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Multi-Parameter Deformations of the Module

of Symbols of Differential Operators

B. Agrebaoui, F. Ammar, P. Lecomte, and V. Ovsienko

1 Introduction

In this paper, we discuss the following general principle. Given a Lie algebra g and a g-

module V , one can canonically associate to (g, V) a commutative associative algebra.

The generators of this commutative algebra are the nontrivial cohomology classes in

H1(g;End(V)), while the relations between the generators are encoded by elements of

H2(g;End(V)). More precisely, the relations correspond to the obstructions for integra-

bility of infinitesimal deformations of V .

The classical deformation theory of Lie algebras and modules over Lie algebras

traditionally deals with one-parameter deformations (cf. [13, 14, 21, 24]). It is, however,

natural to consider, as in other deformation theories, “multi-parameter” deformations,

that is, deformations of Lie algebras over commutative algebras. This viewpoint has

been adopted in [9], and the existence of the so-called miniversal deformation has been

proven. A construction of miniversal deformations of Lie algebras was given in [10].

Similar methods was applied in [22, 23] to deformations of homomorphisms of some

infinite-dimensional Lie algebras.

The canonical notion of miniversal deformation leads to a natural commutative

algebra intrinsically associated with a Lie algebra (or with a module over a Lie algebra).

This interesting algebraic characteristic deserves a further investigation.

In this paper we consider the space, D(Rn), of linear differential operators on

R
n viewed as a module over the Lie algebra, Vect(Rn), of smooth vector fields on R

n.

This module structure has been recently studied in [3, 4, 5, 6, 7, 12, 16, 17, 20] (see also
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848 B. Agrebaoui et al.

the references therein). Themodule of differential operators can be viewed as a deforma-

tion of the corresponding module of symbols; the general framework of the deformation

theory (see, e.g., [10, 11, 13, 14, 21, 24]), therefore, relates this study to the cohomology

of the Lie algebra of vector fields (cf. [7, 17]).

The main purpose of this paper is to introduce the commutative algebra associ-

ated to the Vect(Rn)-module of symbols of differential operators on R
n. Geometrically

speaking, symbols are symmetric contravariant tensor fields on R
n, or, in other words,

polynomial functions on T∗
R

n. We will describe the miniversal deformation of this

module.

Let Fλ be the space of tensor densities of degree λ ∈ R on R
n. The two-parameter

family of Vect(Rn)-modules, Dλ,µ, of linear differential operators from Fλ to Fµ will

provide uswith an important class of examples of nontrivial deformations of themodule

of symbols.

The first cohomology space of the Lie algebra of vector fields, classifying the

infinitesimal deformations of the module of symbols has been calculated, for an arbi-

trary smooth manifold, in [17] (see also [3] for the details in the one-dimensional case).

Of course, not for every infinitesimal deformation there exists a formal deformation con-

taining the latter as an infinitesimal part. The obstructions are characterized in terms of

Nijenhuis-Richardson products of nontrivial first cohomology classes. The main prob-

lem considered in this paper is to determine the integrability condition, that is, a nec-

essary and sufficient condition for an infinitesimal deformation that guarantees exis-

tence of a formal deformation. We provide such a condition in the case of R
n, where

n ≥ 2.

2 The general framework

We start with the notion of (multi-parameter) deformations over a commutative

algebra. Our approach will be similar to those of [22, 23]; it corresponds to the notion of

miniversal deformations [10] in a special case when one can choose a basis of the first

cohomology space.

2.1 Deformations over commutative algebras

Consider a Lie algebra g over C (or R) and (V, ρ) a g-module, where V is a vector space

and ρ is a homomorphism

ρ : g −→ End(V). (2.1)
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Multi-Parameter Deformations 849

Let A be a commutative associative algebra with identity with fixed augmentation

ε : A → C such that ε(1) = 1. Put M = ker ε the associated maximal ideal of A. Fol-

lowing [10], we have the following definition.

Definition 2.1. A deformation of the g-module (V, ρ) with base (A,M) is a Lie algebra

homomorphism

ρ̃ : g −→ A⊗ End(V) (2.2)

such that (ε⊗ Id) ◦ ρ̃ = ρ.

We specify the above definition to the following natural case.

Basic example 2.2. Any finitely generated commutative algebra is of the form

A = C
[
t1, . . . , tp

]
/R, (2.3)

where R ⊂ C[t1, . . . , tp] is an ideal, that is, the set of relations. Choose the natural

augmentation

ε0 : C
[
t1, . . . , tp

] −→ C, ε0(P) = P(0), (2.4)

andwe have to assume thatR ⊂ ker(ε0), so that ε0 is well defined on the quotient-algebra

A. We call t = (t1, . . . , tp) parameters of deformation.

Any deformation (2.2) is of the form

ρ̃ = ρ+ϕ, (2.5)

where ϕ is a linear map from g to End(V)⊗ C[t] such that (ε⊗ Id) ◦ϕ = 0.

