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The space of linear differential operators on a smooth manifold M has a natural
one-parameter family of Diff(M )- (and Vect(M )-) module structures, defined by
their action on the space of tensor densities. It is shown that, in the case of second-
order differential operators, the Vect(M)-module structures are equivalent, for any
degree of tensor densities except for three critical values; [0, 1

2 , 1]. A second-order
analogue of the Lie derivative appears as an intertwining operator between the
spaces of second-order differential operators on tensor densities. � 1997 Academic

Press

1. INTRODUCTION: MAIN PROBLEM

Let M be an oriented manifold of dimension n. Consider the space Dk(M )
of k th order linear differential operators on M. In local coordinates, such
an operator is given by

A(,)=ai1 } } } ik
k �i1

} } } �ik
,+ } } } +ai

1� i,+a0,, (1)

where �i=���xi and ai1 } } } il
k , , # C�(M ) with l=0, 1, ..., k. (From now on

we suppose a summation over repeated indices.)
The group Diff(M ) of all diffeomorphisms of M and the Lie algebra

Vect(M) of all smooth vector fields naturally act on the space Dk(M ). Let
G # Diff(M ), then the action is defined by

G(A) :=G*&1AG*.
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A vector field ! # Vect(M) acts on differential operators by the commutator
with the operator of Lie derivative:

ad L!(A) :=L! b A&A b L! . (2)

It is interesting to take as arguments tensor densities of degree * instead
of functions. This defines a family of Diff(M ) and Vect(M )-module
structures on Dk(M ) depending on *.

Studying these module structures is a very important problem since a
number of different examples naturally appear in differential geometry and
mathematical physics (see below). To our knowledge, the classification
problem of such module structures for different values of * has never
been considered (at least in the multidimensional case). In this paper we
solve this problem for the space D2(M ) of second-order linear differential
operators.

1.1. Tensor Densities: Definition

Consider the determinant bundle 4nTM � M. The group R* acts on the
fibers by multiplication.

Definition. A homogeneous function of degree * on the complement of
the zero section, 4nTM"M, of the determinant bundle,

F(}w)=}*F(w),

is called the tensor density of degree * on M.

Let us denote by F*(M ) the space of tensor densities of degree &*. It is
evident that F0(M)=C�(M ), the space F&1(M ) coincides with the space
of differential n-forms on M : F&1(M )=0n(M).

In local coordinates, one uses the following notation for a tensor density
of degree *:

,=,(x1 , ..., xn)(dx1 7 } } } 7 dxn)*.

The group Diff(M ) acts on the determinant bundle by homogeneous
diffeomorphisms. Therefore, it acts on the space F* . One has

G*,=, b G } J *
G

where JG=(DG�Dx) is the Jacobian.
The corresponding action of the Lie algebra Vect(M ) is given by the Lie

derivative:

L!,=!i�i,&*,� i!i. (3)
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Note that this formula does not depend on the choice of coordinates.
It is evident that, for an oriented manifold, F*$F+ as linear spaces (but

not as modules) for any *, +.

Remark. If M is compact, then there exists a natural isomorphism of
Vect(M)- (and Diff(M )-) modules

F*$F*&1&*

(tautological for *=&1
2). Indeed, there exists a non degenerate invariant

pairing F* �F&1&* � R given by (,, �) =�M ,�.

1.2. Linear Differential Operators on Tensor Densities

Definition. Each vector field ! defines an operator L! on the space of
tensor densities F* . Define the space Dk

* of k th-order linear differential
operators on F* as the space of all k th order polynomials in different
operators L! and operators of multiplication by functions.

Each differential operator A # Dk
* is given by (1) in any system of local

coordinates.

Examples. (1) A classical example is the theory of the Sturm�Liouville
equation: ,"(x)+u(x) ,(x)=0. The argument ,, in this case, is a &1

2-density:
,=,(x)(dx)&1�2 (see [2, 6]).

(2) Another example is given by geometric quantization [9, 15],
the algebra of linear differential operators acting on a Hilbert space of
1
2-densities [1, 10] (see also [14, 7, 16]).

The space of differential operators on F* does not depend on * as a
linear space. We shall use the notation Dk

* for Diff(M )- and Vect(M )-
module structures on this space.

