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Abstract: We study deformations of the standard embedding of the Lie algebra
Vect(S1) of smooth vector fields on the circle, into the Lie algebra of functions on
the cotangent bundleT ∗S1 (with respect to the Poisson bracket). We consider two anal-
ogous but different problems: (a) formal deformations of the standard embedding of
Vect(S1) into the Lie algebra of functions oṅT ∗S1 := T ∗S1\S1 which are Laurent
polynomials on fibers, and (b) polynomial deformations of the Vect(S1) subalgebra
inside the Lie algebra of formal Laurent series onṪ ∗S1.

1. Introduction

1.1. The standard embedding.The Lie algebra Vect(M ) of vector fields on a manifoldM
has a natural embedding into the Poisson Lie algebra of functions onT ∗M . It is defined
by the standard action of the Lie algebra of vector fields on the cotangent bundle. Using
the local Darboux coordinates (x, ξ) = (x1, . . . , xn, ξ1, . . . , ξn) on T ∗M , the explicit
formula is:

π(X) = Xξ, (1)

whereX is a vector field:X =
∑n

i=1 Xi(x)∂/∂xi andXξ =
∑n

i=1 Xi(x)ξi.
The main purpose of this paper is to study deformations of the standard embedding

(1).

1.2. Deformations insideC∞(T ∗M ). Consider the Poisson Lie algebra of smooth func-
tions onT ∗M for an orientable manifoldM . In this case, the problem of deformation
of the embedding (1) has an elementary solution. The Vect(M ) embedding (1) into
C∞(T ∗M ) has the unique (well-known) nontrivial deformation. Indeed, given an arbi-
trary volume form onM , the expression:
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πλ(X) = Xξ + λdivX,

whereλ ∈ R, defines an embedding of Vect(M ) into C∞(T ∗M ).
The linear map:X 7→ divX is the unique nontrivial 1-cocycle on Vect(M ) with

values inC∞(M ) ⊂ C∞(T ∗M ) (cf. [2]).

1.3. Two Poisson Lie algebras of formal symbols.Let us consider the following two
Lie algebras of Poisson on the cotangent bundle with zero section removed:Ṫ ∗M =
T ∗M \M.

(a) The Lie algebraA(M ) of functions onṪ ∗M which areLaurent polynomialson
fibers;

(b) The Lie algebraA(M ) of formal Laurent serieson Ṫ ∗M .

Lie algebrasA(M ) andA(M ) can be interpreted asclassical limits of the algebra of
formal symbolsof pseudo-differential operators onM . We will show that in this case
one can expect much more interesting results than those in the case ofC∞(M ).

In both cases, the Poisson bracket is defined by the usual formula:

{F, G} =
∂F

∂ξ

∂G

∂x
− ∂F

∂x

∂G

∂ξ
.

2. Statement of the Problem

In this paper we will consider only the one-dimensional case:M = S1 (analogous results
hold forM = R).

2.1. AlgebrasA(S1) and A(S1) in the one-dimensional case.As vector spaces, Lie
algebrasA(S1) andA(S1) have the following form:

A(S1) := C∞(S1) ⊗ C[ξ, ξ−1] and A(S1) := C∞(S1) ⊗ C[ξ, ξ−1]] ,

whereC[ξ, ξ−1]] is the space of Laurent series in one formal indeterminate.
Elements of both algebras:A(S1) andA(S1) can be written in the following form:

F (x, ξ, ξ−1) =
∑
k∈Z

ξkfk(x),

where the coefficientsfk(x) are periodic functions:fk(x + 2π) = fk(x). In the case of
algebraA(S1), one supposes that the coefficientsfk ≡ 0, if |k| is sufficiently large; for
A(S1) the condition is:fk ≡ 0, if k is sufficiently large.

