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Let ā ∈ Mn. The type of ā is defined by
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Homogeneity and algebraic closure in free groups

Homogeneity & prime models

Definitions

Homogeneity & existential homogeneity

Let M be a countable model.
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M is ∃-homogeneous ⇔ for any n ≥ 1, for any ā, b̄ ∈ Mn,
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Let M be a countable model.

Let ā ∈ Mn. The type of ā is defined by

tpM(ā) = {ψ(x̄)|M |= ψ(ā)}.

M is homogeneous ⇔ for any n ≥ 1, for any ā, b̄ ∈ Mn,
tpM(ā) = tpM(b̄) =⇒ ∃f ∈ Aut(M) s.t. f (ā) = f (b̄).

M is ∃-homogeneous ⇔ for any n ≥ 1, for any ā, b̄ ∈ Mn,
tpM

∃ (ā) = tpM
∃ (b̄) =⇒ ∃f ∈ Aut(M) s.t. f (ā) = f (b̄).

Remark. ∃-homogeneity =⇒ homogeneity.
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M is called prime if M is elementary embeddable in every
model of Th(M).
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The free group of rank 2

Theorem 1 (A. Nies, 2003)

A free group F2 of rank 2 is ∃-homogeneous and not prime. In
particular Th(F2) has no prime model.

The proof uses the following strong property of the free group F2

with basis {a, b}: there exists a quantifier-free formula ϕ(x , y),
such that for any endomorphism f of F2 if F2 |= ϕ(f (a), f (b)) then
f is an embedding.

Indeed, we can take ϕ(x , y) := [x , y ] 6= 1
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Question: What can be said about the ∃-homogeneity and
”primeness” of two-generated torsion-free hyperbolic groups?

Definition

A group G is said to be co-hopfian, if any injective endomorphism
of G is an automorphism.

That is a group is co-hopfian if it does not contain a subgroup
isomorphic to itself.
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Examples:

Finite groups, the group of the rationals Q.

SLn(Z) with n ≥ 3 (G. Prasad, 1976).

Nonabelian freely indecomposable trosion-free hyperbolic
groups (Z. Sela, 1997).

Mapping class groups of closed surfaces (N.V. Ivanov, J.D.
McCarthy, 1999).

Bn/Z (Bn), where Bn is the Braid group on n ≥ 4 strands
(R.W. Bell, D. Margalit, 2005).

Out(Fn), where Fn is a free group of rank n (B. Farb, M.
Handel, 2007).
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We introduce a strong form of the co-hopf property.

Definition

A group G is said to be strongly co-hopfian, if there exists a
finite subset S ⊆ G \ {1} such that for any endomorphism ϕ of G ,
if 1 6∈ ϕ(S) then ϕ is an automorphism.

Examples:

Finite groups, the group of the rationals Q.

Tarski Monster groups.
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The previous notion is very interesting from the view point of
model theory:

Lemma

A finitely presented strongly co-hopfian group is ∃-homogeneous
and prime.

Let G = 〈ā|r1(ā), r2(ā), . . . , rn(ā)〉 be finitely presented and
strongly co-hopfian. Then there exists a quantifier-free formula
ϕ(x̄) such that for any endomorphism f of G , if G |= ϕ(f (ā)) then
f is an automorphism. A property analogous to that of the free
group of rank 2.
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conclude by the previous Lemma:

Theorem 3

A non-free two-generated torsion-free hyperbolic group is
∃-homogeneous and prime.
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Let Γ be a non-free two-generated trosion-free hyperbolic group.

There exists a sequence of subroups Γ = Γ1 ≥ Γ2 ≥ · · · ≥ Γn

satisfying the following properties:

(i) Each Γi is two-generated, hyperbolic and quasiconvex;
(ii) Γi = 〈Γi+1, t|A

t = B〉, where A and B are a nontrivial
malnormal cyclic subgroups of Γi+1;
(iii) Γn is a rigid subgroup of Γ.
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Sketch of proof of Theorem 2

Γn is Γ-determined; that is, there exists a finite subset
S ⊆ G \ {1} such that for any homomorphism ϕ : Γn → Γ, if
1 6∈ ϕ(S) then ϕ is an embedding.