1.3. The Lie Derivative as a Vect(M )-Equivariant Operator

All the modules D1
* of first-order differential operators are isomorphic to

each other: there exists a Vect(M )-equivariant linear mapping

L+* : D1
+ � D1

* .

Let A=ai
1�i+a0 # D1

+ ; define

L+*(A)=ai
1� i+a0+(+&*) �i ai

1 . (4)

In fact, the expression A(,) can be written in an invariant way: A(,)=
La1

,+(a0++�iai
1) , (the quantity as a0++�iai

1 transforms as a function
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by coordinate transformations). The operator L+*(A) is defined by a simple
application of the same operator to tensor-densities of degree *. Let � # F* ,
put L+*(A) � :=La1

�+(a0++� ia i
1) �. One obtains the explicit formula (4)

from (3).
The mapping L+* generalizes the classical Lie derivative. In fact,

L!=L0*(!).

More generally, if L (*)
! is the Lie derivative on F* , then L+*(L+)

! )=L (*)
! .

We are now looking for a higher-order analogue of the Lie derivative, in
other words, for an equivariant linear mapping

Lk
+* : Dk

+ � Dk
* .

Remark. Let us recall that a classic theorem (see [8, 13]) states that
the only Vect(M )-equivariant differential operator in one argument (unar
operator) on the space of ``geometric quantities'' (tensors, tensor densities,
etc.) is the standard differential: d : 0 p(M ) � 0 p+1(M ). Now, the space
of differential operators turns out to be a richer module, so that the Lie
derivative (4) is admitted as a unar equivariant differential operator. The
purpose of this paper is to find another equivariant operator extending the
ordinary Lie derivative.

2. MAIN THEOREMS

The main results of this paper correspond to the space D2 of second-
order linear differential operators on an oriented manifold M:

A(,)=aij
2 �i �j,+ai

1� i,+a0,.

The formula (2) defines a family of Vect(M )-module structures D2
* on this

space.

2.1. Critical Values of the Degree

The following theorem gives the classification of the Vect(M)-modules
D2

* on the space of second-order linear differential operators.

Theorem 1. (i) If dim M�2, then all Vect(M )-modules D2
* with

*{0, &1
2 , &1 are isomorphic to each other, but are not isomorphic to

D2
0$D2

&1 $3 D2
&1�2 .
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(ii) If dim M=1, then all Vect(M)-modules D2
* with *{0, &1 are

isomorphic to each other, but are not isomorphic to

D2
0$D2

&1.

Therefore, there is one stable Vect(M )-module structure on the space of
second-order linear differential operators and two exceptional modules
corresponding to functions and to 1

2-densities, if dim M�2. If dim M=1,
there are only two different Vect(M)-module structures.

Definition. Let us call critical values the following values of the
degree: [0, 1

2 , 1] if dim M�2 and [0, 1] if dim M=1.

2.2. Second-Order Lie Derivative

We propose here an explicit formula for the equivariant linear mapping

L2
+* : D2

+ � D2
*

which can be considered as an analogue of the Lie derivative. Let us
introduce the following notation: A� =L2

+*(A).

Theorem 2. (i) dim M�2. Let *, +{0, &1
2 , &1. There exists a

unique (up to a constant) equivariant linear mapping L2
+* : D2

+ � D2
* given by

the formula:

{
a~ ij

2=aij
2

(5)
a~ l

1=
2*+1
2++1

al
1+2

+&*
2++1

�iail
2

a~ 0=
*(*+1)
+(++1)

a0+
*(+&*)

(2++1)(++1)
(�i ai

1&�i�j aij
2).

(ii) dim M=1. Let *, +{0, &1. There exists a one-parameter family
of equivariant linear mappings from D2

+ to D2
* .

As a result of equivariance, the formula (5) does not depend on the
choice of coordinates.

Remark. If *=+, then A� =A; if *++=&1, then the mapping (5) is
the conjugation of differential operators: A� =A*. Thus, (5) realizes an
interpolation between a differential operator and its conjugate.