2.2. Formal deformations ofVect(S1) inside A(S1). We will study one-parameter
formaldeformations of the standard embedding of Vect(S1) into the Lie algebraA(S1).
That means we study linear maps

πt : Vect(S1) → A(S1)[[ t]]

to the Lie algebra of series in a formal parametert. Such a map has the following form:

πt = π + tπ1 + t2π2 + · · · , (2)
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whereπk : Vect(S1) → A(S1) are some linear maps, such that the formal homomor-
phism condition is satisfied:

πt([X, Y ]) = {πt(X), πt(Y )}.

The general Nijenhuis–Richardson theory of formal deformations of homomorphisms
of Lie algebras will be discussed in the next section.

2.3. Polynomial deformations of theVect(S1) insideA(S1). We classify all thepoly-
nomial deformations of the standard embedding (1) of Vect(S1) into A(S1). In other
words, we consider homomorphisms of the following form:

π(c) = π +
∑
k∈Z

πk(c)ξk, (3)

wherec = c1, . . . , cn ∈ R (or C) are parameters of deformations, each linear map
πk(c) : Vect(S1) → C∞(S1) being polynomial inc, πk(0) = 0 andπk ≡ 0 if k > 0 is
sufficiently large.

2.4. Motivations.

(a) Lie algebras of functions on a symplectic manifold have nontrivial formal defor-
mations linked with so-calleddeformation quantization. The problem considered in
this paper, is original and has never been discussed in the literature. However, this
problem is inspired by deformation quantization.
The geometric version of the problem, deformations (up to symplectomorphism)
of zero section of the cotangent bundleM ⊂ T ∗M , has no nontrivial solutions.
Existence of nontrivial deformations in the algebraic formulation that we consider
here seems to be a manifestation of “quantum anomalies”.
Note that interesting examples of deformations of Lie algebra homomorphisms
related to deformation quantization can be found in [12].

(b) Lie algebras of vector fields and Lie algebras of functions on a symplectic manifold,
have both nice cohomology theories, our idea is to link them together.
Lie algebras of vector fields have various nontrivial extensions. The well-known
example is theVirasoro algebradefined as a central extension of Vect(S1). A series
of nontrivial extensions of Vect(S1) by modules of tensor-densities onS1 were con-
structed in [8, 9]. These extensions can be obtained, using a (nonstandard) embedding
of Vect(S1) into C∞(Ṫ ∗S1), by restriction of the deformation ofC∞(Ṫ ∗S1) (see
[9]).
We will show that deformations of the standard embedding relate the Virasoro al-
gebra to extensions of Poisson algebra onT2 defined by A.A. Kirillov (see [4, 11]).

(c) The following quantum aspect of the considered problem: deformations of embed-
dings of Vect(S1) into the algebra of pseudodifferential operators onS1, will be
treated in a subsequent article.

3. Nijenhuis–Richardson Theory

Deformations of homomorphisms of Lie algebras were first considered in [6] (see also
[10]). The Nijenhuis–Richardson theory is analogous to the Gerstenhaber theory of
formal deformations of associative algebras (and Lie algebras) (see [3]), related coho-
mological calculations are parallel. Let us outline the main results of this theory.
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3.1. Equivalent deformations.

Definition. Two homomorphismsπ and π′ of a Lie algebrag to a Lie algebrah are
equivalent (cf. [6]) if there exists an interior automorphismI of h such thatπ′ = Iπ.

Let us specify this definition for the two problem formulated in Sects. 2.2 and 2.3.

(a) Two formal deformations (2)πt andπ′t are equivalent if there exists a linear map
It : A(S1)[[ t]] → A(S1)[[ t]] of the form:

It = exp(tadF1 + t2adF2 + · · · )

= id + tadF1 + t2(ad2
F1

/2 + adF2) + · · · ,

whereFi ∈ A(S1), such thatπ′t = Itπ
t. It is natural to consider such an automor-

phism ofA(S1)[[ t]] as interior.
(b) An automorphismI(c) : A(S1) → A(S1) depending on the parametersc =

c1, . . . , cn, which is of the following form:

I(c) = exp(
n∑

i=1

ciadFi
+ cicjadFij

+ · · · ),

whereFi, Fij , · · · ∈ A(S1) is called interior. Two polynomial deformationsπ(c)
andπ′(c) of the standard embedding Vect(S1) ↪→ A(S1) are equivalent if there
exists an interior automorphismI(c), such thatπ′(c) = I(c)π(c).