Let ϕ be an endomorphism of Γ such that 1 6∈ ϕ(S). Then
the restriction of ϕ to every Γi is an automorphism of Γi . In
particular ϕ is an automorphism of Γ.
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Quasi-axiomatizable groups

Definition (A. Nies)

A finitely generated group G is said to be Quasi-Axiomatizable if
any finitely generated group which is elementary equivalent to G is
isomorphic to G .

Question (A. Nies): Is there a f.g. group which is prime but not
QA?
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Quasi-axiomatizable groups

Using Sela’s work on the elementary theory of torsion-free
hyperbolic groups, we have

Theorem 4

Let Γ be a two-generated trosion-free hyperbolic group. Then Γ is
elementary equivalent to Γ ∗ Z.

Hence if Γ is non-free then it is prime but not QA.
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Question : What can be said about existential homogeneity in
free groups?
Recall that:

Definition

Let M be a model and N a submodel of M. The model N is said
to be existentially closed (abbreviated e.c.) in M, if for any
existential formula ϕ with parameters from N , if M |= ϕ, then
N |= ϕ.

Definition

Let F be a free group and let ā = (a1, . . . , am) be a tuple from
F .We say that ā is a power of a primitive element if there exist
integers p1, . . . , pm and a primitive element u such that ai = upi

for all i .
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∃ (ā|P) = tpF
∃ (b̄|P).



Homogeneity and algebraic closure in free groups

Homogeneity & prime models

Existential homogeneity & prime models

Theorem 3

Let F be a nonabelian free group of finite rank. Let ā, b̄ ∈ F n and
P ⊆ F such that tpF
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the tuple ā has the same existential type as a power of a
primitive element;



Homogeneity and algebraic closure in free groups

Homogeneity & prime models

Existential homogeneity & prime models

Theorem 3

Let F be a nonabelian free group of finite rank. Let ā, b̄ ∈ F n and
P ⊆ F such that tpF

∃ (ā|P) = tpF
∃ (b̄|P). Then one of the following

cases holds:

the tuple ā has the same existential type as a power of a
primitive element;

there exists an e.c. subgroup E (ā) (resp. E (b̄)) containing P
and ā (resp. b̄) and an isomorphism σ : E (ā) → E (b̄) fixing
pointwise P and sending ā to b̄.
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We eliminate first parameters. Recall that a free group is
equationnally noetherian; that is any system of equations in finitely
many variable is equivalent to a finite subsystem.

Lemma

Let G be a finitely generated equationally noetherian group. Let P
be a subset of G . Then there exists a finite subset P0 ⊆ P such
that for any endomorphism f of G , if f fixes pointwise P0 then f
fixes pointwise P.

Hence:
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equationnally noetherian; that is any system of equations in finitely
many variable is equivalent to a finite subsystem.

Lemma

Let G be a finitely generated equationally noetherian group. Let P
be a subset of G . Then there exists a finite subset P0 ⊆ P such
that for any endomorphism f of G , if f fixes pointwise P0 then f
fixes pointwise P.

Hence: ∃f ∈ Aut(F |P) s.t. f (ā) = f (b̄) ⇔ ∃f ∈ Aut(F ) s.t.
f (āP0) = f (b̄P0).
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We eliminate first parameters. Recall that a free group is
equationnally noetherian; that is any system of equations in finitely
many variable is equivalent to a finite subsystem.

Lemma

Let G be a finitely generated equationally noetherian group. Let P
be a subset of G . Then there exists a finite subset P0 ⊆ P such
that for any endomorphism f of G , if f fixes pointwise P0 then f
fixes pointwise P.

