#### Abderezak Ould Houcine

#### Université de Mons, Université Lyon 1

### Equations and First-order properties in Groups

Montréal, 15 october 2010

(日) (四) (코) (코) (코) (코)

### 1 Homogeneity & prime models

- Definitions
- Existential homogeneity & prime models
- Homogeneity

### 2 Algebraic & definable closure

- Definitions
- Constructibility over the algebraic closure

A counterexample

Homogeneity & prime models

## Contents

### 1 Homogeneity & prime models

- Definitions
- Existential homogeneity & prime models
- Homogeneity

#### 2 Algebraic & definable closure

- Definitions
- Constructibility over the algebraic closure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A counterexample

Homogeneity & prime models

## Homogeneity & existential homogeneity

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Homogeneity & prime models

# Homogeneity & existential homogeneity

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Let  ${\mathcal M}$  be a countable model.

Homogeneity & prime models

# Homogeneity & existential homogeneity

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Let  ${\mathcal M}$  be a countable model.

• Let  $\bar{a} \in \mathcal{M}^n$ .

Homogeneity & prime models

## Homogeneity & existential homogeneity

Let  ${\mathcal M}$  be a countable model.

• Let  $\bar{a} \in \mathcal{M}^n$ . The type of  $\bar{a}$  is defined by

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Homogeneity & prime models

# Homogeneity & existential homogeneity

Let  ${\mathcal M}$  be a countable model.

• Let  $\bar{a} \in \mathcal{M}^n$ . The type of  $\bar{a}$  is defined by

$$tp^{\mathcal{M}}(\bar{a}) = \{\psi(\bar{x}) | \mathcal{M} \models \psi(\bar{a})\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Homogeneity & prime models

# Homogeneity & existential homogeneity

Let  $\ensuremath{\mathcal{M}}$  be a countable model.

• Let  $\bar{a} \in \mathcal{M}^n$ . The type of  $\bar{a}$  is defined by

$$tp^{\mathcal{M}}(\bar{a}) = \{\psi(\bar{x}) | \mathcal{M} \models \psi(\bar{a})\}.$$

■ *M* is homogeneous

Homogeneity & prime models

## Homogeneity & existential homogeneity

Let  ${\mathcal M}$  be a countable model.

• Let  $\bar{a} \in \mathcal{M}^n$ . The type of  $\bar{a}$  is defined by

$$tp^{\mathcal{M}}(\bar{a}) = \{\psi(\bar{x}) | \mathcal{M} \models \psi(\bar{a})\}.$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

•  $\mathcal{M}$  is homogeneous  $\Leftrightarrow$  for any  $n \ge 1$ , for any  $\bar{a}, \bar{b} \in \mathcal{M}^n$ ,

Homogeneity & prime models

## Homogeneity & existential homogeneity

Let  $\mathcal{M}$  be a countable model.

• Let  $\bar{a} \in \mathcal{M}^n$ . The type of  $\bar{a}$  is defined by

$$tp^{\mathcal{M}}(\bar{a}) = \{\psi(\bar{x}) | \mathcal{M} \models \psi(\bar{a})\}.$$

•  $\mathcal{M}$  is homogeneous  $\Leftrightarrow$  for any  $n \ge 1$ , for any  $\bar{a}, \bar{b} \in \mathcal{M}^n$ ,  $tp^{\mathcal{M}}(\bar{a}) = tp^{\mathcal{M}}(\bar{b}) \implies \exists f \in Aut(\mathcal{M}) \text{ s.t. } f(\bar{a}) = f(\bar{b}).$ 

Homogeneity & prime models

## Homogeneity & existential homogeneity

Let  $\mathcal{M}$  be a countable model.

• Let  $\bar{a} \in \mathcal{M}^n$ . The type of  $\bar{a}$  is defined by

$$tp^{\mathcal{M}}(\bar{a}) = \{\psi(\bar{x}) | \mathcal{M} \models \psi(\bar{a})\}.$$

•  $\mathcal{M}$  is homogeneous  $\Leftrightarrow$  for any  $n \ge 1$ , for any  $\bar{a}$ ,  $\bar{b} \in \mathcal{M}^n$ ,  $tp^{\mathcal{M}}(\bar{a}) = tp^{\mathcal{M}}(\bar{b}) \implies \exists f \in Aut(\mathcal{M}) \text{ s.t. } f(\bar{a}) = f(\bar{b}).$ 

•  $\mathcal{M}$  is  $\exists$ -homogeneous

Homogeneity & prime models

## Homogeneity & existential homogeneity

Let  $\mathcal{M}$  be a countable model.

• Let  $\bar{a} \in \mathcal{M}^n$ . The type of  $\bar{a}$  is defined by

$$tp^{\mathcal{M}}(\bar{a}) = \{\psi(\bar{x}) | \mathcal{M} \models \psi(\bar{a})\}.$$

•  $\mathcal{M}$  is homogeneous  $\Leftrightarrow$  for any  $n \ge 1$ , for any  $\bar{a}, \bar{b} \in \mathcal{M}^n$ ,  $tp^{\mathcal{M}}(\bar{a}) = tp^{\mathcal{M}}(\bar{b}) \implies \exists f \in Aut(\mathcal{M}) \text{ s.t. } f(\bar{a}) = f(\bar{b}).$ 

•  $\mathcal{M}$  is  $\exists$ -homogeneous  $\Leftrightarrow$  for any  $n \geq 1$ , for any  $\bar{a}, \ \bar{b} \in \mathcal{M}^n$ ,

Homogeneity & prime models

## Homogeneity & existential homogeneity

Let  $\mathcal{M}$  be a countable model.

• Let  $\bar{a} \in \mathcal{M}^n$ . The type of  $\bar{a}$  is defined by

$$tp^{\mathcal{M}}(\bar{a}) = \{\psi(\bar{x}) | \mathcal{M} \models \psi(\bar{a})\}.$$

- $\mathcal{M}$  is homogeneous  $\Leftrightarrow$  for any  $n \ge 1$ , for any  $\bar{a}, \bar{b} \in \mathcal{M}^n$ ,  $tp^{\mathcal{M}}(\bar{a}) = tp^{\mathcal{M}}(\bar{b}) \implies \exists f \in Aut(\mathcal{M}) \text{ s.t. } f(\bar{a}) = f(\bar{b}).$
- $\mathcal{M}$  is  $\exists$ -homogeneous  $\Leftrightarrow$  for any  $n \geq 1$ , for any  $\bar{a}, \bar{b} \in \mathcal{M}^n$ ,  $tp_{\exists}^{\mathcal{M}}(\bar{a}) = tp_{\exists}^{\mathcal{M}}(\bar{b}) \implies \exists f \in Aut(\mathcal{M}) \text{ s.t. } f(\bar{a}) = f(\bar{b}).$

Homogeneity & prime models

# Homogeneity & existential homogeneity

Let  $\mathcal{M}$  be a countable model.

• Let  $\bar{a} \in \mathcal{M}^n$ . The type of  $\bar{a}$  is defined by

$$tp^{\mathcal{M}}(\bar{a}) = \{\psi(\bar{x}) | \mathcal{M} \models \psi(\bar{a})\}.$$

- $\mathcal{M}$  is homogeneous  $\Leftrightarrow$  for any  $n \ge 1$ , for any  $\bar{a}, \bar{b} \in \mathcal{M}^n$ ,  $tp^{\mathcal{M}}(\bar{a}) = tp^{\mathcal{M}}(\bar{b}) \implies \exists f \in Aut(\mathcal{M}) \text{ s.t. } f(\bar{a}) = f(\bar{b}).$
- $\mathcal{M}$  is  $\exists$ -homogeneous  $\Leftrightarrow$  for any  $n \geq 1$ , for any  $\bar{a}, \bar{b} \in \mathcal{M}^n$ ,  $tp_{\exists}^{\mathcal{M}}(\bar{a}) = tp_{\exists}^{\mathcal{M}}(\bar{b}) \implies \exists f \in Aut(\mathcal{M}) \text{ s.t. } f(\bar{a}) = f(\bar{b}).$

Remark.

Homogeneity & prime models

## Homogeneity & existential homogeneity

Let  $\mathcal{M}$  be a countable model.

• Let  $\bar{a} \in \mathcal{M}^n$ . The type of  $\bar{a}$  is defined by

$$tp^{\mathcal{M}}(\bar{a}) = \{\psi(\bar{x}) | \mathcal{M} \models \psi(\bar{a})\}.$$

•  $\mathcal{M}$  is homogeneous  $\Leftrightarrow$  for any  $n \ge 1$ , for any  $\bar{a}$ ,  $\bar{b} \in \mathcal{M}^n$ ,  $tp^{\mathcal{M}}(\bar{a}) = tp^{\mathcal{M}}(\bar{b}) \implies \exists f \in Aut(\mathcal{M}) \text{ s.t. } f(\bar{a}) = f(\bar{b}).$ 

•  $\mathcal{M}$  is  $\exists$ -homogeneous  $\Leftrightarrow$  for any  $n \geq 1$ , for any  $\bar{a}, \bar{b} \in \mathcal{M}^n$ ,  $tp_{\exists}^{\mathcal{M}}(\bar{a}) = tp_{\exists}^{\mathcal{M}}(\bar{b}) \implies \exists f \in Aut(\mathcal{M}) \text{ s.t. } f(\bar{a}) = f(\bar{b}).$ 

**Remark.**  $\exists$ -homogeneity  $\implies$  homogeneity.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Homogeneity & prime models



Homogeneity & prime models



 $\blacksquare \ \mathcal{M} \ \text{is called} \ \textit{prime}$ 



Homogeneity & prime models



■ *M* is called *prime* if *M* is elementary embeddable in every model of *Th*(*M*).