2.2 The Maurer-Cartan equation

The expression ρ̃ must satisfy the homomorphism condition, that is,

ρ̃
(
[X, Y]

)
=
[
ρ̃(X), ρ̃(Y)

]
(2.6)

for every X, Y ∈ g. Note that the bracket in the right-hand side stands for the standard

commutator in End(V) extended to A⊗ End(V).
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The standard Chevalley-Eilenberg differential (see [11]) retains, in the case

of linear maps from g to A ⊗ End(V), to the following formula. Given a linear map

a : g→ A⊗ End(V), its differential δa is the bilinear skew-symmetric map

δa(X, Y) = a
(
[X, Y]

)
−
[
ρ(X), a(Y)

]
+
[
ρ(Y), a(X)

]
. (2.7)

The standard cup-product of linear maps a, b : g→ A⊗End(V) is a bilinear map [[a, b]] :

g⊗ g→ A⊗ End(V) defined by

[[a, b]](X, Y) = −
[
a(X), b(Y)

]
+
[
a(Y), b(X)

]
. (2.8)

It is also called the Nijenhuis-Richardson product [21].

Put ϕ = ρ̃− ρ as in (2.5), we easily check that condition (2.6) reads

δϕ+
1

2
[[ϕ,ϕ]] = 0. (2.9)

This is the Maurer-Cartan equation (also called the deformation equation, cf. [21]).

Although it is equivalent to (2.6), it is useful to relate the deformations (2.5) with the

cohomology theory.

2.3 Equivalent deformations

Following [10], we introduce the notion of equivalence of deformations of g-modules.

Definition 2.3. Two deformations ρ̃ and ρ̃ ′ with the same base (A,M) are called equiva-

lent if there exists an inner automorphism ψ of the Lie algebra A⊗ End(V) such that

ψ ◦ ρ̃ = ρ̃ ′ (2.10)

which is compatible with the augmentation, that is, (ε⊗ Id) ◦ψ = ε⊗ Id.

Note that this definition corresponds to the standard definition of equivalence

for 1-parameter deformations with A = C[t] (see, e.g., [21]).

2.4 Infinitesimal deformations and the first cohomology

A deformation (2.2) is called an infinitesimal deformation ifM2 = 0 inA. In the example

of Section 2.1, this means that A is the algebra of first-order polynomials.
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Multi-Parameter Deformations 851

Given an arbitrary deformation (2.2) with base (A,M), one defines an infinitesi-

mal deformation canonically associated to the given one. Consider the quotient-algebra

A1 = A/M
2, then there is a natural projection (the “push out” in the sense of [10]) of the

initial deformation to a deformation with the base (A1,M/M2).

In particular, if the deformation is written in the form (2.5), then the associated

infinitesimal deformation is of the form

ρ̃1 = ρ+ϕ1 with ϕ1 = t1c1 + · · ·+ tpcp, (2.11)

where (t1, . . . , tp)mod(M2) are the parameters (i.e., satisfying the relations titj = 0 for

i, j = 1, . . . , p).

Equation (2.9) implies that each linear map ci : g → End(V) is a 1-cocycle

(cf. [11]). Furthermore, if ρ̃ and ρ̃ ′ are equivalent deformations, then the correspond-

ing cocycles in the infinitesimal deformations are cohomologous, namely ci = c ′
i + δAi

for some A1, . . . , Ap ∈ End(V).

Therefore, an infinitesimal deformation is defined, up to equivalence, by the

cohomology classes c̄1, . . . , c̄p in H1(g;End(V)).

2.5 Miniversal deformations and integrability conditions

The aim of this section is to link the approach of [10] with the classical Nijenhuis-

Richardson theory [21]. Following [10], we have the following definition.

Definition 2.4. (i) We call a deformation ρ̃with base (A,M) versal if for any deformation

ρ̃ ′ with base (A ′,M ′) there is a homomorphism ψ : A → A ′ satisfying ψ(1) = 1 and

ε ′ ◦ψ = ε such that

ρ̃ ′ = (ψ⊗ Id) ◦ ρ̃. (2.12)

(ii) A versal deformation ρ̃ is calledminiversal if for any infinitesimal deforma-

tion ρ̃ ′, the above homomorphism ψ is unique.

An explicit construction of miniversal deformations of Lie algebras was sug-

gested in [10]. A similar construction can be applied to deformations of modules.Wewill

define a commutative algebra of the form (2.3) with augmentation (2.4) and a miniversal

deformation as in our basic example of Section 2.1.

First, we put p = dimH1(g;End(V)) and choose a basis c̄1, . . . , c̄p of the space

H1(g;End(V)); we define an infinitesimal deformation of the form (2.11). In order to

construct a miniversal deformation, we define a sequence of commutative algebras
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852 B. Agrebaoui et al.

Am = C[t1, . . . , tp]/Rm as a series of extensions

0 −→ Rm−1/Rm −→ Am −→ Am−1 −→ 0 (2.13)

and construct a sequence of deformations of the form (2.5).

Each ideal Rm is of the form

Rm =
〈
R ′

m,Cm+1[t]
〉
, (2.14)

where R ′
m is a set of homogeneous relations of order ≤ m and Cm+1[t] the ideal of all

polynomials of valuation ≥ m + 1. In other words, any monomial of degree ≥ m + 1 in

Am vanishes. We thus construct an ascending chain of ideals

R ′
1 ⊂ · · · ⊂ R ′

m−1 ⊂ R ′
m ⊂ · · · , (2.15)

where R ′
1 = 0.

Assume, by induction, that we have already constructed the firstm− 1 algebras

A1, . . . ,Am−1 and corresponding deformations.Wewill now construct the algebra (Am, ε)

and a deformation with this base.