2.3. Hierarchy of Modules

For the critical values of the degree &*, the Vect(M )-module D2
* is not

isomorphic to Diff(M )2
+ (with general +). The mapping L2

+, * in this case is
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an invariant projection from D2
+ to D2

* . The following diagram represents
the hierarchy of Vect(M )-module structures on the space of second-order
differential operators:

D2
+ D2

+

D2
&1�2 D2

0$D2
&1 D2

0$D2
&1

dim M�2 dim M=1.

2.4. Automorphisms of Exceptional Modules

Recall that a linear mapping I : D2
* � D2

* is called an automorphism of
the Vect(M)-module D2

* if

[I, ad L!]=0

for any ! # Vect(M ).
An important property of the Vect(M )-module structures on D2,

corresponding to critical values of the degree, is the existence of nontrivial
automorphisms.

The uniqueness of the mapping (5) implies the following fact:

Corollary of Theorem 2. The Vect(M )-module D2
* with *{0, &1

2 ,
&1 has no nontrivial automorphisms.

The following statement gives the classification of automorphisms for the
modules D2

0 $D2
&1 and D2

&1�2 .

Proposition 1. (i) Each automorphism of the module D2
0 is propor-

tional to the automorphism

a2 a2

I \a1+=\ a1 + , (6)

a0 c } a0

where c=const.

(ii) Each automorphism of the module D2
&1�2 is proportional to the

automorphism

aij
2 aij

2

I \ai
1+=\ ai

1&2c(ai
1&�jaij

2) + , (7)

a0 a0&c(�ia i
1&�i �jaij

2)
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where c=const., in terms of the components a2 , a1 , a0 of the operator
A=aij

2 �i� j+ai
1�i+a0 .

The next part of the paper is devoted to proofs. We give the explicit
formulae for the Vect(M )-actions on the space of second-order linear
differential operators. This family of actions, depending on *, can be
considered as a one-parameter deformation of a Vect(M )-module structure.
This approach leads to the cohomology of the Lie algebra Vect(M ) with
some nontrivial operator coefficients.

3. ACTION OF THE LIE ALGEBRA Vect(M ) ON THE SPACE
OF OPERATORS

The space of second-order linear differential operators D2 is isomorphic,
as a vector space, to a direct sum of some spaces of tensor fields,

D2
* $S 2(M )�Vect(M )�C�(M ),

where S 2(M) is the space of second-order symmetric contravariant tensor
fields.

The Vect(M )-action (2) on the space of differential operators D2
* is there-

fore a ``modification'' of the standard Vect(M )-action on this direct sum.

3.1. Explicit Formulae

Lemma 1. The action ad L!=ad L (*)
! of Vect(M) on D2

* (see (2)) is
given by

ad L!(A) ij
2=(L! a2) ij

{ad L!(A) l
1=(L! a1) l&aij

2 �i�j!l+2*ali
2 �i� j! j (8)

ad L!(A)0=L!a0+*(ar
1�r+aij

2 �i�j) �k !k,

where (L!a2) ij=!r�raij
2&arj

2 �r !i&ari
2 �r! j and (L! a1) l=!r�ral

1&ar
1�r!l and

L!a0=!r�ra0 are the Lie derivatives of tensor fields along the vector field !.

Proof. By definition, the result of the action ad L! is given by ad L!(A)(,)
=[L! , A](,). From (2) one has:

[L! , A](,)=!r�r(aij
2 � i�j,+ai

1�i,+a0,)

&*�k(!k)(aij
2 �i� j,+ai

1� i,+a0 ,)

&(aij
2� i�j+ai

1�+a0)(!r�r ,&*�k(!k) ,).

One gets immediately the formula (8).
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Remark. The homogeneous part of the operator A transforms as a
symmetric contravariant 2-tensor: a2 # S2(M ).

3.2. Invariant Normal Form

There exists a canonical form of the Vect(M )-action on the space D2
* .

To obtain it, we introduce here some ``transformation of variables'' in the
space D2

* .
The intuitive idea is as follows. First, remark that the transformation law

of the quantity a0+*� iai
1 contains only terms with a2 . Second, the action

(8) is a deformation of the standard action of Vect(M ) on the space S2(M )
�Vect(M )�C �(M ). We are therefore trying to find some canonical form
of the cocycles on Vect(M ) generating this deformation.

