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Abstract

V.N. Remeslennikov proposed in 1976 the following problem: is any
countable abelian group a subgroup of the centre of some finitely presented
group ? We prove that every finitely generated recursively presented group
G is embeddable in a finitely presented group K such that the centre of
G coincide with that of K. We prove also that there exists a finitely
presented group H with soluble word problem such that every countable
abelian group is embeddable in the centre of H. This gives a strong
positive answer to the question raised by V.N. Remeslennikov.

1 Introduction

V.N. Remeslennikov proposed in 1976 the following problem: is any count-
able abelian group a subgroup of the centre of some finitely presented group ?
The problem, which is natural in the context of Higman’s famous embedding
theorem, is listed recently as open [3, 8]. However in 1980, B.M. Hurley [5] an-
nounced, without proof, the following proposition which yields a positive answer
to the above problem: a necessary and sufficient condition for an abelian group
to be the centre of some finitely presented group is that it should be recursively
presentable. In this paper we prove various results on embeddings in finitely
presented groups which preserve the centre, including the proposition stated by
B.M. Hurley and the fact that there exists a finitely presented group H with
soluble word problem such that every countable abelian group is embeddable in
the centre of H. This gives of course a positive answer to the question raised
by V.N. Remeslennikov.

We shall now state the main results of the paper which will be proved in
Section 4,5,6, while Section 2 is devoted to presenting the terminology and the
tools used, and Section 3 contains preparatory propositions. The main results
of this paper are as follows.
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Theorem I. Let G be a countable group. Then G is embeddable in a finitely
generated group K such that Z(G) = Z(K) and:

(1) If G is recursively presented and Z(G) is recursively enumerable in G,
then we can take K to be recursively presented.

(2) If G has a soluble word problem and Z(G) has a generalized soluble word
problem in G, then we can take K with soluble word problem.

Theorem II. Let G be a finitely generated recursively presented group. Then
G is embeddable in a finitely presented group K such that Z(G) = Z(K) and if
G has a soluble word problem, then we can take K with soluble word problem.

Corollary 1. An abelian group is the centre of a finitely presented group if and
only if it is recursively presentable.

Corollary 2. An abelian group is the centre of a finitely presented group with
soluble word problem if and only if it has a presentation admitting a soluble word
problem.

Corollary 3. There exists a finitely presented group H with soluble word prob-
lem such that every countable abelian group is embeddable in the centre of H.

One can also deduce the following corollary which is a generalization of
Theorem II.

Corollary 4. Let G be a finitely generated recursively presented group. Let A
be a countable recursively presented abelian group. Then G is embeddable in a
finitely presented group K such that Z(K) = A and if G has a soluble word
problem and A has a presentation admitting a soluble word problem, then we
can take K with soluble word problem.

2 Preliminaries

The goal of this section is to fix the definitions that are going to be used and
to present the small cancellation theory over amalgamated free products. We
work in the following context. Let G1, G2 be groups and A a common subgroup
of G1 and G2. One considers the free product of G1 and G2 amalgamating the
subgroup A and one notes it F = G1 ∗A G2. We call G1 and G2 the factors
of F . Then for every element w ∈ F such that w /∈ A, there exists a sequence
(g1, · · · , gn) of elements of G1 ∪G2 such that w = g1 · · · gn and:

(i) gi, gi+1 come from different factors,
(ii) gi /∈ A.
A sequence which satisfies the conditions (i)-(ii) is called reduced. It is well

known that if (g1, · · · , gn), (h1, · · · , hm) are reduced sequences such that g1 · · · gn

= h1 · · ·hm, then m = n. Then for every element w ∈ F we define the length
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of w denoted |w| by: |w| = 0 if w ∈ A and |w| = n (if w /∈ A) where n is the
length of some reduced sequence (g1, · · · , gn) such that w = g1 · · · gn.

Let w ∈ F . A normal form of w is a sequence (g1, · · · , gn) such that
w = g1 · · · gn and if w ∈ A, then n = 1, otherwise (g1, · · · , gn) is reduced.
Notice that an element w of F can have several normal forms.

Let g = g1 · · · gn. We say that g = g1 · · · gn is in normal form if (g1, · · · , gn)
is a normal form of g.

A normal form (g1, · · · , gn) of an element w is cyclically reduced if n = 1
or if gn and g1 are in different factors. Then one normal form of w is cyclically
reduced if and only if all normal forms of w are cyclically reduced, which allows
us to define cyclically reduced elements.

A normal form (g1, · · · , gn) of an element w is weakly cyclically reduced
if n = 1 or if gng1 /∈ A. Then one normal form of w is weakly cyclically reduced
if and only if all normal forms of w are weakly cyclically reduced. As before,
this allows us to define weakly cyclically reduced elements.

A subset W of F is symmetrized if:
(i) every element of W is weakly cyclically reduced,
(ii) if w ∈ W then w−1 ∈ W ,
(iii) every weakly cyclically reduced conjugate of every element of W is in

W .
Given a group G and a subset X ⊆ G, we denote by X±1 the set X ∪

X−1. Let R be a subset of F such that every element of R is weakly cyclically
reduced. The symmetrized closure of R, denoted by W (R), is the smallest
symmetrized subset of F which contains R. We denote by W0(R) the set of
cyclically reduced conjugates of elements of R±1.

One has the following lemma that summarizes some properties of normal
forms and symmetrized sets.

Lemma 2.1 Let F = G1 ∗A G2 be a free product with amalgamation.
(1) Let R be a subset of F such that every element of R is weakly cyclically

reduced. Then the symmetrized closure of R is the set of all weakly cyclically
reduced conjugates of elements of R±1.

(2) If (g1, · · · , gn), (h1, · · · , hn) are normal forms such that g1 · · · gn = h1 · · ·hn,
then there exists a sequence (a1, · · · , an, an+1) of elements of A such that a1 =
an+1 = 1 and for every i = 1, · · · , n, gi = aihia

−1
i+1. ¤

Let u, v ∈ F with normal form (u1, · · · , un) and (v1, · · · , vm) respectively.
Let g = uv. We say that g is in semi-reduced form (u, v) if unv1 /∈ A. We
say that g is in reduced form (u, v) if un, v1 are in different factors.

One of the objects of small cancellation theory is to see, when we have a
normal subgroup N of F , what conditions insure that N does not have short
elements and in particular guarantee N ∩ G1 = N ∩ G2 = 1, so that in the
quotient F/N short elements are not hurt.

Let W be a subset of F . An element b ∈ F is said to be a piece (relative
to W ) if there exists distinct elements w1, w2 ∈ W such that w1 = bc1 and
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w2 = bc2 in semi-reduced form. This means that b is cancelled in the product
w−1

2 w1.
For a positive real number λ we define the following condition:
C ′(λ) : if w ∈ W is in semi-reduced form (b, c) where b is a piece then

|b| < λ |w|. Further, for every w ∈ W , |w| > (1/λ).
In practice, to verify that a set W with W = W−1satisfies C ′(λ), one takes

two elements w1, w2 of W such that w1w2 6= 1 and one proves that the length
of the element which is cancelled in the product w1w2 is smaller than λ |w1| and
λ |w2|. Using normal forms this is equivalent to the following:
if w1 = amam−1 · · · a1 and w2 = b1 · · · bn are in normal forms and

ai · · · a1.b1 · · · bi ∈ G1 ∪G2,

then i < λm, i < λn. (Of course also the condition for every w ∈ W , |w| >
(1/λ).)

We will use frequently the following principal theorem.

Theorem 2.2 [6, Theorem 11.2, Chapter V] Let F = G1∗AG2 be a free product
with amalgamation, W be a symmetrized subset of F and let N be the normal
closure of W in F . Suppose that W satisfies C ′(λ) with λ ≤ 1

6 . If w ∈ N , with
w 6= 1, then w = usv in reduced form where there is a cyclically reduced r ∈ W ,
with r = st in reduced form and |s| > (1− 3λ)|r|.

In particular, the natural map π: F → F/N embeds each factor of F . ¤

We need also the following theorem.

Theorem 2.3 [6, Theorem 2.8, Chapter IV] Let F = G1∗AG2 be a free product
with amalgamation. Let u = u1 · · ·un be a cyclically reduced element of F
where (u1, · · · , un) is a normal form and n ≥ 2. Then every cyclically reduced
conjugate of u can be written as ava−1 where a ∈ A and v is the product of
some cyclic permutation of (u1, · · · , un).

