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The systematic study of geometric curves determined by differential equations was ini- 
tiated by Poincar~ [i]. Presently, this theory has the most varied kinds of applications. 
Thus, the multidimensional generalization of the Sturm theory, proposed by Arnol'd [3], de- 
scribes the properties of a curve on a Lagrangian Grassmannian, given by the evolution of a 
Lagrangian plane in symplectic space, under the action of a system of linear Hamiltonian 
equations. 

In this paper, linear differential equations given by arbitrary scalar self-adjoint dif- 
ferential operators 

-~I] 
n = (d/dt) :~ + ~ i = ,  (d/dr) ~-~ u._~ ( t)(d/ t i t )  "-i  ( 1 ) 

with smooth real coefficients, are considered. Such equations reduce to Hamiltonian systems 
of a special form. Therefore, curves on a Lagrangian Grassmannian A n, satisfying additional 
conditions, are also associated with them. At each point, the velocity of such a curve is 
tangent to the minimal stratum of a train with a vertex at the given point, and the acceler- 
ation vector is tangent to the second stratum etc. It is said that these curves are subject 
to a train. 

The train of any point A n is transversally oriented by the directions of the positive 
vectors (see [2-4]). It turns out that a curve, subject to a train, satisfies a universal 
property. In a little time, its point merges in a sign-fixed (positive or negative depending 
on the orientation) direction. 

In [5] a multidimensional Lagrangian analogue was proposed of the Schwarz derivative, 
recovering the system of Newton's equations for a curve in An with positive velocity. It 
turns out that to each curve in A n subject to a train, there corresponds a unique (with a 
precision up to sign) operator (i). The procedure of recovering the operator for a curve 
is the scalar version of the Lagrangian Schwarz derivative. 

In the case when the coefficients of the operator (I) are periodic, the definition of 
the Maslov-Arnol'd index corresponding to a curve in A n is given in the paper. This number 
is an invariant, relative to homotopies with a fixed monodromy operator. Its values can 
differ by an even number. For second-order equations, this invariant equals the mean number 
of rotations in a period, performed by an evolving line in phase space. Apparently, its 
existence was first noted by Poincar~ (see also [6]). 

Furthermore, an analogue of the Sturm theorem for equations given by the operators (I), 
will be presented. One of them - the nonvariability theorem - is contained in [7]. These 
theorems are consequences of the property of curves subject to a train. However, a simple 
deduction of them from the theorems of [2] also exists. I am obligated for this proof to 
V. I. Arnol'd and B. A. Khesin. 

I am deeply grateful to V. I. Arnol'd for stating the question and help in the paper; 
and to A. B. Givental', B. A. Khesin, Yu. V. Chekanov, and B. Z. Shapiro - for useful dis- 
cussions. 

i. Geometric Realization 

I.i. Nonflattening Self-Dual Curves in Projective Space. To the equation Ly = 0 cor- 
responds a curve in (2n - l)-dimensional projective space; to each t corresponds a one- 
dimensional subspace in the space of solutions, consisting of solutions vanishing at t along 
with (2n - 2) derivatives. Thereby, the curve s is given in RP ~'-*, the projective clo- 
sure of the solution space. 
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Definitions. i. By an accompanying flag of a curve f(t) in projective space pk is 
meant a chain of subspaces V,(t) c__V~(t)~__ ... ~__V~(t)~P ~, such that (in an arbitrary affine 
chart) each subspace Vi(t) is spanned by the vectors F(t), f(t) ..... f(i)(t). This definition 
does not depend on the choice of the parameter t on the curve and the affine chart on P~. 

2. A curve /(t) c~P ~ is called nonflattening if at each point of it, the accompanying 
flat is complete: VaC V2C ... C V~ = P~. 

3. A hyperplane V~_x(t) CP ~ is called osculating. A family of osculating hyperplanes 
gives a dual curve f*(t) in P~* (see [4]). A nonflattening curve /(t) cP ~ is self-dual if 
after identifying pk, and P~, preserving the projective structure, the dual curve turns into 
a projectively equivalent one, given by f* = Af, where A~PGL (k +I). 

LEMMA i. There exists a one-to-one correspondence between the space of differential 
equations of the form Ly = 0 given by the operators (I) and the set of classes projectively 
equivalent to the self-dual curves in RW "-I. 