A. dim M�2

Lemma 2. The quantities

a� ij
2=aij

2

{a� l
1=al

1+2*�i ali
2 (9)

a� 0=a0+*�i ai
1+*2�i� ja ij

2

are transformed by the Vect(M )-action in the following way:

ad L!(a� 2)ij=!k�ka� ij
2&a� ik

2 �k ! j&a� kj
2 �k!i

{ad L!(a� 1) i=!k�ka� i
1&a� k

1 �k!i&(2*+1) a� kj
2 �k �j!i (10)

ad L:(a� 0)=!k�k a� 0&*(*+1) �i (a� jk
2 ) �j�k !i.

Proof. From the formula (8), one has �kL! aki
2 =!r�r�k aki

2 &�kakr
2 �r!i

&akr
2 �k �r !i&air

2 �r �k!k. The transformation law for a� 1 in the formula (9)
follows immediately from this expression.

The transformation law for a� 0 can be easily verified in the same way.

Important Remark. The mapping

# : !r�r [ � i�j!r } dxi�dx j��r

is a nontrivial 1-cocycle on Vect(M) with values in the space of 2-covariant,
1-contravariant tensors. This cocycle appears in the Lie derivative of
connections (see Section 6).

Remark. The formula (10) can be written in more invariant way. It is
sufficient to note that the terms depending on a� 2 in the expressions ad L!(a� 1)
and ad L!(a� 0) are &(2*+1)(a� 2 , #(!)) and &*(*+1)[�i(a� 2 , #(!)) i&
a� 2(�i!i)], respectively, where a� 2( f ) :=a� ij

2 �j�k f.
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B. dim M=1.

In the one-dimensional case, let us simply give the normal form.

Lemma 3. The quantities

a� 2=a2

{a� 1=a1+ 1
2(2*&1) a$2

a� 0=a0+*a$1+ 1
3*(2*&1) a"2

transform under the action of Vect(M ) according to:

ad L!(a� 2)=!a� $2&2!$a� 2

{ad L!(a� 1)=!a� $1&!$a� 1

ad L!(a� 0)=!a� $0+ 2
3*(*+1) a� 2!$$$

4. PROOF OF THEOREM 1

First of all, it is evident that all the modules D2
* with *{0, &1

2 , &1 are
isomorphic. In fact, the mapping A [ A� given in normal coordinates (9)
by a�~ 2=a� 2 , a�~ 1=((2++1)�(2*+1)) a� 1 , and a�~ 0=((+(++1))�(*(*+1))) a� 0

defines an isomorphism between D2
* and D2

+ .
In the same way, one has D2

0 $D2
&1 . Here the mapping is the

conjugation.

4.1. Relation with Cohomology

To prove that the modules D2
&1�2 and D2

0 $D2
&1 are not isomorphic

to any other module, we use the approach of the general theory of
deformations (see e.g. [5]).

Let us denote the coefficients &(2*+1) and &*(*+1) by :1 and :2

respectively. Take :1 and :2 as independent parameters. One gets a two-
parameter family of actions of Vect(M ) more general than the action (10)
on the space of differential operators:

Lemma 4. For each value of :1 , :2 , the following expression defines a
Vect(M)-action:

T :1:2
! (a2) ij=(L!a2)ij

{T :1:2
! (a1) l=(L! a1) l+:1 aij

2� i� j !l (11)

T :1:2
! (a0)=L!a0+:2� i (a jm

2 ) �j�m!i.
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Proof. This fact is evident since the formula (10) defines an action of
Vect(M) and the coefficients denoted by :1 and :2 are independent.

The action (11) is a two-parameter deformation of the standard Vect(M )-
module structure on the space S2(M )�Vect(M )�C �(M).

Lemma 5. The two mappings

C1 : Vect(M) � Hom(S2(M ), Vect(M ))

C2 : Vect(M) � Hom(S2(M ), C�(M ))

given by C1(!)(A)=aij
2 �i �j (!l) �l and C2(!)(A)=� i (a jm

2 ) �j�m!i are
1-cocycles.