Developing (2.9), we obtain the following equation of order m:

δϕm = −
1

2

∑
i+j=m

[[
ϕi, ϕj

]]
(2.16)

with indeterminateϕm. The right-hand side of (2.16) is a 2-cocycle with coefficients that

are homogeneous polynomials of degree m in t. The cohomology class of this cocycle is

[[
ϕi, ϕj

]] ∈ H2
(
g;End(V)

)⊗ C[t]/R ′
m−1. (2.17)

It is an obstruction for existence of solutions of (2.16). We choose R ′
m as a minimal ideal

of C[t] such that the image of the above obstruction vanishes after projection

C[t]/R ′
m−1 −→ C[t]/R ′

m. (2.18)

Equation (2.16) then has a solution over the commutative algebra Am = C[t]/Rm; this

solution is not unique and is defined up to an arbitrary 1-cocycle.

Example 2.5. The second-order term in (2.16) is

δϕ2(t) = −
1

2

[[
ϕ1(t), ϕ1(t)

]]
. (2.19)
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Multi-Parameter Deformations 853

The cohomology class of [[ϕ1(t), ϕ1(t)]] is, therefore, an obstruction to the existence of

the second-order term ϕ2(t). It is an element of H2(g;End(V)) ⊗ C[t], where polynomial

coefficients are homogeneous second-order polynomials in t. For existence of ϕ2(t), it

is necessary and sufficient that these obstructions vanish. We thus obtain second-order

relations for the parameters t1, . . . , tp.

Finally, taking the inductive limit A = lim−→ Am, we obtain a deformation with

base (A,M). We call the generators of the ideal R = lim−→ Rm the necessary and sufficient

conditions for integrability of the infinitesimal deformation (2.11).

Proposition 2.6. The constructed deformation is miniversal and does not depend on the

choice of solutions of (2.16). �

The above construction follows the construction, from [10], of a versal deforma-

tion of Lie algebras. Although, for the sake of simplicity, we do not use here the language

of Harrison cohomology describing the extensions (2.13). The proof that the constructed

deformation is indeed miniversal, is similar to those of [10].

3 Deformations of Z-graded modules

Up to now, we were considering only deformations with a finite number of parameters.

However, following [10], wewill take into consideration the case of gradedmodules with

infinitely many independent parameters of deformation.

Consider a module (V, ρ) splitted into a direct sum of g-modules

V =
⊕
k∈Z

Vk. (3.1)

Suppose that for some values i ∈ Z there exist nontrivial cocycles ci on g with values in

End(V) such that, for all X ∈ g we have

ci(X)|Vk
⊂ Vk−i. (3.2)

Assume, furthermore, that there is a deformation of the form

ρ̃(τ) = ρ+
∑
i∈Z

τici +
(
τ2
)
, (3.3)

where τi are the free parameters, that is, the parameters generate the free commutative

algebra C[τi].
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854 B. Agrebaoui et al.

The following construction ismeant to use the “extra degrees of freedom” related

to the decomposition (3.1). We will introduce new parameters tki with k ∈ Z. Consider

each cocycle ck
i : g→ Hom(Vk, Vk−i) defined by the restriction

ck
i (X) := ci(X)|Vk

(3.4)

as independent.

Proposition 3.1. There exists a formal deformation of the form

ρ̃(t) = ρ+
∑

i,k∈Z

tki c
k
i +

(
t2
)
, (3.5)

where tki are generators of the commutative algebraC[t]/R, where the idealR is generated

by the following relations:

t
k−j
i tkj = tki t

k−i
j ∀ i, j, k ∈ Z. (3.6)

�

Proof. The original deformation (3.3) satisfies theMaurer-Cartan equation (2.9). In each

order m, (2.16) for the deformation (3.3) has a solution

ϕm(τ) ∈ Hom
(
g;End(V)

)⊗ C[τ] (3.7)

which is a homogeneous polynomial in τ of degreem. Replacing in ϕm(τ)|Vk
each mono-

mial τi1
· · · τim−1

τim by tk−i2−···−im

i1
· · · tk−im

im−1
tkim

, we obviously get a solution ϕm(t)

of (2.16). �

4 The main results

In this section we define our main object: the space of symmetric contravariant tensor

fields on R
n, and describe the versal deformation of the natural structure of Vect(Rn)-

module on this space. In other words, we deform the Lie derivative of symmetric con-

travariant tensor fields.

4.1 The space of symbols

Consider the Lie algebra Vect(Rn) of smooth vector fields onR
n and the space S of smooth

symmetric contravariant tensor fields on R
n. The space S is naturally isomorphic to the
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Multi-Parameter Deformations 855

space of functions on T∗
R

n polynomial on fibers. Clearly, S has a structure of a Poisson

algebra with natural graduation

S =

∞⊕
k=0

Sk, (4.1)

where Sk is the space of kth order tensor fields.

The space S is a Vect(Rn)-module since Vect(Rn) ⊂ S. In Darboux coordinates,

the action of X ∈ Vect(Rn) on S is given by the Hamiltonian vector field1

LX =
∂X

∂ξi

∂

∂xi
−

∂X

∂xi

∂

∂ξi
, (4.2)

which is nothing but the Lie derivative of tensor fields.