3.2. Infinitesimal deformations.Deformations (2) and (3), modulo second order terms in
t andc respectively, are calledinfinitesimal. Infinitesimal deformations of a Lie algebra
homomorphism fromg into h are classified by the first cohomology groupH1(g; h), h
being ag-module throughπ.

Namely, the first order termsπ1 in (2) and ∂π(c)
∂ci

∣∣∣
c=0

in (3) are1-cocycles. Two

infinitesimal deformations are equivalent if and only if the corresponding cocycles are
cohomologous.

Conversely, given a Lie algebra homomorphismπ : g → h, an arbitrary 1-cocycle
π1 ∈ Z1(g; h) defines an infinitesimal deformation ofπ.

3.3. Obstructions.The integrability conditionsare conditions for existence of (formal
or polynomial) deformation corresponding to a given infinitesimal deformation.

(a) The obstructions for existence of a formal deformation (2) belong to the second
cohomology groupH2(g; h). This follows from the so-called deformation relation
(see [6]):

dπt + (1/2)[πt, πt] = O, (4)

where [πt, πt] is a bilinear map fromg to h:

[πt, πt](x, y) := {πt(x), πt(y)} − {πt(y), πt(x)}.

Note that the deformation relation (4) is nothing but a rewritten formal homomor-
phism relation (Sect. 1.4).
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Equation (4) is equivalent to a series of nonlinear equations concerning the maps
πk:

dπk = −(1/2)
∑
i+j=k

[πi, πj ].

The right hand side of each equation is a 2-cocycle and the equations have solutions
if and only if the corresponding cohomology classes vanish.

(b) Analogousnecessaryconditions for existence of a polynomial deformation (3) can
be easily calculated.

3.4. Remarks. Polynomial deformations.Deformations of algebraic structures (as asso-
ciative and Lie algebras, their modules and homomorphisms)polynomially depending
on parametersare not very well studied. There is no special version of the general theory
adopted to this case and the number of known examples is small (see [1]).

Theory of polynomial deformation seems to be richer than those of formal ones.
The equivalence problem for polynomial deformation has additional interesting aspects
related to parameter transformations (cf. Sects. 5.4 and 5.5, formulæ (11)).

4. Polynomial Deformations of the Embedding ofVect(S1) into the Lie Algebra
of Formal Laurent Series onT ∗S1

Consider the Poisson Lie algebraA(S1). The formula (1) defines an embedding of
Vect(S1) into this Lie algebra.

The following theorem is the main result of this paper. It gives a classification of
polynomial deformations of the subalgebra Vect(S1) ⊂ A(S1).

Theorem 1. Every nontrivial polynomial deformation of the standard embedding of
Vect(S1) into A(S1) is equivalent to one of a two-parameter family of deformations
given by the formula:

πλ,µ

(
f (x)

d

dx

)
= f

(
x +

λ − µ

ξ

)
ξ + µf ′

(
x +

λ − µ

ξ

)
, (5)

whereλ, µ ∈ R or C are parameters of the deformation; the expression in the right-hand
side has to be interpreted as a formal (Laurent) series inξ.

A complete proof of this theorem is given in Sects. 4 and 5.
The explicit formula for the deformationπλ,µ is as follows:

πλ,µ(f (x)
d

dx
) = f (x)ξ + λf ′(x) +

(
λ2

2
− µ2

2

)
f ′′(x)ξ−1 + · · ·

+

(
µ(λ − µ)k

k!
+

(λ − µ)k+1

(k + 1)!

