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Abstract. We consider a contact manifold with a pseudo-Riemannian metric and define a

contact vector field intrinsically associated to this pair of structures. We call this new differential

invariant the contact Riemannian curl. We show that the contact Riemannian curl vanishes if
the metric is of constant curvature and the contact structure is defined by a Killing 1-form;

the contact Riemannian curl has a strong similarity with the Schwarzian derivative since it

depends only on the projective equivalence class of the metric. For the Laplace-Beltrami operator
on a contact manifold, the contact Riemannian curl is proportional to the subsymbol defined

in [CO12]. We also show that the contact Riemannian curl vanishes on the (co)tangent bundle

over a Riemannian manifold. This implies that the corresponding subsymbol of the Laplace-
Beltrami operator is identically zero.

1. Introduction

The principal object of this paper is related to the notion of invariant differential operator,
i.e., the operators commuting with the action of the group of diffeomorphisms. The notion of
differential invariant is perhaps the oldest notion of differential geometry. The best known example
is perhaps the curvature in all its avatars. The domain to which belongs the present work was
initiated by Veblen [Veb22] who started a systematic study of invariant differential operators on
smooth manifolds. The theory was intensively studied in the 80’s in the context of Gelfand-Fuchs
cohomology; see [Fu86, GLS02] and references therein.

We consider a smooth manifold M equipped simultaneously with a contact structure and a
pseudo-Riemannian metric. We will present a construction of a contact vector field corresponding
to these two structures; this vector field will be called the contact Riemannian curl. Our con-
struction will be coordinate free and invariant with respect to the action of the group of contact
diffeomorphisms, i.e., the contact Riemannian curl is a differential invariant. Moreover, our goal
is to define this differential invariant in a “most symmetric” way, so that it is also invariant with
respect to natural equivalence relations.

One of the equivalence relations we consider is as follows. Two metrics are called projectively
equivalent (or geodesically equivalent) if they have the same non-parametrized geodesics. i.e., their
Levi-Civita connections are projectively equivalent connections. It turns out that the constructed
contact Riemannian curl is invariant with respect to this equivalence relation. This invariance
implies, in particular, that the contact Riemannian curl of a metric of constant scalar curvature
and contact structure defined by a Killing 1-form vanishes. Invariance of the contact Riemannian
curl relative projectively equivalence of metrics makes this notion quite similar to that of classical
Schwarzian derivative (see [BO00, OT05, B06] for various multi-dimensional generalizations of the
Schwarzian derivative). We investigate this relation in more details.

Among the main properties of the contact Riemannian curl that we investigate is its relation
to the Laplace-Beltrami operator. Differential operators on contact manifolds were studied from
the geometric point of view the recent work [CO12], where the notion of subsymbol of a differential
operator on a contact manifold was introduced. The subsymbol of a differential operator is a tensor
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field of degree lower than that of the principal symbol. Note that the subsymbol is not well-defined
for an arbitrary manifold, one needs a contact structure to obtain an invariant definition. For
a given second order differential operators, the subsymbol is just a contact vector field. In the
present paper, we consider the Laplace-Beltrami operator associated to an arbitrary metric on a
contact manifold and calculate its subsymbol. It turns out that it is proportional to the contact
Riemannian curl.

We also apply our general construction to a particularly interesting example of a manifold
that has natural contact and Riemannian structures, namely to the spherical (or projectivized)
cotangent bundle ST ∗M over a Riemannian manifold (M, g). The manifold ST ∗M is equipped
with the canonical lift of the metric g. We show that the contact Riemannian curl, and therefore
the subsymbol of the Laplace-Beltrami operator, is identically zero in this case. Let us mention
that the projectivization of the cotangent bundle over a Riemannian manifold M , as well as the
sphere bundle ST ∗M , is an example of a “real-complex” manifold whose local invariants were
recently introduced and computed in [BGLS12].

In the end of the paper, we provide several concrete examples of the contact Riemannian curl.
For instance, we calculate it for the 3-ellipsoid equipped with the conformally flat metric introduced
in [Tab99] and intensively used in [MT01, DV11].

We believe that the study of differential invariants of a pair (a Riemannian metric, a contact
structure) is worth a systematic study.

2. Contact geometry and tensor fields

Contact geometry is an old classical subject, that can be viewed as an odd-dimensional version
of symplectic geometry. Let M be a contact manifold and dim(M) = 2`+1, we will always assume
that ` ≥ 1. Unlike a symplectic structure in symplectic geometry, a contact structure on M is not
defined by a differential form. A contact structure is defined by a conformal class of a 1-form θ
such that dθ is a 2-form of rank 2`, called a contact form. It is important that a contact form is
not intrinsically associated with a contact structure.

A contact diffeomorphism (a contact vector field) is a diffeomorphism (a vector field) preserving
the contact structure. It does not necessarily preserve a given contact form. The space of all
contact vector fields can be identified with the space of smooth functions, but this correspondence
depends on the choice of a contact form; see [Arn89].

In this section, we recall several standard facts of contact geometry — those of contact structure
and contact vector fields — using somewhat unconventional notation of [OT05, Ovs06] which are
among our main references. The contact structure is defined as a tensor field which is a weighted
contact form. Contact vector fields are in one-to-one correspondence with weighted densities of
weight − 1

`+1 .

2.1. Weighted densities. A weighted density is a standard object in differential geometry. In or-
der to make the definitions intrinsic, we recall here this notion.

