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Abstract: We study deformations of the standard embedding of the Lie algebra
Vect(S') of smooth vector fields on the circle, into the Lie algebra of functions on
the cotangent bundI&* S* (with respect to the Poisson bracket). We consider two anal-
ogous but different problems: (a) formal deformations of the standard embedding of
Vect(S?) into the Lie algebra of functions ofi* St := 781\ S* which are Laurent
polynomials on fibers, and (b) polynomial deformations of the \&9tEubalgebra
inside the Lie algebra of formal Laurent seriesionS?.

1. Introduction

1.1. The standard embeddinbhe Lie algebra Veci{/) of vector fields on a manifold/

has a natural embedding into the Poisson Lie algebra of functiofi$ dh It is defined

by the standard action of the Lie algebra of vector fields on the cotangent bundle. Using
the local Darboux coordinates,¢) = (%, ..., 2" &1, ...,&,) onT* M, the explicit
formula is:

m(X) = X¢, (1)

whereX is a vector fieldX = Y7 X(2)0/0x" and X ¢ =Y 1) X()&;.
The main purpose of this paper is to study deformations of the standard embedding

).

1.2. Deformations insid€°°(T* M). Consider the Poisson Lie algebra of smooth func-
tions onT™* M for an orientable manifold/. In this case, the problem of deformation
of the embedding (1) has an elementary solution. The Yérttmbedding (1) into
C*°(T* M) has the unique (well-known) nontrivial deformation. Indeed, given an arbi-
trary volume form onM/, the expression:
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m(X) = X€ + MdivX,

where) € R, defines an embedding of Vest() into C°°(T™* M).
The linear mapX — divX is the unique nontrivial 1-cocycle on Vedt() with
values inC> (M) C C(T* M) (cf. [2]).

1.3. Two Poisson Lie algebras of formal symbolst us consider the following two
Lie algebras of Poisson on the cotangent bundle with zero section remiBéd: =
T*M\ M.

(&) The Lie algebrad(M) of functions onT*M which areLaurent polynomialsn
fibers; )
(b) The Lie algebrad(M) of formal Laurent serieenT* M .

Lie algebrasA(M) and. A(M) can be interpreted adassical limits of the algebra of
formal symbolof pseudo-differential operators di. We will show that in this case
one can expect much more interesting results than those in the case(af).

In both cases, the Poisson bracket is defined by the usual formula:

OF 0G  OF G

{F,G}:yg%—%ag.

2. Statement of the Problem

In this paper we will consider only the one-dimensional cage: S* (analogous results
hold for M = R).

2.1. AlgebrasA(SY) and A(SY) in the one-dimensional caseAs vector spaces, Lie
algebrasA(S?) and.A(S?Y) have the following form:

A(SY) = C%(sh) @ ClE, €71 and A(SY) = C>(sT) @ CLE, 711,

whereC[¢, £ 1] is the space of Laurent series in one formal indeterminate.
Elements of both algebradi(S*) and.A(S?) can be written in the following form:

F(a,&,6M =) & fula),
kez

where the coefficientg, (x) are periodic functionsfy(x + 27) = fi(x). In the case of
algebraA(S?t), one supposes that the coefficiefits= 0, if |k| is sufficiently large; for
A(SY) the condition is:f,, = 0, if k is sufficiently large.

2.2. Formal deformations olect(S') inside A(SY). We will study one-parameter
formaldeformations of the standard embedding of VE&)(nto the Lie algebrad(s?).
That means we study linear maps

7t Vect(Sh) — A(SHII
to the Lie algebra of series in a formal paramet&uch a map has the following form:

R i A R (2)



Deforming the Lie Algebra of Veector Fields 99

wherer;, : Vect(S') — A(S?) are some linear maps, such that the formal homomor-
phism condition is satisfied:

(X, Y]) = {="(X), 7' (V)}.

The general Nijenhuis—Richardson theory of formal deformations of homomorphisms
of Lie algebras will be discussed in the next section.

