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Space of Linear Differential Operators on the

Real Line as a Module over the Lie Algebra of Vector Fields

H. Gargoubi and V. Yu. Ovsienko

1 Introduction

The space of linear differential operators on a manifold M has various algebraic struc-

tures: the structure of associative algebra and of Lie algebra, and in the 1-dimensional

case it can be considered as an infinite-dimensional Poisson space (with respect to the

so-called Adler-Gelfand-Dickey bracket).

1.1 Diff(M)-module structures

One of the basic structures on the space of linear differential operators is a natural family

of module structures over the group of diffeomorphisms Diff(M) (and of the Lie algebra of

vector fields Vect(M)). These Diff(M)- (and Vect(M))-module structures are defined if one

considers the arguments of differential operators as tensor-densities of degree λ on M.

In this paper we consider the space of differential operators on R.1 Denote by Dk

the space of kth-order linear differential operators

A(φ) = ak(x)
dkφ

dxk
+ · · · + a0(x)φ (1)

where ai(x), φ(x) ∈ C∞(R).

Received 18 January 1996. Revision received 30 January 1996.
Communicated by Yu. I. Manin.
1Particular cases of actions of Diff(R) and Vect(R) on this space were considered in classics (see [1], [14]).
The well-known example is the Sturm-Liouville operator d2/dx2 + a(x) acting on −1/2-densities (see, e.g., [1],
[14], [13]). Already this simplest case leads to interesting geometric structures and is related to the so-called
Bott-Virasoro group (cf. [7], [12]).
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236 Gargoubi and Ovsienko

Define a 1-parameter family of Diff(R)-module structures on C∞(R) by

g∗
λφ := φ ◦ g−1 ·

(
dg−1

dx

)−λ

where λ ∈ R (or λ ∈ C) is a parameter. Geometrically speaking, φ is a tensor-density of

degree −λ:

φ = φ(x)(dx)−λ.

A 1-parameter family of actions of Diff(R) on the space of differential operators

(1) is defined by

g(A) = g∗
λA(g∗

λ)−1.

Denote by Dk
λ the space of operators (1) endowed with the defined Diff(R)-module

structure. An infinitesimal version of this action defines a 1-parameter family of Vect(R)-

module structures on Dk (see Section 3 for details).

1.2 The problem of isomorphism

Let M be a manifold, dim M ≥ 2. The problem of isomorphism of Diff(M)- (and Vect(M)-)

module structures for different values of λ was stated in [4] and was saved in the case of

second-order differential operators. In this case, different Diff(M)-module structures are

isomorphic to each other for every λ except 3 critical values: λ = 0, −1/2, −1 (correspond-

ing to differential operators on functions, 1/2-densities, and volume forms, respectively).

Geometric quantization gives an example of such a special Diff(M)-module: dif-

ferential operators are considered as acting on 1/2-densities (see [8]).

Recently, P. B. A. Lecomte, P. Mathonet, and E. Tousset [9] showed that in the

case of differential operators of order ≥ 3, Diff(M)-modules corresponding to λ and λ′-

densities are isomorphic if and only if λ + λ′ = 1. The unique isomorphism in this case

is given by conjugation of differential operators.

These results solve the problem of isomorphism in the multidimensional case.

It was shown in [4], [9] that the case dim M = 1 (M = R or S1) is particular. It is

richer in algebraic structures and therefore is of a special interest.

In this paper we solve the problem of isomorphism of Diff(R)-modules Dk
λ for any

k. The result is as follows.

(a) The modules D3
λ of third-order differential operators (1) are isomorphic to each
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other for all values of λ except 5 critical values:{
0, −1, −1

2
, −1

2
+

√
21

6
, −1

2
−

√
21

6

}
.

(This result was announced in [4].)

(b) The Diff(R)-modules Dk
λ and Dk

λ′ on the space of differential operators (1) of

order k ≥ 4 are isomorphic if and only if λ + λ′ = −1.

1.3 Intertwining operator

The most important result of the paper is a construction of the unique (up to a constant)

equivariant linear operator on the space of third-order differential operators,

T : D3
λ → D3

µ, (2)

for λ, µ 6= 0, −1, −1/2, −1/2±√
21/6; see the explicit formulae (3), (7), and (8) below. It has

nice geometric and algebraic properties and seems to be an interesting object to study.

The operator T is an analogue of the second-order Lie derivative from [4], inter-

twining different Diff(M)-actions on the space of second-order differential operators on

a multidimensional manifold M.