Let M be a manifold of dimension n. For any λ ∈ R, we denote by ΛnT ∗M⊗λ the line bundle of
homogeneous complex valued functions of weight λ on the determinant bundle ΛnTM . The space
Fλ(M) of smooth sections of ΛnT ∗M⊗λ with complex coefficients is called the space of weighted
densities of weight λ, (or λ-densities for short).

Example 2.1.1. If the manifold M is orientable and if ω is a volume form, then φωλ, where
φ ∈ C∞(M), is a λ-density.

The space Fλ(M) has the structure of a module over the Lie algebra Vect(M) of all smooth
vector fields on M . We denote by Div the divergence operator associated with a volume form ω
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on M . That is, LX(ω) = Div(X)ω. The action of a vector fields reads as follows:

(1) LλX(φωλ) = (X(φ) + λDiv(X)φ)ωλ,

for every vector field X and φ ∈ C∞(M).

2.2. Contact manifolds. A smooth manifold M is called contact if it is equipped with a com-
pletely non-integrable distribution

D ⊂ TM
of codimension 1. The distribution D is called a contact distribution; the hyperplane Dx ⊂ TxM
is called a contact hyperplane for every point x ∈ M . Contact structure on M exists only if M is
odd-dimensional.

A usual way to define a contact structure is to chose a (locally defined) differential 1-form θ on
M such that D = ker θ. Such a 1-form is called a contact form. The complete non-integrability of
the distribution D is equivalent to the fact that

vol := θ ∧ (dθ)`

is a (locally defined) volume form; equivalently, the 2-form dθ is a non-degenerate on the contact
hyperplanes Dx of D. However, there is no canonical choice of a contact form. Moreover, the above
definition is not invariant.

A diffeomorphism f : M → M is a contact diffeomorphism if f preserves D. If θ is a contact
form corresponding to the contact distribution D and f is a contact diffeomorphism, then f does
not necessarily preserve θ, more precisely, f∗θ = Ffθ, where Ff is a function.

We refer to [Arn89, Bla10] for excellent textbooks on contact geometry.

2.3. The contact tensor. We are ready to introduce the main notion of this section.

Definition 2.3.1. Given a contact form θ, let the contact tensor field be

(2) Θ = θ ⊗ vol−
1
`+1 ,

where vol−
1
`+1 is a weighted density of weight − 1

`+1 , and tensor product is performed over C∞(M).

Proposition 2.3.2. The tensor field Θ is globally defined on a contact manifold M , it is indepen-
dent of the choice of a contact form, and it is invariant with respect to the contact diffeomorphisms.

Proof. Let F be a non-vanishing function and consider the contact form Fθ. The corresponding

volume form is Fθ ∧ (d(Fθ))
`

= F `+1θ ∧ (dθ)`. Therefore, the contact tensor fields defined by
Eq. (2), corresponding to the contact forms θ and Fθ, coincide. Hence, Θ is globally defined and
invariant with respect to contact diffeomorphisms. �

A contact structure is intrinsically defined by the corresponding contact tensor.

Example 2.3.3. Local coordinates (x1, . . . , x`, y1, . . . , y`, z) on M are often called the Darboux
coordinates if the contact structure can be represented by the 1-form

θDar = dz +
1

2

∑̀
i=1

(
xidyi − yidxi

)
.

The corresponding volume form is then the standard one:

vol = (−1)
`(`−1)

2 `! dx1 ∧ · · · ∧ dx` ∧ dy1 ∧ · · · dy` ∧ dz.
A contact structure has no local invariants, therefore Darboux coordinates always exist in the
vicinity of every point; see [Arn89] (and [GL07] for a simple algebraic proof).
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2.4. Contact vector fields. A contact vector field on a contact manifold M is a vector field that
preserves the contact distribution. This is usually expressed in terms of contact forms: a vector
field X is contact if, for every contact form θ, the Lie derivative LXθ is proportional to θ:

(3) LXθ = 1
`+1 Div(X)θ.

In terms of the contact tensor (2), we have the following corollary of Proposition 2.3.2.

Corollary 2.4.1. A vector field X is contact if and only if it preserves the contact tensor:

LXΘ = 0.

Let K(M) denote the space of all smooth contact vector fields on M . This space has a Lie
algebra structure, it is also a module over the group of contact diffeomorphisms. The following
observation can be found in [Ovs06, CO12].

Proposition 2.4.2. As a module over the group of contact diffeomorphisms, the space K(M) is
isomorphic to the space of weighted densities F− 1

`+1
(M).

Proof. The space of contact forms is isomorphic to F 1
`+1

(M). Indeed, this follows from Propo-

sition 2.3.2 and from Eq. (3). The statement then follows from the fact that there is a nat-
ural C∞(M)-valued pairing between the spaces of contact vector fields and of contact forms:
(X, θ) 7→ θ(X). �

Remark 2.4.3. The above proposition means that, unlike the symplectic geometry, the notion of
contact Hamiltonian should be understood as a weighted density and not as a function. However,
in the Darboux coordinates, the correspondence between the elements of K(M) and F− 1

`+1
(M)

becomes the usual correspondence between contact vector fields and functions (see [Arn89]):

X
φω

− 1
`+1

=
∑̀
i=1

(
∂xi(φ) ∂yi − ∂yi(φ) ∂xi

)
+ 1

2 ∂z(φ) E +
(
φ− 1

2 E(φ)
)
∂z,

where

E =
∑̀
i=1

(
xi∂xi + yi∂yi

)
is the Euler vector field.