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Homogeneity & prime models

Existential homogeneity & prime models

### The free group of rank 2

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Homogeneity & prime models

Existential homogeneity & prime models

### The free group of rank 2

#### Theorem 1 (A. Nies, 2003)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Homogeneity & prime models

Existential homogeneity & prime models

### The free group of rank 2

#### Theorem 1 (A. Nies, 2003)

A free group  $F_2$  of rank 2 is  $\exists$ -homogeneous and **not** prime.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Homogeneity & prime models

Existential homogeneity & prime models

### The free group of rank 2

#### Theorem 1 (A. Nies, 2003)

A free group  $F_2$  of rank 2 is  $\exists$ -homogeneous and **not** prime. In particular  $Th(F_2)$  has no prime model.

Homogeneity & prime models

Existential homogeneity & prime models

### The free group of rank 2

#### Theorem 1 (A. Nies, 2003)

A free group  $F_2$  of rank 2 is  $\exists$ -homogeneous and **not** prime. In particular  $Th(F_2)$  has no prime model.

The proof uses the following strong property of the free group  $F_2$  with basis  $\{a, b\}$ :

Homogeneity & prime models

Existential homogeneity & prime models

## The free group of rank 2

#### Theorem 1 (A. Nies, 2003)

A free group  $F_2$  of rank 2 is  $\exists$ -homogeneous and **not** prime. In particular  $Th(F_2)$  has no prime model.

The proof uses the following strong property of the free group  $F_2$  with basis  $\{a, b\}$ : there exists a quantifier-free formula  $\varphi(x, y)$ ,

Homogeneity & prime models

Existential homogeneity & prime models

### The free group of rank 2

#### Theorem 1 (A. Nies, 2003)

A free group  $F_2$  of rank 2 is  $\exists$ -homogeneous and **not** prime. In particular  $Th(F_2)$  has no prime model.

The proof uses the following strong property of the free group  $F_2$  with basis  $\{a, b\}$ : there exists a quantifier-free formula  $\varphi(x, y)$ , such that for any endomorphism f of  $F_2$  if  $F_2 \models \varphi(f(a), f(b))$  then f is an embedding.

Homogeneity & prime models

Existential homogeneity & prime models

## The free group of rank 2

#### Theorem 1 (A. Nies, 2003)

A free group  $F_2$  of rank 2 is  $\exists$ -homogeneous and **not** prime. In particular  $Th(F_2)$  has no prime model.

The proof uses the following strong property of the free group  $F_2$  with basis  $\{a, b\}$ : there exists a quantifier-free formula  $\varphi(x, y)$ , such that for any endomorphism f of  $F_2$  if  $F_2 \models \varphi(f(a), f(b))$  then f is an embedding.

Indeed, we can take  $\varphi(x, y) := [x, y] \neq 1$ 

Homogeneity & prime models

Existential homogeneity & prime models

## Two-generated torsion-free hyperbolic groups

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

Homogeneity & prime models

Existential homogeneity & prime models

# Two-generated torsion-free hyperbolic groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

#### Question:

Homogeneity & prime models

Existential homogeneity & prime models

## Two-generated torsion-free hyperbolic groups

**Question:** What can be said about the  $\exists$ -homogeneity and "primeness" of two-generated torsion-free hyperbolic groups?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Homogeneity & prime models

Existential homogeneity & prime models

# Two-generated torsion-free hyperbolic groups

**Question:** What can be said about the  $\exists$ -homogeneity and "primeness" of two-generated torsion-free hyperbolic groups?

#### Definition

A group G is said to be co-hopfian, if any injective endomorphism of G is an automorphism.

Homogeneity & prime models

Existential homogeneity & prime models

# Two-generated torsion-free hyperbolic groups

**Question:** What can be said about the  $\exists$ -homogeneity and "primeness" of two-generated torsion-free hyperbolic groups?

#### Definition

A group G is said to be co-hopfian, if any injective endomorphism of G is an automorphism.

That is a group is co-hopfian if it does not contain a subgroup isomorphic to itself.

Homogeneity & prime models

Existential homogeneity & prime models

## Two-generated torsion-free hyperbolic groups

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

Homogeneity & prime models

Existential homogeneity & prime models

## Two-generated torsion-free hyperbolic groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

#### **Examples:**

Homogeneity & prime models

Existential homogeneity & prime models

# Two-generated torsion-free hyperbolic groups

#### **Examples:**

• Finite groups, the group of the rationals  $\mathbb{Q}$ .

Homogeneity & prime models

Existential homogeneity & prime models

# Two-generated torsion-free hyperbolic groups

#### **Examples:**

■ Finite groups, the group of the rationals Q.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

•  $SL_n(\mathbb{Z})$  with  $n \geq 3$  (G. Prasad, 1976).
Homogeneity & prime models

Existential homogeneity & prime models

# Two-generated torsion-free hyperbolic groups

### **Examples:**

- Finite groups, the group of the rationals Q.
- $SL_n(\mathbb{Z})$  with  $n \geq 3$  (G. Prasad, 1976).
- Nonabelian freely indecomposable trosion-free hyperbolic groups (Z. Sela, 1997).

Homogeneity & prime models

Existential homogeneity & prime models

# Two-generated torsion-free hyperbolic groups

### Examples:

- Finite groups, the group of the rationals Q.
- $SL_n(\mathbb{Z})$  with  $n \geq 3$  (G. Prasad, 1976).
- Nonabelian freely indecomposable trosion-free hyperbolic groups (Z. Sela, 1997).
- Mapping class groups of closed surfaces (N.V. Ivanov, J.D. McCarthy, 1999).

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Homogeneity & prime models

Existential homogeneity & prime models

## Two-generated torsion-free hyperbolic groups

### Examples:

- Finite groups, the group of the rationals Q.
- $SL_n(\mathbb{Z})$  with  $n \geq 3$  (G. Prasad, 1976).
- Nonabelian freely indecomposable trosion-free hyperbolic groups (Z. Sela, 1997).
- Mapping class groups of closed surfaces (N.V. Ivanov, J.D. McCarthy, 1999).
- B<sub>n</sub>/Z(B<sub>n</sub>), where B<sub>n</sub> is the Braid group on n ≥ 4 strands (R.W. Bell, D. Margalit, 2005).

Homogeneity & prime models

Existential homogeneity & prime models

## Two-generated torsion-free hyperbolic groups

### Examples:

- Finite groups, the group of the rationals Q.
- $SL_n(\mathbb{Z})$  with  $n \geq 3$  (G. Prasad, 1976).
- Nonabelian freely indecomposable trosion-free hyperbolic groups (Z. Sela, 1997).
- Mapping class groups of closed surfaces (N.V. Ivanov, J.D. McCarthy, 1999).
- $B_n/Z(B_n)$ , where  $B_n$  is the Braid group on  $n \ge 4$  strands (R.W. Bell, D. Margalit, 2005).
- $Out(F_n)$ , where  $F_n$  is a free group of rank n (B. Farb, M. Handel, 2007).

Homogeneity & prime models

Existential homogeneity & prime models

## Two-generated torsion-free hyperbolic groups

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

Homogeneity & prime models

Existential homogeneity & prime models

## Two-generated torsion-free hyperbolic groups

We introduce a strong form of the co-hopf property.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Homogeneity & prime models

Existential homogeneity & prime models

## Two-generated torsion-free hyperbolic groups

We introduce a strong form of the co-hopf property.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### Definition

Homogeneity & prime models

Existential homogeneity & prime models

# Two-generated torsion-free hyperbolic groups

We introduce a strong form of the co-hopf property.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Definition

A group G is said to be strongly co-hopfian,

Homogeneity & prime models

Existential homogeneity & prime models

# Two-generated torsion-free hyperbolic groups

We introduce a strong form of the co-hopf property.

#### Definition

A group G is said to be strongly co-hopfian, if there exists a finite subset  $S \subseteq G \setminus \{1\}$ 

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Homogeneity & prime models

Existential homogeneity & prime models

# Two-generated torsion-free hyperbolic groups

We introduce a strong form of the co-hopf property.

#### Definition

A group G is said to be **strongly co-hopfian**, if there exists a finite subset  $S \subseteq G \setminus \{1\}$  such that for any endomorphism  $\varphi$  of G, if  $1 \notin \varphi(S)$  then  $\varphi$  is an automorphism.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Homogeneity & prime models

Existential homogeneity & prime models

# Two-generated torsion-free hyperbolic groups

We introduce a strong form of the co-hopf property.

#### Definition

A group G is said to be **strongly co-hopfian**, if there exists a finite subset  $S \subseteq G \setminus \{1\}$  such that for any endomorphism  $\varphi$  of G, if  $1 \notin \varphi(S)$  then  $\varphi$  is an automorphism.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

### Examples:

Homogeneity & prime models

Existential homogeneity & prime models

# Two-generated torsion-free hyperbolic groups

We introduce a strong form of the co-hopf property.

#### Definition

A group G is said to be **strongly co-hopfian**, if there exists a finite subset  $S \subseteq G \setminus \{1\}$  such that for any endomorphism  $\varphi$  of G, if  $1 \notin \varphi(S)$  then  $\varphi$  is an automorphism.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

### Examples:

■ Finite groups, the group of the rationals Q.

Homogeneity & prime models

Existential homogeneity & prime models

# Two-generated torsion-free hyperbolic groups

We introduce a strong form of the co-hopf property.