1.4 Normal symbols

The main tool of this paper is the notion of a normal symbol, which we define in the case

of fourth-order differential operators. We define an sl2-equivariant way to associate a

polynomial function of degree 4 on T ∗R to a differential operator A ∈ D4
λ. In the case of

second-order operators, the notion of a normal symbol was defined in [4]. This construc-

tion is related with the results of [3]. We discuss the geometric properties of the normal

symbol and its relations to the intertwining operator (2).

2 Main results

We formulate here the main results of this paper. All the proofs will be given in Sec-

tions 3–7.
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238 Gargoubi and Ovsienko

2.1 Classification of Diff(R)-modules

First, remark that for each value of k, there exists an isomorphism of Diff(R)-modules:

Dk
λ

∼= Dk
−1−λ.

It is given by conjugation A 7→ A∗:

A∗ =
k∑

i=1

(−1)i
di

dxi
◦ ai(x).

The following two theorems give a solution of the problem of isomorphism of

Diff(R)-modules Dk
λ on the space Dk. The first result was announced in [4].

Theorem 1. (i) All the Diff(R)-modules D3
λ with λ 6= 0, −1, −1/2, −1/2 + √

21/6, −1/2 −√
21/6 are isomorphic to each other.

(ii) The modules D3
0, D3

−1/2, D3
−1/2+√

21/6
are not isomorphic to D3

λ for general λ.

It follows from the general isomorphism ∗: Dk
λ

∼= Dk
−1−λ that

D3
0

∼= D3
−1 and D3

−1/2+√
21/6

∼= D3
−1/2−√

21/6
.

Therefore, there exist 4 nonisomorphic Diff(R)-module structures on the space D3.

Theorem 2. For k ≥ 4, the Diff(R)-modules Dk
λ and Dk

λ′ are isomorphic if and only if

λ + λ′ = −1.

This result shows that operators of order 3 play a special role in the 1-dimensional

case (as operators of order 2 in the case of a manifold of dimension ≥ 2; cf. [4], [9]).

2.2 Intertwining operator T

Theorem 3. For λ, µ 6= 0, −1, −1/2, −1/2±√
21/6 there exists a unique (up to a constant)

isomorphism of Diff(R)-modules D3
λ and D3

µ.

Let us give an explicit formula for the operator (2). Every differential operator of

order 3 can be written (not in a canonical way) as a linear combination of 4 operators:

(a) zero-order operator of multiplication by a function: φ(x) 7→ φ(x)f(x),

(b) first-order operator of Lie derivative:

Lλ
X = X(x)

d

dx
− λX′(x),

where X′ = dX/dx,

(c) symmetric “anticommutator” of Lie derivatives:

[Lλ
X, Lλ

Y ]+ := Lλ
X ◦ Lλ

Y + Lλ
Y ◦ Lλ

X,
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(d) symmetric third-order expression:

[Lλ
X, Lλ

Y , Lλ
Z]+ := SymX,Y,Z(Lλ

X ◦ Lλ
Y ◦ Lλ

Z)

for some vector fields X(x)d/dx, Y(x)d/dx, Z(x)d/dx.

Theorem 4. The formula

T (f) = µ(µ + 1)(2µ + 1)

λ(λ + 1)(2λ + 1)
f,

T (Lλ
X) = 3µ2 + 3µ − 1

3λ2 + 3λ − 1
L

µ
X,

T ([Lλ
X, Lλ

Y ]+) = 2µ + 1

2λ + 1
[Lµ

X, L
µ
Y ]+,

T ([Lλ
X, Lλ

Y , Lλ
Z]+) = [Lµ

X, L
µ
Y , L

µ
Z]+ (3)

defines an intertwining operator (2).

A remarkable fact is that the formula (3) does not depend on the choice of X, Y, Z,

and f representing the third-order operator. (Indeed, the formulae (7) and (8) below give

the expression of T directly in terms of coefficients of differential operators.) Moreover,

this property fixes the coefficients in (3) in a unique way (up to a constant).

Remarks. (a) In the case of a multidimensional manifold M, almost all Diff(M)-module

structures on the space of second-order differential operators are isomorphic to each

other and the corresponding isomorphism is unique (up to a constant) [4]; there is no

isomorphism between different Diff(M)-module structures on the space of third-order

operators, except the conjugation [9].