2.3. Polynomial deformations of theect(S') inside . A(S?). We classify all thepoly-
nomial deformations of the standard embedding (1) of \&ttinto .4(S%). In other
words, we consider homomorphisms of the following form:

LOEEESPENCIL €)

kez

wherec = ¢1,...,¢, € R (or C) are parameters of deformations, each linear map
7r(c) : Vect(St) — C>(SY) being polynomial ir, 7,(0) = 0 andr, = 0if & > O is
sufficiently large.

2.4. Motivations.

(a) Lie algebras of functions on a symplectic manifold have nontrivial formal defor-
mations linked with so-calledeformation quantizatiarThe problem considered in
this paper, is original and has never been discussed in the literature. However, this
problem is inspired by deformation quantization.
The geometric version of the problem, deformations (up to symplectomorphism)
of zero section of the cotangent bundi¢ C 7*M, has no nontrivial solutions.
Existence of nontrivial deformations in the algebraic formulation that we consider
here seems to be a manifestation of “quantum anomalies”.
Note that interesting examples of deformations of Lie algebra homomorphisms
related to deformation quantization can be found in [12].

(b) Lie algebras of vector fields and Lie algebras of functions on a symplectic manifold,
have both nice cohomology theories, our idea is to link them together.
Lie algebras of vector fields have various nontrivial extensions. The well-known
example is th&/irasoro algebradefined as a central extension of Vet¥). A series
of nontrivial extensions of Vect() by modules of tensor-densities Shwere con-
structed in[8, 9]. These extensions can be obtained, using a (honstandard) embedding
of Vect(S?) into C>(T*SY), by restriction of the deformation a@>°(7*S?) (see
[9]).
We will show that deformations of the standard embedding relate the Virasoro al-
gebra to extensions of Poisson algebraémlefined by A.A. Kirillov (see [4, 11]).

(c) The following quantum aspect of the considered problem: deformations of embed-
dings of VectG?) into the algebra of pseudodifferential operatorsSn will be
treated in a subsequent article.

3. Nijenhuis—Richardson Theory

Deformations of homomorphisms of Lie algebras were first considered in [6] (see also
[10]). The Nijenhuis—Richardson theory is analogous to the Gerstenhaber theory of
formal deformations of associative algebras (and Lie algebras) (see [3]), related coho-
mological calculations are parallel. Let us outline the main results of this theory.
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3.1. Equivalent deformations.

Definition. Two homomorphisms and =’ of a Lie algebrag to a Lie algebrah are
equivalent (cf. [6]) if there exists an interior automorphignof b such thatr’ = I'r.

Let us specify this definition for the two problem formulated in Sects. 2.2 and 2.3.

(a) Two formal deformations (2j* and=’* are equivalent if there exists a linear map
I - A(SHI — ASHI[¢]] of the form:

I, = exptadg, +t?adg, + - - -)
= id + tadp, +t3(adf, /2 +adg,) + - -,

whereF; € A(SY), such thatr’* = I,x". It is natural to consider such an automor-
phism of A(SY)[[¢]] as interior.

(b) An automorphismi(c) : A(S') — .A(S?) depending on the parameters=
c1, - - -, cn, Which is of the following form:

I(C) = exp(z Cia.dFi + CiCjadFij + - ')7

i=1

whereF;, F;,--- € A(SY) is called interior. Two polynomial deformationgc)
and~’'(c) of the standard embedding Vest) — .A(S?) are equivalent if there
exists an interior automorphisfifc), such that’(c) = I(c)w(c).

3.2. Infinitesimal deformation®eformations (2) and (3), modulo second order terms in
t andc respectively, are calleidfinitesimal Infinitesimal deformations of a Lie algebra
homomorphism frong into h are classified by the first conomology grofig(g; b), b
being ag-module throughr.

Namely, the first order terms; in (2) and ag—c(” ™ in (3) arel-cocycles Two

infinitesimal deformations are equivalent if and only if the corresponding cocycles are
cohomologous.