Proof. In the sapce of solutions of the equation Ly = 0, there exists a natural sym- 
plectic structure (the analogue of the Wronskian). Let us denote by L i the differential 
operator (d/d/) ~7~-i + ~ , , - 1  (d/dt) ~-~ u~ (t) (d/dt) ~. Then 

'~ .~ I y~-l) # - ' l  (2)  
0,(u, ~ )=  Y, ( -  1)I L,~ L~: I " 

i = l  

T h i s  e x p r e s s i o n  d o e s  n o t  d e p e n d  on t i f  y ,  z a r e  s o l u t i o n s  o f  ( 1 ) .  On t h e  p r o j e c t i v e  c l o s u r e  
of the solution space of ~ : R P  2~-~ , there arises a contact structure (a contact hyperplane at 
the point p~RW ''-~ is the projective closure of the hyperspace in R =n, skew-orthogonal to 
the line p). 

Let us show that the curve s is self-dual. The contact structure on RW ''-~ naturally 
identifies it with RW n-l*. Moreover, the curve dual to s turns into s This means 
that the hyperplane osculating with s in RP 2'*-~ coincides with the contact one. Actually, 
the hyperplane osculating with s at t o is the projective closure of the subspace consisting 
of solutions equal to zero at to, which by (2) is skew-orthogonal to the line s 

In its turn, the self-dual curve in RP 2"-* uniquely determines the equation Ly = 0, where 
L is a self-adjoint operator. The lemma is proved. 

1.2. Curves on a Lagrangian Grassmannian~ Subject to a Train. Definition. By the 

train $7 of a given point ?~A,, is meant the set of all Lagrangian subspaces nontransversal 
to ~, and the given point is a vertex of the train. 

k 
A train is a stratified submanifold with singularities in An; the stratum $7 consists of 

the Lagrangian subspaces intersecting the vertex 7 along a subspace of dimension n - k. The 

complement S~S~ -t is a smooth submanifold. For these deformations and properties, see 
[2-4]. 

Locally A n is identified with the space of quadratic forms in R ~, and the train of the 
given point - with the set of degenerate forms. Let us fix an arbitrary polarization - a 
pair of transversal Lagrangian subspaces ~, 8 in (R ~n, ~). By a joint form ~t~,~] is meant a 
quadratic form in (R 2n, ~),40[~.~1(~ ) = ~ (~, ~), where $ is the projection of ~ on ~ along ~, and 

- on $ along ~. To each Lagrangian subspace ~, let us associate the restriction ~[=,~] I~, 
called a generating function. It is clear that if ~ = ~, then ~[~.g]lk = 0, and the set of de- 
generate forms corresponds to the train ~. 

Definition. Let us fix the polarization (m, ~). Then for any curve ?(/)~A, , along 
with ~ y  vector i(t), the vectors ~(t), 7(3)(t),... are also defined. Let us call a 
curve 7(t) subject to a train if each of the vectors 7(k)(t) for k < n is tangent to S$(t) and 

Sk-I transversal to v<t), and the vector ~(t)(n) is transversal to S~(]~ = Sv(o. It is clear that 
this definition does not depend on the choice of polarization. 

To the linear differential equation Ly = 0 given by a scalar self-adjoint operator L of 
operator 2n, corresponds the curve X(t) in A n . To each t corresponds an n-dimensional sub- 
space in the solution space with null boundary conditions at the point t: ~(t) = {y[y (t) ..... 
yo'-~)(t) = 0} �9 The Lagrange nature of the plane l(t) follows immediately from (2). 

Assertion. The curve %(t) is subject to a train. 
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Proof. The vector x(k)(t) is directed along the submanifold A n consisting of Lagrangian 
subspaces intersecting X(t) along the (n - k)-dimensional subspace Z(~)(t) = {yly(t) ..... 
y( . -~-u  (t) = 0).  

THEOREM. There exists a one-to-one correspondence between the linear differential equa- 
tions of the form Ly = 0, where L is the self-adjoint differential oprator (i), and the 
classes Sp(2n) are equivalent curves in A n subject to a train. 

Proof. Let X(t) be a curve in A n , subject to a train. In each Lagrangian subspace 
%(t) C(R 2n, ~)there exists a "most slow" line, determined in the following manner. Let us fix 
the polarization (~, p) (giving a chart on An). The vectors ~, ~ ..... ~(,-i) are tangent to the 
submanifold in A n consisting of Lagrangian subspaces intersecting X(t 0) along some one-dimen- 
sional subspace V(t0). Let us show that the curve V(t) in RP =n-1 is self-dual. For this, it 
is sufficient that for any t, the hyperplane osculating with V(t) in RP 2n-I coincide with the 
contact one (see the proof of Lemma i). 

