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Abstract

The goal of this preprint is to present the Kervaire Conjecture.

The Kervaire conjecture can be stated as follows : If G is a non trivial group
then the group (G ∗ Z)/(r) is non trivial where r ∈ G ∗ Z and (r) is the normal
closure of r in G ∗ Z.

By imposing some restrictions on the group G, the problem became more
flexible and some works goes in this direction. For example the Kervaire Con-
jecture is true for the following classes of groups:

• Locally residually finite groups.(O.S. Rothaus, 1977 [1]).
• Locally indecable groups. (J. Howie, 1981 [2]). Recall that a group G

is said locally indecable if every finitely generated subgroup has an infinite
cyclic quotient. In fact in this case we have a more general result which can
be stated as follows: if (Gi)i∈λ is a sequence of non trivial locally indecable
groups and r ∈ F = ∗iGi, r 6∈ ⋃

Gi, then for every i the natural homomorphism
πi : Gi → (F/(r)) is an embedding, where (r) is the normal closure of r in F .

• Torsion-free groups. (A. Klyachko, 1993 [3]).

Another approach is to impose restrictions on the relator r. The most com-
mon condition come from small cancellation theory. For example if r = sm

with m ≥ 7 then the symmetrezed set generated by r satisfies the condition
C ′(1/6) and the Kervaire conjecture can be deduced from small cancellation
theory. Gonzalez-Acuna and Short [4] proved the case m = 6 and Howie proved
the case m = 4,m = 5 and with Brodskii and Duncan some part of the case
m = 3. In general the case m = 2 is remains open.

We denote by G(r) the group (G ∗ Z)/(r), and by G∗ the group G ∗ Z. For
any group G and for any element g in G we denote by (g)G the normal closure
of g in G. In the rest of this presentation we write Z = 〈t|〉. If r ∈ G ∗ Z,
then r = g0.t

ε1g1 · · · tεngn, put exp(r) =
∑i=n

i=1 εi. We call the elements gi the
coefficient of r.
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We see that if exp(r) 6= ±1 then G(r) has a non trivial quotient. Therefore
the only case which present difficulty is the case exp(r) = ±1, and by taking
r−1 in place of r, we can treat only the case exp(r) = 1. We denote by π1 the
natural homomorphism from G to G(r), and by π2 the natural homomorphism
from Z to G(r).
We have the following simple proposition:

Proposition 0.1 The following properties are equivalent:
(1) The Kervaire conjecture is true.
(2) If G is non trivial then π1 is an embedding or π2(t) 6= 1.
(3) If G is non trivial and exp(r) = 1 then π1 is an embedding.
(4) If G is non trivial and exp(r) = 1 then the natural homomorphism ϕ1 :

G → F (r) is an embedding, where F (r) = 〈G ∗ Z | [r,G] = [r,Z] = 1〉.
Proof

(1) ⇒ (2). Suppose that the Kervaire Conjecture is true. Let G be a non
trivial group. G is embeddable in a simple group say H. Let r ∈ G ∗ Z, and
suppose that there is an non trivial element g0 ∈ G such that g0 ∈ (r)G∗ . Then
g0 ∈ (r)H∗ ; thus g0 ∈ H ∩ (r)H∗ . Since H is simple we have H ∩ (r)H∗ = H.
Therefore we have H ⊆ (r)H∗ .

Suppose that t ∈ (r)G∗ , then t ∈ (r)H∗ , thus we have H∗ ⊆ (r)H∗ . Then
H(r) is trivial; this contradict the Kervaire conjecture.

(2) ⇒ (3). Suppose that exp(r) = 1; then t ∈ (r)G∗ thus by (2) π1 is an
embedding.

(3) ⇒ (4). It is not difficult to see that there is a natural homomorphism
ϕ : F (r) → G(r) such that ϕ(ϕ1(g)) = π1(g) for every g ∈ G. Since π1(g) 6= 1
for every g ∈ G, g 6= 1, we have ϕ1(g) 6= 1 for every g ∈ G, g 6= 1.

(4) ⇒ (1). Now suppose that the enounced property is true. Let K be the
subgroup of F (r) generated by ϕ1(G) and by r−1t. If r = g0.t

ε1g2 · · · tεngn then
we see that :

g0.(r−1t)ε1g1 · · · (r−1t)εngn = r−exp(r)g0.t
ε1g2 · · · tεngn = 1

Therefore there is an homomorphism ϕ : Ĝ(r) → K, such that ϕ(π1(g)) = ϕ1(g)
for every g ∈ G. Now since for every g ∈ G−{1}, ϕ1(g) 6= 1, we have the result.

¤
The following example shows that we can not have always π1 an embedding :

let G be a group containing two non trivial elements a, b of different finite order
m,n; m 6= n and let r = at−1bt, then we see that π1 is not an embedding. But
in this case we have exp(r) = 0 and the Kervaire Conjecture is obviously true.
This instigate to introduce a strong version of the Kervaire Conjecture. Let say
that r is nonsingular if exp(r) 6= 0. Then the strong Kervaire Conjecture is
: if r is nonsingular then π1 is an embedding.