Conversely, given a Lie algebra homomorphism g — b, an arbitrary 1-cocycle
71 € Z(g; b) defines an infinitesimal deformation of

3.3. Obstructions.The integrability conditionsare conditions for existence of (formal
or polynomial) deformation corresponding to a given infinitesimal deformation.

(a) The obstructions for existence of a formal deformation (2) belong to the second
cohomology grougi?(g; h). This follows from the so-called deformation relation
(see [6]):

drt +(1/2)[x*, 7" = O, (4)
where [r?, 7?] is a bilinear map frony to b:
[7*, 7Nz, y) = {7 (@), 7" (W)} — {7" (), 7" (x)}.

Note that the deformation relation (4) is nothing but a rewritten formal homomor-
phism relation (Sect. 1.4).
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Equation (4) is equivalent to a series of nonlinear equations concerning the maps
T

dm, = —(1/2) Y [mi, ;).

i+j=k

The right hand side of each equation is a 2-cocycle and the equations have solutions
if and only if the corresponding cohomology classes vanish.

(b) Analogousmecessargonditions for existence of a polynomial deformation (3) can
be easily calculated.

3.4. Remarks. Polynomial deformatiori3eformations of algebraic structures (as asso-
ciative and Lie algebras, their modules and homomorphigoighomially depending
on parameterare not very well studied. There is no special version of the general theory
adopted to this case and the number of known examples is small (see [1]).

Theory of polynomial deformation seems to be richer than those of formal ones.
The equivalence problem for polynomial deformation has additional interesting aspects
related to parameter transformations (cf. Sects. 5.4 and 5.5, formulae (11)).

4. Polynomial Deformations of the Embedding of Vect(S?) into the Lie Algebra
of Formal Laurent Series onT*S*

Consider the Poisson Lie algeb#(S'). The formula (1) defines an embedding of
Vect(S?) into this Lie algebra.

The following theorem is the main result of this paper. It gives a classification of
polynomial deformations of the subalgebra V&&)(c A(S?).

Theorem 1. Every nontrivial polynomial deformation of the standard embedding of

Vect(S?) into A(SY) is equivalent to one of a two-parameter family of deformations
given by the formula:

WA,/L(f(.Z‘)jB) :f(x+)\g'u>f+uf/(x+)\gu>, (5)

where\, i € R or C are parameters of the deformation; the expression in the right-hand
side has to be interpreted as a formal (Laurent) serie&.in

A complete proof of this theorem is given in Sects. 4 and 5.
The explicit formula for the deformatiom** is as follows:

2

2
) et

Nk k+L

P 1) = AT +
)

Remark.The formula (5) is a result of complicated calculations which will be omitted.
We do not see ang-priori reason for its existence.
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To prove Theorem 1, we apply the Nijenhuis—Richardson theory.

The first step is to classify infinitesimal deformations. One has to calculate the first
cohomology of Vect§') with coefficients in4(S*). Then, one needs the integrability
condition under which an infinitesimal deformation corresponds to a polynomial one.

4.1. AlgebrasA(St) and A(S?) as Vect(St)-modules.Lie algebra Vect§?) is a sub-
algebra ofA(S'). Therefore,A(SY) is a VectGt)-module.

Definition. Consider a 1-parameter family ofect(S')-actions onC'>(S?) given by
LYY 4 (@(@) = f@)a' (@) = Af'(@)a().

where) € R.
DenoteF, the VectS?!)-module structure o6’ (St) defined by this action.

Remark. Geometrically,L(fA;/ 4 1S the operator of Lie derivative arensor-densitiesf

degree-\. That meansa = a(z)(dz) .