Proof. One should check that for any !, ' # Vect(M ),

[L! , C(')]&[L' , C(!)]=C([!, ']),

whenever C=C1 , C2 . This relation readily follows from the fact that the
formula (11) defines an action of Vect(M).

Standard arguments show that the structures of Vect(M)-module given
by (11) with :1 {0 and with :1=0 are isomorphic if and only if the
cocycle C1 is a coboundary. In the same way, the Vect(M)-modules (11)
with :2 {0 and with :2=0 iff the cocycle C2 is a coboundary.

Moreover, let us prove that it is sufficient to study C1 and C2 as
differentiable cocycles. This means that we consider the groups

H 1
2(Vect(M) ; Hom(S 2(M ), Vect(M )))

and

H 1
2(Vect(M) ; Hom(S 2(M ), C �(M)))

of differentiable (or diagonal ) cohomology. In other words, it is sufficient to
consider the cohomology classes of C1 and C2 only module coboundaries
given by differential operators (see [5] for details).

Lemma 6. If C1 and C2 represent nontrivial classes of differentiable co-
homology, then there exist three nonisomorphic structures of Vect(M )-module
given by (11):

(1) :1 , :2 {0,

(2) :1=0, :2 {0,

(3) :1 {0, :2=0.
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Proof. Suppose that the Vect(M )-module structures (1) and (2) are
isomorphic. Then the cocycle C1 is a coboundary: there exists an operator
B # Hom(S 2(M ), Vect(M)) such that C1(!)=L! b B&B b L! . Moreover,
the isomorphism between the Vect(M )-modules (1) and (2) is given by a
differential operator: A [ J(A). In fact, any such isomorphism is local:
supp J(A)=supp A. Thus, B is also a differential operator and C1 is a
coboundary as a differentiable cocycle.

In the same way one proves that if C2 is nontrivial as a differentiable
cocycle, then the Vect(M )-modules (1) and (2) are not isomorphic to the
module (3). The lemma is proven.

4.2. Nontrivial Cohomology Class in H 1
2(Vect(M) ; Hom(S2(M ), Vect(M))))

Proposition 2. (i) If dim M�2, then the cocycle C1 represents a
nontrivial cohomology class of the differentiable cohomology group

H 1
2(Vect(M) ; Hom(S 2(M ), Vect(M ))).

(ii) If dim M=1, then C1 is a coboundary.

Proof. To prove the second statement, note that in the one-dimensional
case S2$F2 and consider the following operator:

B(a(x)(dx)&2)= 1
2 a$(dx)&1.

It is easy to check that C1(!)=L! b B&B b L!=($B)(!).
Let now dim M�2. Suppose that there exists a differential operator

B : S2(M ) � Vect(M ) such that $B(!)=C1(!). Let aij�i ��j # S 2(M); we
have in general

B(a)=bki1 } } } im
ij � i1

} } } � im
aij�k

where bki1 } } } im
ij =bki1 } } } im

ji and

($B)(!) a :=L! b Ba&B b L!a

=[!r�r(bki1 } } } im
ij �i1

} } } � im
aij)&bri1 } } } im

ij �i1
} } } �im

aij�r!k

&bki1 } } } im
ij �i1

} } } �im
(!r�raij&air�r! j&a jr�r!i)] �k .

The condition $B=C1 implies immediately m=1, i.e., B is a first-order
differential operator. Indeed, the highest order (in the derivatives of !) term
in ($B(!))(a) is

2airbki1 } } } im
ij �i1

} } } � im
�r! j�k .

From $B=C1 one gets that if m>1, then this term vanishes for any a and
!, so bki1 } } } im

ij #0.
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For a first-order operator B(a)=bkr
ij �raij�k with bkr

ij =bkr
ji , the condition

$B=C1 implies 2bkr
ij ait�r �t ! j=art�r�t !k for any a and ! (again, we

consider the highest order term in !). One readily finds that this equation
has no solution if the dimension is n�2. Indeed, take ! such that ! j=0
with j{ j0 . Then bkr

ij =0 if k{ j0 . Comparing this property for different
values of j0 , one finds a contradiction: bkr

ij #0.
Proposition 2 is proven.

Remark. Define C� 1 : Vect(M ) � Hom(S 2(M), Vect(M )) by

(C� 1(!))(a)=akr�r� i!i�k .