Example 2.4.4. If dimM = 3, contact vector fields are identified with − 1
2 -densities; if dimM = 5,

then K(M) ∼= F− 1
3
(M), etc. Note also that, in the one-dimensional case, the contact structure is

trivial and every vector field is contact, one then has Vect(M) ∼= F−1(M).

2.5. Another definition of weighted densities on contact manifolds. In presence of a con-
tact structure defined by a contact form θ, it is natural to express elements of any rank 1 bundle,
for example, weighted densities, in terms of powers of θ:

φ vol
λ
`+1 ←→ φθλ,

where as above φ is a smooth function.

Remark 2.5.1. The notation φθλ is adopted in many works by physicists (see also [Ovs90,
GLS01]). In this notation, many formulas simplify. For instance, if X is a contact vector field,
then the corresponding contact Hamiltonian is φθ−1, where the function φ is simply the evaluation
φ = θ(X).
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2.6. The Poisson algebra of weighted densities. The space, F =
⋃
λ Fλ, of all weighted

densities on M can be endowed with a structure of a Poisson algebra (see [Arn89, OT05, Ovs06]):

{., .} : Fλ ⊗Fµ → Fλ+µ+ 1
`+1

.

The explicit formula in Darboux coordinates is as follows:{
φωλ, ψ ωµ

}
=

(
n∑
i=1

(∂xiφ∂yiψ − ∂xiψ ∂yiφ) + ∂zφ (µψ + Eψ)− ∂zψ (λφ+ Eψ)

)
ωλ+µ+ 1

`+1 .

The subspace F− 1
`+1

(M) is a Lie subalgebra of F isomorphic to K(M). The Poisson bracket of

− 1
`+1 -densities precisely corresponds to the Lie derivative:

X{φ,ψ} = L
− 1
`+1

Xφ
(ψ) ,

where φ = φω−
1
`+1 , ψ = ψ ω−

1
`+1 .

2.7. The invariant splitting. The full space of vector fields Vect(M) splits into direct sum

Vect(M) = K(M)⊕ T an(M),

where T an(M) is the space of vector fields tangent to the contact distribution, i.e., θ(Y ) = 0 for
every contact form θ and every Y ∈ T an(M). Such vector fields are called tangent vector fields.
Unlike K(M), the space T an(M) is not a Lie algebra, but a K(M)-module.

The above splitting is invariant with respect to the group of contact diffeomorphisms. In par-
ticular, there is an invariant projection

(4) π : Vect(M)→ K(M),

that will be very useful.

3. The contact Riemannian curl and its properties

In this section, we introduce our main notion, a contact vector field corresponding to a metric
and a contact structure. We also study its main properties, such as projective invariance and
relation to the multi-dimensional Schwarzian derivative.

3.1. Covariant derivative. Let us assume now that M is endowed with a pseudo-Riemannian
metric g. We denote the Levi-Civita connection on M by ∇, and the Christoffel symbols by Γkij .
The covariant derivative, also denoted by ∇, is the linear map that can be defined for arbitrary
space of tensor fields, T (M):

∇ : T (M)→ T (M)⊗ Ω1(M).

It is written in the form ∇(t) = ∇i(t) dxi, and therefore it suffices to define the partial deriva-
tives ∇i.

The covariant derivative of vector fields and differential 1-forms is given, in local coordinates,
by the well-known formulas

∇i
(
V j∂j

)
=
(
∂iV

j + ΓjikV
k
)
∂j , ∇i

(
βjdx

j
)

=
(
∂iβj − Γkijβk

)
dxj ,

respectively, where ∂i = ∂/∂xi. Here and below summation over repeated indices is understood
(Einstein’s notation); see [DNF92]. The covariant derivative then extended to every tensor fields
by Leibniz rule.

For instance, the covariant derivative of weighted densities is defined in local coordinates by the
following formula:

∇i
(
φωλ

)
=
(
∂iφ− λΓjijφ

)
ωλ,
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that we will extensively use throughout the paper.

3.2. The main definition. The main notion introduced in this paper is the following one.

Definition 3.2.1. (a) For every pseudo-Riemannian metric g on a contact manifold M , we define
a weighted density of degree − 1

`+1 :

(5) Ag,Θ := 〈g, ∇Θ〉 ,

in local coordinates, Ag,Θ := gij∇iΘj .
(b) We call the contact vector field XAg,Θ with contact Hamiltonian Ag,Θ the contact Riemann-

ian curl of g .

Note that the quantity Ag,Θ is, indeed, a weighted density of degree − 1
`+1 , so that it has a meaning

of contact Hamiltonian; see Proposition 2.4.2.
It will be useful to have an explicit expression for Ag,Θ in local coordinates.

Proposition 3.2.2. In local coordinates, such that Θ = θ ⊗ vol−
1
`+1 , one has

(6) Ag,Θ = gij
(
∂iθj −

(
Γkij −

1

2(`+ 1)

(
δki Γrjr + δkj Γrir

))
θk

)
vol−

1
`+1 ,

where δki is the Kronecker symbol.

Proof. This can be obtained directly from Definition 3.2.1 and the expression of the covariant
derivative of a weighted density. �

Remark 3.2.3. It follows from the intrinsic definition (5) that the local expression (6) is actually
invariant with respect to the action of the group of contact diffeomorphisms. The formula (6)
remains unchanged for any choice of local coordinates. It is also independent of the choice of the
contact form.

3.3. Projective invariance. Let us recall a fundamental notion of projectively equivalent con-
nections due to Cartan [Car24].