Hence: ∃f ∈ Aut(F |P) s.t. f (ā) = f (b̄) ⇔ ∃f ∈ Aut(F ) s.t.
f (āP0) = f (b̄P0).
Note that : If tp∃(ā|P) = tp∃(b̄|P) then tp∃(ā|P0) = tp∃(b̄|P0)
and tp∃(āP0) = tp∃(b̄P0).
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Definition

Let F1 and F2 be nonabelian free groups of finite rank and let ā
(resp. b̄) be a tuple from F1 (resp. F2). We say that (ā, b̄) is
existentially rigid, if there is no nontrivial free decomposition
F1 = A ∗ B such that A contains a tuple c̄ with
tpF1

∃ (ā) ⊆ tpA
∃ (c̄) ⊆ tpF2

∃ (b̄).
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Let F1 and F2 be nonabelian free groups of finite rank and let ā
(resp. b̄) be a tuple from F1 (resp. F2). Suppose that (ā, b̄) is
existentially rigid and let s̄ be a basis of F1.
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Proposition (1)

Let F1 and F2 be nonabelian free groups of finite rank and let ā
(resp. b̄) be a tuple from F1 (resp. F2). Suppose that (ā, b̄) is
existentially rigid and let s̄ be a basis of F1.
Then there exists a quantifier-free formula ϕ(x̄ , ȳ), such that
F1 |= ϕ(ā, s̄) and such that for any f ∈ Hom(F1|ā,F2|b̄), if
F2 |= ϕ(b̄, f (s̄)) then f is an embedding.
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Proposition (2)

Let F1 and F2 be nonabelian free groups of finite rank and ā (resp.
b̄) a tuple from F1 (resp. F2) such that tpF1

∃ (ā) = tpF2

∃ (b̄).



Homogeneity and algebraic closure in free groups

Homogeneity & prime models

Existential homogeneity & prime models

Sketch of proof of Theorem 3

Proposition (2)

Let F1 and F2 be nonabelian free groups of finite rank and ā (resp.
b̄) a tuple from F1 (resp. F2) such that tpF1

∃ (ā) = tpF2

∃ (b̄).
Suppose that (ā, b̄) is existentially rigid.



Homogeneity and algebraic closure in free groups

Homogeneity & prime models

Existential homogeneity & prime models

Sketch of proof of Theorem 3

Proposition (2)

Let F1 and F2 be nonabelian free groups of finite rank and ā (resp.
b̄) a tuple from F1 (resp. F2) such that tpF1

∃ (ā) = tpF2

∃ (b̄).
Suppose that (ā, b̄) is existentially rigid.
Then either rk(F1) = 2 and ā is a power of a primitive element, or
there exists an embedding h ∈ Hom(F1|ā,F2|b̄) such that h(F1) is
an e.c. subgroup of F2.
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Let F be a free group of finite rank and let ā, b̄ ∈ F n s.t.
tpF

∃ (ā) = tpF
∃ (b̄).
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Let F be a free group of finite rank and let ā, b̄ ∈ F n s.t.
tpF

∃ (ā) = tpF
∃ (b̄).

Let C be the smallest free factor of F such that C contains c̄ with
tpF

∃ (ā) = tpC
∃ (c̄).

Then (c̄ , ā) and (c̄ , b̄) are existentially rigid.
By Propsition (2), either rk(C ) = 2 and c̄ is a power of a primitive
element or there exists an embedding h1 ∈ Hom(C |c̄ ,F |ā) (resp.
h2 ∈ Hom(C |c̄ ,F |b̄)) such that h1(C ) (resp. h2(C )) is an e.c.
subgroup of F .
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Let F be a free group of finite rank and let ā, b̄ ∈ F n s.t.
tpF

∃ (ā) = tpF
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Let C be the smallest free factor of F such that C contains c̄ with
tpF

∃ (ā) = tpC
∃ (c̄).

Then (c̄ , ā) and (c̄ , b̄) are existentially rigid.
By Propsition (2), either rk(C ) = 2 and c̄ is a power of a primitive
element or there exists an embedding h1 ∈ Hom(C |c̄ ,F |ā) (resp.
h2 ∈ Hom(C |c̄ ,F |b̄)) such that h1(C ) (resp. h2(C )) is an e.c.
subgroup of F .
Suppose that c̄ is not a power of a primitive element.
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Let F be a free group of finite rank and let ā, b̄ ∈ F n s.t.
tpF

∃ (ā) = tpF
∃ (b̄).

Let C be the smallest free factor of F such that C contains c̄ with
tpF

∃ (ā) = tpC
∃ (c̄).