)
f (k+1)(x)ξ−k + · · ·

(5′)

Remark.The formula (5) is a result of complicated calculations which will be omitted.
We do not see anya-priori reason for its existence.
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To prove Theorem 1, we apply the Nijenhuis–Richardson theory.
The first step is to classify infinitesimal deformations. One has to calculate the first

cohomology of Vect(S1) with coefficients inA(S1). Then, one needs the integrability
condition under which an infinitesimal deformation corresponds to a polynomial one.

4.1. AlgebrasA(S1) andA(S1) as Vect(S1)-modules.Lie algebra Vect(S1) is a sub-
algebra ofA(S1). Therefore,A(S1) is a Vect(S1)-module.

Definition. Consider a 1-parameter family ofVect(S1)-actions onC∞(S1) given by

L(λ)
f (x) d

dx

(a(x)) = f (x)a′(x) − λf ′(x)a(x),

whereλ ∈ R.

DenoteFλ the Vect(S1)-module structure onC∞(S1) defined by this action.

Remark.Geometrically,L(λ)
fd/dx is the operator of Lie derivative ontensor-densitiesof

degree−λ. That means:a = a(x)(dx)−λ.

Lemma 4.1. (i) The Lie algebraA(S1) is decomposed to a direct sum ofVect(S1)-
modules:

A(S1) = ⊕m∈ZFm.

(ii) The Lie algebraA(S1) has the following decomposition as aVect(S1)-module:

A(S1) = ⊕m≥0Fm ⊕ 5m<0Fm.

Proof. Consider the subspace ofA(S1) andA(S1) consisting of functions of degreem
in ξ: a(x)ξm. This subspace is a Vect(S1)-module isomorphic toFm. One has:

{f (x)ξ, a(x)ξm} = (fa′ − mf ′a)ξm = L(m)
f d

dx

(a)ξm.

Therefore, algebra of Laurent polynomials is a direct sum of Vect(S1)-modulesFm.
By definition, an element of algebraA(S1) is a formal series inξ with a finite number

of terms of positive degree.
Lemma 4.1 is proven. �

4.2. Cohomology groupsH1( Vect(S1); A(S1)) and H1( Vect(S1); A(S1)). It follows
that the Vect(S1)-cohomology with coefficients inA(S1) is split into a direct sum:

H1( Vect(S1); A(S1)) = ⊕m∈ZH1( Vect(S1); Fm).

These cohomology groups are well known (see [2]). They are nontrivial if and only
if m = 0, −1, −2 and the corresponding group of cohomology are one-dimensional.
Therefore, the space of first cohomologyH1( Vect(S1); A(S1)) is three-dimensional.

It is clear that the same result holds forA(S1):

H1( Vect(S1); A(S1)) = H1( Vect(S1); A(S1)) = R3.

The nontrivial cocycles generating the following cohomology groups :H1
(

Vect(S1);
A(S1)

)
andH1

(
Vect(S1); A(S1)

)
are
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C0(fd/dx) = f ′,

C1(fd/dx) = f ′′(dx),

C2(fd/dx) = f ′′′(dx)2

with values inF0, F−1, F−2 respectively.

4.3. Infinitesimal deformations.It follows from the Nijenhuis–Richardson theory that
the calculated cohomology group classify infinitesimal deformations of the standard
embedding of Vect(S1) into the algebrasA(S1) andA(S1) (respectively). One obtains
the following result:

Proposition 4.2. Every infinitesimal deformation of the standard embedding of
Vect(S1) into A(S1) andA(S1) is equivalent to:

f (x)∂ 7→ fξ + c0f
′ + c1f

′′ξ−1 + c2f
′′′ξ−2, (6)

wherec0, c1, c2 ∈ R (or C) are parameters.

To classify polynomial deformations of the standard embedding of Vect(S1) into
A(S1), one needs now the integrability conditions on parametersc0, c1, c2.

Remark.We will show (cf. Sect. 6) that in the case of formal deformations of Vect(S1)
into A(S1) the corresponding integrability conditions are completely different.