A projective connection is an equivalence class of symmetric affine connections giving the same
non-parameterized geodesics. The symbol of a projective connection is given by the expression

Πk
ij := Γkij − 1

n+1

(
δki Γllj + δkj Γlil

)
,

where n is the dimension; see [KN64]. Note that in our case, n = 2`+ 1.
The simplest properties of a projective connection are as the following.

(1) Two affine connections, ∇ and ∇̃, are projectively equivalent if and only if their symbols

Πk
ij and Π̃k

ij coincide.

(2) Equivalently, ∇ and ∇̃ are projectively equivalent if and only if there exists a 1-form β
such that

Γ̃kij = Γkij + δkj βi + δki βj .

It turns out that the contact curl of a metric depends only on the projective equivalence class
of the Levi-Civita connection.

The following statement is perhaps the most important property of the contact Riemannian curl
that makes it similar to the Schwarzian derivative.

Theorem 3.3.1. If g and g̃ are two metrics whose Levi-Civita connections are projectively equiv-
alent, then Ag,Θ = Ag̃,Θ.
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Proof. The coordinate formula (6) for Ag,Θ becomes can be written as follows:

Ag,Θ = gij
(
∂iθj −Πk

ij θk
)
.

This expression depends only on the projective class of the Levi-Civita connection and implies
projective invariance. �

Let [g] denote the class of geodesically equivalent metrics, let [∇] denote the corresponding
projective connection. The above theorem means that the projective Riemannian curl actually
depends only on [g] and not on the metric itself.

Remark 3.3.2. Geodesically equivalent metrics is a very classical subject of Riemannian geometry
that goes back to Beltrami, Levi-Civita, Weyl, and Cartan. We refer to the classical book [Eis97]
for a survey. The subject is still very active, see [BKM09] and references therein.

3.4. Projectively flat connections, metrics of constant curvature and Killing contact
forms. It is now natural to investigate projectively flat case.

A connection ∇ on M is called projectively flat if, in a neighborhood of every point, there exist
local coordinates, often called adapted coordinates, such that the geodesics are straight lines in
these coordinates.

A connection is projectively flat if in adapted coordinates, the symbols Πk
ij vanish identically.

Note also that projectively flat connections admit a (local) action of the group SL(n + 1,R), in
other words, adapted coordinates admit linear-fractional changes.

The classical Beltrami theorem states that the Levi-Civita connection of a Riemannian metric
is projectively flat if and only if the metric has a constant sectional curvature. This fact allows us
to obtain an important consequence of Theorem 3.3.1.

Let us recall the notion of Killing differential forms that goes back to Yano [Yan52]. A 1-form
β = βi(x)dxi is said to be a Killing form if

∇iβj +∇jβi = 0.

Recall also a more common notion of Killing vector field. A vector field V = V i(x)∂i is said to be
a Killing vector field if

LV g = 0

Every Killing 1-form can be obtained from a Killing vector field by lowering indices: β = 〈g, V 〉;
i.e., βi = gijV

j in local coordinates.

Corollary 3.4.1. If g is a metric of constant sectional curvature and if the contact structure is
defined by a contact 1-form θ which is a Killing form with respect to a metric from the projective
class [g], then Ag,Θ = 0.

Proof. Assume that the Levi-Civita connection corresponding to g is projectively flat. In this case,
there exist local coordinates for which Πk

ij ≡ 0, and therefore

Ag,Θ = gij∂iθj .

If, furthermore, ∂iθj + ∂jθi = 0 for all i, j, then Ag,Θ vanishes identically since the tensor gij is
symmetric. The equation ∂iθj + ∂jθi = 0 means that θ is a Killing form with respect to the flat
metric which is projectively equivalent to g.

The corollary then follows from Theorem 3.3.1. �

Example 3.4.2. The Darboux form in Example 2.3.3 is a Killing form with respect to the flat
metric. Note that in other works, especially in those on analytical mechanics, another normal form
of the contact form is often used: dz +

∑
1≤i≤` x

idyi. (Over fields of characteristic 2, only this

latter form can be used, see [Leb10].) However, this is not a Killing form with respect to the flat
metric.
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3.5. Contact equivariance. Consider the action of the group of contact diffeomorphisms. It
immediately follows from the intrinsic (i.e., invariant) definition (5) of Ag,Θ of that the map
g 7→ Ag,Θ from the space of metrics to that of − 1

`+1 -densities commutes with this action:

(7) Af∗g,Θ = f∗ (Ag,Θ) .

From this fact and Corollary 3.4.1, we deduce the following statement.

Corollary 3.5.1. If a metric g̃ is contactomorphic to a metric g of constant sectional curvature
and if the contact structure is defined by a contact 1-form θ which is a Killing form with respect
to a metric from the projective class [g], then Ag̃,Θ = 0.

3.6. Action of the full group of diffeomorphisms. Let us consider the action of the group of
all diffeomorphisms. It turns out that this action is related to a quite remarkable 1-cocycle.

Recall that the space of connections is an affine space associated with the space of (2, 1)-tensor

fields, i.e., given two connections, ∇ and ∇̃, the difference ∇ − ∇̃ is a well-defined (2, 1)-tensor
field. This allows one to define a 1-cocycle on the group of all diffeomorphisms. If f is an arbitrary,
not necessarily contact, diffeomorphism, we set:

C(f) := f∗∇−∇,
where ∇ is an arbitrary fixed connection, choice of which changes C by a coboundary1.