Lemma 2.4 Let F = G1 ∗A G2 be a free product with amalgamation. Let λ,α
be positive real numbers such that λ≤ α. Let R be a subset of F which satisfies:

(1) Every element of R is cyclically reduced.
(2) For every r ∈ R, λ|r|+ 1 ≤ α |r|, and |r| > 1

α .
If W0(R) satisfies C ′(λ), then W (R) satisfies C ′(α).

Proof
Observe that since every element of R is cyclically reduced and for every

r ∈ R, |r| > 1
α , then every element w of W (R) satisfies |w| > 1

α .
By Lemma 2.1 (1), we know that the elements of W (R) are the weakly

cyclically reduced conjugates of elements of R±1. Let w1, w2 ∈ W (R) such
that w1w2 6= 1. We are going to prove that if some element is cancelled in the
product w1w2, then its length is smaller than α |w1| and α |w2|.
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We have to consider two cases. The first case where w1,w2 are not cyclically
reduced, and the second case where w1 cyclically reduced and w2 is not cyclically
reduced. The other cases can be reduced to the previous ones, or they are
obvious as the case where w1, w2 are cyclically reduced.

Let w1 = a1 · · · an and w2 = b1 · · · bm in normal form. Since w1 and w2 are
weakly cyclically reduced we have ana1 /∈ A and bmb1 /∈ A.
Case (1). w1 and w2 are not cyclically reduced.

We can write

w1 = a−1
n (ana1)a2 · · · an−1an and w2 = b−1

m (bmb1)b2 · · · bm−1bm.

Since ana1 /∈ A and bmb1 /∈ A, and an, a1 are in the same factor, bm, b1

are in the same factor, the elements (ana1)a2 · · · an−1, (bmb1)b2 · · · bm−1 are in
reduced form and are cyclically reduced. We see that they are conjugates of
elements of R±1. Now consider how there can be cancellation in the product
w1w2. If there is no cancellation we have the result. If |anb1| = 1, then the
length of any piece is smaller than 1, and since 1 < α |w1|, 1 < α |w2|, we get
the desired conclusion.

Now suppose that anb1 ∈ A and let γ = anb1. We see that b2 · · · bm−1(bmb1)
and γb2 · · · bm−1(bmb1)γ−1 are cyclically reduced conjugates of some element of
R±1. Then

w1w2 = a−1
n ((ana1)a2 · · · an−1)γb2 · · · bm−1(bmb1)b−1

1

= a−1
n ((ana1)a2 · · · an−1)γb2 · · · bm−1(bmb1)γ−1an.

Let
r1 = (ana1)a2 · · · an−1, r2 = γb2 · · · bm−1(bmb1)γ−1.

Then r1 and r2 are in W0(R). It is enough to look at pieces in the product
r1r2.

Since w1w2 6= 1, r1r2 6= 1. By hypothesis W0(R) satisfies C ′(λ). Therefore,
if d is a piece in the product of r1 and r2, then |d| < λ|r1| and |d| < λ|r2|. But
it is not difficult to see that the corresponding piece in the product of w1 and
w2 is of length |d|+ 1. Then

|d|+ 1 < λ|r1|+ 1, |d|+ 1 < λ|r2|+ 1,

also,
|d|+ 1 < α(|r1|+ 1), |d|+ 1 < α(|r2|+ 1).

But |w1| = |r1|+ 1 and |w2| = |r2|+ 1. Thus we get the desired conclusion.
Case (2). w1 is not cyclically reduced and w2 is cyclically reduced.

The proof is similar to the previous one. In this case we see that w1 =
a−1

n (ana1)a2 · · · an−1an and w2 = b1b2 · · · bm−1bm. As before since ana1 /∈ A
and an, a1 are in the same factor, then the element (ana1)a2 · · · an−1 is in
reduced form and it is a cyclically reduced conjugate of an element of R±1. If
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there exists cancellation in the product of w1 and w2 then anb1 ∈ A. As before
put γ = anb1. We have

w1w2 = a−1
n ((ana1)a2 · · · an−1)γb2 · · · bm−1bm.b1b

−1
1

= a−1
n ((ana1)a2 · · · an−1)γb2 · · · bm−1bmb1γ

−1an.

We see also that γb2 · · · bm−1bmb1γ
−1 is a cyclically reduced conjugate of

some element of R±1.
As in the previous case, if d is a piece in the product of r1 = (ana1)a2 · · · an−1

and r2 = γb2 · · · bm−1bmb1.γ
−1, then |d| < λ|r1| and |d| < λ|r2|. But, as before,

the corresponding piece in the product of w1 and w2 is of length |d|+ 1. Then

|d|+ 1 < λ|r1|+ 1, |d|+ 1 < λ|r2|+ 1,

also,
|d|+ 1 < α(|r1|+ 1), |d|+ 1 < α|r2|.

But |w1| = |r1|+ 1 and |w2| = |r2|, and thus we get the result.
Therefore, W (R) satisfies C ′(α). ¤
The proof of the following lemma can be extracted from elsewhere, but for

completeness we provide a proof.

Lemma 2.5 Let F = G1 ∗A G2 be a free product with amalgamation such that
G1 6= A and G2 6= A. Then Z(F ) ≤ Z(A).

Proof
Let g ∈ Z(F ) and let (g1, · · · , gn) be a normal form of g. Suppose that |g| ≥

2. Since g ∈ Z(F ) we have gg−1
n = g−1

n g, hence g1 · · · gn−1g
−1
n · · · g−1

2 g−1
1 gn = 1.

Since gn−1 and gn are in different factors and n ≥ 2, we see that

|g1 · · · gn−1g
−1
n · · · g−1

2 g−1
1 gn| ≥ 1,

which is a contradiction.
Suppose now |g| = 1. Suppose g ∈ G1. Since G2 6= A, there exists g′ ∈

G2 \ A. Then gg′g−1g′−1 = 1, which is a contradiction because the sequence
(g, g′, g−1, g′−1) is reduced. As G1 6= A, the argument apply when g ∈ G2.
Hence |g| = 0. Therefore Z(F ) ≤ A and consequently Z(F ) ≤ Z(A). ¤

We finish this section with some properties (and definitions) of recursively
presented groups and groups with soluble word problem. Let X = {xi|i ∈ N}.
A countable group G is said recursively presented, if G has a presentation G =
〈X|P (X)〉 such that P (X) is recursively enumerable; and it is said to have a
soluble word problem, if it has a presentation G = 〈X|P (X)〉 for which the set
of words w(x̄) on X±1 such that w(x̄) = 1 in G is recursive. A subgroup H ≤ G
is said to have a soluble generalized word problem in G, if the set of words w(x̄)
such that w ∈ H is recursive, and is said recursively enumerable in G if the set
of words w(x̄) such that w(x̄) ∈ H is recursively enumerable.
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Lemma 2.6 Let G be a finitely generated group.
(1) If G is recursively presented, then Z(G) is recursively enumerable in G

and it is recursively presented.
(2) If G has a soluble word problem, then Z(G) has a soluble word problem

and also a soluble generalized word problem in G.

Proof
Suppose that G is generated by ā = {a1, · · · , an}. Let W (ȳ) be the set of

words over the set {y1, · · · , yn}±1. Let V = {w(ȳ) ∈ W (ȳ) | w(ā) ∈ Z(G)}.
Then clearly we have V = {w(ȳ) ∈ W (ȳ) | [w(ā), ai] = 1, 1 ≤ i ≤ n}.

(1) Since G is recursively presented the set {w(ȳ) ∈ W (ȳ) | w(ā) = 1}
is recursively enumerable and thus V is recursively enumerable. Then Z(G) is
recursively enumerable in G. Now let us show that Z(G) is recursively presented.
Let (vi(ȳ) | i ∈ N) be an enumeration of V . Let L be the set of words on
{vi | i ∈ N}±1, regarding it as a set of variables. Then the set

K = {w(vi1 , · · · , vim
) | w(vi1(ā), · · · , vim

(ā)) = 1}
is recursively enumerable.

Let X = {xi | i ∈ N}. If w(vi1 , · · · , vim) is a word in L, let w(xi1 , · · · , xim)
denote the word obtained by replacing each vij by xij . Let

P = {w(xi1 , · · · , xim) ∈ L | w(vi1 , · · · , vim) ∈ K},
and let H = 〈X|P 〉. Then H is recursively presented and it is clear that it is
isomorphic to Z(G). Indeed,

H |= w(xi1 , · · · , xin) = 1 ⇔ w(xi1 , · · · , xin) ∈ P ⇔ G |= w(vi1 , · · · , vim) = 1.