The aim of this paper is to study multi-parameter formal deformations of this

module. We will restrict our considerations to the multi-parameter formal deformations

which are differentiable, that is, each term in the formal series (2.5) is supposed to be

a differential operator on S.

4.2 Description of the infinitesimal deformations

According to the general framework, we need an information about the space of the first

cohomology of Vect(Rn)with coefficients in End(S) in order to describe the infinitesimal

deformations. The module End(S) is decomposed as follows:

End(S) =
⊕
k,�

Hom
(
Sk, S�

)
. (4.3)

To study the Vect(Rn)-cohomology with coefficients in End(S) it then suffices to con-

sider the cohomologywith coefficients in eachmoduleHom(Sk, S�).Wewill, furthermore,

restrict ourself to the subspace D(Sk, S�) ⊂ Hom(Sk, S�) given by differential operators

from Sk to S�.

The space of first cohomology of the Lie algebra of vector fields with coefficients

in D(Sk, S�) has been calculated, for an arbitrary manifold M of dimM ≥ 2, in [17].

We recall here the result in the caseM = R
n

H1
(
Vect

(
R

n
)
;D
(
Sk, S�

))
=




R, if k− $ = 0, k− $ = 1 and $ 
= 0, k− $ = 2,

0, otherwise.

(4.4)

1Here and below the sum over repeated indices is understood.
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We have, therefore, infinitely many nontrivial cohomology classes generating an infini-

tesimal deformation of the Vect(Rn)-module S.

We give the explicit formulæ for corresponding 1-cocycles.

(a) For all k ≥ 0, there is a 1-cocycle with values in D(Sk, Sk) that associates to

X ∈ Vect(Rn) the operator of multiplication by the function

c0(X) = Div(X). (4.5)

(b) For all k ≥ 2, there is a 1-cocycle with values in D(Sk, Sk−1) given by

c1(X) =
∂2X

∂xi∂xj

∂2

∂ξi∂ξj
. (4.6)

Remark 4.1. More geometrically, this cocycle can be written as the Lie derivative of the

(flat) connection on R
n, namely, c1(X) = LX(∇).

(c) For all k ≥ 2, there is a 1-cocycle with values in D(Sk, Sk−2) given by

c2(X) =
∂3X

∂xi∂xj∂xl

∂3

∂ξi∂ξj∂ξl
− 3

∂3X

∂xi∂xj∂ξl

∂2

∂ξi∂ξj

∂

∂xl
. (4.7)

Remark 4.2. This cocycle is related to the famous Moyal product, namely for P ∈ Sk,

c2(X)(P) coincides with the third-order term in the Moyal product of X and P.

As in Section 3, we will use the notation

ck
i = ci|Sk

, i = 0, 1, 2, (4.8)

and deal with independent cocycles ck
0 , c

k
1 , c

k
2 .

4.3 Integrability conditions

According to the results of [17] (see Section 4.2), the infinitesimal deformations of the

Lie derivative (4.2) are of the form ρ̃(X) = LX +ϕ1(X) with

ϕ1 =
∑

0≤k<∞
tk0c

k
0 +

∑
2≤k<∞

(
tk1c

k
1 + tk2c

k
2

)
, (4.9)

where the symbols tk0 , t
k
1 , t

k
2 stand for independent parameters. We, therefore, have to

deal with infinitesimal deformations with infinite number of parameters.

We formulate the main result of this paper.
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Multi-Parameter Deformations 857

Theorem 4.3. The following relations:

(a) one series of second-order relation Rk
2(t):

tk1t
k−1
2 − tk−2

1 tk2 = 0, k ≥ 4, (4.10)

(b) two series of third-order relations, namely Rk
3(t):(

tk0 − tk−1
0

)
tk1t

k−1
2 = 0, k ≥ 3, (4.11)

and R̃k
3(t):(

tk0 − tk−2
0

)
tk2t

k−2
2 = 0, k ≥ 4, (4.12)

are necessary and sufficient for the integrability of the infinitesimal deformation (4.9).

�

In other words, the base of the miniversal deformation of the Vect(Rn)-module S

is the commutative algebra A = C[t]/R, where the ideal R is generated by the relations

(4.10), (4.11), and (4.12).

The proof that the relations (4.10), (4.11), and (4.12) are necessary is just a result

of a straightforward computation; it will be given in Section 6. The proof that these con-

ditions are sufficientwill be based on the existence of an important class of deformations

corresponding to the Vect(Rn)-modules of differential operators.

The following statement is a corollary of Theorem 4.3.

Proposition 4.4. An infinitesimal deformation (4.9) with additional series of relations:

tk2 = 0 for all k, is integrable without any condition on tk0 and tk1 . �

5 Module of differential operators

Consider the space D of linear differential operators on R
n. It is isomorphic to S as

a vector space, but its structure as a Vect(Rn)-module is quite different. In this section

we interpret D as a deformation of the Vect(Rn)-module S.

5.1 Lie derivative of differential operators

The composition of differential operators is defined by

A ◦ B =
∞∑

k=0

1

k!

∂kA

∂ξi1
· · ·∂ξik

∂kB

∂xi1 · · ·∂xik
. (5.1)
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Of course, since A is a polynomial in ξ, there are only a finite number of terms in this

sum. There is a filtration of the associative algebra D

D0 ⊂ D1 ⊂ · · · ⊂ Dr ⊂ · · · , (5.2)

where Dr is the space of rth-order differential operators (isomorphic to
⊕

i≤r Si as a

vector space). We have S = grD as well as an associative algebra and as a Lie algebra.