Let us, in an arbitrary manner, lift the curve V (t) CRP =n-1 to the curve V(t) in the 
symplectic space (R 2~, ~). The accompanying flag of the curve V(t): Vs(t)~__...~_V2'~-1(t) is 
lifted to a chain of linear subspaces Vi(t) in (R =', ~). It is necessary to show that V (t)• = 
V2'~-1(t). The flag V (t) = <F (t)>~___F*(t)~___...~__~2n-1(t)cRZ'~ is called the accompanying flag 
of the curve V(t). 

LEMMA 2. The accompanying flag of the curve F (t) C (R 2n, (0) projecting to the curve 

V(t) C fRP ~'~-I, satisfying the conditions: a) vn-1(t) coincides with the Lagrangian subspace 

Proof. a) Let us denote by F(t) the symmetric operator from the Lagrangian subspace 
X(t) to the dual, giving the quadratic form ~[=,fl]l~ (generating function). 

The subjection to the train of the curve Z(t) C A,,, means that I ~Ker~KerF~... 
Ker F("-n~ R is a complete flag. It follows from the definition that V (t)= nt~i~a-i Ker F0)= 
Ker F0~-I). 

Let us identify the plane X(t) with =, having associated to each vector Y E%(t), its 
projection on ~ along gY~, and the effective space X'(t) - with 6; let Y E%(t), Z ~  let 
<Y, Z> = w(Y, Z) = m(Y~, Z). After this, the symmetric operator F: X + X' is realized as an 
operator from ~ to 6, such that for Bny vector Y~(t) FY== Y~. Since the generating func- 
tion determines the plane X(t), this equation is cahracteristic for the vectors X(t). 

From the fact that the vector ~ (t)= ~ n~---* Ker F (~) (t) , it immediately follows that 

V$ ) = (d~V(t)/dt~)= ~ Ker F("-~-*) (t) for ~ < n -- 2. For example, F(n-~)V ----- 0 entails (d/dt) (F0i-=)F=) - 

FU'-a)~ -~ F(~)~= = 0, whence ~= ~ Ker F(n-=). 

Let us show, finally, that for k.~<n--| ~) = F~ ~, whence it will follow that the 
subspace F~ ~__ ~{t). Actually, let ~t ~-~) ~ ~ (t), that is ~-*) = F~ -'). Then ~) = (d/dr) 
fV~-~) ;V~ ') + fV~ ) FV ~) ~ ~ �9 

The vectors V, ~ . . . . .  V("-z) are l inearly independent, since V(") ~ ~(t) [this immediately 
follows from the definition of the curve V(t)].  Therefore, the subspace spanned by them is 
x(t). 

b) The velocity vector X is tangent to the manifold of Lagrangian subspaces intersecting 
along the subspace Qn-2 (since F~-=)~Ker ~). The collection of all such Lagrangian sub- 

spaces is an (n + l)-dimensional subspace in (R ~', ~) V n-~i. Since the vector V(~=~)(t)~%(t)$ 
its velocity Q(n) is tangent to the subspace F"-=• , and this means (by linearity) ~(~)~F~=• 
Similarly F(,+~)~Vn-~-=~. The lemma is proved. 

In this manner, the curve V(t) in RP ~n-~ is self-dual. By Lemma I, a certain equation 
Ly = 0 corresponds to it. Therefore, along each curve subject to a train, the equation is 
uniquely recovered. Moreover, the same equation corresponds to the Sp(2n)-equivalent curve 
in A n . The theorem is proved. 

Remark i. Let us lift the curve V(t) to the curve V(t) in (R ~", ~), so that the volume 
of the parallelepiped spanned by the vectors ~ (t), V (t) ..... Ft=n)(t) (relative to the form of 
the volume Anm) is constant. Knowing the velocity of each of the vectors ~,..., F(2'') in (R ~, 
~), one can determine a linear vector field on (R=% ~). Lemma 2 is equivalent to its Hamil- 
tonicity. 
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Remark 2. An explicit formula for the generating function F(t) of the plane %(t) can 
prove to be useful. Let yl(t) ..... Yn(t), y[(t) .... ,y~(t) be a canonical basis in the sym- 
pl?ctic space of solutions of the equations Ly = 0, where {Yi} is a basis in the plane ~ and 
{yj} - in B. Let us denote by Y the matrix (yl~(~)), and by Y' - the matrix (y~O)(t)). Then in 
the polarization (~, B) in the basis in the plane X(t), projecting to y~ ..... y~ (along ~), 
the generating function is given by the symmetric matrix F = (YY'-I/2). 

2. Theorem of the Intersection with a Train 

The train of any point of a Lagrangian Grassmannian is transversally oriented to the 
directions of the positive vectors (velocities of motion of the Lagrangian planes under the 
action of positive-definite Hamiltonians) (see [2]). At each point, the positive vectors 
form an open convex cone Eq. (i). In the language of generating functions, the cone of posi- 
tive vectors at the point is identified with the cone of positive-definite quadratic forms. 