Let ∇ and ∇̃ be two connections on M. The difference of the projective equivalence classes
[∇] − [∇̃] can be understood as a traceless (2, 1)-tensor field. Therefore, a projective connection
on M leads to the following 1-cocycle on the group of all diffeomorphisms:

T(f) = f∗[∇]− [∇]

which vanishes on (locally) projective diffeomorphisms. In local coordinates,

T(f)kij := f∗Πk
ij −Πk

ij ,

where Πk
ij are the projective Christoffel symbols2.

Proposition 3.6.1. If f : M →M is an arbitrary diffeomorphism, then

(8) f∗ (Ag,Θ)−Af∗g,Θ = f∗ 〈g,∇Θ〉 − 〈f∗g,∇Θ〉+ 〈f∗g ⊗Θ,T(f)〉 .

Proof. Let us first clarify the notation. Since T(f) is a (2, 1)-tensor field, the pairing 〈g ⊗Θ, T(f)〉
is well-defined. Furthermore, taking into account the weight of the contact tensor Θ, it follows
that 〈g ⊗Θ, T(f)〉 is a weighted density of weight − 1

`+1 .
In local coordinates and using Proposition 3.2.2, we have

Af∗g,Θ = (f∗g)ij
(
∂iθj − f∗Πk

ij θk
)

= (f∗g)ij
(
∂iθj − (f∗Πk

ij −Πk
ij) θk

)
− (f∗g)ijΠk

ijθk

= (f∗g)ij
(
∂iθj − T(f)kij θk

)
− (f∗g)ijΠk

ijθk

= (f∗g)ij
(
∂iθj −Πk

ijθk
)
− (f∗g)ij T(f)kij θk

= (f∗g)ij∇i(Θj)− (f∗g)ij T(f)kij θk

= 〈f∗g,∇ (Θ)〉 − 〈f∗g ⊗Θ, T(f)〉 .
It remains to notice that f∗ (Ag,Θ) = f∗ 〈g,∇ (Θ)〉. Proposition 3.6.1 is proved. �

1Note also that the cocycle C provides a universal way to construct representatives of non-trivial classes of the

Gelfand-Fuchs cohomology; see [Gel70].
2The 1-cocycle T is often considered as a higher-dimensional analog of the Schwarzian derivative; see [OT05].

If ∇ is projectively flat, then the group SL(n+ 1,R) of (local) symmetries of [∇] is precisely the kernel of T.
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4. The subsymbol of the Laplace-Beltrami operator

In this section, we explain the relation of the Riemannian curl to the classical Laplace-Beltrami
operator. Let us mention that study of differential operators on contact manifolds is a classical
subject; see a recent work [vE10] and references therein.

4.1. Differential operators and diffeomorphism action. Let M be an arbitrary smooth mani-
fold and Dλ,µ(M) be the space of linear differential operators acting on the space of weighted
densities:

T : Fλ(M)→ Fµ(M).

The space Dλ,µ(M) is naturally a module over the group of diffeomorphisms, the module structure
being dependent of the weights λ and µ. For k ∈ N, let Dkλ,µ(M) be the space of linear differential

operators of order ≤ k. The spaces Dkλ,µ(M) define a filtration on Dλ,µ(M) invariant with respect
to the group of diffeomorphisms.

Recall the classical notion of symbol (or the principal symbol) of a differential operator of order k.
It is defined as the image of the projection

σ : Dλ,µ(M)→ Dkλ,µ(M)/Dk−1
λ,µ (M).

Observe that, in the particular case λ = µ, the quotient space Dkλ,λ(M)/Dk−1
λ,λ (M) can be identified

with the space of symmetric contravariant tensor fields of degree k on M .
We will be especially interested in the space D2

λ,λ(M) of 2-nd order operators acting on λ-
densities; a systematic study of this space viewed as a module over the group of diffeomorphisms
was initiated in [DO97].

4.2. The subsymbol of a second order differential operator. In [CO12], the space of dif-
ferential operators on a contact manifold was studied as a module over the group of contact
diffeomorphisms. It was proved that there exists a notion of subsymbol which is a tensor field of
degree lower than that of the principal symbol.

For a 2-nd order differential operator, the subsymbol is just a contact vector field. More precisely,
for every λ, there exists a linear map (which is unique up to a constant factor)

sσ : D2
λ,λ(M)→ K(M),

invariant with respect to the action of the group of contact diffeomorphisms. The image sσ(T ) was
called the subsymbol of the operator T . We will need the explicit formula for the subsymbol of a
given second order differential operator.

If M is a contact manifold, then every operator T ∈ D2
λ,λ(M) can be written (in many different

ways) in the form:

(9) T = LλXφ1
◦ LλXφ2

+ LλXφ3
◦ LλY1

+ LλY2
◦ LλY3

+ LλXφ4
+ LλY4

+ F,

where each Yi is a vector field tangent to the contact distribution, Xφ is the contact vector field
with the contact Hamiltonian φ ∈ F− 1

`+1
(M), the Lie derivative Lλ is defined by Eq. (1), and F

denotes the operator of multiplication by a function.
The explicit expression for the subsymbol of differential operator (9) is as follows (see [CO12]):

(10) sσ(T ) = 1
2

[
Xφ1 , Xφ2

]
−
(
`+1
`+2

)(
λ− 1

2

)
XL̃Y1

(φ3) + 1
2π
[
Y2, Y3

]
+Xφ4 ,

where L̃Y (φ) := L
− 1
`+1

Y (φ) denotes the Lie derivative of a − 1
`+1 -density φ along the vector field Y ,

and π : Vect(M)→ K(M) is defined in (4).
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Remark 4.2.1. Although it seems almost impossible, the map sσ defined by (10) is well-defined.
In other words, it is independent of the choice of the vector fields in the representation (9) of the
operator T . This can be checked directly by rewriting it in local coordinates, see formula (12)
below. Since the expression (10) is written using invariant terms, it commutes with the action
of contact diffeomorphisms. Note also that the existence of such a map is indigenous to contact
geometry. There is no similar map commuting with the full group of diffeomorphisms, except for
the principal symbol.