The space S is usually called the space of symbols associated to D.

The spaceD is a Vect(Rn)-module since Vect(Rn) is a Lie subalgebra ofD. More-

over, there is a family of embeddings Vect(Rn) ↪→ D depending on a parameter λ ∈ R

(or C) given by

iλ : X �−→ X+ λDiv(X), (5.3)

where X ∈ Vect(Rn) and Div(X) is the divergence with respect to the standard volume

form on R
n. This defines a one-parameter family of Vect(Rn)-module structures on the

space D. More generally, one can define a two-parameter family of Vect(Rn)-modules

on D by

L
λ,µ
X (A) = iµ(X) ◦A−A ◦ iλ(X). (5.4)

These modules are denoted Dλ,µ.

Remark 5.1. From the geometrical viewpoint, the module Dλ,µ is the space of differen-

tial operators acting on the space of tensor densities (cf. [4, 5, 7, 17]); the first-order

differential operator iλ(X) is a Lie derivative of tensor densities of degree λ.

Lemma 5.2. The explicit formula of the Vect(Rn)-action on Dλ,µ is

L
λ,µ
X = LX + (µ− λ)Div(X)

−

∞∑
k=2

1

k!

(
∂kX

∂xi1 · · ·∂xik

∂k

∂ξi1
· · ·∂ξik

+ kλ
∂k−1 Div(X)
∂xi1 · · ·∂xik−1

∂k−1

∂ξi1
· · ·∂ξik−1

)
,

(5.5)

where LX is as in (4.2). �

Proof. This formula readily follows from (5.1). �
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5.2 The Weyl symbols

Consider the operator D on Dλ,µ given by

D =
∂

∂xi

∂

∂ξi
(5.6)

that extends the divergence of vector fields to the space of symmetric contravariant

tensor fields. Recall that the linear map

exp(λD) : D −→ S (5.7)

defines the famous Weyl symbol of a differential operator (see [1]). Note that the

parameter in this formula is usually interpreted in terms of the Planck constant, namely

λ = ih̄/2.

Lemma 5.3. The action (5.5) becomes after the transformation (5.7) as follows: the ac-

tion L̃λ,µ is of the form

L̃
λ,µ
X = LX + τ0c0(X) + τ1c1(X) + τ2c2(X) +

∑
m≥3

Lm(X) (5.8)

with

τ0 = µ− λ, τ1 = λ−
1

2
, τ2 = λ(λ− 1), (5.9)

where Lm(X) are the terms with the degree shift m, that is, for the operators from Sk

to S� with $− k = m. �

Proof. By definition, L̃
λ,µ
X = exp(−λD) ◦ L

λ,µ
X ◦ exp(λD), a straightforward computation

then yields (5.8) and (5.9). �

This new expression of the Vect(Rn)-action on Dλ,µ allows us to consider this

module as a deformation of S.

5.3 Module of differential operators as a deformation

The existence of modules Dλ,µ allow us to construct a big class of formal deformations.

The idea is to consider the parameters τ0, τ1, τ2 as independent parameters using the fact

that the expressions (5.9) do not satisfy any nontrivial homogeneous relation.

Lemma 5.4. There exists a deformation of the form (5.8) with base A = C[τ0, τ1, τ2] (i.e.,

the parameters τ0, τ1, τ2 are independent). �
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Proof. We use the existence of modules Dλ,µ. Each term Lm in (5.8) polynomially de-

pends on τ0, τ1, τ2. The operator L̃
λ,µ
X defines a Vect(Rn)-action and, so, satisfies the

homomorphism condition (2.6). A term of degree of schift m in (2.6) is again a polyno-

mial in τ0, τ1, τ2, more precisely, a sum of the terms

τm0

0 τm1

1 τm2

2 , where m1 + 2m2 = m, (5.10)

with operator coefficients. But, all the monomials (5.10) with τ0, τ1, τ2 given by (5.9) are,

obviously, linearly independent and, so, (2.6) has to be satisfied independently of the

operator coefficients of allmonomials (5.10). These conditions are therefore independent

of τ0, τ1, τ2. �

Applying the construction from Section 3 to obtain a formal deformation with

the infinitesimal part of the form (4.9), we then obtain the following intermediate result.

Proposition 5.5. The following relations:

tk1t
k−1
2 − tk−2

1 tk2 = 0, k ≥ 4, (5.11)(
tk0 − tk−1

0

)
tk1 = 0, k ≥ 3, (5.12)(

tk0 − tk−2
0

)
tk2 = 0, k ≥ 4, (5.13)

are sufficient for integrability of the infinitesimal deformation (4.9). �

Proof. Conditions (5.11), (5.12), and (5.13) coincide with conditions (3.6) of Proposition

3.1 that are sufficient for integrability. �

Remark 5.6. Conditions (5.12) and (5.13) are stronger than (4.11) and (4.12), respec-

tively. Therefore, the ideal generated by these polynomials in (5.11), (5.12), and (5.13)

is bigger than the one generated by R2(t), R3(t), and R ′
3(t). The deformation naturally

related to the modules of differential operators is not a versal deformation of the mod-

ule S in the sense of [10].