#### Definition

A group G is said to be **strongly co-hopfian**, if there exists a finite subset  $S \subseteq G \setminus \{1\}$  such that for any endomorphism  $\varphi$  of G, if  $1 \notin \varphi(S)$  then  $\varphi$  is an automorphism.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

### Examples:

- Finite groups, the group of the rationals Q.
- Tarski Monster groups.

Homogeneity & prime models

Existential homogeneity & prime models

Homogeneity & prime models

Existential homogeneity & prime models

The previous notion is very interesting from the view point of model theory:

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Homogeneity & prime models

Existential homogeneity & prime models

The previous notion is very interesting from the view point of model theory:

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Lemma

Homogeneity & prime models

Existential homogeneity & prime models

The previous notion is very interesting from the view point of model theory:

#### Lemma

A finitely presented strongly co-hopfian group is  $\exists$ -homogeneous and prime.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Homogeneity & prime models

Existential homogeneity & prime models

The previous notion is very interesting from the view point of model theory:

#### Lemma

A finitely presented strongly co-hopfian group is  $\exists$ -homogeneous and prime.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let  $G = \langle \bar{a} | r_1(\bar{a}), r_2(\bar{a}), \dots, r_n(\bar{a}) \rangle$  be finitely presented and strongly co-hopfian.

Homogeneity & prime models

Existential homogeneity & prime models

The previous notion is very interesting from the view point of model theory:

#### Lemma

A finitely presented strongly co-hopfian group is  $\exists$ -homogeneous and prime.

Let  $G = \langle \bar{a} | r_1(\bar{a}), r_2(\bar{a}), \dots, r_n(\bar{a}) \rangle$  be finitely presented and strongly co-hopfian. Then there exists a quantifier-free formula  $\varphi(\bar{x})$  such that for any endomorphism f of G, if  $G \models \varphi(f(\bar{a}))$  then f is an automorphism.

Homogeneity & prime models

Existential homogeneity & prime models

The previous notion is very interesting from the view point of model theory:

#### Lemma

A finitely presented strongly co-hopfian group is  $\exists$ -homogeneous and prime.

Let  $G = \langle \bar{a} | r_1(\bar{a}), r_2(\bar{a}), \dots, r_n(\bar{a}) \rangle$  be finitely presented and strongly co-hopfian. Then there exists a quantifier-free formula  $\varphi(\bar{x})$  such that for any endomorphism f of G, if  $G \models \varphi(f(\bar{a}))$  then f is an automorphism. A property analogous to that of the free group of rank 2.

Homogeneity & prime models

Existential homogeneity & prime models

## Two-generated torsion-free hyperbolic groups

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

Homogeneity & prime models

Existential homogeneity & prime models

# Two-generated torsion-free hyperbolic groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

### Theorem 2

Homogeneity & prime models

Existential homogeneity & prime models

# Two-generated torsion-free hyperbolic groups

### Theorem 2

A non-free two-generated torsion-free hyperbolic group is strongly co-hopfian.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Homogeneity & prime models

Existential homogeneity & prime models

## Two-generated torsion-free hyperbolic groups

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

Homogeneity & prime models

Existential homogeneity & prime models

## Two-generated torsion-free hyperbolic groups

Since torsion-free hyperbolic groups are finitely presented, we conclude by the previous Lemma:

Homogeneity & prime models

Existential homogeneity & prime models

# Two-generated torsion-free hyperbolic groups

Since torsion-free hyperbolic groups are finitely presented, we conclude by the previous Lemma:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem 3

Homogeneity & prime models

Existential homogeneity & prime models

# Two-generated torsion-free hyperbolic groups

Since torsion-free hyperbolic groups are finitely presented, we conclude by the previous Lemma:

### Theorem 3

A non-free two-generated torsion-free hyperbolic group is  $\exists$ -homogeneous and prime.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 2

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 2

Let  $\Gamma$  be a non-free two-generated trosion-free hyperbolic group.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Homogeneity & prime models

Existential homogeneity & prime models

## Sketch of proof of Theorem 2

Let  $\Gamma$  be a non-free two-generated trosion-free hyperbolic group.

■ There exists a sequence of subroups Γ = Γ<sub>1</sub> ≥ Γ<sub>2</sub> ≥ ··· ≥ Γ<sub>n</sub> satisfying the following properties:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Homogeneity & prime models

Existential homogeneity & prime models

## Sketch of proof of Theorem 2

Let  $\Gamma$  be a non-free two-generated trosion-free hyperbolic group.

There exists a sequence of subroups  $\Gamma = \Gamma_1 \ge \Gamma_2 \ge \cdots \ge \Gamma_n$  satisfying the following properties:

(*i*) Each  $\Gamma_i$  is two-generated, hyperbolic and quasiconvex;

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Homogeneity & prime models

Existential homogeneity & prime models

## Sketch of proof of Theorem 2

Let  $\Gamma$  be a non-free two-generated trosion-free hyperbolic group.

■ There exists a sequence of subroups Γ = Γ<sub>1</sub> ≥ Γ<sub>2</sub> ≥ ··· ≥ Γ<sub>n</sub> satisfying the following properties:

(*i*) Each  $\Gamma_i$  is two-generated, hyperbolic and quasiconvex; (*ii*)  $\Gamma_i = \langle \Gamma_{i+1}, t | A^t = B \rangle$ , where A and B are a nontrivial malnormal cyclic subgroups of  $\Gamma_{i+1}$ ;

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 2

Let  $\Gamma$  be a non-free two-generated trosion-free hyperbolic group.

■ There exists a sequence of subroups Γ = Γ<sub>1</sub> ≥ Γ<sub>2</sub> ≥ ··· ≥ Γ<sub>n</sub> satisfying the following properties:

(*i*) Each  $\Gamma_i$  is two-generated, hyperbolic and quasiconvex; (*ii*)  $\Gamma_i = \langle \Gamma_{i+1}, t | A^t = B \rangle$ , where A and B are a nontrivial malnormal cyclic subgroups of  $\Gamma_{i+1}$ ; (*iii*)  $\Gamma_n$  is a rigid subgroup of  $\Gamma$ .

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 2

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 2

### **Г**<sub>*n*</sub> is $\Gamma$ -determined;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 2

•  $\Gamma_n$  is  $\Gamma$ -determined; that is, there exists a finite subset  $S \subseteq G \setminus \{1\}$  such that for any homomorphism  $\varphi : \Gamma_n \to \Gamma$ , if  $1 \notin \varphi(S)$  then  $\varphi$  is an embedding.
Homogeneity & prime models

Existential homogeneity & prime models

## Sketch of proof of Theorem 2

- $\Gamma_n$  is  $\Gamma$ -determined; that is, there exists a finite subset  $S \subseteq G \setminus \{1\}$  such that for any homomorphism  $\varphi : \Gamma_n \to \Gamma$ , if  $1 \notin \varphi(S)$  then  $\varphi$  is an embedding.
- Let φ be an endomorphism of Γ such that 1 ∉ φ(S). Then the restriction of φ to every Γ<sub>i</sub> is an automorphism of Γ<sub>i</sub>.

Homogeneity & prime models

Existential homogeneity & prime models

## Sketch of proof of Theorem 2

- $\Gamma_n$  is  $\Gamma$ -determined; that is, there exists a finite subset  $S \subseteq G \setminus \{1\}$  such that for any homomorphism  $\varphi : \Gamma_n \to \Gamma$ , if  $1 \notin \varphi(S)$  then  $\varphi$  is an embedding.
- Let  $\varphi$  be an endomorphism of  $\Gamma$  such that  $1 \notin \varphi(S)$ . Then the restriction of  $\varphi$  to every  $\Gamma_i$  is an automorphism of  $\Gamma_i$ . In particular  $\varphi$  is an automorphism of  $\Gamma$ .

Homogeneity & prime models

Existential homogeneity & prime models

## Quasi-axiomatizable groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Homogeneity & prime models

Existential homogeneity & prime models

## Quasi-axiomatizable groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

### Definition (A. Nies)

Homogeneity & prime models

Existential homogeneity & prime models

## Quasi-axiomatizable groups

### Definition (A. Nies)

### A finitely generated group G is said to be Quasi-Axiomatizable

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Homogeneity & prime models

Existential homogeneity & prime models

## Quasi-axiomatizable groups

### Definition (A. Nies)

A finitely generated group G is said to be Quasi-Axiomatizable if any finitely generated group which is elementary equivalent to G is isomorphic to G.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Homogeneity & prime models

Existential homogeneity & prime models

## Quasi-axiomatizable groups

### Definition (A. Nies)

A finitely generated group G is said to be Quasi-Axiomatizable if any finitely generated group which is elementary equivalent to G is isomorphic to G.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question (A. Nies):

Homogeneity & prime models

Existential homogeneity & prime models

## Quasi-axiomatizable groups

### Definition (A. Nies)

A finitely generated group G is said to be Quasi-Axiomatizable if any finitely generated group which is elementary equivalent to G is isomorphic to G.