4.3. The Laplace-Beltrami operator on the space of weighted densities. The classical
Laplace-Beltrami operator acting on the space of smooth functions is defined as follows

∆g = gij∇i∇j .

This operator is completely determined by the metric g.
We will go to a more general framework and consider the generalized Laplace-Beltrami operator

acting on the space of weighted densities:

∆λ
g : Fλ → Fλ,

defined by ∆λ
g = gij∇λi∇λj . The explicit formula of this operator is as follows:

∆λ
g (φωλ) =

(
gij∇i∇j(φ) +

n2λ(λ− 1)

(n− 1)(n+ 2)
Rφ

)
ωλ,

where R is the scalar curvature (see [DO01], Proposition 5.2).

4.4. Calculating the subsymbol of the Laplace-Beltrami operator. Recall that M is a
contact manifold and n = 2`+1. It turns out that the contact Riemannian curl of a given metric g
is proportional to the subsymbol of the Laplace-Beltrami operator associated with g. This property
can be considered as an equivalent definition of the contact Riemannian curl.

Theorem 4.4.1. One has

(11) sσ(∆λ
g ) =

(
`+1
`+2

)
(2λ− 1)XAg,Θ

.

Proof. The proof is essentially a direct computation.
Let us choose local Darboux coordinates. Every 2-nd order differential operator can be written

in these coordinates as:

T = T2,0,0 ∂
2
z + T1,i,0 ∂z∂xi + T1,0,i ∂z∂yi + T0,ij,0 ∂xi∂xj + T0,i,j ∂xi∂yj + T0,0,ij ∂yi∂yj

+T1,0,0 ∂z + T0,i,0 ∂xi + T0,0,i ∂yi + T0,0,0.

The coordinate formula of the subsymbol was calculated in [CO12]:

(12)

sσ(T ) = 1+2λ(`+1)
`+2

(
∂z(T2,0,0 − 1

2yiT1,i,0 + 1
2xiT1,0,i)

+∂xi(T1,i,0 − 1
2yjT0,ij,0 + 1

2xjT0,i,j)

+∂yi(T1,0,i + 1
2xjT0,0,ij − 1

2yjT0,j,i)
)

+T1,0,0 − 1
2yiT0,i,0 + 1

2xiT0,0,i.

One can check that this is exactly the same formula as (10).
The expression of the generalized Laplace-Beltrami operator ∆λ in local coordinates was calcu-

lated in [DO01], the result is:

∆λ
g = gij∂i∂j − (gjkΓijk + 2λgijΓkjk)∂i + (0− th order coefficients).
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Let us combine the above two formulas. We obtain sσ(∆λ
g ) = Xφ, where φ is a weighted density

of the form

(13) φ =
((

1− 1+2λ(`+1)
`+2

)
gjkΓtjkθt +

(
2λ− 1+2λ(`+1)

`+2

)
Γjijg

itθt

)
vol−

1
`+1 ,

and Xφ is the corresponding contact vector field.
Finally, taking into account the fact that gij∂i(θj) = 0, for the Darboux form θ, the expression

(13), after collecting the terms, coincides with
(
`+1
`+2

)
(2λ− 1)Ag,Θ. �

Corollary 4.4.2. For a generic metric, sσ(∆λ
g ) = 0 if and only if λ = 1

2 .

Remark 4.4.3. In differential geometry it is known that the space of half-densities and the space
of differential operators D 1

2 ,
1
2
(M) acting on them play a very special role. In our context, the space

of half-densities appears naturally.

5. Cotangent lift and the geodesic spray

In this section, we calculate the contact Riemannian curl on the unit sphere bundle STM over
a Riemannian manifold (M, g). The manifold STM is a classical example of contact manifold,
and, furthermore, it is equipped with the canonical lift of the metric. We prove that the contact
Riemannian curl vanishes in this case.

Recall that the classical geodesic spray is the Hamiltonian vector field on TM with Hamiltonian
H(x, y) = gij(x) yiyj , where yi are coordinates on the fibers; the restriction of this vector field to
STM is an intrinsically defined contact vector field. It would be therefore too optimistic to expect
another vector field in this situation.

5.1. The coordinates on STM . Let (M, g) be any Riemannian manifold of dimension n. The
Riemannian geometry of the sphere bundle STM was studied in [Tah69], we will be using the
notation of that work.

Denote by (xh) a local coordinate system in M and (yk) the Cartesian coordinates in the tangent
space TxM at the point x in M . The coordinates (xh, yh) are local coordinates on the tangent
bundle on TM . The unit sphere bundle STM is a hypersurface of the tangent bundle T (M),
singled out as the level surface of the Hamiltonian of the geodesic spray

H(x, y) = 1

with respect to the metric g(x) in the tangent space Tx(M) at every point x.

5.2. Statement of the main result. The Riemannian metric g on M has a canonical lift to STM
that will be denoted by ḡ. The main result of this section is as follows.

Theorem 5.2.1. The contact Riemannian curl on STM is identically zero.

In order to prove this theorem, we will need explicit formulas for the contact structure and the
canonical Riemannian metric on STM .