Lemma4.1. (i) The Lie algebraA(S?) is decomposed to a direct sum wect(S')-
modules:

A(Sl) = @mEZ]:m-
(i) The Lie algebraA(S*) has the following decomposition as\ect(S*)-module:
A(Sl) = @mzofm 3] l_[m<0~Fmo

Proof. Consider the subspace d{S') and.4(S?) consisting of functions of degree
in & a(x)¢™. This subspace is a Veétt)-module isomorphic to-,,,. One has:

{f@)&.a(@)g™} = (fa' —mf'a)e™ = LT (a)e™

Therefore, algebra of Laurent polynomials is a direct sum of #&gthodulesz,,.
By definition, an element of algebs(S?) is a formal series ig with a finite number
of terms of positive degree.
Lemma4.1is proven. [

4.2. Cohomology group&*( Vect(S?); A(SY)) and H( Vect(sY); A(SY). It follows
that the Vect§?!)-cohomology with coefficients inl(S?) is split into a direct sum:

HY(Vect(SY); A(SY) = ®mez HY( Vect(SY): Fpn,).

These cohomology groups are well known (see [2]). They are nontrivial if and only
if m = 0,—1, —2 and the corresponding group of cohomology are one-dimensional.
Therefore, the space of first cohomoloBy ( Vect(St); A(SY)) is three-dimensional.

It is clear that the same result holds fd¢S?):

HY(Vect(SY); A(SY) = H( Vect(SY); A(SY) = R3.

The nontrivial cocycles generating the following cohomology grou;bjs(: Vect(S1);
A(SY) andHY( Vect(Sh); A(SY)) are
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Co(fdjdz) = f',

Cu(fdjdz) = f"(dx),

Colfdfdz) = " (dx)?
with values inFy, F_1, F_, respectively.
4.3. Infinitesimal deformationsit follows from the Nijenhuis—Richardson theory that
the calculated cohomology group classify infinitesimal deformations of the standard

embedding of Vec§') into the algebrasi(S*) and.A(S?) (respectively). One obtains
the following result:

Proposition 4.2. Every infinitesimal deformation of the standard embedding of
Vect(SY) into A(S1) and A(S?) is equivalent to:

f@)0 = fe+cof +erf'et+cofe72, (6)

wherecy, c1, ¢ € R (or C) are parameters.

To classify polynomial deformations of the standard embedding of ¥&gtato
A(S?), one needs now the integrability conditions on parametgis;, c,.

Remark. We will show (cf. Sect. 6) that in the case of formal deformations of \&9t(
into A(SY) the corresponding integrability conditions are completely different.

5. Integrability Condition

Theorem 5.1. (i) An infinitesimal deformation (6) corresponds to a polynomial de-
formation of the standard embeddingect(S') — A(SY), if and only if it satisfies
the following condition:

6coco — 3(cocr)? — 18cocico + 8c1% +9¢,2 = 0. @)

(ii) The polynomial deformation corresponding to a given infinitesimal deformation is
unigue up to equivalence.

The nonlinear relation (7) is the integrability condition for infinitesimal deforma-
tions. Givena 1-cocycl€ € Z1( Vect(S1); A(SY)) which does not satisfy this condition,
there is an obstruction for existence of a polynomial deformation.

Theorem 5.1 will be proven in the end of this section.

Remark. The formula (7) defines semi-cubigarabola. Indeed, consider the following
transformation of the parameters:

C1= —2c1 + co?,

o = 3(02 — Cocl) + Cg
Then, the relation (7) is equivalent to:

—a*+&* =0, (7
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5.1. Homogeneous deformatioonsider an arbitrary polynomial deformation of the
standard embedding, corresponding to the infinitesimal deformation (6):

7 (10 ) = el st e et S RORNE,, ©

kezZ

wherec = c1, ¢z, cs, P(c) are polynomials of degree 2 andr, : Vect(S?) — F_
somedifferentiablelinear maps.

Note that since the cocycl€s;, C> andC3 are defined by differentiable maps, an
arbitrary solution of the deformation problem is also defined via differentiable maps.
This follows from the Gelfand-Fuks formalism of differentiable (or local) cohomology
(see [2]).

Definition. Let us introduce a notion of homogeneity for deformations given by differ-
entiable maps. A polynomial deformation (8) is called homogeneous if the sum of the
degree ir¢ and of the order of differentiation gf in each term of the right-hand side is
constant.