(2) The proof is similar to the previous one. Since G has a soluble word
problem, V is recursive and then Z(G) has a generalized soluble word problem
in G. Similarly the set P is recursive and then the group H has a soluble word
problem. ¤

We are going to use a particular case of some results of C.R.J. Clapham [1, 2].
For this we will need the following definition. Let G be a finitely generated group
and H a subgroup of G. We call H strongly benign (A-strongly benign in the
vocabulary of C.R.J. Clapham) if the HNN-extension G∗ = 〈G, t|t−1ht = h |
h ∈ H〉 can be embedded in a finitely presented K with soluble word problem
such that G and 〈G, t〉 have a generalized soluble word problem in K.

Lemma 2.7 [1, Corollary 3.8.1] Let G be a finitely generated group with soluble
word problem and ϕ a recursive isomorphism of a subgroup A into G such that
A and ϕ(A) have generalized soluble word problem in G. Then the subgroup
〈G, t−1Gt〉 has a generalized soluble word problem in G∗ = 〈G, t | t−1at =
ϕ(a), a ∈ A〉.
Lemma 2.8 [2, Lemma 11.2] A subgroup of a finitely generated free group is
strongly benign if and only if it is recursive.
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3 Preparatory propositions

Notation. Let (u1, · · · , un) and (v1, · · · , vm) be a sequences. The notation
(u1, · · · , un) ≤ (v1, · · · , vm) means that there exists p such that (u1, · · · , un) =
(vp, · · · , vp+n−1).

Proposition 3.1 Let F = G1 ∗A G2 be a free product with amalgamation and
R a subset of F which satisfies:

(i) Every element of R is cyclically reduced and every r ∈ R, satisfies |r| >
12.

(ii) For every r ∈ R and for every normal form (g1, · · · , gn) of r there are
no i, j, i 6= j and α, β ∈ A such that g−1

i = αgjβ.
(iii) The symmetrized set W (R) satisfies C ′(λ) with λ ≤ 1

9 .
Let N be the normal closure of R in F and π : F → (F/N) the natural map.

Then π(Z(F )) = Z(F/N).

Remark. We see that if r ∈ R and if there exists a normal form (g1, · · · , gn) of
r which satisfies the condition of (ii), then every other normal form (h1, · · · , hn)
of r satisfies also the condition of (ii). It is not difficult to see also that the same
property is true for any cyclic permutation of (g1, · · · , gn) and for any normal
form for the inverse of r.

In order to prove Proposition 3.1 we will need the following lemma whose
proof is omitted as it follows easily by induction on n.

Lemma 3.2 Let F = G1 ∗A G2 be a free product with amalgamation. Let
g = g1 · · · gn in normal form, n ≥ 2 and t ∈ F such that |t| ≤ 1. Suppose that
|gtg−1| ≥ 3. Then there exists i ∈ {1, · · · , n} and α∈ F such that |α| = 1 and
gtg−1 = g1 · · · giαg−1

i · · · g−1
1 is in normal form. ¤

Proof of Proposition 3.1 We suppose π(Z(F )) 6= Z(F/N), and we prove that
there exists r ∈ R that does not satisfy the condition (ii).

Let π(g) ∈ Z(F/N) such that π(g) /∈ π(Z(F )). Let g0 ∈ F be of minimal
length such that π(g0) = π(g).

Since π(g0) ∈ Z(F/N), for every t ∈ F such that |t| ≤ 1, g0tg
−1
0 t−1 ∈ N .

Since g0 /∈ Z(G) there exists t0 ∈ F , such that |t0| ≤ 1 with g0t0g
−1
0 t−1

0 6= 1.
By Theorem 2.2, there exists w ∈ W (R), cyclically reduced such that

|g0t0g
−1
0 t−1

0 | > (1− 3λ)|w|.

We have |g0t0g
−1
0 | ≥ |g0t0g

−1
0 t−1

0 | − 1 > (1 − 3λ)|w| − 1. Since λ ≤ 1
9 and

|w| > 9 a simple count gives us (1 − 3λ)|w| > 2
3 .9 = 6, hence |g0t0g

−1
0 | ≥ 3.

We have also |g0t0g
−1
0 t−1

0 | ≤ 2|g0| + 2, and |g0t0g
−1
0 t−1

0 | > (1 − 3λ)|w|, hence
|g0t0g

−1
0 t−1

0 | > 6 and hence 2|g0| + 2 ≥ 6 therefore |g0| ≥ 2. Therefore the
conditions of Lemma 3.2 are satisfied.
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Let (a1, · · · , an) be a normal form of g0. By Lemma 3.2, there exists i ∈
{1, · · · , n} and α ∈ F , such that |α| = 1 and g0t0g

−1
0 = a1 · · · aiαa−1

i · · · a−1
1 is

in normal form.
We have three cases to consider: |a−1

1 t−1
0 | = 0, |a−1

1 t−1
0 | = 1, |a−1

1 t−1
0 | = 2.

We are going to treat just the case |a−1
1 t−1

0 | = 0, the other cases can be treated
similarly.

Let γ = a−1
1 t−1

0 . We remark that i ≥ 2 because |g0t0g
−1
0 t−1

0 | > (1− 3λ)|w|>
6. Then the sequence (a1, · · · , ai, α, a−1

i , · · · , a−1
2 γ) is a normal form of h =

g0t0g
−1
0 t−1

0 . To simplify notations we denote the previous normal form of h by
(v1, v2, · · · , vm).

By Theorem 2.2, there exists a normal form (u1, · · · , um) of h, there exists
a normal form (w1, · · · , wq) of w, there exists l > (1 − 3λ)|w| and there exists
p ∈ {1, · · · ,m} such that (up, · · · , up+l−1) = (w1, · · · , wl).

By Theorem 2.3, there exists a ∈ A and r where r is the product of a cyclic
permutation of some r′ ∈ R±1, such that w = a−1ra.

Let (r1, · · · , rq) be a normal form of r. Then (a−1r1, · · · , rqa) is a normal
form of w and by Lemma 2.1, there exists a sequence (α1, · · ·αq+1) of elements
of A such that

wj = αjrjα
−1
j+1 for j 6= 1, j 6= q, and w1 = α1a

−1r1α
−1
2 , wq = αqrqaα−1

q+1.

Similarly there exists a sequence (β1, · · · , βm+1) of elements of A such that
uj = βjvjβ

−1
j+1. Then

(∗) (βpvpβ
−1
p+1, · · · , βp+l−1vp+l−1β

−1
p+l) = (α1a

−1r1α
−1
2 , · · · , αlrlα

−1
l+1).

Let us show that (vp, · · · , vp+l−1) � (a1, · · · , ai, α) and (vp, · · · , vp+l−1) �
(α, a−1

i , · · · , a−1
2 γ).

Suppose that (vp, · · · , vp+l−1) ≤ (a1, · · · , ai, α) or that (vp, · · · , vp+l−1) ≤
(α, a−1

i , · · · , a−1
2 γ).

Then for some k, x we have (vp+1, · · · , vp+l−2) = (ak, · · · , ax). By (∗) we get

(ak, · · · , ax) = (vp+1, · · · ., vp+l−2)

= (β−1
p+1α2r2α

−1
3 βp+2, · · · , β−1

p+l−2αl−1rl−1α
−1
l βp+l−1).

Then

g0 = a1 · · · ak−1.(β−1
p+1(α2r2α

−1
3 )βp+2β

−1
p+2 · · ·βp+l−2β

−1
p+l−2(αl−1rl−1α

−1
l )β−1

p+l−1)

.ax+1 · · · an = a1 · · · ak−1.(β−1
p+1(α2r2 · · · rl−1α

−1
l )β−1

p+l−1).ax+1 · · · an.

Since π(r2 · · · rl−1) = π(r−1
1 r−1

q · · · r−1
l ) we find

π(g0) = π(a1 · · · ak−1.(β−1
p+1(α2r

−1
1 r−1

q · · · r−1
l α−1

l )β−1
p+l−1).ax+1 · · · an).

Let

d = a1 · · · ak−1.(β−1
p+1(α2r

−1
1 r−1

q · · · r−1
l α−1

l )β−1
p+l−1).ax+1 · · · an.

9



Since l > (1− 3λ)|r|, and λ ≤ 1
9 then l − 2 > (1− 3λ)|r| − 2 > 2

3 |r| − 2 and
since |r| > 12 a simple count shows us that, 2

3 |r| − 2 > 1
2 |r|, hence l − 2 > 1

2 |r|.
Therefore we have |r−1

1 r−1
q · · · r−1

l | ≤ q − l + 2 < 1
2 |r|. Then we have

|d| = |a1 · · · ak−1.(β−1
p+1(α2r

−1
1 r−1

q · · · r−1
l α−1

l )β−1
p+l−1).ax+1 · · · an| ≤

(k − 1) + (q − l + 2) + (n− x)

< (k − 1) + 1
2 |r|+ (n− x).