5.3. The contact structure of the sphere bundle STM . The sphere bundle STM is repre-
sented by parametric equations:

xh = xh, xh̄ = yh = yh(xi, uκ),
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where uκ are local coordinates on the sphere.3 The tangent vectors B A
α = ∂xA/∂uα of STM in

T (M) are given by

(14)
B h
i = δhi , B h

λ = 0,

B h̄
i = ∂iy

h, B h̄
λ = ∂λy

h.

The square matrix

(
B A
α

CA

)
, where Ci = 0 and C ī = yi, is invertible at each point x in M . Its

inverse will be the matrix (BαA, CA), given by the equations:

(15)
Bh i = δhi , Bh

ī
= 0,

Bκ i = −B h̄
i Bκ

h̄
, Bκ

ī
,

and CA =

(
Ci

Cī

)
, where Cī = gihy

h and Ci = Γhrsghi y
rys. The next formulas can be deduced

from Eqs. (14), (15), and are useful for what follows

B h̄
λ Bκ

h̄
= δκλ, yhBκ

h̄
= 0, B h̄

λ Bλ
ī
+ yhCī = δhi ,

B h̄
λ Ch̄ = 0, yhCh̄, = 1.

The Riemannian metric indentifies the tangent bundle T (M) and the cotangent bundle T ∗(M),
and hence induces a 1-form θ on T (M), called the Liouville form, which in local coordinates reads
as follows:

θ = gijy
j dxi,

Denote by θ̄ the restriction of the 1-form θ to the sphere bundle STM . It is as follows:

θ̄α = θAB
A

α .

Eq. (14) imply that θ̄i = gijy
j and θ̄κ = 0.

Lemma 5.3.1. The form θ̄ defines a contact structure on STM . The volume form associated with
it reads (up to a factor) as:

Ω dx1 ∧ · · · ∧ dxn ∧ dun+1 ∧ ... ∧ du2n−1,

where Ω = det(B A
α , CA) det(gij).

Proof. This is well known, see [Tah69], and can also be checked by a direct computation. �

5.4. The Riemannian metric on STM . The Riemannian metric g on M can be extended to a
Riemannian metric ḡ on the sphere bundle STM . Explicitly, ḡ is given by (cf. [Tah69]):

ḡji = gji + gts(∇jyt)(∇iys),

ḡµi = gts(∂µy
t)(∇iys),

ḡµλ = gji(∂µy
j)(∂λy

i).

3Following [Tah69], we will adopt the following index gymnastics. Capital Latin letters such as A,B, . . . run

from 1 to 2n. Small latin letters such as i, j, . . . run from 1 to n. Barred Latin indices such us ī, j̄, . . . run from n+ 1
to 2n. Some of the Greek letters such as α, β, . . . run from 1 to 2n − 1. Some other Greek letters such as κ, λ, . . .

run from n+ 1 to 2n− 1.
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The inverse of ḡ is given by

ḡji = gji,

ḡλh = −ghl(∇lyi)Bλ ī,

ḡλκ =
(
gih + gts(∇tyi)(∇syh)

)
Bλ

ī
Bκ

h̄
.

The Christoffel symbols associated with this metric are given by

Γ̄hji = Γhij + 1
2

(
R h
rsj y

r∇iys +R h
rsi y

r∇jys
)
,

Γ̄hµi = 1
2R

h
rsi y

rB s̄
µ ,

Γ̄hµλ = 0,

Γ̄κji =
(
∇j∇iyh + 1

2R
h

rji y
r − 1

2R
h

rij y
r − 1

2

(
R l
rsjy

r∇iys + 1
2R

l
rsi y

r∇jys
)
∇lyh

)
Bκ

h̄
,

Γ̄κµj =
(
∂µ∇iyh − 1

2R
l

rsi y
rB s̄

µ ∇lyh
)
Bκ

h̄
,

Γ̄κµλ = (∂µ∂λy
h)Bκ

h̄
.

5.5. Proof of Theorem 5.2.1. We are ready to prove the main result of this section.

Lemma 5.5.1. We have

(16)

yi∂i(Ω) = −yiB h̄
λ ∂i(B

λ
h̄
) Ω + 2yiΓi Ω− yiyhymghmΓhir Ω,

yl(∇lyi)Bλī ∂λ(Ω) = −yl(∇lyi)∂λ(Bλ
ī
) Ω,

yl(∇lyk)(∂µ∂λy
j)Bλ

k̄
Bµ

j̄
= −yl(∇lyk)∂λ(Bλ

k̄
),

∂λ(∇lyh)Bλ
h̄
yl = −(∂lB

λ
h̄
)B h̄

λ yl + Γili y
l − Γhrs gihy

iyrys.

Proof. The first and the second lines of (16) follow from the fact that

Bλk̄∂µ(B j̄
λ ) = −∂µ(Bλ k̄)B j

λ − ∂µ(yjym)gmk,

yi∂iB
j̄
λ = −yiBh̄λB j̄

κ ∂i(B
κ
h̄)− yiyjymghmΓhilB

l̄
λ ,

and the property of the determinant. The third line of (16) follows from the fact that

B h̄
λ Bλī + yhCī = δhi

and applying to it the partial derivative ∂µ. The fourth line of (16) follows when we substitute the
covariant derivative ∇lyh = ∂ly

h + Γhli y
i and use the third equation. �

By definition,

Aḡ,Θ = ḡih∇̄i(θhΩ−
1
n ) + ḡλh∇̄λ(θhΩ−

1
n ) + ḡhλ∇̄h(θλΩ−

1
n ) + ḡλκ∇̄λ(θκΩ−

1
n ).