**Question (A. Nies):** Is there a f.g. group which is prime but not QA?

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Homogeneity & prime models

Existential homogeneity & prime models

## Quasi-axiomatizable groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Homogeneity & prime models

Existential homogeneity & prime models

## Quasi-axiomatizable groups

Using Sela's work on the elementary theory of torsion-free hyperbolic groups, we have

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Homogeneity & prime models

Existential homogeneity & prime models

## Quasi-axiomatizable groups

Using Sela's work on the elementary theory of torsion-free hyperbolic groups, we have

Theorem 4

Homogeneity & prime models

Existential homogeneity & prime models

## Quasi-axiomatizable groups

Using Sela's work on the elementary theory of torsion-free hyperbolic groups, we have

Theorem 4

Let  $\Gamma$  be a two-generated trosion-free hyperbolic group.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Homogeneity & prime models

Existential homogeneity & prime models

## Quasi-axiomatizable groups

Using Sela's work on the elementary theory of torsion-free hyperbolic groups, we have

#### Theorem 4

Let  $\Gamma$  be a two-generated trosion-free hyperbolic group. Then  $\Gamma$  is elementary equivalent to  $\Gamma * \mathbb{Z}$ .

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Homogeneity & prime models

Existential homogeneity & prime models

## Quasi-axiomatizable groups

Using Sela's work on the elementary theory of torsion-free hyperbolic groups, we have

#### Theorem 4

Let  $\Gamma$  be a two-generated trosion-free hyperbolic group. Then  $\Gamma$  is elementary equivalent to  $\Gamma * \mathbb{Z}$ .

Hence

Homogeneity & prime models

Existential homogeneity & prime models

## Quasi-axiomatizable groups

Using Sela's work on the elementary theory of torsion-free hyperbolic groups, we have

#### Theorem 4

Let  $\Gamma$  be a two-generated trosion-free hyperbolic group. Then  $\Gamma$  is elementary equivalent to  $\Gamma * \mathbb{Z}$ .

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Hence if  $\Gamma$  is non-free then it is prime but not QA.

Homogeneity & prime models

Existential homogeneity & prime models

## Existential homogeneity in free groups

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Homogeneity & prime models

Existential homogeneity & prime models

## Existential homogeneity in free groups

**Question :** What can be said about existential homogeneity in free groups?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Homogeneity & prime models

Existential homogeneity & prime models

# Existential homogeneity in free groups

**Question :** What can be said about existential homogeneity in free groups? Recall that:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Homogeneity & prime models

Existential homogeneity & prime models

# Existential homogeneity in free groups

**Question :** What can be said about existential homogeneity in free groups? Recall that:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

### Definition

Homogeneity & prime models

Existential homogeneity & prime models

# Existential homogeneity in free groups

**Question :** What can be said about existential homogeneity in free groups? Recall that:

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

### Definition

Let  $\mathcal{M}$  be a model and  $\mathcal{N}$  a submodel of  $\mathcal{M}$ .

Homogeneity & prime models

Existential homogeneity & prime models

# Existential homogeneity in free groups

**Question :** What can be said about existential homogeneity in free groups? Recall that:

### Definition

Let  $\mathcal{M}$  be a model and  $\mathcal{N}$  a submodel of  $\mathcal{M}$ . The model  $\mathcal{N}$  is said to be existentially closed (abbreviated e.c.) in  $\mathcal{M}$ ,

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Homogeneity & prime models

Existential homogeneity & prime models

# Existential homogeneity in free groups

**Question :** What can be said about existential homogeneity in free groups? Recall that:

#### Definition

Let  $\mathcal{M}$  be a model and  $\mathcal{N}$  a submodel of  $\mathcal{M}$ . The model  $\mathcal{N}$  is said to be existentially closed (abbreviated e.c.) in  $\mathcal{M}$ , if for any existential formula  $\varphi$  with parameters from  $\mathcal{N}$ , if  $\mathcal{M} \models \varphi$ , then  $\mathcal{N} \models \varphi$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Homogeneity & prime models

Existential homogeneity & prime models

# Existential homogeneity in free groups

**Question :** What can be said about existential homogeneity in free groups? Recall that:

#### Definition

Let  $\mathcal{M}$  be a model and  $\mathcal{N}$  a submodel of  $\mathcal{M}$ . The model  $\mathcal{N}$  is said to be existentially closed (abbreviated e.c.) in  $\mathcal{M}$ , if for any existential formula  $\varphi$  with parameters from  $\mathcal{N}$ , if  $\mathcal{M} \models \varphi$ , then  $\mathcal{N} \models \varphi$ .

### Definition

Homogeneity & prime models

Existential homogeneity & prime models

# Existential homogeneity in free groups

**Question :** What can be said about existential homogeneity in free groups? Recall that:

#### Definition

Let  $\mathcal{M}$  be a model and  $\mathcal{N}$  a submodel of  $\mathcal{M}$ . The model  $\mathcal{N}$  is said to be existentially closed (abbreviated e.c.) in  $\mathcal{M}$ , if for any existential formula  $\varphi$  with parameters from  $\mathcal{N}$ , if  $\mathcal{M} \models \varphi$ , then  $\mathcal{N} \models \varphi$ .

#### Definition

Let F be a free group and let  $\bar{a} = (a_1, \ldots, a_m)$  be a tuple from F.

Homogeneity & prime models

Existential homogeneity & prime models

# Existential homogeneity in free groups

**Question :** What can be said about existential homogeneity in free groups? Recall that:

### Definition

Let  $\mathcal{M}$  be a model and  $\mathcal{N}$  a submodel of  $\mathcal{M}$ . The model  $\mathcal{N}$  is said to be existentially closed (abbreviated e.c.) in  $\mathcal{M}$ , if for any existential formula  $\varphi$  with parameters from  $\mathcal{N}$ , if  $\mathcal{M} \models \varphi$ , then  $\mathcal{N} \models \varphi$ .

### Definition

Let F be a free group and let  $\bar{a} = (a_1, \ldots, a_m)$  be a tuple from F.We say that  $\bar{a}$  is a power of a primitive element if there exist integers  $p_1, \ldots, p_m$  and a primitive element u such that  $a_i = u^{p_i}$  for all i.

・ロト ・ 直 ・ イヨト ・ 目 ・ クタマー

Homogeneity & prime models

Existential homogeneity & prime models

Homogeneity & prime models

Existential homogeneity & prime models

・ロト・4回ト・ミミト・ミー・シック

### Theorem 3

Homogeneity & prime models

Existential homogeneity & prime models

### Theorem 3

Let F be a nonabelian free group of finite rank.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Homogeneity & prime models

Existential homogeneity & prime models

### Theorem 3

Let F be a nonabelian free group of finite rank. Let  $\bar{a}, \bar{b} \in F^n$  and  $P \subseteq F$  such that  $tp_{\exists}^F(\bar{a}|P) = tp_{\exists}^F(\bar{b}|P)$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Homogeneity & prime models

Existential homogeneity & prime models

### Theorem 3

Let F be a nonabelian free group of finite rank. Let  $\bar{a}, \bar{b} \in F^n$  and  $P \subseteq F$  such that  $tp_{\exists}^F(\bar{a}|P) = tp_{\exists}^F(\bar{b}|P)$ . Then one of the following cases holds:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Homogeneity & prime models

Existential homogeneity & prime models

### Theorem 3

Let F be a nonabelian free group of finite rank. Let  $\bar{a}, \bar{b} \in F^n$  and  $P \subseteq F$  such that  $tp_{\exists}^F(\bar{a}|P) = tp_{\exists}^F(\bar{b}|P)$ . Then one of the following cases holds:

 the tuple ā has the same existential type as a power of a primitive element;

▲日▼▲□▼▲□▼▲□▼ □ ののの

Homogeneity & prime models

Existential homogeneity & prime models

### Theorem 3

Let F be a nonabelian free group of finite rank. Let  $\bar{a}, \bar{b} \in F^n$  and  $P \subseteq F$  such that  $tp_{\exists}^F(\bar{a}|P) = tp_{\exists}^F(\bar{b}|P)$ . Then one of the following cases holds:

- the tuple ā has the same existential type as a power of a primitive element;
- there exists an e.c. subgroup  $E(\bar{a})$  (resp.  $E(\bar{b})$ ) containing P and  $\bar{a}$  (resp.  $\bar{b}$ ) and an isomorphism  $\sigma : E(\bar{a}) \to E(\bar{b})$  fixing pointwise P and sending  $\bar{a}$  to  $\bar{b}$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Homogeneity & prime models

Existential homogeneity & prime models

## Sketch of proof of Theorem 3

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Homogeneity & prime models

Existential homogeneity & prime models

## Sketch of proof of Theorem 3

We eliminate first parameters.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Homogeneity & prime models

Existential homogeneity & prime models

## Sketch of proof of Theorem 3

We eliminate first parameters. Recall that a free group is *equationnally noetherian*;

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Homogeneity & prime models

Existential homogeneity & prime models

## Sketch of proof of Theorem 3

We eliminate first parameters. Recall that a free group is *equationnally noetherian*; that is any system of equations in finitely many variable is equivalent to a finite subsystem.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @
Homogeneity & prime models

Existential homogeneity & prime models

# Sketch of proof of Theorem 3

We eliminate first parameters. Recall that a free group is *equationnally noetherian*; that is any system of equations in finitely many variable is equivalent to a finite subsystem.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

#### Lemma

Homogeneity & prime models

Existential homogeneity & prime models

# Sketch of proof of Theorem 3

We eliminate first parameters. Recall that a free group is *equationnally noetherian*; that is any system of equations in finitely many variable is equivalent to a finite subsystem.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

#### Lemma

Let G be a finitely generated equationally noetherian group.

Homogeneity & prime models

Existential homogeneity & prime models

# Sketch of proof of Theorem 3

We eliminate first parameters. Recall that a free group is *equationnally noetherian*; that is any system of equations in finitely many variable is equivalent to a finite subsystem.