(b) The formula (3) gives an idea that it would be interesting to study the com-

mutative algebra structure (defined by the anticommutator) on the Lie algebra of all

differential operators.

3 Action of Vect(R) on the space D4

To prove Theorems 1–4, it is sufficient to consider only the Vect(R)-action on Dk. Indeed,

since the Diff(R)-action on the space of differential operators is local, therefore, the

properties Vect(R)- and Diff(R)-equivariance are equivalent.

3.1 Definition of the family of Vect(R)-actions

Let Vect(R) be the Lie algebra of smooth vector fields on R

X = X(x)
d

dx
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240 Gargoubi and Ovsienko

with the commutator[
X(x)

d

dx
, Y(x)

d

dx

]
= (X(x)Y′(x) − X′(x)Y(x))

d

dx
,

where X′ = dX/dx.

The action of Vect(R) on space Dk is defined by

ad Lλ
X(A) := Lλ

X ◦ A − A ◦ Lλ
X

where

Lλ
Xφ = X(x)φ′(x) − λX′(x)φ(x).

The last formula defines a 1-parameter family of Vect(R)-actions on C∞(R). One obtains

a 1-parameter family of Vect(R)-modules on Dk.

Notation. (a) The operator Lλ
X is called the operator of Lie derivative of tensor-densities

of degree −λ. Denote by Fλ the corresponding Vect(R)-module structure on C∞(R).

(b) As in the case of Diff(R)-module structures, we denote by Dk
λ the space Dk as

a Vect(R)-module.

3.2 Explicit formula

Let us calculate explicitly the action of Lie algebra Vect(R) on the space D4. Given a

differential operator A ∈ D4, let us use the following notation for the Vect(R)-action

ad LX:

ad LX(A) = aX
4 (x)

d4

dx4
+ aX

3 (x)
d3

dx3
+ aX

2 (x)
d2

dx2
+ aX

1 (x)
d

dx
+ aX

0 (x).

Lemma 3.1. The action ad Lλ
X of Vect(R) on space D4 is given by

aX
4 = L4

X(a4)

aX
3 = L3

X(a3) + 2(2λ − 3)a4X
′′

aX
2 = L2

X(a2) + 3(λ − 1)a3X
′′ + 2(3λ − 2)a4X

′′′

aX
1 = L1

X(a1) + (2λ − 1)a2X
′′ + (3λ − 1)a3X

′′′ + (4λ − 1)a4X
IV

aX
0 = L0

X(a0) + λ(a1X
′′ + a2X

′′′ + a3X
IV + a4X

V ). (4)
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Space of Linear Differential Operators on . . . 241

Proof. One gets easily the formula (4) from the definition

ad Lλ
X(A) = [Lλ

X, A] =
(

X
d

dx
− λX′

) (
a4

d4

dx4
+ · · · + a0

)

−
(

a4
d4

dx4
+ · · · + a0

) (
X

d

dx
− λX′

)
.

3.3 Remarks

It is convenient to interpret the action (4) as a deformed standard action of Vect(R) on

the direct sum

F4 ⊕ F3 ⊕ F2 ⊕ F1 ⊕ F0

(given by the first term of the right-hand side of each equality in the formula (4)). This

interpretation is the motivation of the main construction of Section 4; it will be discussed

in Section 7.2.

The main idea of the proof of Theorems 1 and 2 is to find some normal form

(cf. [4]) of the coefficients a4(x), . . . , a0(x) for fourth-order differential operators on R which

reduces the action (4) to a canonical form.

4 Normal form of a symbol

It is convenient to represent differential operators as polynomials on the cotangent bun-

dle. The standard way to define a (total) symbol of an operator (1) is to associate to A the

polynomial

PA(x, ξ) =
k∑

i=0

ξiai(x)

on T ∗R ∼= R2 (where ξ is a coordinate on the fiber). However, this formula depends on

coordinates, and only the higher term ξkak(x) of PA (the principal symbol) has a geometric

sense.

4.1 The main idea

The Lie algebra Vect(R) naturally acts on C∞(T ∗R) (it acts on the cotangent bundle). Con-

sider a linear differential operator A ∈ D4. Let us look for a natural definition of a symbol

of A in the form

PA(x, ξ) = ξ4ā4(x) + ξ3ā3(x) + ξ2ā2(x) + ξā1(x) + ā0(x),
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242 Gargoubi and Ovsienko

where the functions āi(x) are linear expressions of the coefficients ai(x) and their deriva-

tives.

