which for every g € A(a) produces o, 8 € G such that
g = aapf.

Proof. We see that g € A(a) if and only if g~! € A(a™!) and g = aaf if
and only if ¢g7! = f~ta " 'a~!. Therefore it is sufficient to show that the above
properties are true for a € {z,s7'z}. For the case a = z this was proved in
Claim 2.

Let g € K. Then one can effectively calculate a normal form (in the HNN-
extension K) bystby - - b,s*"b, 1 where ¢, = £1 and b; € H x Gp. If n > 2
then g ¢ A(s™'2). Hence we must have n = 1, e; = —1 and thus g = bys 1bs.
Then one can effectively calculate hi,ho € H, g1,92 € Gq such that b; =
hig: and by = hago. We see that g € A(s~'2) if and only if (hy, ha,g1,92) €
Q. Since Q is recursive we see that A(s~!z) is recursive. By Claim 3, there
exists an algorithm which for (hy, ha, g1, 92) € @ produces «, 8 € G such that
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h1g15 thago = as™1z3. Hence there exists an algorithm which for every g €
A(s712) produces a, 3 € G such that g = as™124.
For a € {t~%,#7}, the conclusion is obvious. O

Now we are ready to prove that the set
L(C,\) ={(g,¢,1) eT xC xN|c=(c1, -+,¢n), (1=3\Nn<1<n,

Jda, 8 € G, such that agB=c; - ¢},

is recursive, where A = 1/10, and that there exists an algorithm which for every
(g,¢,1) € L(C, \) produces («, ) € G? such that agB=c; - ¢.

Let (g,c,1) € T x C x N. Then one can effectively calculate a normal form
(917"'agm) Ofg in T

(1). If I < (1 — 3X)|c| then (g,¢,1) & L(C, \).

(2). Otherwise,

e If (g,c,l) € L(C,)\), then there exists o, € G, 1 <1 < m,l > (1 -
3\)|c| such that agB = ¢;---¢ and m = [. Then we must have a sequence
(V15 Ym, Ym41) of G such that g1 = o 'vic1vy ', g0 = vy, gm =
’Ymcm’)/;i_l 371, Hence we have g; € A(c;). Then it is sufficient to verify whether
g; € A(Cl)

o If there is some 4 such that g; ¢ A(c;) then (g,¢,1) ¢ L(C, \).

o If for every i, g; € A(c;) then by Claim 4, one can effectively calculate two
sequences (o, -+, &), (81, -+, Bm) of G such that g; = a;¢;5;.

By the Principal Claim, for every ¢,j € I such that ¢ < j,

() Bittip1 - Bij—1ay € Z(@Q).

o If for some i, j € I such that i < j, (%) does not hold then (g,c,1) ¢ L(C, \).

e If for every i, € I such that ¢ < j, (x) holds then, by the Principal
Claim, (g,c,1) € L(C,\) and we can take a = a;,}! ;11_1 Bttt B =gt
if ¢y € {2,271, 572,27 s}, and we can take o = o, G, -7 eyt and
ﬁ = (ﬁm—lamﬁm)_l if ¢, € {t_i7tj}-

Hence L(C, \) is recursive and we see, by the above method, that there exists
an algorithm which for every (g,¢,1) € L(C, \), produces (o, ) € G? such that

agB=c1---q. O

6 Proofs of corollaries

Proof of Corollary 1. By Lemma 2.6, if H is finitely presented then Z(H)
is recursively presented. Conversely, let G be a countable recursively presented
abelian group. By Theorem I, G is embeddable in a finitely generated and
recursively presented group K such that G = Z(G) = Z(K). By Theorem II,
K is embeddable in finitely presented group H such that Z(K) = Z(H), hence
Z(H) = G and the result follows. O
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Proof of Corollary 2. By Lemma 2.6, if H is finitely presented with soluble
word problem then Z(H) is recursively presented and with soluble word prob-
lem. Conversely, let G be a countable abelian group with soluble word problem.
By Theorem I, G is embeddable in a finitely generated group with soluble word
problem K such that G = Z(G) = Z(K). By Theorem II, K is embeddable in a
finitely presented group H with soluble word problem such that Z(K) = Z(H),
hence Z(H) = G and the result follows. O

Proof of Corollary 3. It follows from Corollary 2 and from the following
lemma.

Lemma 6.1 There exists a countable abelian group K with soluble word prob-
lem such that every countable abelian group can be embedded in K.

Proof. Let (7,)necw be the sequence of prime numbers. Let K = (Q)®0) @
(@iew(Zﬁ;im)(No)). Then it is not difficult to see that K has a soluble word
problem.

Let G be a countable abelian group. By a classical result G is embeddable in
a divisible and countable abelian group say G;. It is also well-known that every
divisible abelian group is isomorphic to a direct sum of groups each of which is
isomorphic to Q or a group of the form Zz-. Hence the groups G; and G are
embeddable in K. Since K has a soluble word problem the result follows. O

Proof of Corollary 4. Let G be a finitely generated recursively presented
group. Let A be a countable recursively presented abelian group. Let M =
(G*(x])) x A. Then we see that Z(M) = A and M is recursively presented. By
Theorem I, M is embeddable in a finitely generated recursively presented group
L such that Z(L) = Z(M) = A. The result follows by Theorem II. O
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