Since the cocycle€;, C> andC3 are homogeneous of order 1, every homogeneous
deformation (8) corresponding to a nontrivial infinitesimal deformation, is of homo-
geneity 1:

7(f(@)0) = fE+cof +erf'E M+ eaf"ET Y (o) fFIETE 9)

k>3

Lemma 5.2. Every polynomial deformation (8) is equivalent to a homogeneous defor-
mation (9).

Proof. It is easy to see that the homomorphism equatiefiy, g]) = {=(f), ()}
preserves the homogeneity condition. It means that the first term in (8) (the term of the
lowest degree i) which is not homogeneous of degree 1, must be a 1-cocycle. Such
a 1-cocycle is necessarily a coboundary. Indeed, each 1-cocycle is cohomologous to a
linear combination of homogeneous of order 1 cocydlgsC> andC; (cf. Sect. 4.2).

The lemma follows now from the standard Nijenhuis—Richardson technique. One
can add (or remove) a coboundary in any term of the polynomial deformation (8) to
obtain an equivalent one.

Lemmab.2is proven. O

5.2. Uniqueness of the homogeneous deformation.

Proposition 5.3. Given an infinitesimal deformation (6), if there exists a homogeneous
polynomial deformation (9) corresponding to the given one, then this homogeneous
polynomial deformation is unique.

Proof. Substitute the formula (9) to the homomorphism equation./But co, P, =
c1, P, = c,. Collecting the terms wittf—* (wherek > 3), one readily obtains the
following identities for polynomiald;(c):

Py (fg' — f'g)™) =
Pu(@) - (Fg® D+ (k = 1)f'g® — f* g — (k — 1)fWg) (10)

+ 3 RAOPQ) - (—if T Dgu D 4 gy,
i+j=k—1
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for every f(x), g(x). Each of these identities defines a system of equations of the form:
Pi(c) =---,wherek > 3 and “ - -” means quadratic expressions@f(c) with i < k.
Therefore, polynomial$,(c) with £ > 3 are uniquely defined by the constangsci
andc;.

Proposition 5.3 is proven. [

5.3. Integrability condition is necessarVhe first three identities (10) give the following
system of equations:

2P5(c) = 2cc2 — 17,

5P4(c) = 3coP3(c) — c1ca,

9Ps(c) = 4coPa(c) — c1P3(c)
5P5(c) = 3c1Psa(c) — 2¢22

These equations immediately imply the relation (7). This proves that this condition is
necessary for integrability of infinitesimal deformations.

5.4. Integrability condition and the universal formula (Rt us prove that the condition
(7) is sufficient for existence of a polynomial deformation. However, it is very difficult
to solve the overdetermined system (10) directly. We will use the formula (5).

The formula (5) obviously defines a deformation (9) which is polynomia\,in.
The first two coefficientsg andc; of this deformation are:

Cco — )\,
_N P (11)
C1 = 2 2 3

and can be taken asdependent parameters

Fix the values oty andc; and consider the condition (7) as a quadratic equation
with ¢; undetermined. The two solutions can be written (using (11)) as expressions from
Aandy:

3 2 3
A Loy
6 2 3
276 2 3

The expressiom,* coincides with the third coefficient in the formula (5’). The deforma-
tion 7+ defined by the formula (5), corresponds to the infinitesimal deformation with
co, c1 given by (11) and:; = ¢,*. The expression,™ can be obtained from,* using

the involution: : (A, u) — (A, —p).

We have shown that, every infinitesimal deformation satisfying (7) corresponds to a
polynomial incg, ¢; andc, deformation. Indeed, it follows from existence of the formula
(5) that the system (10) has a solution.

Theorem 5.1 is proven. [

Remarks.(a) The parameter is a rational parameter on the semi-cubic parabola (7).
Indeedc; = p?, ¢ = .
(b) Suppose thaty, c1,c; € R, then) andy in (11) are real if and only ifg? > 2¢;.
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5.5. Proof of Theorem 1We have shown that:

(a) Every integrable infinitesimal deformation is equivalent to (6) and obeys the condi-
tion (7).