Any symbol P(x, ξ) can be considered as a linear mapping

D4 → F4 ⊕ F3 ⊕ F2 ⊕ F1 ⊕ F0.

Indeed, the Lie algebra Vect(R) acts on each coefficient āi(x) of the polynomial PA(x, ξ) as

on a tensor-density of degree −i:

LX(PA) =
4∑

i=0

ξiLi
X(āi).

However, there is no such mapping that is Vect(R)-equivariant.

4.2 Definition

The normal symbol of A ∈ D4
λ is a polynomialPA(x, ξ) such that the linear mapping A 7→ PA

is equivariant with respect to the subalgebra sl2 ⊂ Vect(R) generated by the vector fields{
d

dx
, x

d

dx
, x2 d

dx

}
.

Proposition. 4.1. (i) The following formula defines a normal symbol of a differential

operator A ∈ D4
λ:

ā4 = a4

ā3 = a3 + 1

2
(2λ − 3)a′

4

ā2 = a2 + (λ − 1)a′
3 + 2

7
(λ − 1)(2λ − 3)a′′

4

ā1 = a1 + 1
2

(2λ − 1)a′
2 + 3

10
(λ − 1)(2λ − 1)a′′

3

+ 1

15
(λ − 1)(2λ − 1)(2λ − 3)a′′′

4

ā0 = a0 + λa′
1 + 1

3
λ(2λ − 1)a′′

2 + 1

6
λ(λ − 1)(2λ − 1)a′′′

3

+ 1

30
λ(λ − 1)(2λ − 1)(2λ − 3)a(IV )

4 . (5)

(ii) The normal symbol is defined uniquely (up to multiplication of each function

āi(x) by a constant).
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Space of Linear Differential Operators on . . . 243

Proof. Direct calculation shows that the Vect(R)-action ad Lλ on D4 given by the formula

(4) reads in terms of āi as

āX
4 = L4

X(ā4)

āX
3 = L3

X(ā3)

āX
2 = L2

X(ā2) + 2

7
(6λ2 + 6λ − 5)J3(X, ā4)

āX
1 = L1

X(ā1) + 2
5

(3λ2 + 3λ − 1)J3(X, ā3)

+ 1

6
λ(λ + 1)(2λ + 1)J4(X, ā4)

āX
0 = L0

X(ā0) + 2

3
λ(λ + 1)J3(X, ā2)

+ 1
6

λ(λ + 1)(2λ + 1)J4(X, ā3)

+ 1

420
λ(λ + 1)(12λ2 + 12λ + 11)J5(X, ā4), (6)

where āX
i are coefficients of the normal symbol of the operator ad Lλ

X(A), and the expres-

sions Jm are

J3(X, ās) = X′′′ās

J4(X, ās) = sX(IV )ās + 2X′′′ā′
s

J5(X, ās) = s(2s − 1)X(V )ās + 5(2s − 1)X(IV )ā′
s + 10X′′′ā′′

s .

It follows that the mapping D4 → F4 ⊕ · · · ⊕ F0 defined by (5) is sl2-equivariant.

Indeed, for a vector field X ∈ sl2 (which is a polynomial in x of degree ≤ 2) all the terms

Jm(X, ās) in (6) vanish.

Proposition 4.1 (i) is proven.

Let us prove the uniqueness. By definition, the functions āi(x) are linear expres-

sions in as(x), and their derivatives

āi(x) =
∑
s,t

αs
t(x)a(t)

s (x),

where a(t)
s = dtas/dxt, α

j
k(x) are some functions. The fact that the normal symbol PA is

sl2-equivariant means that for a vector field X ∈ sl2, āX
i = Li

X(ai).

(a) Substitute X = d/dx to obtain that the coefficients α
j
k do not depend on x.
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244 Gargoubi and Ovsienko

(b) Substitute X = xd/dx to obtain the condition j − k = i:

āi(x) =
i∑

j=4

α ja
( j−i)
j (x),

and αi 6= 0.

(c) Put αi = 1 and, finally, substitute X = x2d/dx to obtain the coefficients from (5).

Proposition 4.1 (ii) is proven.

The notion of normal symbol of a fourth-order differential operator plays a cen-

tral role in this paper.

Remark: the transvectants. Operations J3(X, as), J4(X, as), J5(X, as) are particular cases of

the following remarkable bilinear operations on tensor-densities. Consider the expres-

sions

jn(φ, ψ) =
∑

i+ j=n

(−1)i
(

n

i

)
(2λ − i)!(2µ − j)!