5. Integrability Condition

Theorem 5.1. (i) An infinitesimal deformation (6) corresponds to a polynomial de-
formation of the standard embeddingVect(S1) ↪→ A(S1), if and only if it satisfies
the following condition:

6c0
3c2 − 3(c0c1)2 − 18c0c1c2 + 8c1

3 + 9c2
2 = 0. (7)

(ii) The polynomial deformation corresponding to a given infinitesimal deformation is
unique up to equivalence.

The nonlinear relation (7) is the integrability condition for infinitesimal deforma-
tions. Given a 1-cocycleC ∈ Z1( Vect(S1); A(S1)) which does not satisfy this condition,
there is an obstruction for existence of a polynomial deformation.

Theorem 5.1 will be proven in the end of this section.

Remark.The formula (7) defines asemi-cubicparabola. Indeed, consider the following
transformation of the parameters:

c̃1 = −2c1 + c0
2,

c̃2 = 3(c2 − c0c1) + C3
0.

Then, the relation (7) is equivalent to:

−c̃1
3 + c̃2

2 = 0. (7′)
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5.1. Homogeneous deformation.Consider an arbitrary polynomial deformation of the
standard embedding, corresponding to the infinitesimal deformation (6):

π

(
f (x)

d

dx

)
= fξ + c0f

′ + c1f
′′ξ−1 + c2f

′′′ξ−2 +
∑
k∈Z

Pk(c)πk(f )ξ−k, (8)

wherec = c1, c2, c3, Pk(c) are polynomials of degree≥ 2 andπk : Vect(S1) → F−k

somedifferentiablelinear maps.
Note that since the cocyclesC1, C2 andC3 are defined by differentiable maps, an

arbitrary solution of the deformation problem is also defined via differentiable maps.
This follows from the Gelfand-Fuks formalism of differentiable (or local) cohomology
(see [2]).

Definition. Let us introduce a notion of homogeneity for deformations given by differ-
entiable maps. A polynomial deformation (8) is called homogeneous if the sum of the
degree inξ and of the order of differentiation off in each term of the right-hand side is
constant.

Since the cocyclesC1, C2 andC3 are homogeneous of order 1, every homogeneous
deformation (8) corresponding to a nontrivial infinitesimal deformation, is of homo-
geneity 1:

π(f (x)∂) = fξ + c0f
′ + c1f

′′ξ−1 + c2f
′′′ξ−2 +

∑
k≥3

Pk(c)f (k+1)ξ−k. (9)

Lemma 5.2. Every polynomial deformation (8) is equivalent to a homogeneous defor-
mation (9).

Proof. It is easy to see that the homomorphism equation:π([f, g]) = {π(f ), π(g)}
preserves the homogeneity condition. It means that the first term in (8) (the term of the
lowest degree inc) which is not homogeneous of degree 1, must be a 1-cocycle. Such
a 1-cocycle is necessarily a coboundary. Indeed, each 1-cocycle is cohomologous to a
linear combination of homogeneous of order 1 cocycles:C1, C2 andC3 (cf. Sect. 4.2).

The lemma follows now from the standard Nijenhuis–Richardson technique. One
can add (or remove) a coboundary in any term of the polynomial deformation (8) to
obtain an equivalent one.

Lemma 5.2 is proven. �

5.2. Uniqueness of the homogeneous deformation.

Proposition 5.3. Given an infinitesimal deformation (6), if there exists a homogeneous
polynomial deformation (9) corresponding to the given one, then this homogeneous
polynomial deformation is unique.

Proof. Substitute the formula (9) to the homomorphism equation. PutP0 = c0, P1 =
c1, P2 = c2. Collecting the terms withξ−k (wherek ≥ 3), one readily obtains the
following identities for polynomialsPk(c):

Pk(c) · (fg′ − f ′g)(k) =

Pk(c) · (fg(k+1) + (k − 1)f ′g(k) − f (k+1)g − (k − 1)f (k)g′)

+
∑

i+j=k−1

Pi(c)Pj(c) · (−if (i+1)g(j+2) + jf (i+2)g(j+1)),
(10)
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for everyf (x), g(x). Each of these identities defines a system of equations of the form:
Pk(c) = · · · , wherek ≥ 3 and “· · · ” means quadratic expressions ofPi(c) with i < k.
Therefore, polynomialsPk(c) with k ≥ 3 are uniquely defined by the constantsc0, c1
andc2.