(b) Every polynomial deformation is equivalent to a homogeneous one.

(c) Given an infinitesimal deformation, there exists a unique homogeneous deformation
corresponding to the infinitesimal one. It is given by the universal formula (5).

Theorem 1is proven. O

6. Formal Deformations of the Embedding of Vect(S?') into A(S?)

We classify formal deformations of the Lie subalgebra \@&tt(n A(S%).

Theorem 2. Every formal deformation of the standard embedding Vect(S!) —
A(SY) is equivalent to one of the following deformations:

Wt<f(x);;> :f(ﬂ (1—5/\)t)§+)\tf/<m+ (l—gA)t>7 )

where) € R, the right-hand side is a (Taylor) seriesin

In other words, there exists a one-parameter family of formal deformations.
The explicit formula for (8) is:

00 k
#(F0 ) =X G- - N )
k=0 ’

note thatr!(f(z)d/dx) = fE+tf +---.

Classification of infinitesimal deformation was done in Sect. 4.3. In order to prove
Theorem 2, let us first classify the infinitesimal deformations which correspond to formal
ones.

6.1. Integrable infinitesimal deformations.

Proposition 6.1. An infinitesimal deformation (6) correspond to a formal deformation
if and only ifc; = ¢, = 0.

A 1-cocycle on Vect§') corresponding to an integrable infinitesimal deformation
is, therefore, proportional to the cocydlg from Sect. 4.2. In other words, a nontrivial
formal deformation is equivalent to a deformation of the form:

w(f ) = ser e+

(the constanty in (6) can be chosenp = 1 up to normalization).

Proof of the propositionConsider an infinitesimal formal deformation:

F@) v+ teof + "€+ caf € )

of the standard embedding: Vect(S) — A(S'). One must show that it corresponds
to a formal deformatiom?® if and only if ¢; = ¢, = 0.
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First, note that each termy,, ¥ > 1 of a formal deformation (of the expansion
(2)) can be chosen in a homogeneous form:

m (1) ) = kol 12)
J

whereaj? are some constants. The proof of this fact is analogous to the one of Lemma
5.2.

Second, apply the Nijenhuis—Richardson deformation relation (4) (which is equiv-
alent to the homomorphism relatior([ f, g]) = {7 (f), 7(g9)}). In the same way as in
Sects. 5.2 and 5.3, collecting the terms withone obtains the following conditions:

(a) terms witht?:
204% = 2cocp — 0127

5(1‘21 = —cicp,

a¢=0
502 = —2c,?
and thereforeg, = 0.

(b) terms withtS:

904% = —claé =(1/2)c,®
5ag = 301045 = —(3/2)c:®

and thereforeg; = 0.

Proposition 6.1 is proven. [

Lemma 6.2. The constanta? in each termm;, (given by the formula (12)) of the de-
formationr! satisfy the conditiona;? =0ifj > k.

Proof. First, one easily shows thag? =0ifj > k.

In the same way, using the identities (10), one obtaifjs= O for everyk > 1.
Lemma 6.2 is proven. O

For example, collecting the terms with one has 82 = 4cgad — o203 = 0 and
ad = 4a2a3 — 2(a3)? = —2(a3)?, from wherea3 = 0.

Lemma 6.3. Every formal deformation is equivalent to a formal deformation given
by:
t d — ! 2 p1e—1 3 1 e—2 k+1 p(k+1)¢—k
T (f@) o ) = FEHtf +ant? e + oot fETR Yot
z k>3
whereq, are some constants.

This means one can take in (1(29 =0ifj <k-2.
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Proof. Every formal deformation is equivalent to a deformation with= 0 in (12).
Indeed, constant} is just the coefficient behintt f'. It can be removed (up to equiva-
lence) by choosing a new formal parameter of deformation + thaf.

Now, the lemma follows from Proposition 6.1 and homogeneity of the homomor-
phism condition. Indeed, the terms with< k& — 2 are independent and therefore, the
first nonzero term (corresponding to the minimal valug)omust be a 1-cocycle. In
the same way as in Lemma 5.2, one shows that such a 1-cocycle is trivial and can be
removed up to equivalence.