#### Lemma

Let G be a finitely generated equationally noetherian group. Let P be a subset of G.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Homogeneity & prime models

Existential homogeneity & prime models

# Sketch of proof of Theorem 3

We eliminate first parameters. Recall that a free group is *equationnally noetherian*; that is any system of equations in finitely many variable is equivalent to a finite subsystem.

#### Lemma

Let G be a finitely generated equationally noetherian group. Let P be a subset of G. Then there exists a finite subset  $P_0 \subseteq P$  such that for any endomorphism f of G, if f fixes pointwise  $P_0$  then f fixes pointwise P.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Homogeneity & prime models

Existential homogeneity & prime models

# Sketch of proof of Theorem 3

We eliminate first parameters. Recall that a free group is *equationnally noetherian*; that is any system of equations in finitely many variable is equivalent to a finite subsystem.

#### Lemma

Let G be a finitely generated equationally noetherian group. Let P be a subset of G. Then there exists a finite subset  $P_0 \subseteq P$  such that for any endomorphism f of G, if f fixes pointwise  $P_0$  then f fixes pointwise P.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Hence:

Homogeneity & prime models

Existential homogeneity & prime models

# Sketch of proof of Theorem 3

We eliminate first parameters. Recall that a free group is *equationnally noetherian*; that is any system of equations in finitely many variable is equivalent to a finite subsystem.

#### Lemma

Let G be a finitely generated equationally noetherian group. Let P be a subset of G. Then there exists a finite subset  $P_0 \subseteq P$  such that for any endomorphism f of G, if f fixes pointwise  $P_0$  then f fixes pointwise P.

Hence:  $\exists f \in Aut(F|P) \text{ s.t. } f(\bar{a}) = f(\bar{b}) \Leftrightarrow \exists f \in Aut(F) \text{ s.t.} f(\bar{a}P_0) = f(\bar{b}P_0).$ 

Homogeneity & prime models

Existential homogeneity & prime models

# Sketch of proof of Theorem 3

We eliminate first parameters. Recall that a free group is *equationnally noetherian*; that is any system of equations in finitely many variable is equivalent to a finite subsystem.

#### Lemma

Let G be a finitely generated equationally noetherian group. Let P be a subset of G. Then there exists a finite subset  $P_0 \subseteq P$  such that for any endomorphism f of G, if f fixes pointwise  $P_0$  then f fixes pointwise P.

Hence:  $\exists f \in Aut(F|P) \text{ s.t. } f(\bar{a}) = f(\bar{b}) \Leftrightarrow \exists f \in Aut(F) \text{ s.t.}$  $f(\bar{a}P_0) = f(\bar{b}P_0).$ Note that : If  $tp_{\exists}(\bar{a}|P) = tp_{\exists}(\bar{b}|P)$  then  $tp_{\exists}(\bar{a}|P_0) = tp_{\exists}(\bar{b}|P_0)$ and  $tp_{\exists}(\bar{a}P_0) = tp_{\exists}(\bar{b}P_0).$ 

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 3

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 3

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

#### Definition

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 3

#### Definition

Let  $F_1$  and  $F_2$  be nonabelian free groups of finite rank and let  $\bar{a}$  (resp.  $\bar{b}$ ) be a tuple from  $F_1$  (resp.  $F_2$ ).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 3

#### Definition

Let  $F_1$  and  $F_2$  be nonabelian free groups of finite rank and let  $\bar{a}$  (resp.  $\bar{b}$ ) be a tuple from  $F_1$  (resp.  $F_2$ ). We say that  $(\bar{a}, \bar{b})$  is existentially rigid, if there is no nontrivial free decomposition  $F_1 = A * B$  such that A contains a tuple  $\bar{c}$  with  $tp_{\exists}^{F_1}(\bar{a}) \subseteq tp_{\exists}^{A}(\bar{c}) \subseteq tp_{\exists}^{F_2}(\bar{b})$ .

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 3

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 3

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

#### Proposition (1)

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 3

#### Proposition (1)

Let  $F_1$  and  $F_2$  be nonabelian free groups of finite rank and let  $\bar{a}$  (resp.  $\bar{b}$ ) be a tuple from  $F_1$  (resp.  $F_2$ ).

▲日▼▲□▼▲□▼▲□▼ □ ののの

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 3

#### Proposition (1)

Let  $F_1$  and  $F_2$  be nonabelian free groups of finite rank and let  $\bar{a}$  (resp.  $\bar{b}$ ) be a tuple from  $F_1$  (resp.  $F_2$ ). Suppose that  $(\bar{a}, \bar{b})$  is existentially rigid and let  $\bar{s}$  be a basis of  $F_1$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Homogeneity & prime models

Existential homogeneity & prime models

## Sketch of proof of Theorem 3

#### Proposition (1)

Let  $F_1$  and  $F_2$  be nonabelian free groups of finite rank and let  $\bar{a}$ (resp.  $\bar{b}$ ) be a tuple from  $F_1$  (resp.  $F_2$ ). Suppose that  $(\bar{a}, \bar{b})$  is existentially rigid and let  $\bar{s}$  be a basis of  $F_1$ . Then there exists a quantifier-free formula  $\varphi(\bar{x}, \bar{y})$ , such that  $F_1 \models \varphi(\bar{a}, \bar{s})$  and such that for any  $f \in \text{Hom}(F_1|\bar{a}, F_2|\bar{b})$ , if  $F_2 \models \varphi(\bar{b}, f(\bar{s}))$  then f is an embedding.

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 3

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 3

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

#### Proposition (2)

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 3

#### Proposition (2)

Let  $F_1$  and  $F_2$  be nonabelian free groups of finite rank and  $\bar{a}$  (resp.  $\bar{b}$ ) a tuple from  $F_1$  (resp.  $F_2$ ) such that  $tp_{\exists}^{F_1}(\bar{a}) = tp_{\exists}^{F_2}(\bar{b})$ .

▲日▼▲□▼▲□▼▲□▼ □ ののの

Homogeneity & prime models

Existential homogeneity & prime models

## Sketch of proof of Theorem 3

#### Proposition (2)

Let  $F_1$  and  $F_2$  be nonabelian free groups of finite rank and  $\bar{a}$  (resp.  $\bar{b}$ ) a tuple from  $F_1$  (resp.  $F_2$ ) such that  $tp_{\exists}^{F_1}(\bar{a}) = tp_{\exists}^{F_2}(\bar{b})$ . Suppose that  $(\bar{a}, \bar{b})$  is existentially rigid.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Homogeneity & prime models

Existential homogeneity & prime models

## Sketch of proof of Theorem 3

#### Proposition (2)

Let  $F_1$  and  $F_2$  be nonabelian free groups of finite rank and  $\bar{a}$  (resp.  $\bar{b}$ ) a tuple from  $F_1$  (resp.  $F_2$ ) such that  $tp_{\exists}^{F_1}(\bar{a}) = tp_{\exists}^{F_2}(\bar{b})$ . Suppose that  $(\bar{a}, \bar{b})$  is existentially rigid. Then either  $rk(F_1) = 2$  and  $\bar{a}$  is a power of a primitive element, or there exists an embedding  $h \in Hom(F_1|\bar{a}, F_2|\bar{b})$  such that  $h(F_1)$  is an e.c. subgroup of  $F_2$ .

▲日▼▲□▼▲□▼▲□▼ □ ののの

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 3

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 3

Let F be a free group of finite rank and let  $\bar{a}, \bar{b} \in F^n$  s.t.  $tp_{\exists}^F(\bar{a}) = tp_{\exists}^F(\bar{b}).$ 

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 3

Let *F* be a free group of finite rank and let  $\bar{a}, \bar{b} \in F^n$  s.t.  $tp_{\exists}^F(\bar{a}) = tp_{\exists}^F(\bar{b}).$ Let *C* be the smallest free factor of *F* such that *C* contains  $\bar{c}$  with  $tp_{\exists}^F(\bar{a}) = tp_{\exists}^C(\bar{c}).$ 

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 3

Let *F* be a free group of finite rank and let  $\bar{a}, \bar{b} \in F^n$  s.t.  $tp_{\exists}^F(\bar{a}) = tp_{\exists}^F(\bar{b})$ . Let *C* be the smallest free factor of *F* such that *C* contains  $\bar{c}$  with  $tp_{\exists}^F(\bar{a}) = tp_{\exists}^C(\bar{c})$ . Then  $(\bar{c}, \bar{a})$  and  $(\bar{c}, \bar{b})$  are existentially rigid.

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 3

Let *F* be a free group of finite rank and let  $\bar{a}, \bar{b} \in F^n$  s.t.  $tp_{\exists}^F(\bar{a}) = tp_{\exists}^F(\bar{b})$ . Let *C* be the smallest free factor of *F* such that *C* contains  $\bar{c}$  with  $tp_{\exists}^F(\bar{a}) = tp_{\exists}^C(\bar{c})$ . Then  $(\bar{c}, \bar{a})$  and  $(\bar{c}, \bar{b})$  are existentially rigid. By Propsition (2), either rk(C) = 2 and  $\bar{c}$  is a power of a primitive element or there exists an embedding  $h_1 \in Hom(C|\bar{c}, F|\bar{a})$  (resp.  $h_2 \in Hom(C|\bar{c}, F|\bar{b})$ ) such that  $h_1(C)$  (resp.  $h_2(C)$ ) is an e.c. subgroup of *F*.