THEOREM (on the intersection with a train). A curve X(t) in A n , subject to a train, 
merges in a small time in a sign-fixed (positive or negative) direction with respect to a 
train with a vertex at the given point (Fig. 2). 

Actually, the cause of this property is the mutual disposition of two trains with ver- 
tices in nontransversal planes (Fig. 3). There is the geometric version of the Rayleigh- 
Garding inequality [3]: if the plane X2 belongs to the positive part of some stratum of the 
train of the point Iz~ then the cone of positive vectors with a vertex at ~2 lies wholly in 
the positive cone with vertex at Xz. 

Proof. According to the theorem proved, the curve is always given by the equation Ly = 
0. The simple proof presented below was suggested to the author by V. I. Arnol'd and B. A. 
Khesin. 

LEMMA 3. The equation Ly = 0 given by operator (i), determines a Hamiltonian vector 
field 

~ = P ~ - l - - u ~ - 1 ( t )  q~ ( l < i < n )  

on a s y m p l e c t i c  phase  s p a c e  w i t h  t h e  s y m p l e c t i c  form w = ~, ( - - t )  ~+1 dpi A dq~. I t s  H a m i l t o n i a n  

Proof of the Lemma. The space of solutions of the equation Ly = 0 is identified with 
the space: 

qi = yO-')(O);pi = Liy (0). 

Moreover, the form (2) turns into ~, and the equation into the vector field (3). 

The restriction for the Hamiltonian H on the vertical plane equals H lq= 0 = (--i)n+Xp$, 
therefore, H is the limit for the family of the Hamiltonians, sign-fixed on the vertical 
plane: 

For simplicity, we will further conduct the argument, in the positive case (n is odd). The 
index of the intersection of any Lagrangian plane, evolving under the action of the Hamil- 
tonian vector field with the Hamiltonian He, with the train of a vertical plane, is positive, 
the velocity of the evolution of the same plane (q = 0) is also positive for any t [3]. 
Therefore, there exists a small interval of time (t, t + 6) not depending on e, in which the 
evolution of the plane (q = 0) occurs in a positive component, relative to a proper train. In 
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this manner, the evolution under the action of the Hamiltonian H must occur in a nonnegative 
component and the plane %(t + 6) in the solution space is found in a nonnegative component in 
relation to %(t). Now the assertion of the theorem follows from the transversality of %(t) 
and %(t + 6) for small 6 (the uniqueness theorem). 

3. Sturm Theorems 

Let a be an arbitrary Lagrangian subspace in the solution space of the equations Ly = 0. 
By the moment of verticality ~ is meant the value t, for which the curve %(t), corresponding 
to the intersection, intersects the train Sa. This means that the plane a contains a solu- 
tion equal to zero at the point t, along with the first n - 1 derivatives. The following 
Sturm theorem are proved by the limiting transition (see above) from the theorem of [3]. 

THEOREM (on zeros). The difference between the numbers of moments of verticality of two 
Lagrangian subspaces ~, ~ on any segment does not exceed the number of changes of n. 

THEOREM (on nonvariabi!ity) (see [7]). If the coefficients of the operator (i) sat- 

isfy the condition (-I)n+i+lui(t)<O , then the number of momens of verticality of any 
Lagrangian subspace in the solution space of Eq. (i) does not exceed n. 

THEOREM (comparisons). If the coefficients of the two equations are connected by the 
2 inequality(--1),~+i+1(u~(t)--ui(t)).~<O, then the number of moments of verticality of an arbitrary 

Lagrangian subspace in the space of solutions of the first equation, can exceed the number of 
moments of verticality of a Lagrangian subspace in the solution space of the second equation 
by no more than n. 

4. Homotopic Poincar~ Invariant 

Let us consider the operator L with periodic coefficients. It follows from the theorem 
on zeros that the mean number of moments of verticality on the period is defined for an arbi- 
trary Lagrangian plane in (R zn, ~), not depending on its choice. Indeed, in this case, the 
monodromy operator M (a shift by a period) is defined in the space of solutions, being a 
symplectic linear operator. Let T be the period. From the fact that for any k, the number of 
moments of verticality of the Lagrangian planes = and Mk~ on an interval of length NT differ 
by no more than n, it follows that the limit of the ratio of the number of moments of verti- 
cality ~ to the number N exists as N ~ ~, not depending on the location of the interval. 
The independence of this number from the choice of the plane ~, clearly, follows from the 
theorem on zeros. Let us denote it P(L). 