Proposition 5.3 is proven. �

5.3. Integrability condition is necessary.The first three identities (10) give the following
system of equations:

2P3(c) = 2c0c2 − c1
2,

5P4(c) = 3c0P3(c) − c1c2,{
9P5(c) = 4c0P4(c) − c1P3(c)
5P5(c) = 3c1P3(c) − 2c2

2 .

These equations immediately imply the relation (7). This proves that this condition is
necessary for integrability of infinitesimal deformations.

5.4. Integrability condition and the universal formula (5).Let us prove that the condition
(7) is sufficient for existence of a polynomial deformation. However, it is very difficult
to solve the overdetermined system (10) directly. We will use the formula (5).

The formula (5) obviously defines a deformation (9) which is polynomial inλ, µ.
The first two coefficientsc0 andc1 of this deformation are:

c0 = λ,

c1 =
λ2

2
− µ2

2
,

(11)

and can be taken asindependent parameters.
Fix the values ofc0 andc1 and consider the condition (7) as a quadratic equation

with c2 undetermined. The two solutions can be written (using (11)) as expressions from
λ andµ:

c2
+ =

λ3

6
− λµ2

2
+

µ3

3
,

c2
− =

λ3

6
− λµ2

2
− µ3

3
.

The expressionc2
+ coincides with the third coefficient in the formula (5’). The deforma-

tion πλ,µ defined by the formula (5), corresponds to the infinitesimal deformation with
c0, c1 given by (11) andc2 = c2

+. The expressionc2
− can be obtained fromc2

+ using
the involution:∗ : (λ, µ) 7→ (λ, −µ).

We have shown that, every infinitesimal deformation satisfying (7) corresponds to a
polynomial inc0, c1 andc2 deformation. Indeed, it follows from existence of the formula
(5) that the system (10) has a solution.

Theorem 5.1 is proven. �

Remarks.(a) The parameterµ is a rational parameter on the semi-cubic parabola (7’).
Indeed,̃c1 = µ2, c̃2 = µ3.

(b) Suppose thatc0, c1, c2 ∈ R, thenλ andµ in (11) are real if and only ifc0
2 ≥ 2c1.
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5.5. Proof of Theorem 1.We have shown that:

(a) Every integrable infinitesimal deformation is equivalent to (6) and obeys the condi-
tion (7).

(b) Every polynomial deformation is equivalent to a homogeneous one.
(c) Given an infinitesimal deformation, there exists a unique homogeneous deformation

corresponding to the infinitesimal one. It is given by the universal formula (5).

Theorem 1 is proven. �

6. Formal Deformations of the Embedding of Vect(S1) into A(S1)

We classify formal deformations of the Lie subalgebra Vect(S1) in A(S1).

Theorem 2. Every formal deformation of the standard embeddingπ : Vect(S1) ↪→
A(S1) is equivalent to one of the following deformations:

πt

(
f (x)

d

dx

)
= f

(
x +

(1 − λ)t
ξ

)
ξ + λtf ′

(
x +

(1 − λ)t
ξ

)
, (5′′)

whereλ ∈ R, the right-hand side is a (Taylor) series int.

In other words, there exists a one-parameter family of formal deformations.
The explicit formula for (5′′) is:

πt

(
f (x)

d

dx

)
=

∞∑
k=0

(1 − (k − 1)λ)(1 − λ)k−1 tk

k!
f (k)(x)ξ−k+1, (5′′′)

note thatπt(f (x)d/dx) = fξ + tf ′ + · · · .
Classification of infinitesimal deformation was done in Sect. 4.3. In order to prove

Theorem 2, let us first classify the infinitesimal deformations which correspond to formal
ones.