6 Affine and projective invariance

An important problem of the deformation theory is the problem of invariance with

respect to the action of a Lie group or a Lie algebra of symmetries.

We will consider the following two Lie algebras: the algebra of infinitesimal

affine transformations aff(n,R) = gl(n,R)�R
n and the algebra of infinitesimal projective
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transformations, sl(n+ 1,R), spanned by the vector fields on R
n

Xi =
∂

∂xi
, Xij = xi ∂

∂xj
, X̄i = xiE, (6.1)

where

E = xi ∂

∂xi
. (6.2)

The Lie subalgebras gl(n,R) and aff(n,R) of sl(n+1,R) are generated by Xij and {Xi, Xij},

respectively.

Note that the cocycles (4.5), (4.6), and (4.7) are aff(n,R)-invariant. Moreover,

the cocycles (4.6) and (4.7) can be written in an sl(n+ 1,R)-invariant form (cf. [17]).

6.1 Affinely invariant differential operators

Classification of linear operators on S invariant with respect to aff(n,R) goes back to

the beginning of the theory of invariants (see [25]).

The algebra of the aff(n,R)-invariant operators on S is generated by the diver-

gence operator D given by (5.6) and the Euler operator

E = ξi
∂

∂ξi
. (6.3)

In particular, for k ≥ $, any aff(n,R)-invariant operator from Sk to S� is proportional

to Dk−� and, for k < $, there are no nonzero operators.

Similarly, a bilinear aff(n,R)-invariant operator A : Vect(Rn) ⊗ Sk → S� is

given by

A =
∑

0≤t≤s

(
αt

∂s−tX

∂xi1 · · ·∂xis−t

∂t

∂xis−t+1 · · ·∂xis

∂s

∂ξi1
· · ·∂ξis

+ βt
∂s−t+1X

∂xi1 · · ·∂xis−t∂ξi1

∂t

∂xis−t+1 · · ·∂xis

∂s−1

∂ξi2
· · ·∂ξis

+ γt
∂s−tX

∂xi1 · · ·∂xis−t−1∂ξis−t

∂t+1

∂xis−t · · ·∂xis

∂s−1

∂ξi1
· · ·∂ξ̂is−t · · ·∂ξis

)
,

(6.4)

where s = k− $+ 1 and αt, βt, and γt are arbitrary constants.

Remark 6.1. The cocycles (4.5), (4.6), and (4.7) are precisely of the form (6.4) and, there-

fore, affinely invariant.
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6.2 Affinely invariant deformations

The following statement will be an important ingredient of the proof of Theorem 4.3.

Theorem 6.2. Every deformation of the Vect(Rn)-module S is equivalent to some aff(n)-

invariant deformation. �

Proof. Given a deformation of the Vect(Rn)-module S written in the form (2.5), the op-

erator ϕ is of the form

ϕ =
∑
m≥1

ϕm. (6.5)

Assume, by induction, that the operators ϕ1, . . . , ϕk−1 are aff(n)-invariant and each

term ϕm is a homogeneous polynomial in t of order m. The chosen deformation pro-

vides a solution ϕk of (2.16); we show that there is always another solution ϕ ′
k which is

aff(n)-invariant.

The solution ϕk can be chosen homogeneous in t of degree k, such that

ϕk|Sm ⊂ Sm−k. (6.6)

Indeed, the coboundary operator δ and the cup product (2.8) preserve the homogeneity

and, by induction, one can always choose the right-hand side of (2.16) homogeneous of

degree k.

The cup-product of two aff(n)-invariant linear maps is a bilinear map which

is also aff(n)-invariant. Hence, the right-hand side of (2.16) is aff(n)-invariant. Take

X ∈ aff(n), then LX(δϕm) = 0. Since δ commutes with Lie derivative, this means that

the map

LX

(
ϕm

) ∈ Hom
(
Vect

(
R

n
)
,D
(
Sk, Sk−m

))
(6.7)

is a 1-cocycle on Vect(Rn) for all X ∈ aff(n).

This 1-cocycle is a coboundary form ≥ 3 (see [17] and Section 4.2), and therefore

there exists an element γX ∈ D(Sk, Sk−m) depending on X ∈ aff(n), such that

LX

(
ϕm

)
= δ
(
γX

)
. (6.8)

This defines a linear map γ : aff(n)→ D(Sk, Sk−m) by

γ(X) = γX. (6.9)
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Lemma 6.3. The linear map (6.9) is a 1-cocycle on the Lie algebra2 aff(n). �

Proof. By definition,

dγ(X, Y) = LX

(
γY

)
− LY

(
γX

)
− γ[X,Y] (6.10)

for all X, Y ∈ aff(n). Since, tautologically, (LXLY − LYLX − L[X,Y] )ϕm = 0, we have

δ
(
LX

(
γY

)
− LY

(
γX

)
− γ[X,Y]

)
= 0. (6.11)

Therefore, the operator dγ(X, Y) ∈ D(Sk, Sk−m) has to be a 0-cocycle with respect to the

Vect(Rn)-cohomology, or, in other words, Vect(Rn)-invariant. This implies dγ(X, Y) = 0

for all X, Y ∈ aff(n).