Then (c̄ , ā) and (c̄ , b̄) are existentially rigid.
By Propsition (2), either rk(C ) = 2 and c̄ is a power of a primitive
element or there exists an embedding h1 ∈ Hom(C |c̄ ,F |ā) (resp.
h2 ∈ Hom(C |c̄ ,F |b̄)) such that h1(C ) (resp. h2(C )) is an e.c.
subgroup of F .
Suppose that c̄ is not a power of a primitive element. By setting
E (ā) = h1(C ) and E (b̄) = h2(C ), we have h2 ◦ h−1

1 : E (ā) → E (b̄)
is an isomorphism with h2 ◦ h−1

1 (ā) = b̄.
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Let F be a nonabelian free group of finite rank. For any tuples
ā, b̄ ∈ F n and for any subset P ⊆ F , if tpF (ā|P) = tpF (b̄|P) then
there exists an automorphism of F fixing pointwise P and sending
ā to b̄.
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Let F be a nonabelian free group of finite rank. For any tuples
ā, b̄ ∈ F n and for any subset P ⊆ F , if tpF (ā|P) = tpF (b̄|P) then
there exists an automorphism of F fixing pointwise P and sending
ā to b̄.

The above theorem is also proved by Perin and Sklinos.
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Z. Sela and O. Kharlampovich and A. Myasnikov show that
nonabelian free groups have the same elementary theory, and in
fact the following more explicit description.

Theorem 5

A nonabelian free factor of a free group of finite rank is an
elementary subgroup.
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They show also the following quantifier-elimination result.

Theorem 6

Let ϕ(x̄) be a formula. Then there exists a boolean combination of
∃∀-forumulas φ(x̄), such that for any nonabelian free group F of
finite rank, one has F |= ∀x̄(ϕ(x̄) ⇔ φ(x̄)).

We notice, in particular, that if ā, b̄ ∈ F n such that
tpF

∃∀(ā) = tpF
∃∀(b̄), then tpF (ā) = tpF (b̄).
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Theorem 7 (C. Perin, 2008)

An elementary subgroup of a free group of finite rank is a free
factor.

Theorem 8 (A. Pillay, 2009)

Let F be a nonabelian free group of finite rank and u, v ∈ F such
that tpF (u) = tpF (v).
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Theorem 7 (C. Perin, 2008)

An elementary subgroup of a free group of finite rank is a free
factor.

Theorem 8 (A. Pillay, 2009)

Let F be a nonabelian free group of finite rank and u, v ∈ F such
that tpF (u) = tpF (v). If u is primitive, then v is primitive.
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Definition

Let F be nonabelian free group of finite rank and let ā be a tuple
of F . We say that ā is rigid if there is no nontrivial free
decomposition F = A ∗ B such that A contains a tuple c̄ with
tpF1

∃∀(ā) = tpA
∃∀(c̄).
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Let F1 and F2 be nonabelian free groups of finite rank and let ā
(resp. b̄) be a tuple from F1 (resp. F2) such that
tpF1

∃∀(ā) = tpF2

∃∀(b̄).
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Let F1 and F2 be nonabelian free groups of finite rank and let ā
(resp. b̄) be a tuple from F1 (resp. F2) such that
tpF1

∃∀(ā) = tpF2

∃∀(b̄). Suppose that ā is rigid.
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Proposition (3)

Let F1 and F2 be nonabelian free groups of finite rank and let ā
(resp. b̄) be a tuple from F1 (resp. F2) such that
tpF1

∃∀(ā) = tpF2

∃∀(b̄). Suppose that ā is rigid.
Then either rk(F1) = 2 and ā is a power of a primitive element, or
there exists an embedding h ∈ Hom(F1|ā,F2|b̄) such that
h(F1) �∃∀ F2.