6.1. Integrable infinitesimal deformations.

Proposition 6.1. An infinitesimal deformation (6) correspond to a formal deformation
if and only ifc1 = c2 = 0.

A 1-cocycle on Vect(S1) corresponding to an integrable infinitesimal deformation
is, therefore, proportional to the cocycleC0 from Sect. 4.2. In other words, a nontrivial
formal deformation is equivalent to a deformation of the form:

πt

(
f (x)

d

dx

)
= fξ + tf ′ + (t2)

(the constantc0 in (6) can be chosen:c0 = 1 up to normalization).

Proof of the proposition.Consider an infinitesimal formal deformation:

f (x)
d

dx
7→ fξ + t(c0f

′ + c1f
′′ξ−1 + c2f

′′′ξ−2)

of the standard embeddingπ : Vect(S1) → A(S1). One must show that it corresponds
to a formal deformationπt if and only if c1 = c2 = 0.
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First, note that each termπk, k ≥ 1 of a formal deformationπt (of the expansion
(2)) can be chosen in a homogeneous form:

πk

(
f (x)

d

dx

)
=

∑
j

αk
j f (j+1)ξj , (12)

whereαk
j are some constants. The proof of this fact is analogous to the one of Lemma

5.2.
Second, apply the Nijenhuis–Richardson deformation relation (4) (which is equiv-

alent to the homomorphism relationπ([f, g]) = {π(f ), π(g)}). In the same way as in
Sects. 5.2 and 5.3, collecting the terms withtk, one obtains the following conditions:

(a) terms witht2:

2α2
3 = 2c0c2 − c1

2,

5α2
4 = −c1c2,{

α2
5 = 0

5α2
5 = −2c2

2 ,

and therefore,c2 = 0.
(b) terms witht3: {

9α3
5 = −c1α

2
3 = (1/2)c1

3

5α3
5 = 3c1α

2
3 = −(3/2)c1

3 ,

and therefore,c1 = 0.

Proposition 6.1 is proven. �

Lemma 6.2. The constantsαk
j in each termπk (given by the formula (12)) of the de-

formationπt satisfy the condition:αk
j = 0 if j ≥ k.

Proof. First, one easily shows thatαk
j = 0 if j > k.

In the same way, using the identities (10), one obtains:αk
k = 0 for everyk ≥ 1.

Lemma 6.2 is proven. �

For example, collecting the terms witht4 one has 9α4
5 = 4c0α

3
4 − α2

1α
2
3 = 0 and

α3
5 = 4α2

1α
2
3 − 2(α2

2)2 = −2(α2
2)2, from whereα2

2 = 0.

Lemma 6.3. Every formal deformationπt is equivalent to a formal deformation given
by:

πt

(
f (x)

d

dx

)
= fξ + tf ′ + α1t

2f ′′ξ−1 + α2t
3f ′′′ξ−2 +

∑
k≥3

αktk+1f (k+1)ξ−k,

whereαi are some constants.

This means one can take in (12)αk
j = 0 if j ≤ k − 2.
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Proof. Every formal deformation is equivalent to a deformation withαk
0 = 0 in (12).

Indeed, constantαk
0 is just the coefficient behindtkf ′. It can be removed (up to equiva-

lence) by choosing a new formal parameter of deformationt̃ = t + tkαk
0 .

Now, the lemma follows from Proposition 6.1 and homogeneity of the homomor-
phism condition. Indeed, the terms withj ≤ k − 2 are independent and therefore, the
first nonzero term (corresponding to the minimal value ofj) must be a 1-cocycle. In
the same way as in Lemma 5.2, one shows that such a 1-cocycle is trivial and can be
removed up to equivalence.

Lemma 6.3 is proven. �

Now, the expressionsPk = αktk+1 satisfy the identities (10). Thus, the deformation
πt is given by the formula (5) withλ = t.

Theorem 2 is proven. �

7. Some Properties of the Main Construction

Let us study some geometric and algebraic properties of the two-parameter deformation
(5).