Lemma 6.3 is proved. �

Every cocycle γ : aff(n)→ D(Sk, Sk−m) is of the form

γX = κ tr(X)Dm+LX(A), (6.12)

where κ is a constant, tr(X) is the trace of X in the standard matrix representation of

aff(n) and D is the operator (5.6); the second summand is a coboundarywith an arbitrary

A ∈ D(Sk, Sk−m) (see [15]).

We now substitute expression (6.12) into (6.8) and prove that the constant κ has

to be zero.

Lemma 6.4. A cocycle γ : aff(n)→ D(Sk, Sk−m) satisfying (6.8) is a coboundary. �

Proof. Choose X = E given by (6.2) and substitute the general form (6.12) of γ into

relation (6.8). This leads to the equation

LE(ϕ) = κ ′δ
(
Dm

)
(6.13)

for a linear map ϕ : Vect(R)→ D(Sk, Sk−m) and some κ ′ ∈ R.

In other words, for all X ∈ Vect(Rn), we have

[
LE, ϕ(X)

]
−ϕ

(
[E, X]

)
= k ′[LX,D

m
]
, (6.14)

where LX is the Lie derivative on D(Sk, Sk−m), so that, LE = E − E. Equation (6.14),

2Note that we deal here with cohomology of aff(n), and not of Vect(M). We will denote by d the corresponding
coboundary operator.
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therefore, leads to

[
E, ϕ(X)

]
−ϕ

(
[E, X]

)
−
[
E, ϕ(X)

]
= k ′[LX,D

m
]
. (6.15)

From translation equivariance, one can assume that the map ϕ is with constant

coefficients, more precisely

ϕ(X) =
∑

ϕi1,...,it
∂

∂xi1
· · · ∂

∂xis
(X)

∂

∂xis+1
· · · ∂

∂xit
, (6.16)

where coefficients ϕi1,...,it do not depend on x. Each homogeneous term in the left hand

side of (6.15) is then proportional to itself with coefficient m − t; but, the right-hand

side of (6.15) is homogeneous of degree m in x. Therefore, the only solution of (6.15)

corresponds to κ ′ = 0.

Lemma 6.4 is proved. �

We proved that κ = 0 in (6.12) so that γ is a coboundary, then we put ϕ̃m =

ϕm − δA. This is a new solution of the equation (2.16) which is aff(n)-invariant.

Theorem 6.2 is proved. �

6.3 Projectively invariant deformations

Consider the deformations invariant with respect to the full algebra of projective sym-

metries.

Proposition 6.5. Every integrable infinitesimal deformation of the Vect(Rn)-module S

generated by the cocycles (4.6) and (4.7) corresponds to some sl(n + 1)-invariant

deformation. �

Proof. The restriction of cohomology classes of cocycles c1 and c2 to sl(n + 1) vanish.

In other words, these classes can be represented by the unique projectively invariant

cocycles cohomologous to c1 and c2 (see [17]). The proof of Proposition 6.5 is analogous

to that of Theorem 6.2 but simpler since H1(sl(n+ 1);D(Sk, Sk−m)) = 0 (see [15]) and the

analogous of Lemma 6.4 is trivially held. �

7 Proof of the main theorem

The proof contains two parts. First, we show by a straightforward computation that

conditions (4.10), (4.11), and (4.12) are necessary. Second, we use the existence of the

deformation constructed in the preceding section to prove that these conditions are,

indeed, sufficient.
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7.1 Cup-products of the nontrivial 1-cocycles

We will need to calculate the cup-products of the nontrivial 1-cocycles c0, c1, c2. Obvi-

ously, [[c0, c0]] = [[c0, c1]] = 0 as 2-cocycles. One, furthermore, has a 2-cocycles

[[
c1, c1

]]
(X, Y) = −4

∂2X

∂xi∂xj

∂3Y

∂xl∂xm∂ξi

∂3

∂ξj∂ξl∂ξm
− (X ↔ Y),

[[
c0, c2

]]
(X, Y) = 3

∂3X

∂xi∂xj∂ξi

∂3Y

∂xl∂xm∂ξj

∂2

∂ξl∂ξm
− (X ↔ Y),

[[
c1, c2

]]
(X, Y) = −2

∂2X

∂xi∂xj

∂4Y

∂xl∂xm∂xp∂ξi

∂4

∂ξj∂ξl∂ξm∂ξp
,

+ 6
∂3X

∂xi∂xj∂ξl

∂3Y

∂xl∂xm∂xp

∂4

∂ξi∂ξj∂ξm∂ξp

− 6
∂4X

∂xi∂xj∂xl∂ξm

∂3Y

∂xm∂xp∂ξl

∂3

∂ξi∂ξj∂ξp

− (X ↔ Y),

1

2

[[
c2, c2

]]
(X, Y) = −6

∂3X

∂xi∂xj∂ξl

∂4Y

∂xm∂xp∂xq∂ξi

∂

∂xl

∂4

∂ξj∂ξm∂ξp∂ξq

+ 9
∂3X

∂xi∂xj∂ξl

∂4Y

∂xl∂xm∂xp∂ξq

∂

∂xq

∂4

∂ξi∂ξj∂ξm∂ξp

+ 3
∂3X

∂xi∂xj∂xl

∂4Y

∂xm∂xp∂xq∂ξi

∂5

∂ξj∂ξl∂ξm∂ξp∂ξq

− 3
∂3X

∂xi∂xj∂ξl

∂4Y

∂xl∂xm∂xp∂xq

∂5

∂ξi∂ξj∂ξm∂ξp∂ξq

− 6
∂3X

∂xi∂xj∂ξl

∂5Y

∂xl∂xm∂xp∂xq∂ξi

∂4

∂ξj∂ξm∂ξp∂ξq

− (X ↔ Y)

(7.1)

as well as [[c2, c0]] = [[c0, c2]] and [[c2, c1]] = [[c1, c2]].