Then C1 is a 1-cocycle cohomologous to C� 1 : if B # Hom(S2(M ), Vect(M ))
is given by B(a)=�i aik�k , then $B=C1+C� 1 .

4.3. Nontrivial Cohomology Class in H 1
2(Vect(M ) ; Hom(S 2(M ), C�(M ))

Proposition 3. The cocycle C2 represents a nontrivial cohomology class
of the differentiable cohomology group

H 1
2(Vect(M) ; Hom(S 2(M ), C �(M))).

Proof. Suppose there exists a differential operator B : S2(M ) � C�(M )
such that $B(!)=C2(!). It is given by B(a)=bi1 } } } im

ij �i1
} } } �im

aij. Then,

($B)(!) a=!r�r(bi1 } } } im
ij �i1

} } } �im
aij)

&bi1 } } } im
ij �i1

} } } � im
(!r�raij&air�r! j&a jr�r !i)

where bi1 } } } im
ij =bi1 } } } im

ji . The highest order term (in the derivatives of !) in
this expression is 2airbi1 } } } im

ij �i1
} } } �im

�r! j. The condition $B=C2 implies
that this term equals zero (for any value of m and for any a and !) which
entails bi1 } } } im

ij #0. This contradiction proves Proposition 3.
Theorem 1 is proven.

Remarks. (1) The cocycle C2 is related to the coadjoint action of the
Virasoro algebra. Its group analogue is given by the Schwarzian derivative
(see [6]).

(2) Let us recall that, in the one-dimensional case, the cohomology
group H1(Vect(M), F*) is nontrivial for *=0, &1, &2. In these three cases
it has dimension one and is generated by the following 1-cocycles:

c0(!(x) �x)=!$(x),

c1(!(x) �x)=!"(x) dx,

c2(!(x) �x)=!$$$(x)(dx)2
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respectively. Three corresponding cocycles with values in the operator
space Ck : Vect(M) � Hom(F* , F*&k) are given by (Ck(!))(a) :=ck(!) } a.
It is interesting to note that the cocycles C0 and C2 are nontrivial for any
value of *, *{1�2, but the cocycle C1 is nontrivial only for *=0 (cf. [4]).

5. PROOF OF THEOREM 2

A. dim M�2

It is easy to show that the mapping (5) is equivariant. In fact, it becomes
especially simple in the normal coordinate system (9). It multiplies each
normal component by a constant:

L2
+*(A� )2=a� 2 , L2

+*(A� )1=
2++1
2*+1

a� 1 , L2
+*(A� )0=

+(++1)
*(*+1)

a� 0 .

Let us prove the uniqueness.

5.1. Automorphisms of the Modules D2
*

We show in this section a remarkable property of the ``critical'' modules
D2

0 , D2
&1 , and D2

&1�2 , namely the existence of nontrivial automorphisms of
these modules.

Proposition 4. Let dim M�2.

(i) The modules D2
* have no automorphisms other than multiplication

by a constant for *{0, &1
2 , &1.

(ii) All automorphisms of the modules D2
0 $D2

&1 and D2
&1�2 are

proportional to (6) and (7) respectively.

Proof. Let I # End(D2
*) be an automorphism. This means that I

commutes with the Lie derivative: I b ad L!&ad L! b I=0. We first give
the general formula for these automorphisms.

Lemma 7. Any automorphism of D2
* has the following form:

I(A)=c1aij
2 � i�j+(c2ak

1+c3� jakj
2 ) �k+c4�i �j aij

2+c5 �iai
1+c6a0 (12)

Proof. (a) Consider the highest order term I2 : D2
* � S 2(M ),

I2(A)=I2
2(a2)+I1

2(a1)+I0
2(a0).

Then the differential operators I2
2 : S 2(M) � S2(M ), I0

2 : C�(M) � S 2(M ),
and I1

2 : Vect(M ) � S 2(M ) are unar equivariant differential operators, since
[ad L! , I](A)=0 for any ! and A (indeed, consider a2 #0 to check the
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invariance of I1
2 and a2 #0, a1 #0 to check the invariance of I0

2). A well
known theorem (see [13] and the remark in Section 1.3) states that there is
no such nonconstant equivariant operator. Thus, I0

2=I1
2 #0 and I2 is an

operator of multiplication by a constant. Put I2(A)=c1 } a2 .