Since |g0| = (k − 1) + (l − 2) + (n− x) and l − 2 > 1
2 |r| we have |d| < |g0|.

We have π(d) = π(g) = π(g0) and |d| < |g0|. This contradicts the fact that
the length of g0 is minimal.

Hence there exist k, j such that (vp, · · · , vp+l−1) = (ak, · · · , ai, α, a−1
i , · · · , a−1

j ).
Therefore we see that there exist i1, i2 and δ, µ ∈ A such that δri1µ = r−1

i2
, which

contradicts Condition (ii). ¤
Definitions. Let F = G1 ∗A G2 be a free product with amalgamation and R a
subset of F .

(1) Let C be a set of normal forms. We say that C defines explicitly R or
that R is explicitly defined by C if :

(i) If (c1, · · · , cn) ∈ C, then c1 · · · cn ∈ R±1.
(ii) For every r ∈ R±1, there exists a normal form (c1, · · · , cn) ∈ C such

that r = c1 · · · cn.
(2) For every set C of normal forms we denote by C the set of all cyclic

permutation of elements of C.
(3) Let C be a set of normal forms and λ a positive real number such that

λ ≤ 1
6 . We define L(C, λ) to be

L(C, λ) = {(g, c, l) ∈ F × C × N | c = (c1, · · · , cn), (1− 3λ)n < l ≤ n,

∃α, β ∈ A, such that αgβ = c1 · · · cl}.

Proposition 3.3 Let F = G1 ∗A G2 be a free product with amalgamation and
R a subset of F , explicitly defined by C, such that:

(i) G1 and G2 have a soluble word problem.
(ii) A has a generalized soluble word problem in both G1 and G2.
(1) Every element of R is cyclically reduced.
(2) The symmetrized set W (R) satisfies C ′(λ) with λ ≤ 1

6 .
(3) For every n ∈ N, the set {c ∈ C | |c| ≤ n} is finite.
(4) The map defined by ϕ(n) = {c ∈ C | |c| ≤ n} is recursive.
(5) The set L(C, λ) is recursive.
(6) There exists an algorithm which for every (g, c, l) ∈ L(C, λ) produces

(α, β) ∈ A2 such that αgβ = c1 · · · cl.
Let N be the normal closure of R in F . Then F/N has a soluble word

problem.
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Lemma 3.4 Let F = G1 ∗A G2 be a free product with amalgamation and R a
subset of F , explicitly defined by C, and such that every element of R is cyclically
reduced. Suppose that W (R), the symmetrized closure of R, satisfies C ′(λ) with
λ ≤ 1

6 . Let N be the normal closure of R in F . Let w ∈ N , with w 6= 1, and let
(g1, · · · , gn) be a normal form of w. Then there exist i, 1 ≤ i ≤ n, c ∈ C and
l ∈ N, such that (gi · · · gi+l−1, c, l) ∈ L(C, λ). We call c a witness of w.

Proof
By Theorem 2.2, there exists r ∈ W (R) cyclically reduced such that r = s.t

in reduced form and w = usv in reduced form and |s| > (1 − 3λ)|r|. To
simplify notations we write w = u1 · · ·un, r = v1 · · · vm where (u1, · · · , un) and
(v1, · · · , vm) are normal forms and (ui, · · · , ui+l−1) = (v1, · · · , vl), l > (1−3λ)|r|.
By Lemma 2.1, there exists a sequence (α1, · · · , αn+1) of elements of A such that
gi = αiuiα

−1
i+1. Since r ∈ W (R) is cyclically reduced, by the conjugacy theorem

(Theorem 2.3), there exists r0 a cyclic permutation of an element of R±1 and
γ ∈ A such that r = γr0γ

−1. Since C defines explicitly R, there exists c =
(c1, · · · , cm)∈ C such that (c1, · · · , cm) is a normal form of r0. Therefore we see
that the sequence (γc1, · · · , cmγ−1) is a normal form of r, hence by Lemma 2.1,
there exists a sequence (β1, · · · , βm+1) of elements of A such that vi = βiciβ

−1
i+1,

for i 6= 1 and i 6= m, v1 = β1γc1β
−1
2 and vm = βmcmγ−1β−1

m+1. A simple
count shows us that gi · · · gi+l−1 = αiui · · ·ui+l−1α

−1
i+l = αiβ1γc1 · · · clβ

−1
l+1α

−1
i+l.

Therefore (gi · · · gi+l−1, c, l) ∈ L(C, λ). ¤

Proof of Proposition 2.3 In this proof the natural map π : F → F/N is
written π(w) = w. Let w ∈ F/N written as a word in the generators of F/N .
Since F has a soluble word problem, one can determine if w = 1 or no. If it is the
case, then w = 1. Otherwise, since A has a generalized soluble word problem,
one can calculate a normal form (g1, · · · , gn) of w. If w ∈ N, then by Lemma 3.4,
there exists i, 1 ≤ i ≤ n, c ∈ C and l ∈ N, such that (gi · · · gi+l−1, c, l) ∈ L(C, λ).
We see that we must have |c| < |w|

(1−3λ) . Since the map ϕ(n) = {c ∈ C | |c| ≤ n}
is recursive we compute the set K = {c ∈ C | |c| ≤ |w|

(1−3λ)} which is finite. Then
we compute all cyclic permutations of elements of K. For every a ∈K, for every
l such that 1 ≤ l ≤ |a|, l > (1− 3λ)|a|, and for every i such that i + l − 1 ≤ n,
let us check whether (gi · · · gi+l−1, a, l) ∈ L(C, λ). Since L(C, λ) is recursive
the above procedure is recursive. If at every stage the answer to the question
(gi · · · gi+l−1, a, l) ∈ L(C, λ) is no, then w /∈ N and hence w 6= 1. If at some stage
the answer to the question (gi · · · gi+l−1, a, l) ∈ L(C, λ) is yes, by (6), there exists
an algorithm which produces α, β ∈ A such that gi · · · gi+l−1 = αa1 · · · alβ. Put
w1 = g1 · · · gi.α

−1a−1
m · · · a−1

l+1β
−1.gl+1 · · · gn. Then we see that w = w1 and

|w1| < |w|. Then we will redo the same thing for w1.
At the end of the process we have (w, w1, · · · , wt), such that |wt| < |wt−1| <...

|w1| < |w| and wt does not have any witness in C. If wt = 1, then w ∈ N ,
otherwise w /∈ N . ¤
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4 Proof of Theorem I

Let G be a countable group generated by {ai | i ∈ N \ {0}}. Let G1 = G× 〈x|〉
and G2 = Z(G) × 〈y|〉 where 〈x|〉 and 〈y|〉 are two copies of the free group on
one generator. Let F = G1 ∗Z(G) G2. By Lemma 2.5, Z(F ) ≤ Z(G), and since
Z(G) ≤ Z(F ), we find Z(F ) = Z(G).

Let x1, x2 ∈ 〈x|〉, such that x1 6= x2, x1x2 6= 1, x1 6= 1 and x2 6= 1. Let for
every i ∈ N \ {0},

(∗) wi = a−1
i (x1y)80(i−1)+1(x2y)(x1y)80(i−1)+2 · · · (x1y)80i(x2y).

It is clear that wi is cyclically reduced.
Let W (R) be the symmetrized closure of R = {wi | i ∈ N \ {0}}. Let W0(R)

be the set of cyclically reduced conjugates of elements of R±1. Now we show
that W0(R) satisfies C ′( 1

10 ).
Let α1, α2 ∈ W0(R) such that α1.α2 6= 1. By Theorem 2.3, there exist

r1, r2 ∈ R±1 and a, b ∈ Z(G) such that α1 = a.r′1.a
−1 and α2 = b.r′2.b

−1 where
r′1, (resp. r′2) is a cyclic permutation of r1 (resp. r2). Since a, b ∈ Z(G), we
have α1 = r′1, and α2 = r′2. Since α1.α2 6= 1, we find r

′
1.r

′
2 6= 1. A classical

argument like the one used in the book of R.C. Lyndon and P.E. Schupp ([6],
p. 283 or p. 290) shows that W0(R) satisfies C ′( 1

10 ). By Lemma 2.4, W (R)
satisfies C ′(1/9).

Hence by Theorem 2.2, G is embedded into F/N .
We see that F/N is finitely generated. We see also that if G is recursively

presented and Z(G) is recursively enumerable in G then F/N is recursively
presented. It is not difficult to see that R satisfies the assumption of Proposition
3.1, hence Z(F/N) = π(Z(F )) = π(Z(G)).