7.1. Deformation ofSL2(R)-moment map. Consider the standard Lie subalgebra
sl2(R) ⊂ Vect(R) generated by the vector fields:

d

dx
, x

d

dx
, x2 d

dx
.

For everyλ andµ, the restriction of the mapπλ,µ given by the formula (5) tosl2(R),
defines a Hamiltonian action ofsl2(R) on the half-planeH = {(x, ξ) |ξ > 0} endowed
with the standard symplectic structure:ω = dx ∧ dξ. Indeed, the formal series (5’) in
this case has only a finite number of nonzero terms and associates to each element of
sl2(R) a well-defined Hamiltonian function onH.

Given a Hamiltonian action of a Lie algebrag on a symplectic manifoldM , let us
recall the notion of so-calledmoment mapfrom M into the dual spaceg∗ (see [5]). One
associates to a pointm ∈ M a linear functionm̄ ong. The definition is as follows: for
everyx ∈ g,

〈m̄, x〉 := Fx(m),

whereFx is the Hamiltonian function corresponding tox. If the Hamiltonian action of
g is homogeneous, then the image of the moment map is a coadjoint orbit ofg.

In the case ofsl2(R), the coadjoint orbits onsl2(R)∗(' R3) can be identified with
level surfaces of the Killing form. Explicitly, for the coordinates onsl2(R)∗, dual to the
chosen generators ofsl2(R):

y1y3 − y2
2 = const.

Thus, coadjoint orbits ofsl2(R) are cones (if the constant in the right hand side is
zero), one sheet of a two-sheets hyperboloid (if the constant is positive), or a one-sheet
hyperboloid (if the constant is negative).

Proposition 7.1. The image of the half-plane(ξ > 0) under theSL2(R)-moment map
is one of the following coadjoint orbits ofsl2(R):

(i) λ = 0 or µ = 0, the nilpotent conic orbit;
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(ii) λµ > 0, one sheet of a two-sheets hyperboloid;
(iii) λµ < 0, a one-sheet hyperboloid.

Proof. The Poisson functions corresponding to the generators ofsl2(R) are:

F1 = ξ,

F2 = xξ + λ,

F3 = x2ξ + 2λx + λ(λ − µ)ξ−1,

respectively. These functions satisfy the relation:F1F3 − F 2
2 = λµ. �

7.2. The Virasoro algebra and central extension of the Lie algebraC∞(T2). Consider
the Lie algebraC∞(T2) of smooth functions on the two-torus with the standard Poisson
bracket. This Lie algebra has a two-dimensional space of nontrivial central extensions:
H2(C∞(T2)) = H2(T2) = R2. The corresponding 2-cocycles were defined by A.A. Kir-
illov [4] (see also [11]):

c(F, G) =
∫

γ

FdG,

whereF = F (x, y), G = G(x, y) are periodic functions:F (x + 2π, y) = F (x, y + 2π) =
F (x, y) andγ is a closed path.

Recall that theVirasoro algebrais the unique (up to isomorphism) nontrivial central
extension of Vect(S1). It is given by the so-called Gelfand-Fuks cocycle:

w(f (x)d/dx, g(x)d/dx) =
∫ 2π

0
f ′(x)g′′(x) dx.

Let us show how the central extensions ofC∞(T2) are related to the Virasoro algebra
via the embedding (5).

Let VectPol(S1) be the Lie algebra overC of polynomial vector fields onS1. It is
generated by:Ln = zn+1d/dz, wherez = eix. The formula (5) withξ = eiy defines a
family of embeddings of VectPol(S1) into C∞(T2)C.

It is easy to show that the restriction of two basis Kirillov’s cocycles to the subalgebra
VectPol(S1) ↪→ C∞(T2)C is proportional to the Gelfand-Fuks cocycle:

(
∫

ξ=const
FdG)

∣∣∣∣
VectPol(S1)

= λ2w and (
∫

x=const
FdG)

∣∣∣∣
VectPol(S1)

= λ2µ2w.
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