(b) Consider the first-order term I1(A)=I2
1(a2)+I1

1(a1)+I0
1(a0).

Again, one obtains that I0
1 : C�(M ) � Vect(M ) and I1

1 : Vect(M ) �
Vect(M) are equivariant differential operators. Thus, one has I0

1=0 and
I1

1(a1)=const } a1 . Put I1
1(a1)=c2 } a1 . The operator I2

1: S 2(M ) �
Vect(M) verifies the following relation:

[I2
1 , ad L!](a2)=[&(c1&c2) aij

2 �i �j !l+2*(c1&c2) ail
2 � i�k !k] �l . (13)

Since the right-hand side of this equation contains only second-order
derivatives of ! j, one necessarily obtains that I2

1 is a first-order differential
operator, namely I2

1(a2)=asl
ij �saij

2 �l . It follows easily from (13) that
:sl

ij =const } $s
j $l

i . Finally, I2
1(a2) l=c3�jalj

2 .

(c) In the same way, for the last term I0(A)=I2
0(a2)+I1

0(a1)+
I0

0(a0), one gets I0
0(a0)=const } a0 , I1

0(a1)=const } �k ak
1 , and I2

0(a2)=
const } �i�j aij

2 . Lemma 7 is proven.

To finish the proof of Proposition 4, substitute the expression (12) for I

into the equation [ad L! , I]. The result reads:

[ad L! , I](A) ij
2=0

[ad L! , I](A) l
1=(c2+c3&c1) aij

2 �i� j!l

+(c3+2*(c1&c2)) ali
2� i �k !k

[ad L! , I](A)0=(c5&*(c2&c6)) ar
1�r�k!k

+(2c4+(1+2*) c5+*(c6+c1)) aij
2 �i� j�k !k

+(2c4+2*c5&*c3) �i (air
2 ) �r�k !k

+(c4+c5) �r(aij
2) � i�j!r.

This expression must vanish for any ! and A, yielding the following
conditions for the constants c1 , ..., c6 :

{
c2+c3&c1=0

c3&2*(c2&c1)=0

c5+*(c2&c6)=0

2c4+(1&2*) c5&*(c6&c1)=0

2c4&2*c5+*c3=0

c4+c5=0.

329SECOND ORDER DIFFFERENTIAL OPERATORS



File: DISTIL 168315 . By:DS . Date:03:12:97 . Time:10:51 LOP8M. V8.B. Page 01:01
Codes: 2659 Signs: 1653 . Length: 45 pic 0 pts, 190 mm

If *{0, &1
2 , &1, then this system has the following solution: c1=c2=

c6 , c3=c4=c5=0. Thus, in this case the modules D2
* have no nontrivial

automorphisms.
If *=0, then the solution is given by c1=c2 and c3=c4=c5=0, and c6

is a free parameter. One obtains the formula (6).
If *=&1

2 , then the solution is given by c1=c6 , c3=2c4 , c2+c3=c6 ,
and c4+c5=0. This corresponds to the formula (7) for the automorphisms
of D&1�2 .

Proposition 4 and Theorem 2 are proven.

B. dim M=1

In the one-dimensional case, for each *{0, &1, there exists a two-
parameter family of automorphisms of D2

* . For each value *=0, &1 there
exists a three-parameter family. These facts follow from the normal form
(10) of the Vect(M)-action.

6. DISCUSSION

6.1. A Few Ideas around Quantization
Maybe the most interesting corollary of Theorem 1 is the existence of

two exceptional modules of second-order differential operators: D2
0 and

D2
&1�2 . Recall that there is no nontrivial equivariant linear mapping

D2
0 � D2

&1�2 .
However, these modules are of a great interest, e.g., in geometric quan-

tization. So, to obtain such a mapping one needs an additional structure
on M.

Given a linear connection 1 k
ij on M, it is possible to define a Vect(M )-

equivariant linear mapping:

L1 : D2
0 � D2

&1�2 . (14)

Let us give here the complete list of such mappings which are polynomial
in 1 k

ij and its partial derivatives.