Now suppose that G has a soluble word problem and Z(G) has a generalized
soluble word problem in G.

Then we see that Z(G) has soluble generalized soluble word problem in
G2 = Z(G)× 〈y|〉. Hence F has a soluble word problem.

Let us show that W (R) satisfies the conditions of the Proposition 3.3. Let
C0 be the set of normal forms given in (∗). Let C be the set obtained by adding
to C0 the set of normal forms of the inverses of the elements of C0. Then it
is clear that C defines explicitly R. It is clear that R satisfies the conditions
(1)-(4) of Proposition 3.3.

It is sufficient now to show that L(C, λ) is recursive and that there is an
algorithm which for every (g, c, l) ∈ L(C, λ) produces (α, β) ∈ Z(G)2 such that
αgβ = c1 · · · cl.

Let (g, c, l) ∈ F×C×N. Then it easy to see that we can calculate a sequence
(g0, · · · , gn) such that g = g0 · · · gn and:

(i) g0 ∈ Z(G), (g1, · · · , gn) is a normal form,
(ii) if gi ∈ G1 then gi = αi.x

ni , ni ∈ Z, αi ∈ G \ Z(G) or αi = 1,
(iii) if gi ∈ G2 then gi = ypi , pi ∈ Z.
Let us prove the following claim:

12



Claim. Let (g0, · · · , gn) be a sequence which satisfies the conditions (i)-(iii)
and let (c, l) ∈ C × N with c = (c1, · · · , cm). Then the following properties are
equivalents:
(1) There exist α, β ∈ Z(G), such that αgβ = c1 · · · cl.
(2) n = l and one of the following conditions is satisfied:

(a) If there exists q such that cq = a−1
i x1 then:

- For every k such that ck ∈ {x1, x2, x
−1
1 , x−1

2 }, αk = e and gk = ck.
- For every k such that ck ∈ {y, y−1}, gk = ck.
- αqai ∈ Z(G), and xnq = x1.

(b) If there exists q such that cq = x−1
1 ai then:

- For every k such that ck ∈ {x1, x2, x
−1
1 , x−1

2 }, αk = e and gk = ck.
- For every k such that ck ∈ {y, y−1}, gk = ck.
- αqa

−1
i ∈ Z(G), and xnq = x1.

(c) If there is no q such that cq = a−1
i x1 or cq = x−1

1 ai then :
- For every k such that ck ∈ {x1, x2, x

−1
1 , x−1

2 }, αk = e and gk = ck.
- For every k such that ck ∈ {y, y−1}, gk = ck.

If (a) is satisfied then if we take α = 1 and β = a−1
i α−1

k g−1
0 then αgβ = c1 · · · cl.

If (b) is satisfied then if we take α = 1 and β = aiα
−1
k g−1

0 then αgβ = c1 · · · cl.
If (c) is satisfied then if we take α = 1 and β = g−1

0 then αgβ = c1 · · · cl.
Observe that there is at most one k such that ck = a−1

i x1 or ck = x−1
1 ai.

Proof.
(1)⇒(2).
Let α, β ∈ Z(G) such that αgβ = c1 · · · cl. Since α, β ∈ Z(G), we have

αgβ = αβg. Then
(αβg0g1).g2 · · · gn.c−1

l · · · c−1
1 = 1.

Since the sequence (αβg0g1, g2, · · · , gn) is a normal form we must have n = l.
It is not difficult to see, by induction, that gkc−1

k ∈ Z(G) for k = 1, · · · , n.
We only treat the case (a), the other cases can be treated similarly.
(a) If there exists q such that cq = a−1

i x1 then:
- Let k be such that ck ∈ {x1, x2, x

−1
1 , x−1

2 }. Since gkc−1
k ∈ Z(G), we have

gk = αk.xnk = a.ck where a ∈ Z(G). Hence we must have αk = 1 and gk = ck.
- Let k be such that ck ∈ {y, y−1}. Since gkc−1

k ∈ Z(G), gk = ypk = a.ck

where a ∈ Z(G). Then this implies that a = 1 and gk = ypk = ck.
- Since gqc

−1
q ∈ Z(G) then gq = αq.x

nq = a.a−1
i x1 where a ∈ Z(G). Hence

we have xnq = x1 and αq.ai = a ∈ Z(G).
(2)⇒(1).
It is sufficient to calculate. We treat only the case (a), the other cases can be

treated similarly. Suppose that (a) is satisfied. Then g1 · · · gnc−1
n · · · c−1

1 = αqai.
Let α = 1 and β = a−1

i α−1
k g−1

0 . Then αg0g1 · · · gnc−1
n · · · c−1

1 β = g0αqaiβ = 1.
Hence αgβ = c1 · · · cl. ¤

Since F has a soluble word problem and Z(G) has a generalized soluble word
problem in F we see that the procedures (a)(b)(c) are recursive. Therefore we
see that L(C, λ) is recursive and that there is an algorithm which for every
(g, c, l) ∈ L(C, λ) produces (α, β) ∈ Z(G)2 such that αgβ = c1 · · · cl. ¤
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5 Proof of Theorem II

The proof is in two stages. In the first stage, we prove the first part of the
theorem, that is if G is a finitely generated recursively presented group then G
is embeddable in a finitely presented group K such that Z(G) = Z(K). In the
second stage, we prove the second part of the theorem, that is if G has a soluble
word problem then we can take K with soluble word problem.

Stage 1. 1

Let G be a finitely generated and recursively presented group. Clearly we
may assume that G is non-abelian. Let {a1, · · · , an} be a generating set of G.
Let

G0 = 〈G, z| z−1gz = g, g ∈ Z(G)〉.
Since G is recursively presented, we can apply Lemma 2.6 and then Z(G)

is recursively enumerable in G. Hence G0 is recursively presented. Since G
is non-abelian, by Lemma 2.5, it is easy to see that Z(G0) = Z(G). The
group G0 is generated by the set {a1, · · · , an, z}. Hence there is an isomorphism
ν : FX/R ∼= G0, where FX is the free non-abelian group of rank n+1 with basis
X = {x1, · · · , xn, xn+1}, and R is the normal closure of the presentation (which
is recursively enumerable) of G0 and ν satisfies ν(x̄i) = ai, for i = 1, · · · , n and
ν(x̄n+1) = z where x̄i is the class of xi relative to the subgroup R. Let

FR = 〈FX , d| d−1rd = r, r ∈ R〉.

By Higman’s embedding theorem FR is embeddable in a finitely presented
group say H. Without loss of generality we can assume that x1, · · · , xn, xn+1

are included among the generating symbols of the given presentation of H. If
w is a word in the generators of FX , let w denote the word of G0 obtained by
replacing each xi by ai for i = 1, · · · , n and xn+1 by z.

In FR the subgroup L generated by FX and d−1FXd is the free product of
FX and d−1FXd with R amalgamated.

Define a homomorphism φ : L → G0 by φ(w) = w and φ(d−1wd) = 1. Since
the two definitions agree on the amalgamated part, φ is well-defined.

Consider the group H×G0. We shall use the ordered pair notation to denote
elements of this group. Viewing L as a subgroup of H, we consider the subgroup
L × Z(G0). Define a map ψ : L × Z(G0) → H × G0 by ψ((l, g)) = (l, φ(l).g).
Let us show that ψ is an injective homomorphism. We have

ψ((l1, g1).(l2, g2)) = ψ((l1.l2, g1.g2)) = (l1l2, φ(l1l2).g1.g2)

ψ((l1, g1)).ψ((l2, g2)) = (l1, φ(l1).g1).(l2, φ(l2).g2) = (l1l2, φ(l1).g1φ(l2).g2).

Since g1, g2 ∈ Z(G0) we have φ(l1).g1φ(l2).g2 = φ(l1).φ(l2).g1.g2, and since φ
is an homomorphism we have φ(l1).φ(l2) = φ(l1.l2). Hence ψ((l1, g1).(l2, g2)) =

1The beginning of the proof in this stage is inspired by the proof of Higman’s embedding
theorem, more precisely the Higman’s Rop Trick.
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ψ((l1, g1)).ψ((l2, g2)). Hence ψ is an homomorphism and it is clear that ψ is
injective.

Therefore we can form the HNN-extension

K = 〈H ×G0, s| s−1(l, g)s = (l, φ(l).g), l ∈ L, g ∈ Z(G0)〉.
Viewing G as a subgroup of G0 and hence as a subgroup of H ×G0 we can

form the following free product with amalgamation

Γ = K ∗G G× 〈t|〉.
We notice that we view Γ as a free product with amalgamation and not as

an HNN-extension. Let

r = (s−1z)tzt2zt3z · · · zt80.