The last two summands vanish because θκ = 0. Let us compute the first two summands seperately.
Applying the covariant derivative ∇̄, we get

ḡih∇̄i(θhΩ−
1
n ) = ∂iy

i Ω−
1
n + yi∂i(Ω

− 1
n )−Rqrsiyqyr(∇hys)gih Ω−

1
n

+(1 + 1
n )Γjijy

i Ω−
1
n + 1

n

(
1
2R

h
rsh y

ryl(∇lys) + ∂λ(∇lyh)Bλ
h̄
yl
)

Ω−
1
n .

Similarly,

ḡλh∇̄λ(θhΩ−
1
n ) = −∂iyi Ω−

1
n − Γjijy

i Ω−
1
n − (∇iyk)Bλ

k̄
yi∂λ(Ω−

1
n )

+ 1
2Rrskhy

rysghl(∇lyk) Ω−
1
n − 1

2n (∇iyk)yiR h̄
rkhy

r Ω−
1
n

+− 1
ny

l(∇lyk)(∂λ∂µy
j)Bλ

k̄
Bµ

j̄
Ω−

1
n .
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By collecting the terms and using Lemma 5.5.1, we finally obtain:

Aḡ,Θ = −1

2

(
Rilsj y

iyl(∇hys) gjh
)

vol−
1
n ≡ 0,

since the curvature tensor Rilsj is antisymmetric in two first indices.
Theorem 5.2.1 is proved.

6. Examples

We finish the paper with concrete examples of Riemannian curl for the 3-dimensional sphere
(with two natural metrics) and the 3-dimensional ellipsoid with the standard metric.

6.1. The sphere S3. Consider the sphere S3 in the standard symplectic space R4. It is endowed
with the natural contact structure that can be defined by the contact form

θ = dz + xdy − ydx,

where x, y and z are affine coordinates on S3. More precisely, if p1, p2, q
1, q2 are symplectic Darboux

coordinates on R4, then x = p1

q2 , y = q1

q2 , z = −p2

q2 .

The restriction of the Euclidean metric to the sphere S3 takes the following form:

gS3 = F
((
y2 + z2 + 1

)
dx2 + (x2 + z2 + 1)dy2 + (x2 + y2 + 1)dz2

−2xy dxdy − 2xz dxdz − 2 yz dydz) ,

where F = 1
(x2+y2+z2+1)2 .

Let us also consider another, conformally equivalent, metric on S3:

g̃S3 :=

(
x2 + y2 + z2 + 1
x2

a + y2

b + z2

c + 1

)
gS3 ,

which appeared in the context of integrable systems in [Tab99, MT01], see also [DV11].

Proposition 6.1.1. The following results hold.

(i) In the case of the “round” metric gS3 , we have AgS3 = 0;

(ii) In the case of the metric g̃S3 , we have Ag̃S3 = 5
2

((
1
b −

1
a

)
xy +

(
1
c − 1

)
z
)
.

Proof. Part (i) follows from Corollary 3.4.1. Part (ii) can be obtained by a straightforward com-
putation using Eq. (13). �

6.2. The case of the ellipsoid E3(a, b, c). Consider the 3-dimensional ellipsoid endowed with
the standard metric

gE3
a,b,c

= gx,xdx
2 + gy,ydy

2 + gz,zdz
2 + gx,ydx dy + gx,zdx dz + gy,zdy dz,

where



RIEMANNIAN CURL IN CONTACT GEOMETRY 15

gx,x =

(
b2y2 + c2z2 + 1

)2
+ a4x2

(
y2 + z2 + 1

)
((ax)2 + (by)2 + (cz)2 + 1)

2 ,

gy,y =

(
a2x2 + c2z2 + 1

)2
+ b4y2

(
x2 + z2 + 1

)
((ax)2 + (by)2 + (cz)2 + 1)

2 ,

gz,z =

(
a2x2 + b2y2 + 1

)2
+ c4z2

(
x2 + y2 + 1

)
((ax)2 + (by)2 + (cz)2 + 1)

2 ,

gx,y = −2xy
a4x2 − a2

(
z2(b2 − c2) + b2 − 1

)
+ b2

(
b2y2 + c2z2 + 1

)
((ax)2 + (by)2 + (cz)2 + 1)

2 ,

gx,z = −2xz
a4x2 − a2

(
y2
(
c2 − b2

)
+ c2 − 1

)
+ c2

(
b2y2 + c2z2 + 1

)
((ax)2 + (by)2 + (cz)2 + 1)

2 ,

gy,z = −2yz
b4y2 − b2

(
x2
(
c2 − a2

)
+ c2 − 1

)
+ c2

(
a2x2 + c2z2 + 1

)
((ax)2 + (by)2 + (cz)2 + 1)

2 .

Proposition 6.2.1. We have

Ag
E3
a,b,c

= a4(a2 − b2)(b2 + 2c2 + 2)x3y + b4(a2 − b2)(a2 + 2c2 + 2)xy3

+(a2 − b2)c4(2 + a2 + b2 + c2)xyz2

−a4(c2 − 1)(a2 + 2b2 + c2 + 1)x2z − b4(c2 − 1)(2a2 + b2 + c2 + 1)y2z

−c4(c2 − 1)(2a2 + 2b2 + 1)z3 + (a2 − b2)(a2 + b2 + 2c2 + 1)xy

−(c2 − 1)(2a2 + 2b2 + c2)z.

Proof. Straightforward computation using Eq. (13). �
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