The above problem was asked by R.C.Lyndon in [5].
There is another conjecture called Scott-Wiegold Conjecture which can be

stated as follows : The group ((Zn ∗Zm ∗Zs)/(r)) is not trivial, where (r) is the
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normal closure of r in (Zn ∗Zm ∗Zs). This Conjecture was solved positively by
J. Howie in [6](2002).

Now we state an topological conjecture which is equivalent to the Kervaire
conjecture. Fico and Ramirez has recentely proved that the following conjecture
is equivalent to the Kervaire conjecture:

Conjecture Z If F is a compact orientable non-seperaing surface properly
embedded in the Knot exterior E then π1(E/F ) ( the fundamental group of the
quotient space) is infinite cyclic.

We will not discuss about the above Conjecture in this preprint. We will
concentrate our exposition on brief presentation of the method used by Klyachko
to prove the Kervaire Conjecture for torsion-free groups. In fact he has proved
the following strong version:

Theorem 0.2 [3] If G is a non trivial group, and exp(r) = 1, and every coeffi-
cient of r is of infinite order then π1 is an embedding.

Let H be a subgroup of G and let g ∈ G. We say that g is free relative
to H if the subgroup 〈g, H〉 of G generated by g and H is naturally the free
product 〈g〉 ∗H.

The proof of Klyachko of the above theorem pass by the following theorem:

Theorem 0.3 Let H, H ′ be two isomorphic subgroups of a group Γ under the
isomorphism φ : H → H ′. Let (ai)i=0,r, (bi)i=0,r two sequences of elements of
Γ such that :

(1) For every i, ai and bi are of infinite order.
(2) For every i, ai is free relative to H and bi is free relative to H ′.
Let c be an arbitrary element of Γ. Then the system of equations :

(b0a
t
0b1a

t
1 · · · bra

t
r)ct = 1,

φ(h) = ht, h ∈ H,

has a solution over Γ. ¤

Let G be a group and consider the homomorphism exp : G∗〈t | 〉 :→ Z. Let Ker
be the kernel of exp. Any element k of Ker has an expression k = gtσ1

1 · · · gtσr

r ,
σi 6= σi+1. Define min(k) = min{σi} and max(k) = max{σi}. For an integer
m let:

Hm = 〈k ∈ Ker ; min(k) ≥ 0, max(k) ≤ m− 2〉
H ′

m = 〈k ∈ Ker ; min(k) ≥ 1, max(k) ≤ m− 1〉
Jm = 〈k ∈ Ker ; min(k) ≥ 0,max(k) ≤ m− 1〉

And the following subsets :

Xm = {k ∈ Ker ; min(k) = 0,max(k) ≤ m− 1}
Ym = {k ∈ Ker ; min(k) ≥ 0,max(k) = m}
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Then we have the following lemma:

Lemma 0.4 Let r ∈ G ∗ 〈t〉 satisfy exp(r) = 1, and every coefficient of r is of
infinite order. Then after conjugation, r can be written as a product:

(b0a
t
0b1a

t
1 · · · bra

t
r)ct,

where for some m we have: for every i = 0, . . . , r, ai ∈ Ym, bi ∈ Xm, ai, bi

are of infinite order, and ai is free relative to Hm and bi is free relative to H ′
m,

and c ∈ J . ¤

Now we are going to deduce theorem 0.1, from theorem 0.2 and lemma 0.3.
By the above lemma we can assume that r(t) = (b0a

t
0b1a

t
1 · · · bra

t
r)ct, ai ∈ Ym,

bi ∈ Xm, ai, bi are of infinite order, and ai is free relative to Hm and bi is free
relative to H ′

m, and c ∈ J . We need to think of each ai, bi, c as functions of t
and for clarity we shall introduce a new variable s, and we consider: w(s, t) =
(b0(t)a0(t)sb1(t)a1(t)s · · · br(t)ar(t)s)cs.

Let Γ = G ∗ 〈t〉. Now we see that Hm and H ′
m are isomorphic under the

isomorphism φ(x) = xt. By theorem 0.2., Γ embeds in

Γ̃ = 〈Γ, s | w(s, t) = e, hs = ht, h ∈ H〉.

Therefore we have: for every g ∈ G, g ∈ H and we have: gs = gt. Therefore we
have: ai(t) = ai(s) and finally we have :

w(s, s) = (b0(s)a0(s)sb1(s)a1(s)s · · · br(s)ar(s)s)cs = r(s) = 1.

Therefore there is an extension of G in which r(x) = 1 has a solution. This
prove the theorem 0.1.

Klyachko has also showen others results of the same kind :

Theorem 0.5 (Free product) Let A,B be groups and suppose that each factor
of u ∈ A ∗ B − A has infinite order. Then the natural homomorphism A →
〈A ∗B | [A, u] = 1〉 is an embedding.

Theorem 0.6 (HNN extension) Let H, H ′ be two isomrphic subgroup of the
group A under φ H → H ′. Let B a group and let w ∈ A ∗B−A have a torsion
free factors. Then the natural map : A → 〈A ∗ B | w−1hw = φ(h), h ∈ H〉
is an embedding.
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