Theorem. Let A=aij
2 � i�j+ai

1� i+a0 # D2
0 . All Vect(M )-equivariant

linear mappings (14) polynomially depending on 1 k
ij and its partial derivatives

are given by:

{
a~ ij

2=aij
2

a~ i
1=�k aik

2 +c1{kaik
2 +c2(ai

1+a jk
2 1 i

jk)
a~ 0=& 1

4 (2�i (aij
2 1 k

jk)+aij
2 1 k

ik1 l
jl)

+c3{i{ja ij
2+c4{i (ai

1+a jk
2 1 i

jk)+c5aij
2 Rij+c6 a0

(15)
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where the parameters c1 , ..., c6 are arbitrary constants and Rij is the Ricci
tensor.

Example. When the connection is given by a Riemannian metric gij on
M, consider the Laplace operator 2= gij (� i�j&1 k

ij�k) # D2
0 . Let � # F&1�2

be a 1
2-density. One can write locally �= f } (det g)1�4. The result of the

mapping (15) is:

2� ( f } (det g)1�4)=(2f +c5 Rf )(det g)1�4

where R is the scalar curvature.

The proof of the theorem and the properties of the mapping (15) will be
discussed elsewhere.

Remark. This result is consistent with the various quantizations of the
geodesic flow on Riemannian manifolds: &(2+cR) where the constant c
is actually determined by the chosen quantization procedure. For example,
the infinitesimal Blattner�Kostant�Sternberg pairing of real polarizations
leads to c=&1

6 [14, 16]. In the case of n-dimensional spheres, the pairing
of complex polarizations gives c=&(n&1)�4n [12] while Weyl quantiza-
tion and quantum reduction would lead to c=(n+1)�4n (see [3] for a
survey).

Remark. So far, we have only considered linear connections; it would
be interesting to find a similar construction in terms of projective connections.
For example, in the one-dimensional case there exists a natural mapping
from D2

0 to D2
* using a projective connection. Fixing a Sturm�Liouville

operator �2+u(x) is equivalent to fixing a projective connection. The
mapping Lu : D2

0 � D2
* defined by

Lu(a2�2+a1�+a0)=a2�2+(a1&*a$2) �+ca0+*a$1

+ 1
3*(*+1)[a"2&4ua2]

is equivariant for any c=const. Indeed, the potential u transforms via the
Lie derivative as follows: L!u=!u$+2!$u+ 1

2 !$$$ (see [2]). This construc-
tion with *= 1

2 , 1, 3
2 , 2, ... is related to the Gelfand�Dickey bracket (see

[11]).

6.2. Higher Order Operators

The study of the modules of differential operators leads to first cohomology
groups

H1(Vect(M ) ; Hom(Sk(M ), Sm(M)))
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where Sk(M) is the space of k-contravariant symmetric tensors on M.
Calculation of these cohomology groups seems to be a very interesting
open problem. In the one-dimensional case this problem is solved by Feigin
and Fuks in [4] for the Lie algebra of formal vector fields.

We have almost no information about Vect(M )-module structures on
the space of higher-order linear-differential operators. Let us formulate the
main problem:

Is it true that two spaces of nth order differential operators on tensor
densities are naturally isomorphic for any values of degree, except for a finite
set of critical values?

A positive answer would mean that there exist higher-order analogues of
the Lie derivative. A negative answer would mean that second-order differential
operators play a special role.

The only information that we have corresponds to the case of third-order
differential operators on a one-dimensional manifold.

Proposition. If dim M=1, then the Vect(M )-module structures D3
* on

the space of differential operators

a3 �3+a2�2+a1�+a0

are isomorphic to each other if *{0, &1, &1
2 , &1

2\ - 21
6 .

Note that the value *=&1
2, absent in the case of second-order differential

operators on a one-dimensional manifold, is present here.
Let us finish with two simple remarks:

(1) In a particular case *++=1, the modules Dn
* and Dn

+ are
isomorphic for any n. The isomorphism is given by the conjugation.

(2) The module Dn
&1�2 is not isomorphic to any module Dn

* with
*{& 1

2.
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