Let N be the normal closure of {r} in Γ. Let us show that Γ/N can be finitely
presented. A set of defining relations for Γ/N can be obtained by taking the
union of the following relations:

(1) The defining relations for H.
(2) The relation s = ztzt2zt3z · · · zt80.
(3) The relations saying that the generators of G0 commute with the gener-

ators of H.
(4) The relations saying that the generators of G commute with t.
(5) The defining relations for G0.
(6) The relations s−1(l, g)s = (l, φ(l).g), for a set of generators of L, and

for every g ∈ Z(G0).
It is clear that Γ/N is finitely generated. We now introduce a set of relations

denoted by (7), which is a subset of (6):

(7) s−1(l, 1)s = (l, φ(l)), where l belongs to a finite generating set of L.

We are going to prove that the relations (5)-(6) follow from the relations
(1)-(4) and (7), and this will show that Γ/N is finitely presented since (1)-(4)
are finite as well as (7).

First we prove that the relations (5) follow from the relations (7) and (1)-
(4). Let w be a word on the generators of G0 such that w = 1. Then the
corresponding word w on the generators of FX is in R. Now from (7) we have

s−1(w, 1)s = (w, φ(w)),

and by definition of φ we find s−1(w, 1)s = (w, w). Since d−1wd = w (which is
a consequence of (1)) we have

(w, 1) = (d−1wd, 1).

But by the definition of φ and from (7),

s−1(d−1wd, 1)s = s−1(w, 1)s = (w, φ(d−1wd)) = (w, 1) = (w, w),
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and hence w = 1 follows.
Now let us show that the relations (6) follow from the relations (7) and (1)-

(5). By (5) we get that every g ∈ Z(G0) satisfies gz = zg. By (4) we find that
every g ∈ Z(G0) satisfies gt = tg. Hence by (2) we get that every g ∈ Z(G0)
satisfies gs = sg, which can be written as (1, g)s = s(1, g) in the ordered pair
notation. Now

s−1(l, g)s = s−1(l, 1)(1, g)s.

Hence
s−1(l, g)s = s−1(l, 1)s(1, g),

and by the relations (7),

s−1(l, g)s = (l, φ(l)).(1, g).

Hence s−1(l, g)s = (l, φ(l).g), for a set of generators of L, and for every
g ∈ Z(G0). This completes the proof of the fact that Γ/N is finitely presented.

Now we show that the natural map π : Γ → Γ/N is injective on G0 and that
we have Z(Γ/N) = π(Z(G0)). Since Z(G) = Z(G0) and G ≤ G0 this completes
the proof.

By Lemma 2.5, Z(Γ) ≤ Z(G). If g ∈ Z(G), then we see that g commutes
with t. From the presentation of K, it is also clear that g commutes with s and
all the generators of H. Hence Z(G) ≤ Z(Γ) and thus Z(G) = Z(Γ). We prove
now the following claim.

Claim 1. Let a, b ∈ {z, z−1, s−1z, z−1s} and α, β ∈ G. Then

aαb = β in Γ if and only if a = b−1 and α = β ∈ Z(G).

Proof.
If a = b−1 and α = β ∈ Z(G), then clearly aαb = β.
We see that if aαb = β, then α = a−1βb−1 and so it is sufficient to prove

the claim for a ∈ {z, s−1z}.
If a = z and b = s−1z (resp. b = z−1s) this implies that the sequence

(zα, s−1, zβ−1), (resp. (zαz−1, s, β−1)), is not reduced in the HNN-extension
K, which is clearly a contradiction. So if a = z then b ∈ {z, z−1}. Now if b = z,
the sequence (z, α, z, β−1) is not reduced in the HNN-extension G0, which is a
contradiction. So if a = z then b = z−1. Hence the sequence (z, α, z−1, β−1) is
not reduced in the HNN-extension G0, so α ∈ Z(G), and hence α = β.

Now if a = s−1z and b = z (resp. b = z−1) the sequence (s−1, zαzβ−1),
(resp. (s−1, zαz−1β−1)), is not reduced in the HNN-extension K, which is
clearly a contradiction. So if a = s−1z then b ∈ {s−1z, z−1s}. Now if b =
s−1z, the sequence (s−1, zα, s−1, β−1) is not reduced in the HNN-extension K,
which is a contradiction. So if a = s−1z then b = z−1s. Hence the sequence
(s−1, zαz−1, s, β−1) is not reduced in the HNN-extension K, so zαz−1 ∈ L ×
Z(G). So there exists (l, g) ∈ L×Z(G) such that zαz−1 = l.g. So we must have
l = 1 and α = g ∈ Z(G). Since s−1zαz−1s = β we have α = β. This completes
the proof. ¤
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Let R0 = {r}. Then we see easily, using the above claim, that R0 satisfies
the conditions (i)-(ii) of Proposition 3.1. Therefore by Proposition 3.1 and
Theorem 2.2, it is sufficient to show that the symmetrized closure of R0 satisfies
C ′( 1

10 ).
Since we view Γ as a free product with amalgamation and not as an HNN-

extension, we see that |r| = 160. By Lemma 2.4, it is sufficient to show that
the set W0(R0) of cyclically reduced conjugates of the elements of {r} ∪ {r−1}
satisfies C ′( 1

70 ).
Let w1, w2 ∈ W0(R0) such that w1w2 6= 1. By the conjugacy theorem

(Theorem 2.3) there exists α, β ∈ G and r1, r2 a cyclic permutations of ele-
ments of {r} ∪ {r−1} such that w1 = αr1α

−1 and w2 = βr2β
−1. We can write

r1 = a1 · · · an and r2 = b1 · · · bn where ai, bi ∈ {z, z−1, tj , t−i, s−1z, z−1s}. Now
consider how there can be cancellation in the product w1w2.

If there is a cancellation in the product w1w2 we must have : an and b1 are
in the same factor and |anα−1βb1| = 1 or |anα−1βb1| = 0. Let us prove that
the length of any piece is at most 2.

If |anα−1βb1| = 1 then it is clear that the length of the piece which was can-
celled is 1. So we consider the case |anα−1βb1| = 0, so the case anα−1βb1 ∈ G.
Now if an ∈ {z, z−1, s−1z, z−1s} and b1 ∈ {t−i, tj}, we see that |anα−1βb1| = 1.
The same thing holds if an ∈ {t−i, tj} and b1 ∈ {z, z−1, s−1z, z−1s}. Therefore
we have the following two cases to consider.

Case (1). an, b1 ∈ {z, z−1, s−1z, z−1s}.
Since anα−1βb1 ∈ G, by Claim 1 we have anα−1βb1 = α−1β, and α−1β ∈

Z(G), b1 = a−1
n . So

an−1anα−1βb1b2 = an−1α
−1βb2,

and since an, b1 ∈ {z, z−1, s−1z, z−1s} we must have an−1, b2 ∈ {ti, t−j}. So

an−1anα−1βb1b2 = α−1βan−1b2.

Now if an−1.b2 = 1, then r1 = a1 · · · an−1.an and r2 = a−1
n .a−1

n−1 · · · bn. But
a cyclic permutation of

(s−1z, t, z, t2, z, t3, z, · · · , z, t80)

or of
(t−80, z−1, · · · , z−1, t−3, z−1, t−2, z−1, t−1, z−1s)

is uniquely determined by the first two of its elements.
(To see what happens we illustrate the situation. If an = z and an−1 = ti

then b1 = z−1 and b2 = t−i. Therefore

r1 = ti+1 · · · zt80s−1zt · · · ti−1ztiz,

r2 = z−1t−iz−1t−(i−1) · · · t−1z−1st−80z−1 · · · z−1t−(i+1),
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and then r1r2 = 1.) So we have r1r2 = 1. Since α−1β ∈ Z(G) we have

w1w2 = αα−1βr1r2β
−1 = 1,

so w1w2 = 1 which is a contradiction. Therefore an−1.b2 6= 1 and hence
|an−1α

−1βb2| = 1. So the length of the piece which was cancelled is 2.

Case (2). an, b1 ∈ {ti, t−j}.
Since anα−1βb1 ∈ G, we have an.b1 = 1 and

an−1anα−1βb1b2 = an−1α
−1βb2.

Now if an−1α
−1βb2 ∈ G, and since an−1, b2 ∈ {z, z−1, s−1z, z−1s}, then by

Claim 1, we have an−1α
−1βb2 = α−1β, and α−1β ∈ Z(G), b2 = a−1

n−1. So as in
the previous case we find r1r2 = 1. Since α−1β ∈ Z(G) we get

w1w2 = αα−1βr1r2β
−1 = 1,

and thus w1w2 = 1, which is a contradiction. Therefore an−1α
−1βb2 /∈ G and

hance |an−1α
−1βb2| = 1. So the length of the piece which was cancelled is 2.