Lemma 7.1. The 2-cocycle [[c1, c1]] is a coboundary. �

Proof. Consider a 1-cochain b ∈ C1(Vect(Rn);D(S)) given by

b(X) =
∂3X

∂xi∂xj∂xk

∂3

∂ξi∂ξj∂ξk
. (7.2)

It can be easily checked that

[[
c1, c1

]]
= −

4

3
δ(b) (7.3)

so that the cohomology class of the 2-cocycle [[c1, c1]] vanishes. �
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7.2 Computing the integrability conditions

The Maurer-Cartan equation (2.16) in the second order reads

δϕ2(t)|Sk
= −

1

2

∑
i,j

t
k−j
i tkj

[[
c

k−j
i , ck

j

]]
. (7.4)

The second-order termof a formal deformation isϕ2(t)(X) =
∑

tki t
l
jϕ

kl
ij (X), where

ϕkl
ij (X) are differential operators on S of the form (6.4) homogeneous with

respect to the partial derivatives in x and in ξ of degree i + j + 2. Tedious but direct

computation yields

ϕ2(t)(X) = αk
3

∂3X

∂xi∂xj∂xl

∂3

∂ξi∂ξj∂ξl
+ βk

3

∂4X

∂xi∂xj∂xl∂ξi

∂2

∂ξj∂ξl

+ αk
4

∂4X

∂xi∂xj∂xl∂xm

∂4

∂ξi∂ξj∂ξl∂ξm
+ γk

3

∂4X

∂xi∂xj∂xl∂ξm

∂4

∂xm∂ξi∂ξj∂ξl

+ αk
5

∂5X

∂xi∂xj∂xl∂xm∂xp

∂5

∂ξi∂ξj∂ξl∂ξm∂ξp

+ γk
4

∂5X

∂xi∂xj∂xl∂xm∂ξp

∂4

∂xp∂ξi∂ξj∂ξl∂ξm
,

(7.5)

where the coefficients αk
s , β

k
s , γ

k
s are quadratic polynomials in t

k
i satisfying the following

system:

3αk
3 = −2t

k−1
1 tk1 ,

βk
3 = 3tk0t

k
2 ,

4αk
4 + γk

3 = −2t
k−2
1 tk2 ,

2αk
4 = −2t

k−1
2 tk1 ,

γk
3 = 2tk−1

2 tk1 ,

10αk
5 = −3t

k−2
2 tk2 ,

2γk
4 = 3tk−2

2 tk2 .

(7.6)

This systemhas (a unique) solution if and only if condition (4.10) is satisfied. This proves

that condition (4.10) is, indeed, necessary for the existence of the second order term

ϕ2(t).

The proof, that the relations (4.11) and (4.12) are necessary for integrability of

infinitesimal deformations, is analogous but much longer since one has to consider the

third-order terms in (2.16).
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7.3 The conditions of integrability are sufficient

We prove that conditions (4.10), (4.11), and (4.12) are sufficient.

Suppose that there is a condition of integrability of order m, that is, a relation

Rm(t) = 0, where Rm(t) is a homogeneous polynomial of degree m in tk0 , t
k
1 , t

k
2 . We have

to prove that the polynomial Rm(t) belongs to the ideal, R, generated by the relations

(4.10), (4.11), and (4.12).

Proposition 5.5 implies that Rm(t) belongs to the ideal generated by the polyno-

mials in (5.11), (5.12), and (5.13). Therefore, Rm(t) is split into a sum

Rm(t) = Rm,1(t) + Rm,2(t) + Rm,3(t) (7.7)

of polynomials divisible by (5.11), (5.12), and (5.13), respectively.

The polynomial Rm,1(t) already belongs to R.

Consider the second term Rm,2(t). We can assume that m ≥ 3, since the only

second-order condition is (4.10), see Section 6. The relation [[c0, c1]] = 0 implies that each

monomial in Rm(t) has to contain some parameter t�2 as a multiple (cf. Proposition 4.4).

By assumption, the polynomial Rm,2(t) is a multiple of (tk0 − tk−1
0 )tk1 for some k. But,

modulo the relation (4.10), any expression of the form (tk0 − tk−1
0 )tk1 · · · t�2 is divisible

by (4.12) and therefore Rm,2(t) belongs to R.

Consider the third term Rm,3(t). Since the Nijenhuis-Richardson product [[c0, c2]]

commutes with c0, then Rm,3(t) has to contain the terms of the form(
tk0 − tk−2

0

)
tk2 · · · t�1 or

(
tk0 − tk−2

0

)
tk2 · · · t�2. (7.8)

But, using the relation (4.10) we readily get that these terms are divisible by (4.11)

and (4.12), respectively and, therefore, belong to R.

Theorem 4.3 is proved.
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