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 3

Let *F* be a free group of finite rank and let  $\bar{a}, \bar{b} \in F^n$  s.t.  $tp_{\exists}^F(\bar{a}) = tp_{\exists}^F(\bar{b})$ . Let *C* be the smallest free factor of *F* such that *C* contains  $\bar{c}$  with  $tp_{\exists}^F(\bar{a}) = tp_{\exists}^C(\bar{c})$ . Then  $(\bar{c}, \bar{a})$  and  $(\bar{c}, \bar{b})$  are existentially rigid. By Propsition (2), either rk(C) = 2 and  $\bar{c}$  is a power of a primitive element or there exists an embedding  $h_1 \in Hom(C|\bar{c}, F|\bar{a})$  (resp.  $h_2 \in Hom(C|\bar{c}, F|\bar{b})$ ) such that  $h_1(C)$  (resp.  $h_2(C)$ ) is an e.c. subgroup of *F*.

Suppose that  $\bar{c}$  is not a power of a primitive element.

Homogeneity & prime models

Existential homogeneity & prime models

### Sketch of proof of Theorem 3

Let F be a free group of finite rank and let  $\bar{a}, \bar{b} \in F^n$  s.t.  $tp_{\exists}^{F}(\bar{a}) = tp_{\exists}^{F}(\bar{b}).$ Let C be the smallest free factor of F such that C contains  $\overline{c}$  with  $tp_{\exists}^{F}(\bar{a}) = tp_{\exists}^{C}(\bar{c}).$ Then  $(\bar{c}, \bar{a})$  and  $(\bar{c}, \bar{b})$  are existentially rigid. By Propsition (2), either rk(C) = 2 and  $\overline{c}$  is a power of a primitive element or there exists an embedding  $h_1 \in Hom(C|\bar{c}, F|\bar{a})$  (resp.  $h_2 \in Hom(C|\bar{c}, F|\bar{b}))$  such that  $h_1(C)$  (resp.  $h_2(C)$ ) is an e.c. subgroup of F. Suppose that  $\bar{c}$  is not a power of a primitive element. By setting  $E(\bar{a}) = h_1(C)$  and  $E(\bar{b}) = h_2(C)$ , we have  $h_2 \circ h_1^{-1} : E(\bar{a}) \to E(\bar{b})$ 

is an isomorphism with  $h_2 \circ h_1^{-1}(\bar{a}) = \bar{b}$ .

Homogeneity & prime models

Homogeneity

# Homogeneity in free groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Homogeneity & prime models

Homogeneity

## Homogeneity in free groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

#### Theorem 4

Homogeneity & prime models

Homogeneity

### Homogeneity in free groups

#### Theorem 4

Let F be a nonabelian free group of finite rank.

◆□> ◆□> ◆三> ◆三> ・三 のへで

Homogeneity & prime models

Homogeneity

## Homogeneity in free groups

#### Theorem 4

Let F be a nonabelian free group of finite rank. For any tuples  $\bar{a}, \bar{b} \in F^n$  and for any subset  $P \subseteq F$ , if  $tp^F(\bar{a}|P) = tp^F(\bar{b}|P)$  then there exists an automorphism of F fixing pointwise P and sending  $\bar{a}$  to  $\bar{b}$ .

▲日▼▲□▼▲□▼▲□▼ □ ののの

Homogeneity & prime models

Homogeneity

## Homogeneity in free groups

#### Theorem 4

Let F be a nonabelian free group of finite rank. For any tuples  $\bar{a}, \bar{b} \in F^n$  and for any subset  $P \subseteq F$ , if  $tp^F(\bar{a}|P) = tp^F(\bar{b}|P)$  then there exists an automorphism of F fixing pointwise P and sending  $\bar{a}$  to  $\bar{b}$ .

▲日▼▲□▼▲□▼▲□▼ □ ののの

The above theorem is also proved by Perin and Sklinos.

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

Z. Sela and O. Kharlampovich and A. Myasnikov show that nonabelian free groups have the same elementary theory, and in fact the following more explicit description.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Homogeneity & prime models

-Homogeneity

# Sketch of proof of Theorem 4

Z. Sela and O. Kharlampovich and A. Myasnikov show that nonabelian free groups have the same elementary theory, and in fact the following more explicit description.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Theorem 5
Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

Z. Sela and O. Kharlampovich and A. Myasnikov show that nonabelian free groups have the same elementary theory, and in fact the following more explicit description.

#### Theorem 5

A nonabelian free factor of a free group of finite rank is an elementary subgroup.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

They show also the following quantifier-elimination result.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

They show also the following quantifier-elimination result.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Theorem 6

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

### They show also the following quantifier-elimination result.

#### Theorem 6

Let  $\varphi(\bar{x})$  be a formula.

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

They show also the following quantifier-elimination result.

#### Theorem 6

Let  $\varphi(\bar{x})$  be a formula. Then there exists a boolean combination of  $\exists \forall$ -forumulas  $\phi(\bar{x})$ , such that for any nonabelian free group F of finite rank, one has  $F \models \forall \bar{x}(\varphi(\bar{x}) \Leftrightarrow \phi(\bar{x}))$ .

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

They show also the following quantifier-elimination result.

#### Theorem 6

Let  $\varphi(\bar{x})$  be a formula. Then there exists a boolean combination of  $\exists \forall$ -forumulas  $\phi(\bar{x})$ , such that for any nonabelian free group F of finite rank, one has  $F \models \forall \bar{x}(\varphi(\bar{x}) \Leftrightarrow \phi(\bar{x}))$ .

We notice, in particular, that if  $\bar{a}, \bar{b} \in F^n$  such that  $tp_{\exists \forall}^F(\bar{a}) = tp_{\exists \forall}^F(\bar{b})$ , then  $tp^F(\bar{a}) = tp^F(\bar{b})$ .

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Homogeneity & prime models

Homogeneity

### Sketch of proof of Theorem 4

### Theorem 7 (C. Perin, 2008)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Homogeneity & prime models

Homogeneity

## Sketch of proof of Theorem 4

### Theorem 7 (C. Perin, 2008)

An elementary subgroup of a free group of finite rank is a free factor.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Homogeneity & prime models

Homogeneity

## Sketch of proof of Theorem 4

### Theorem 7 (C. Perin, 2008)

An elementary subgroup of a free group of finite rank is a free factor.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Theorem 8 (A. Pillay, 2009)

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

### Theorem 7 (C. Perin, 2008)

An elementary subgroup of a free group of finite rank is a free factor.

### Theorem 8 (A. Pillay, 2009)

Let F be a nonabelian free group of finite rank and  $u, v \in F$  such that  $tp^{F}(u) = tp^{F}(v)$ .

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

### Theorem 7 (C. Perin, 2008)

An elementary subgroup of a free group of finite rank is a free factor.

### Theorem 8 (A. Pillay, 2009)

Let F be a nonabelian free group of finite rank and  $u, v \in F$  such that  $tp^{F}(u) = tp^{F}(v)$ . If u is primitive, then v is primitive.

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Homogeneity & prime models

Homogeneity

## Sketch of proof of Theorem 4

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

### Definition

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

### Definition

Let F be nonabelian free group of finite rank and let  $\bar{a}$  be a tuple of F.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

#### Definition

Let F be nonabelian free group of finite rank and let  $\bar{a}$  be a tuple of F. We say that  $\bar{a}$  is rigid if there is no nontrivial free decomposition F = A \* B such that A contains a tuple  $\bar{c}$  with  $tp_{\exists\forall}^{F_1}(\bar{a}) = tp_{\exists\forall}^A(\bar{c}).$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Homogeneity & prime models

Homogeneity

## Sketch of proof of Theorem 4

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

### Proposition (3)

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

### Proposition (3)

Let  $F_1$  and  $F_2$  be nonabelian free groups of finite rank and let  $\bar{a}$  (resp.  $\bar{b}$ ) be a tuple from  $F_1$  (resp.  $F_2$ ) such that  $tp_{\exists\forall}^{F_1}(\bar{a}) = tp_{\exists\forall}^{F_2}(\bar{b})$ .

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

#### Proposition (3)

Let  $F_1$  and  $F_2$  be nonabelian free groups of finite rank and let  $\bar{a}$  (resp.  $\bar{b}$ ) be a tuple from  $F_1$  (resp.  $F_2$ ) such that  $tp_{\exists\forall}^{F_1}(\bar{a}) = tp_{\exists\forall}^{F_2}(\bar{b})$ . Suppose that  $\bar{a}$  is rigid.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

#### Proposition (3)

Let  $F_1$  and  $F_2$  be nonabelian free groups of finite rank and let  $\bar{a}$  (resp.  $\bar{b}$ ) be a tuple from  $F_1$  (resp.  $F_2$ ) such that  $tp_{\exists \forall}^{F_1}(\bar{a}) = tp_{\exists \forall}^{F_2}(\bar{b})$ . Suppose that  $\bar{a}$  is rigid. Then either  $rk(F_1) = 2$  and  $\bar{a}$  is a power of a primitive element, or there exists an embedding  $h \in Hom(F_1|\bar{a}, F_2|\bar{b})$  such that  $h(F_1) \preceq_{\exists \forall} F_2$ .

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Homogeneity & prime models

### Sketch of proof of Theorem 4

Let F be a free group of finite rank and let  $\bar{a}, \bar{b} \in F^n$  s.t.  $tp^F(\bar{a}) = tp^F(\bar{b})$ .

Homogeneity & prime models

Homogeneity

### Sketch of proof of Theorem 4

Let F be a free group of finite rank and let  $\bar{a}, \bar{b} \in F^n$  s.t.  $tp^F(\bar{a}) = tp^F(\bar{b})$ . Let C be the smallest free factor of F such that C contains  $\bar{c}$  with  $tp^F(\bar{a}) = tp^C(\bar{c})$ .