Now since |w1| = |w2| = 160 and the maximal length of the piece which was
cancelled is 2, a simple count show that : 2 < 160

70 = 1
70 |w|. Hence W0(R0)

satisfies C ′( 1
70 ). This completes the proof of this stage. ¤

Stage 2. Suppose that G has a soluble word problem. By Lemma 2.6, Z(G)
has a generalized soluble word problem in G. So G0 has a soluble word problem.
Hence R is a recursive subgroup of FX . By Lemma 2.8, R is a strongly benign
subgroup. Hence FR is embeddable in finitely presented group H1 such that FX

and 〈FX , d〉 have a soluble generalized soluble word problem in H1.
It is clear that the proof of the stage 1 is independent of the choice of the

finitely presented group H. Therefore we apply the same construction and we
assume that H = H1.

Let us show that Γ and R0 satisfy the conditions of Proposition 3.3. By
Lemma 2.7, the subgroup L = 〈FX , d−1FXd〉 has a generalized soluble word
problem in FR = 〈FX , d | d−1rd = r, r ∈ R〉. It is easy to see that L has
a generalized soluble word problem in H. We see also that L × Z(G) has a
generalized soluble word problem in H ×G0.

Let us show that ψ(L×Z(G)) has a soluble generalized soluble word problem
in H×G0. Let (h, g) in H×G0. Since L has a generalized soluble word problem
in H, one can determine whether h ∈ L. If h /∈ L then (h, g) /∈ ψ(L × Z(G)).
If h ∈ L then we compute φ(h) (φ is clearly computable). Now if there exists
g0 ∈ Z(G) such that φ(h).g0 = g we must have φ(h)−1g ∈ Z(G). Since Z(G)
has a generalized soluble word problem in H × G0 we can determine whether
φ(h)−1g ∈ Z(G). If φ(h)−1g /∈ Z(G) then (h, g) /∈ ψ(L × Z(G)). If φ(h)−1g ∈
Z(G) then

ψ(h, φ(h)−1g) = (h, φ(h)φ(h)−1g) = (h, g),
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and so (h, g) ∈ ψ(L× Z(G)).
The maps ψ, ψ−1 are computable and L × Z(G), ψ(L × Z(G)) have a gen-

eralized soluble word problem in H × G0. Therefore K has a soluble word
problem and we can calculate the normal form relative to the structure of the
HNN-extension of K.

Hence the group G has a generalized soluble word problem in K. It also has
a generalized soluble word problem in G× 〈t|〉.

So Γ has a soluble word problem and we can calculate the normal form
relative to its structure of free product with amalgamation.

Therefore, it is sufficient to show that the R0 = {r} satisfies the conditions of
Proposition 3.3. Let C = {((s−1z), t, z, t2, · · · , z, t80), (t−80, z−1, · · · , t−1, (z−1s))}.
Then we see that C defines explicitly {r}. We see also that {r} satisfies the
conditions (1)-(4) of Proposition 3.3. Then it is sufficient to show that the set
L(C, λ) is recursive and there exists an algorithm which satisfies condition (6)
of Proposition 3.3. The conclusion will follows from a sequence of claims. We
need first the following claim.

Principal Claim . Let w ∈ Γ with a normal form (α1a1β1, · · · , αnanβn) where
αi, βi ∈ G and ai ∈ {z, z−1, s−1z, z−1s, t−i, tj}. Then the following conditions
are equivalents:

(1) There exist a, b ∈ G such that awb = a1 · · · an.
(2) Let I = {i | ai ∈ {z, z−1, s−1z, z−1s}}. Then for every i, j ∈ I such that

i < j, one has (βiαi+1βi+1αi+2 · · ·βj−1αj) ∈ Z(G).
If (2) is satisfied, then
• if an ∈ {z, z−1, s−1z, z−1s}, then we can take a = α−1

n .β−1
n−1 · · ·β−1

1 α−1
1

and b = β−1
n ,

• if an ∈ {t−i, tj} and n = 1, then we can take a = α−1
1 and b = β−1

1 ,
• if an ∈ {t−i, tj} and n ≥ 2, then we can take a = α−1

n−1.β
−1
n−2 · · ·β−1

1 α−1
1

and b = (βn−1αnβn)−1.

Proof.
(1)⇒(2). By induction on n. We consider two cases: an ∈ {z, z−1, s−1z, z−1s}

and an ∈ {t−i, tj}.
Case (I). an ∈ {z, z−1, s−1z, z−1s}. For n = 1, we have

awba−1
1 = aα1a1β1ba

−1
1 = 1,

and in this case, we find I = {1} and the property is true. It is not difficult to
see that we can take a = α−1

1 and b = β−1
1 .

We go from n to n + 1. We have

awba−1
n+1a

−1
n · · · a−1

1 = aα1a1β1 · · ·αnanβnαn+1an+1(βn+1b)a−1
n+1a

−1
n · · · a−1

1 = 1,

and hence we must have an+1(βn+1b)a−1
n+1 ∈ G. Therefore by Claim 1 we have

βn+1b ∈ Z(G). Since an+1 ∈ {z, z−1, s−1z, z−1s} then an ∈ {t−i, tj} and we
find

aα1a1β1 · · · an−1(βn−1αnβnαn+1βn+1b)a−1
n−1 · · · a−1

1 = 1,
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and thus we get (βn−1αnβnαn+1βn+1b) ∈ Z(G).
Since an ∈ {t−i, tj}, we have an−1 ∈ {z, z−1, s−1z, z−1s}. We see that

the sequence (α1a1β1, · · · , αn−1an−1(βn−1αnβnαn+1βn+1)) satisfies the same
conditions of the Claim, and hence by induction hypothesis we get that for
every i, j ∈ I such that i < j≤ n − 1, βiαi+1 · · ·βj−1αj ∈ Z(G). Hence
βiαi+1 · · ·βn−1−1αn−1 ∈ Z(G).

Since βn+1b ∈ Z(G) and (βn−1αnβnαn+1βn+1b) ∈ Z(G) we find that
βn−1αnβnαn+1 ∈ Z(G). Hence for every i ∈ I such that i < n + 1, we get

βiαi+1 · · ·βn−1−1αn−1βn−1αnβnαn+1 ∈ Z(G),

and it is not hard to see that we can take a = α−1
n β−1

n−1 · · ·β−1
1 α−1

1 and b = β−1
n .

Case (II). an ∈ {t−i, tj}. For n = 1, we have awba−1
1 = aα1a1β1ba

−1
1 =

aα1β1b = 1 and in this case I = ∅ and the property is true. It is not hard to
see that we can take a = α−1

1 and b = (β1α2β2)−1.
We go from n to n + 1. We have

awba−1
n+1a

−1
n · · · a−1

1 = a · · ·αnanβnαn+1an+1(βn+1b)a−1
n+1a

−1
n · · · a−1

1

= a · · ·αnan(βnαn+1βn+1b)a−1
n · · · a−1

1 = 1,

and hence we must have βnαn+1βn+1b ∈ Z(G). We see that the sequence
(α1a1β1, · · · , αnan(βnαn+1βn+1)) satisfies the conditions of the case (I) and
hence for every i, j ∈ I such that i < j≤ n, βi.αi+1 · · ·βj−1.αj ∈ Z(G), and the
result follows. We easily see that we can take a = α−1

n−1β
−1
n−2 · · ·β−1

1 α−1
1 and

b = (βn−1αnβn)−1.
(2)⇒(1). The proof is a straightforward calculation. ¤

Claim 2. Let A(z) = {g ∈ K | ∃α, β ∈ G such that g = αzβ}. Then A(z)
is recursive and there exists an algorithm which for every g ∈ A(z) produces
α, β ∈ G such that g = αzβ.

Proof.
Let g ∈ K. Then one can effectively calculate a normal form (in the HNN-

extension K) of g say b1s
ε1b2 · · · bnsεnbn+1 where εi = ±1 and bi ∈ H ×G0. If

n ≥ 1, clearly g /∈ A(z). Thus we suppose g ∈ H × G0. Therefore g = hg0,
where h ∈ H and g0 ∈ G0. If h 6= 1, then g /∈ A(z). Hence g ∈ G0. Then
one can effectively calculate a normal form (in the HNN-extension G0) of g say
b1z

ε1b2 · · · bnzεnbn+1 where εi = ±1 and bi ∈ G. If n ≥ 2 then g /∈ A(z), and
if ε1 = −1 then g /∈ A(z). Thus we suppose g = b1zb2. Hence g ∈ A(z). And
we see that the above procedure is effective and produces α, β ∈ G such that
g = αzβ. ¤

Claim 3. Let

Q = {(h1, h2, g1, g2) | hi ∈ H, gi ∈ G0, ∃α, β ∈ G such that
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h1g1s
−1h2g2 = αs−1zβ}.