Lemma 6.3 is proven. [

Now, the expressionB), = oy, t**! satisfy the identities (10). Thus, the deformation
7t is given by the formula (5) with = ¢.
Theorem 2 is proven. [

7. Some Properties of the Main Construction

Let us study some geometric and algebraic properties of the two-parameter deformation

(5).

7.1. Deformation ofSL,(R)-moment map. Consider the standard Lie subalgebra
sla(R) € Vect(R) generated by the vector fields:

4 4 od
dz’ CEd:z:’ v dz’

For every\ andy, the restriction of the map™* given by the formula (5) tal»(R),
defines a Hamiltonian action ef,(R) on the half-plané{ = {(z, £) |£ > 0} endowed
with the standard symplectic structute:= dx A d€. Indeed, the formal series (5) in
this case has only a finite number of nonzero terms and associates to each element of
sl2(R) a well-defined Hamiltonian function oH.

Given a Hamiltonian action of a Lie algebgeon a symplectic manifold/, let us
recall the notion of so-calleshoment majrom A into the dual spacg* (see [5]). One
associates to a point € M a linear functionn on g. The definition is as follows: for
everyz € g,

(m, z) := F,(m),

whereF, is the Hamiltonian function correspondingolf the Hamiltonian action of
g is homogeneous, then the image of the moment map is a coadjoint ogbit of

In the case 0kl»(R), the coadjoint orbits orl(R)*(~ R®) can be identified with
level surfaces of the Killing form. Explicitly, for the coordinates @p(R)*, dual to the
chosen generators ef>(R):

y1ys — y5 = const

Thus, coadjoint orbits ofi>(R) are cones (if the constant in the right hand side is
zero), one sheet of a two-sheets hyperboloid (if the constant is positive), or a one-sheet
hyperboloid (if the constant is negative).

Proposition 7.1. The image of the half-plang > 0) under theS L,(R)-moment map
is one of the following coadjoint orbits 6f,(R):

(i) A =0oru =0, the nilpotent conic orbit;
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(i) Awp > 0, one sheet of a two-sheets hyperboloid;
(i) Ap < 0, a one-sheet hyperboloid.

Proof. The Poisson functions corresponding to the generatas(@R) are:

=g,
FZ = JJ& + )‘a
Fy= 2%+ 2 + MO\ — p)e 1,

respectively. These functions satisfy the relatibpfs — Fz = Apu. O

7.2. The Virasoro algebra and central extension of the Lie algey(T2). Consider

the Lie algebra’>(T?) of smooth functions on the two-torus with the standard Poisson
bracket. This Lie algebra has a two-dimensional space of nontrivial central extensions:
H?(C>(T?)) = H*(T?) = R2. The corresponding 2-cocycles were defined by A.A. Kir-
illov [4] (see also [11]):

c(F,G):/FdG7
gl

whereF' = F(z,y), G = G(x, y) are periodic functionst'(z + 27, y) = F(z,y + 2r) =
F(x,y) and~ is a closed path.

Recall that thé/irasoro algebrais the unique (up to isomorphism) nontrivial central
extension of Vect§'). It is given by the so-called Gelfand-Fuks cocycle:

2
w(f(z)d/dz, g(x)d/dx) = | f'(@)g" (@) dz.

Let us show how the central extensiong5F (T2) are related to the Virasoro algebra
via the embedding (5).

Let Vecko(S?) be the Lie algebra oveE of polynomial vector fields or$?. It is
generated byL,, = z"*1d/dz, wherez = ¢'*. The formula (5) with¢ = ¢ defines a
family of embeddings of Veet (S?) into C>°(T?)c.

Itis easy to show that the restriction of two basis Kirillov’s cocycles to the subalgebra
Vectp(S1) — C=(T?)c is proportional to the Gelfand-Fuks cocycle:

( FdG)‘ =)w and ( FdG)‘ = 222w,
g=const Vectq(sY) x=const Vectq (st
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