Homogeneity & prime models

Homogeneity

## Sketch of proof of Theorem 4

Let F be a free group of finite rank and let  $\bar{a}, \bar{b} \in F^n$  s.t.  $tp^F(\bar{a}) = tp^F(\bar{b})$ . Let C be the smallest free factor of F such that C contains  $\bar{c}$  with  $tp^F(\bar{a}) = tp^C(\bar{c})$ . Then  $\bar{c}$  is rigid.

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

Let *F* be a free group of finite rank and let  $\bar{a}, \bar{b} \in F^n$  s.t.  $tp^F(\bar{a}) = tp^F(\bar{b})$ . Let *C* be the smallest free factor of *F* such that *C* contains  $\bar{c}$  with  $tp^F(\bar{a}) = tp^C(\bar{c})$ . Then  $\bar{c}$  is rigid. By Propsition (3), either rk(C) = 2 and  $\bar{c}$  is a power of a primitive element or there exists an embedding  $h_1 \in Hom(C|\bar{a}, F|\bar{b})$  (resp.  $h_2 \in Hom(C|\bar{a}, F|\bar{b})$ ) such that  $h_1(C) \leq_{\exists \forall} F$  (resp.  $h_2(C) \leq_{\exists \forall} F$ ).

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

Let *F* be a free group of finite rank and let  $\bar{a}, \bar{b} \in F^n$  s.t.  $tp^F(\bar{a}) = tp^F(\bar{b})$ . Let *C* be the smallest free factor of *F* such that *C* contains  $\bar{c}$  with  $tp^F(\bar{a}) = tp^C(\bar{c})$ . Then  $\bar{c}$  is rigid. By Propsition (3), either rk(C) = 2 and  $\bar{c}$  is a power of a primitive element or there exists an embedding  $h_1 \in Hom(C|\bar{a}, F|\bar{b})$  (resp.  $h_2 \in Hom(C|\bar{a}, F|\bar{b})$ ) such that  $h_1(C) \preceq_{\exists\forall} F$  (resp.  $h_2(C) \preceq_{\exists\forall} F$ ).

If  $\bar{c}$  is a power of a primitive element then the result follows from Theorem 8.

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Homogeneity & prime models

Homogeneity

# Sketch of proof of Theorem 4

Suppose that  $\bar{c}$  is not a power of a primitive element.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Homogeneity & prime models

Homogeneity

## Sketch of proof of Theorem 4

Suppose that  $\bar{c}$  is not a power of a primitive element. Set  $E(\bar{a}) = h_1(C)$  and  $E(\bar{b}) = h_2(C)$ .

Homogeneity & prime models

Homogeneity

### Sketch of proof of Theorem 4

Suppose that  $\bar{c}$  is not a power of a primitive element. Set  $E(\bar{a}) = h_1(C)$  and  $E(\bar{b}) = h_2(C)$ . We have  $h_2 \circ h_1^{-1} : E(\bar{a}) \to E(\bar{b})$  is an isomorphism with  $h_2 \circ h_1^{-1}(\bar{a}) = \bar{b}$ .

Homogeneity & prime models

Homogeneity

## Sketch of proof of Theorem 4

Suppose that  $\bar{c}$  is not a power of a primitive element. Set  $E(\bar{a}) = h_1(C)$  and  $E(\bar{b}) = h_2(C)$ . We have  $h_2 \circ h_1^{-1} : E(\bar{a}) \to E(\bar{b})$  is an isomorphism with  $h_2 \circ h_1^{-1}(\bar{a}) = \bar{b}$ . Since  $E(\bar{a}) \leq_{\exists \forall} F$  (resp.  $E(\bar{b}) \leq_{\exists \forall} F$ ) we get by Theorem 7 that  $E(\bar{a}) \leq F$  (resp.  $E(\bar{b}) \leq F$ ).

▲日▼▲□▼▲□▼▲□▼ □ ののの

Homogeneity & prime models

Homogeneity

## Sketch of proof of Theorem 4

Suppose that  $\bar{c}$  is not a power of a primitive element. Set  $E(\bar{a}) = h_1(C)$  and  $E(\bar{b}) = h_2(C)$ . We have  $h_2 \circ h_1^{-1} : E(\bar{a}) \to E(\bar{b})$  is an isomorphism with  $h_2 \circ h_1^{-1}(\bar{a}) = \bar{b}$ . Since  $E(\bar{a}) \preceq_{\exists \forall} F$  (resp.  $E(\bar{b}) \preceq_{\exists \forall} F$ ) we get by Theorem 7 that  $E(\bar{a}) \preceq F$  (resp.  $E(\bar{b}) \preceq F$ ). By Theorem 7,  $E(\bar{a})$  (resp.  $E(\bar{b})$ ) is a free factor of F.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Homogeneity & prime models

Homogeneity

## Sketch of proof of Theorem 4

Suppose that  $\bar{c}$  is not a power of a primitive element. Set  $E(\bar{a}) = h_1(C)$  and  $E(\bar{b}) = h_2(C)$ . We have  $h_2 \circ h_1^{-1} : E(\bar{a}) \to E(\bar{b})$  is an isomorphism with  $h_2 \circ h_1^{-1}(\bar{a}) = \bar{b}$ . Since  $E(\bar{a}) \preceq_{\exists\forall} F$  (resp.  $E(\bar{b}) \preceq_{\exists\forall} F$ ) we get by Theorem 7 that  $E(\bar{a}) \preceq F$  (resp.  $E(\bar{b}) \preceq F$ ). By Theorem 7,  $E(\bar{a})$  (resp.  $E(\bar{b})$ ) is a free factor of F. Therefore  $h_2 \circ h_1^{-1}$  can be extended to an isomorphism of F.

Algebraic & definable closure

## Contents

### 1 Homogeneity & prime models

Definitions

Existential homogeneity & prime models

Homogeneity

### 2 Algebraic & definable closure

- Definitions
- Constructibility over the algebraic closure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

A counterexample
(ロ)、(型)、(E)、(E)、 E、 の(の)

Algebraic & definable closure



Algebraic & definable closure



This part is a joint work with D. Vallino.



Algebraic & definable closure

## Definitions

This part is a joint work with D. Vallino. Recall that:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

└─Algebraic & definable closure └─Definitions

## Definitions

This part is a joint work with D. Vallino. Recall that:

#### Definition

Let G be a group and A a subset of G.

◆□> ◆□> ◆三> ◆三> ・三 のへで

Lalgebraic & definable closure Definitions

## Definitions

This part is a joint work with D. Vallino. Recall that:

#### Definition

Let G be a group and A a subset of G.

The algebraic closure of A, denoted  $\operatorname{acl}_G(A)$ , is the set of elements  $g \in G$  such that there exists a formula  $\phi(x)$  with parameters from A such that  $G \models \phi(g)$  and  $\phi(G)$  is finite.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Algebraic & definable closure

## Definitions

This part is a joint work with D. Vallino. Recall that:

#### Definition

Let G be a group and A a subset of G.

- The algebraic closure of A, denoted  $acl_G(A)$ , is the set of elements  $g \in G$  such that there exists a formula  $\phi(x)$  with parameters from A such that  $G \models \phi(g)$  and  $\phi(G)$  is finite.
- The definable closure of A, denoted  $dcl_G(A)$ , is the set of elements  $g \in G$  such that there exists a formula  $\phi(x)$  with parameters from A such that  $G \models \phi(g)$  and  $\phi(G)$  is a singleton.

Algebraic & definable closure

Constructibility over the algebraic closure

<□ > < @ > < E > < E > E - のQ @

Algebraic & definable closure

Constructibility over the algebraic closure

#### Question (Z. Sela, 2008):

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Constructibility over the algebraic closure

# **Question (Z. Sela, 2008):** Is it true that acl(A) = dcl(A) in free groups?

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Constructibility over the algebraic closure

## Question (Z. Sela, 2008): Is it true that acl(A) = dcl(A) in free groups? Remarks.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Constructibility over the algebraic closure

**Question (Z. Sela, 2008):** Is it true that acl(A) = dcl(A) in free groups? **Remarks.** Let  $\Gamma$  be a torsion-free hyperbolic group and  $A \subseteq \Gamma$ .

Constructibility over the algebraic closure

**Question (Z. Sela, 2008):** Is it true that acl(A) = dcl(A) in free groups?

**Remarks.** Let  $\Gamma$  be a torsion-free hyperbolic group and  $A \subseteq \Gamma$ .

•  $acl(A) = acl(\langle A \rangle)$  and  $dcl(A) = dcl(\langle A \rangle)$ .

Constructibility over the algebraic closure

**Question (Z. Sela, 2008):** Is it true that acl(A) = dcl(A) in free groups?

**Remarks.** Let  $\Gamma$  be a torsion-free hyperbolic group and  $A \subseteq \Gamma$ .

•  $acl(A) = acl(\langle A \rangle)$  and  $dcl(A) = dcl(\langle A \rangle)$ . Hence, we may assume that A is a subgroup.

Constructibility over the algebraic closure

**Question (Z. Sela, 2008):** Is it true that acl(A) = dcl(A) in free groups?

**Remarks.** Let  $\Gamma$  be a torsion-free hyperbolic group and  $A \subseteq \Gamma$ .

•  $acl(A) = acl(\langle A \rangle)$  and  $dcl(A) = dcl(\langle A \rangle)$ . Hence, we may assume that A is a subgroup.

• If  $\Gamma = \Gamma_1 * \Gamma_2$  and  $A \leq \Gamma_1$  then  $acl(A) \leq \Gamma_1$ .