Then Q is recursive and there exists an algorithm which for every (h1, h2, g1, g2) ∈
Q produces α, β ∈ G such that h1g1s

−1h2g2 = αs−1zβ.

Proof . Let us show that the following properties are equivalent:
(1) (h1, h2, g1, g2) ∈ Q.
(2) h1.h2 = 1, h1, h2 ∈ L, g1φ(h2) ∈ G, g2 ∈ A(z), g2 = γ1zγ2, γ1 ∈ Z(G)

and one can take α = g1φ(h2)γ1, β = γ−1
2 .

(1)⇒(2). Let α, β ∈ G such that h1g1s
−1h2g2 = αs−1zβ.

Then the sequence (h1g1, s
−1, h2g2β

−1z−1, s, α−1) is not reduced in the
HNN-extension K and thus h2g2β

−1z−1 ∈ L×Z(G). So h2 ∈ L and g2β
−1z−1 ∈

Z(G). Hence g2 = δzβ ∈ A(z), and δ∈ Z(G). Therefore

h1g1s
−1h2g2β

−1z−1sα−1 = h1g1h2φ(h2)δα−1 = 1,

and so h1h2 = 1 and g1φ(h2) = αδ−1 ∈ G.
(2)⇒(1) Let β = γ−1

2 . Then

h1g1s
−1h2g2β

−1z−1s = h1g1s
−1h2γ1zγ2γ

−1
2 z−1s =

= h1g1s
−1h2γ1s

= h1g1h2φ(h2)γ1 = g2φ(h2)γ1 = α ∈ G,

and this ends the proof of the equivalence (1)⇔(2).
Since L has a generalized soluble word problem in H, and A(z) is recursive

and there exists an algorithm which for every g ∈ A(z) produces α, β ∈ G such
that g = αzβ, the conclusion follows from the above equivalence. ¤

Claim 4. For every a ∈ {z, z−1, s−1z, z−1s}, the set A(a) = {g ∈ K | ∃α, β ∈
G such that g = αaβ} is recursive and there exists an algorithm which for every
g ∈ A(a) produces α, β ∈ G such that g = αaβ. Also for every a ∈ {t−i, tj}, the
set A(a) = {g ∈ G × 〈t |〉 | ∃α, β ∈ G such that g = αaβ} is recursive and
there exists an algorithm which for every g ∈ A(a) produces α, β ∈ G such that
g = αaβ.

Proof . We see that g ∈ A(a) if and only if g−1 ∈ A(a−1) and g = αaβ if
and only if g−1 = β−1a−1α−1. Therefore it is sufficient to show that the above
properties are true for a ∈ {z, s−1z}. For the case a = z this was proved in
Claim 2.

Let g ∈ K. Then one can effectively calculate a normal form (in the HNN-
extension K) b1s

ε1b2 · · · bnsεnbn+1 where εi = ±1 and bi ∈ H × G0. If n ≥ 2
then g /∈ A(s−1z). Hence we must have n = 1, ε1 = −1 and thus g = b1s

−1b2.
Then one can effectively calculate h1, h2 ∈ H, g1, g2 ∈ G0 such that b1 =
h1g1 and b2 = h2g2. We see that g ∈ A(s−1z) if and only if (h1, h2, g1, g2) ∈
Q. Since Q is recursive we see that A(s−1z) is recursive. By Claim 3, there
exists an algorithm which for (h1, h2, g1, g2) ∈ Q produces α, β ∈ G such that
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h1g1s
−1h2g2 = αs−1zβ. Hence there exists an algorithm which for every g ∈

A(s−1z) produces α, β ∈ G such that g = αs−1zβ.
For a ∈ {t−i, tj}, the conclusion is obvious. ¤
Now we are ready to prove that the set

L(C, λ) = {(g, c, l) ∈ Γ× C × N | c = (c1, · · · , cn), (1− 3λ)n < l ≤ n,

∃α, β ∈ G, such that αgβ = c1 · · · cl},
is recursive, where λ = 1/10, and that there exists an algorithm which for every
(g, c, l) ∈ L(C, λ) produces (α, β) ∈ G2 such that αgβ = c1 · · · cl.

Let (g, c, l) ∈ Γ × C × N. Then one can effectively calculate a normal form
(g1, · · · , gm) of g in Γ.

(1). If l ≤ (1− 3λ)|c| then (g, c, l) /∈ L(C, λ).
(2). Otherwise,
• If (g, c, l) ∈ L(C, λ), then there exists α, β ∈ G, 1 ≤ l ≤ m, l > (1 −

3λ)|c| such that αgβ = c1 · · · cl and m = l. Then we must have a sequence
(γ1, · · · , γm, γm+1) of G such that g1 = α−1γ1c1γ

−1
2 , gi = γiciγ

−1
i+1, gm =

γmcmγ−1
m+1β

−1. Hence we have gi ∈ A(ci). Then it is sufficient to verify whether
gi ∈ A(ci).

• If there is some i such that gi /∈ A(ci) then (g, c, l) /∈ L(C, λ).
• If for every i, gi ∈ A(ci) then by Claim 4, one can effectively calculate two

sequences (α1, · · · , αm), (β1, · · · , βm) of G such that gi = αiciβi.
By the Principal Claim, for every i, j ∈ I such that i < j,

(∗) βiαi+1 · · ·βj−1αj ∈ Z(G).

• If for some i, j ∈ I such that i < j, (∗) does not hold then (g, c, l) /∈ L(C, λ).
• If for every i, j ∈ I such that i < j, (∗) holds then, by the Principal

Claim, (g, c, l) ∈ L(C, λ) and we can take α = α−1
m β−1

m−1 · · ·β−1
1 α−1

1 , β = β−1
m

if cm ∈ {z, z−1, s−1z, z−1s}, and we can take α = α−1
m−1β

−1
m−2 · · ·β−1

1 α−1
1 and

β = (βm−1αmβm)−1 if cm ∈ {t−i, tj}.
Hence L(C, λ) is recursive and we see, by the above method, that there exists

an algorithm which for every (g, c, l) ∈ L(C, λ), produces (α, β) ∈ G2 such that
αgβ = c1 · · · cl. ¤

6 Proofs of corollaries

Proof of Corollary 1. By Lemma 2.6, if H is finitely presented then Z(H)
is recursively presented. Conversely, let G be a countable recursively presented
abelian group. By Theorem I, G is embeddable in a finitely generated and
recursively presented group K such that G = Z(G) = Z(K). By Theorem II,
K is embeddable in finitely presented group H such that Z(K) = Z(H), hence
Z(H) = G and the result follows. ¤
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Proof of Corollary 2. By Lemma 2.6, if H is finitely presented with soluble
word problem then Z(H) is recursively presented and with soluble word prob-
lem. Conversely, let G be a countable abelian group with soluble word problem.
By Theorem I, G is embeddable in a finitely generated group with soluble word
problem K such that G = Z(G) = Z(K). By Theorem II, K is embeddable in a
finitely presented group H with soluble word problem such that Z(K) = Z(H),
hence Z(H) = G and the result follows. ¤

Proof of Corollary 3. It follows from Corollary 2 and from the following
lemma.

Lemma 6.1 There exists a countable abelian group K with soluble word prob-
lem such that every countable abelian group can be embedded in K.

Proof. Let (πn)n∈ω be the sequence of prime numbers. Let K = (Q)(ℵ0) ⊕
(⊕i∈ω(Zπ∞i )(ℵ0)). Then it is not difficult to see that K has a soluble word
problem.

Let G be a countable abelian group. By a classical result G is embeddable in
a divisible and countable abelian group say G1. It is also well-known that every
divisible abelian group is isomorphic to a direct sum of groups each of which is
isomorphic to Q or a group of the form Zπ∞n . Hence the groups G1 and G are
embeddable in K. Since K has a soluble word problem the result follows. ¤

Proof of Corollary 4. Let G be a finitely generated recursively presented
group. Let A be a countable recursively presented abelian group. Let M =
(G∗ 〈x|〉)×A. Then we see that Z(M) = A and M is recursively presented. By
Theorem I, M is embeddable in a finitely generated recursively presented group
L such that Z(L) = Z(M) = A. The result follows by Theorem II. ¤
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