THEOREM. The number P(L) is invariant with respect to homotopies with constant mono- 
dromy in the space of operators (i) with periodic coefficients. Its values can differ by an 
even number. 

Proof. By the theorem on zeros, the mean number of moments of verticality of the La- 
grangian plane coincides in the period with the time-averaged Maslov-Arnol'd index of a 
curve %(t) in A n , independent of the homotopies of a curve with fixed ends. Since the end 
of the curve %(t) for t~10, NT] is determined by its origin and the monodromy operator: 
X(t + NT) = MN%(t), then this is a number invariant with respect to homotopies with constant 
monodromy. 

For two equations with identical monodromy operators, let the invariant under considera- 
tion assume different values. Then, there exists a time interval (t 0 , t o + T) on which the 
Maslov-Arnol'd indices of the corresponding curves %(t) and X'(t) in A n are different. Let 
us identify the symplectic solution spaces so that the planes %(t 0) and %'(t0), and also 
%(t~ + T) = M%(t 0) and ~'(t 0 + T) = M%'(t 0) coincide. Let us lift the curves %(t) and %'(t) 
in A n , the universal covering of A n , to the curves ~(t) and ~'(t), so that ~(t 0) = ~'(t0). 
The points ~(t 0 + T) and %'(t o + T) differ by the action of an element of the group nz(A~) , 
where A~ is the manifold of all oriented Lagrangian subspaces (R ~n, m) (a two-sheeted cover- 
ing of An). Therefore, m(X(t 0 + T), ~'(t 0 + T)) is an even number. 

The Maslov-Arnol'd index of a closed loop on A n equals the index of the intersection of 
it with the train of each point of A n (see [3]). Therefore, the number of moments of ver- 
ticality of any Lagrangian plane relative to the curves %(t) and l'(t) for $~(t0, to+ T), 
differ by an even number, not depending on it. In particular, this is true for the planes 
a, M~, M2~, .... whence the second assertion of the theorem follows. 
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In conclusion, let us formulate an interesting question: is the invariant P(L), the 
unique invariant of the self-adjoint operator (i) with periodic coefficients relative to the 
homotopies preserving its monodromy operator? 
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ESTIMATE OF THE DERIVATIVE OF AN ALGEBRAIC POLYNOMIAL 

A. A. Pekarskii UDC 517.53 

We denote by % (n), n~N the smallest number for which the inequality 

lIE IP'(z) ldxdy < >~(n) g s u p  ~ P (z){ 
z ~ E  

is satisfied for an arbitrary algebraic polynomial of degree at most n and an arbitrary 
rectifiable set E belonging to the disk Izl~<l. It is easily seen from geometric consider- 
ations (see [I, 2]) that 

(n) < ~ ~ .  (1) 

According to an hypothesis of Littlewood [I], as yet neither proved nor disproved, the re- 
lationship k(n) = O(n 8) holds, where e < 1/2. Other equivalent formulations of this hypo- 
thesis are given in [i] (see also [2]). Recently Eremenko and Sodin [3] improved the ob- 
vious upper estimate (i) as follows: k(n) = o(r In the present paper we obtain a new 
lower estimate for k(n). 

THEOREM. Absolute positive constants A and a exist such that for arbitrary n~9 the 
following inequality is satisfied: 

k ( n ) ~ A  exp (a ln  n/ln Inn).  

We remark�9 t h a t  up t o  t he  p r e s e n t  t ime t he  b e s t  lower e s t i m a t e  f o r  k(n)  was due to  Hayman 
[ 2 ] : k ( n ) > / A  l n n ,  where n ~ ; 2 ,  A > 0  i s  an a b s o l u t e  c o n s t a n t .  I n t e r e s t  in  L i t t l e w o o d ' s  hypo- 
t h e s i s  may be e x p l a i n e d  by i t s  a p p l i c a t i o n s  in  t h e  t h e o r y  o f  t h e  d i s t r i b u t i o n  of  t he  v a l u e s  
of  e n t i r e  f u n c t i o n s  ( s ee  [1, 3 ] ) .  The p roo f  of  our  theorem i s  based on Lemmas 1-3,  o b t a i n e d  
below, and a theorem of  W e l s h - R u s s e l l  [4 ] .  

LEMMA 1. Le t  f be a p o l y n o m i a l ,  r > p > 0 ,  5 > 0 ,  z 0 ~ C  and ~(z) = (z--z0)/r .  I f  

I~(z)-/(z)l<6 for l~(z) l<i, 

then for I ~ (z) I • p/r we have the inequalities 

t r6 + r6 ( 2 ) 
r (r--p)~KIf(z)I< +(r--p)~ 
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