Constructibility over the algebraic closure

**Question (Z. Sela, 2008):** Is it true that acl(A) = dcl(A) in free groups?

**Remarks.** Let  $\Gamma$  be a torsion-free hyperbolic group and  $A \subseteq \Gamma$ .

- $acl(A) = acl(\langle A \rangle)$  and  $dcl(A) = dcl(\langle A \rangle)$ . Hence, we may assume that A is a subgroup.
- If  $\Gamma = \Gamma_1 * \Gamma_2$  and  $A \leq \Gamma_1$  then  $acl(A) \leq \Gamma_1$ . Similarly for dcl(A).

Constructibility over the algebraic closure

**Question (Z. Sela, 2008):** Is it true that acl(A) = dcl(A) in free groups?

**Remarks.** Let  $\Gamma$  be a torsion-free hyperbolic group and  $A \subseteq \Gamma$ .

- $acl(A) = acl(\langle A \rangle)$  and  $dcl(A) = dcl(\langle A \rangle)$ . Hence, we may assume that A is a subgroup.
- If Γ = Γ<sub>1</sub> \* Γ<sub>2</sub> and A ≤ Γ<sub>1</sub> then acl(A) ≤ Γ<sub>1</sub>. Similarly for dcl(A). Hence, we may assume that Γ is freely A-indecomposable.

Constructibility over the algebraic closure

**Question (Z. Sela, 2008):** Is it true that acl(A) = dcl(A) in free groups?

**Remarks.** Let  $\Gamma$  be a torsion-free hyperbolic group and  $A \subseteq \Gamma$ .

- $acl(A) = acl(\langle A \rangle)$  and  $dcl(A) = dcl(\langle A \rangle)$ . Hence, we may assume that A is a subgroup.
- If Γ = Γ<sub>1</sub> \* Γ<sub>2</sub> and A ≤ Γ<sub>1</sub> then acl(A) ≤ Γ<sub>1</sub>. Similarly for dcl(A). Hence, we may assume that Γ is freely A-indecomposable.

• If A is abelian then  $acl(A) = dcl(A) = C_{\Gamma}(A)$ .

Constructibility over the algebraic closure

**Question (Z. Sela, 2008):** Is it true that acl(A) = dcl(A) in free groups?

**Remarks.** Let  $\Gamma$  be a torsion-free hyperbolic group and  $A \subseteq \Gamma$ .

- $acl(A) = acl(\langle A \rangle)$  and  $dcl(A) = dcl(\langle A \rangle)$ . Hence, we may assume that A is a subgroup.
- If Γ = Γ<sub>1</sub> \* Γ<sub>2</sub> and A ≤ Γ<sub>1</sub> then acl(A) ≤ Γ<sub>1</sub>. Similarly for dcl(A). Hence, we may assume that Γ is freely A-indecomposable.
- If A is abelian then  $acl(A) = dcl(A) = C_{\Gamma}(A)$ . Hence, we may assume that A is nonabelian.

Algebraic & definable closure

Constructibility over the algebraic closure

<□ > < @ > < E > < E > E - のQ @

Algebraic & definable closure

Constructibility over the algebraic closure

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

#### Theorem 9

Algebraic & definable closure

Constructibility over the algebraic closure

#### Theorem 9

## Let $\Gamma$ be a torsion-free hyperbolic group and $A \leq \Gamma$ where A is nonabelian.

Algebraic & definable closure

Constructibility over the algebraic closure

#### Theorem 9

Let  $\Gamma$  be a torsion-free hyperbolic group and  $A \leq \Gamma$  where A is nonabelian.

Then  $\Gamma$  can be constructed from acl(A) by a finite sequence of free products and HNN-extensions along cyclic subgroups.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Algebraic & definable closure

Constructibility over the algebraic closure

#### Theorem 9

Let  $\Gamma$  be a torsion-free hyperbolic group and  $A \leq \Gamma$  where A is nonabelian.

Then  $\Gamma$  can be constructed from acl(A) by a finite sequence of free products and HNN-extensions along cyclic subgroups. In particular, acl(A) is finitely generated, quasiconvex and hyperbolic.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Algebraic & definable closure

Constructibility over the algebraic closure

## Acl and the JSJ-decomposition

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Algebraic & definable closure

Constructibility over the algebraic closure

## Acl and the JSJ-decomposition

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

#### Theorem 10

Algebraic & definable closure

Constructibility over the algebraic closure

## Acl and the JSJ-decomposition

#### Theorem 10

Let F be a nonabelian free group of finite rank and let  $A \le F$  be a nonabelian subgroup.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Algebraic & definable closure

Constructibility over the algebraic closure

## Acl and the JSJ-decomposition

#### Theorem 10

Let F be a nonabelian free group of finite rank and let  $A \le F$  be a nonabelian subgroup. Then:

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Algebraic & definable closure

Constructibility over the algebraic closure

## Acl and the JSJ-decomposition

#### Theorem 10

Let F be a nonabelian free group of finite rank and let  $A \le F$  be a nonabelian subgroup. Then:

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

• dcl(A) is a free factor of acl(A).

Algebraic & definable closure

Constructibility over the algebraic closure

## Acl and the JSJ-decomposition

#### Theorem 10

Let F be a nonabelian free group of finite rank and let  $A \le F$  be a nonabelian subgroup. Then:

 dcl(A) is a free factor of acl(A). In particular, if rk(F) = 2 then acl(A) = dcl(A).

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Algebraic & definable closure

Constructibility over the algebraic closure

## Acl and the JSJ-decomposition

#### Theorem 10

Let F be a nonabelian free group of finite rank and let  $A \le F$  be a nonabelian subgroup. Then:

- dcl(A) is a free factor of acl(A). In particular, if rk(F) = 2 then acl(A) = dcl(A).
- acl(A) is exactly the vertex group containing A in the cyclic JSJ-decomposition of F relative to A.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Algebraic & definable closure

A counterexample

## A counterexample

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Algebraic & definable closure

A counterexample

### A counterexample

#### Theorem 11

Algebraic & definable closure

A counterexample

## A counterexample

#### Theorem 11

Let  $A_0$  be a finite set (possibly empty)

Algebraic & definable closure

A counterexample

## A counterexample

#### Theorem 11

Let  $A_0$  be a finite set (possibly empty) and

$$A = \langle A_0, a, b, u | \rangle, \ H = A * \langle y | \rangle,$$

Algebraic & definable closure

A counterexample

## A counterexample

#### Theorem 11

Let  $A_0$  be a finite set (possibly empty) and

$$A = \langle A_0, a, b, u | \rangle, \ H = A * \langle y | \rangle,$$

$$v = aybyay^{-1}by^{-1}$$
,

Algebraic & definable closure

A counterexample

## A counterexample

#### Theorem 11

Let  $A_0$  be a finite set (possibly empty) and

$$A = \langle A_0, a, b, u | \rangle, \ H = A * \langle y | \rangle,$$

$$v = aybyay^{-1}by^{-1}, \ F = \langle H, t | u^t = v \rangle.$$
Algebraic & definable closure

A counterexample

# A counterexample

### Theorem 11

Let  $A_0$  be a finite set (possibly empty) and

$$A = \langle A_0, a, b, u | \rangle, \ H = A * \langle y | \rangle,$$

$$v = aybyay^{-1}by^{-1}, \ F = \langle H, t | u^t = v \rangle.$$

Then F is a free group of rank  $|A_0| + 4$  and:

Algebraic & definable closure

-A counterexample

# A counterexample

### Theorem 11

Let  $A_0$  be a finite set (possibly empty) and

$$A = \langle A_0, a, b, u | \rangle, \ H = A * \langle y | \rangle,$$

$$v = aybyay^{-1}by^{-1}, \; F = \langle H, t | u^t = v 
angle.$$

Then F is a free group of rank  $|A_0| + 4$  and:

If  $f \in Hom(F|A)$  then  $f \in Aut(F|A)$ , and if  $f_{|H} \neq 1$  then  $f(y) = y^{-1}$ .

◆□> ◆□> ◆三> ◆三> ・三 のへで

Algebraic & definable closure

-A counterexample

# A counterexample

### Theorem 11

Let  $A_0$  be a finite set (possibly empty) and

$$A = \langle A_0, a, b, u | \rangle, \ H = A * \langle y | \rangle,$$

$$v = aybyay^{-1}by^{-1}, \; F = \langle H, t | u^t = v 
angle.$$

Then F is a free group of rank  $|A_0| + 4$  and:

If f ∈ Hom(F|A) then f ∈ Aut(F|A), and if f<sub>|H</sub> ≠ 1 then f(y) = y<sup>-1</sup>.
 acl(A) = acl<sup>∃</sup>(A) = H.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Algebraic & definable closure

-A counterexample

# A counterexample

### Theorem 11

Let  $A_0$  be a finite set (possibly empty) and

$$A = \langle A_0, a, b, u | \rangle, \ H = A * \langle y | \rangle,$$

$$m{v}=m{a}m{y}m{b}m{y}m{a}m{y}^{-1}m{b}m{y}^{-1},\;m{F}=\langle H,t|u^t=m{v}
angle.$$

Then F is a free group of rank  $|A_0| + 4$  and:

If  $f \in Hom(F|A)$  then  $f \in Aut(F|A)$ , and if  $f_{|H} \neq 1$  then  $f(y) = y^{-1}$ .

• 
$$acl(A) = acl^{\exists}(A) = H$$

 $\bullet dcl(A) = dcl^{\exists}(A) = A.$