Homogeneity and algebraic closure in free groups

Homogeneity & prime models

Homogeneity

Sketch of proof of Theorem 4



Homogeneity and algebraic closure in free groups

Homogeneity & prime models

Homogeneity

Sketch of proof of Theorem 4

Let F be a free group of finite rank and let ā, b̄ ∈ F n s.t.
tpF (ā) = tpF (b̄).
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tpF (ā) = tpC (c̄).
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Let F be a free group of finite rank and let ā, b̄ ∈ F n s.t.
tpF (ā) = tpF (b̄).
Let C be the smallest free factor of F such that C contains c̄ with
tpF (ā) = tpC (c̄).
Then c̄ is rigid.
By Propsition (3), either rk(C ) = 2 and c̄ is a power of a primitive
element or there exists an embedding h1 ∈ Hom(C |ā,F |b̄) (resp.
h2 ∈ Hom(C |ā,F |b̄)) such that h1(C ) �∃∀ F (resp. h2(C ) �∃∀ F ).
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Let F be a free group of finite rank and let ā, b̄ ∈ F n s.t.
tpF (ā) = tpF (b̄).
Let C be the smallest free factor of F such that C contains c̄ with
tpF (ā) = tpC (c̄).
Then c̄ is rigid.
By Propsition (3), either rk(C ) = 2 and c̄ is a power of a primitive
element or there exists an embedding h1 ∈ Hom(C |ā,F |b̄) (resp.
h2 ∈ Hom(C |ā,F |b̄)) such that h1(C ) �∃∀ F (resp. h2(C ) �∃∀ F ).

If c̄ is a power of a primitive element then the result follows from
Theorem 8.
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Suppose that c̄ is not a power of a primitive element. Set
E (ā) = h1(C ) and E (b̄) = h2(C ).
We have h2 ◦ h−1

1 : E (ā) → E (b̄) is an isomorphism with
h2 ◦ h−1

1 (ā) = b̄.
Since E (ā) �∃∀ F (resp. E (b̄) �∃∀ F ) we get by Theorem 7 that
E (ā) � F (resp. E (b̄) � F ).
By Theorem 7, E (ā) (resp. E (b̄)) is a free factor of F .
Therefore h2 ◦ h−1

1 can be extended to an isomorphism of F .
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This part is a joint work with D. Vallino.
Recall that:

Definition

Let G be a group and A a subset of G .

The algebraic closure of A, denoted aclG (A), is the set of
elements g ∈ G such that there exists a formula φ(x) with
parameters from A such that G |= φ(g) and φ(G ) is finite.

The definable closure of A, denoted dclG (A), is the set of
elements g ∈ G such that there exists a formula φ(x) with
parameters from A such that G |= φ(g) and φ(G ) is a
singleton.
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Question (Z. Sela, 2008): Is it true that acl(A) = dcl(A) in free
groups?
Remarks. Let Γ be a torsion-free hyperbolic group and A ⊆ Γ.

acl(A) = acl(〈A〉) and dcl(A) = dcl(〈A〉). Hence, we may
assume that A is a subgroup.

If Γ = Γ1 ∗ Γ2 and A ≤ Γ1 then acl(A) ≤ Γ1. Similarly for
dcl(A). Hence, we may assume that Γ is freely
A-indecomposable.

If A is abelian then acl(A) = dcl(A) = CΓ(A). Hence , we
may assume that A is nonabelian.
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Theorem 9

Let Γ be a torsion-free hyperbolic group and A ≤ Γ where A is
nonabelian.
Then Γ can be constructed from acl(A) by a finite sequence of free
products and HNN-extensions along cyclic subgroups.
In particular, acl(A) is finitely generated, quasiconvex and
hyperbolic.
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Let F be a nonabelian free group of finite rank and let A ≤ F be a
nonabelian subgroup. Then:

dcl(A) is a free factor of acl(A). In particular, if rk(F ) = 2
then acl(A) = dcl(A).
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Acl and the JSJ-decomposition

Theorem 10

Let F be a nonabelian free group of finite rank and let A ≤ F be a
nonabelian subgroup. Then:

dcl(A) is a free factor of acl(A). In particular, if rk(F ) = 2
then acl(A) = dcl(A).

acl(A) is exactly the vertex group containing A in the cyclic
JSJ-decomposition of F relative to A.
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Theorem 11

Let A0 be a finite set (possibly empty) and

A = 〈A0, a, b, u|〉, H = A ∗ 〈y |〉,

v = aybyay−1by−1, F = 〈H, t|ut = v〉.

Then F is a free group of rank |A0| + 4 and:

If f ∈ Hom(F |A) then f ∈ Aut(F |A), and if f|H 6= 1 then
f (y) = y−1.

acl(A) = acl∃(A) = H.

dcl(A) = dcl∃(A) = A.
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