(2λ − n)!(2µ − n)!
φ(i)ψ( j)

where φ = φ(x), ψ = ψ(x) are smooth functions.

This operation defines a unique (up to a constant) sl2-equivariant mapping

Fλ ⊗ Fµ → Fλ+µ−n.

Operations jn(φ, ψ) were discovered by Gordan [6]; they are also known as Rankin-Cohen

brackets (see [11], [2]).

Note that the operations Jm from the formula (6) are proportional to jn for X ∈
F1, as ∈ F−s.

5 Diagonalization of the operator T

We will obtain here an important property of the intertwining operator (2): in terms

of normal symbol it has a diagonal form. We will also prove part (i) of Theorem 1 and

Theorem 4.

Proof of Theorem 1, part (i). Let us define an isomorphism of modules D3
λ and D3

µ for

λ 6= 0, −1, −1/2, −1/2 ± √
21/6. Associate to A ∈ D3

λ the operator T (A) ∈ D3
µ:

T : a3
d3

dx3
+ a2

d2

dx2
+ a1

d

dx
+ a0 7−→ aT

3
d3

dx3
+ aT

2
d2

dx2
+ aT

1
d

dx
+ aT

0

such that its standard symbol

PT (A) = ξ3aT
3(x) + ξ2aT

2(x) + ξaT
1(x) + aT

0(x)
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is given by

aT
3(x) = ā3(x)

aT
2(x) = 2µ + 1

2λ + 1
ā2(x)

aT
1(x) = 3µ2 + 3µ − 1

3λ2 + 3λ − 1
ā1(x)

aT
0(x) = µ(µ + 1)(2µ + 1)

λ(λ + 1)(2λ + 1)
ā0(x). (7)

It follows immediately from the formula (6) that this formula defines an isomorphism of

Vect(R)-modules T : D3
λ

∼= D3
µ.

Theorem 1 (i) is proven.

Proof of Theorem 4. Let us show that the operator (7) in terms of symmetric expressions

of Lie derivatives is given by (3).

The first equality in (3) coincides with the last equality in (7).

(a) Consider a first-order operator of a Lie derivative

Lλ
X = X(x)

d

dx
− λX′(x).

Its normal symbol defined by (5) is

PLλ
X

= ξX(x).

One obtains the second equality of the formula (3).

(b) The anticommutator

[Lλ
X, Lλ

Y ]+ = 2XY
d2

dx2
+ (1 − 2λ)(XY)′

d

dx
− λ(XY′′ + X′′Y) + 2λ2X′Y′

has the normal symbol

P[Lλ
X
,Lλ

Y
]+ = 2ξ2XY − 2

3
λ(λ + 1)(XY′′ + X′′Y − X′Y′),

which also follows from (5). The third equality of (3) follows now from the second and

the fourth ones of (7).

(c) The normal symbol of a third-order expression [Lλ
X, Lλ

Y , Lλ
Z]+ := SymX,Y,Z(Lλ

XLλ
YLλ

Z)

can be also easily calculated from (5). The result is

P[Lλ
X
,Lλ

Y
,Lλ

Z
]+ = 6ξ3XYZ

−(3λ2 + 3λ − 1)ξ(XYZ′′ + XY′′Z + X′′YZ − 1
5

(XYZ)′′)

−λ(λ + 1)(2λ + 1)(XYZ′′′ + XY′′′Z + X′′′YZ).

This formula implies the last equality of (3).
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Remarks. (a) The normal symbols of [Lλ
X, Lλ

Y ]+ and [Lλ
X, Lλ

Y , Lλ
Z]+ are given by very simple

and harmonic expressions (which implies the diagonal form (3) of the operator T ). It

would be interesting to understand better the geometric reason for this fact.

(b) Comparing the formulae (3) and (7), one finds a coincidence between coeffi-

cients. This fact shows that, in some sense, the symmetric expressions of Lie derivatives

and the normal symbol represent the same thing in terms of differential operators and

in terms of polynomial functions on T ∗R, respectively. We do not see any reason a priori

for this remarkable coincidence.

6 Uniqueness of the operator T

In this section we prove that the isomorphism T defined by the formula (7) is unique (up

to a constant). We also show that in the higher-order case k ≥ 4 there is no analogue of

this operator.

Proof of Theorem 3. The normal symbol of an operator A ∈ D3
λ is at the same time a

normal symbol of T (A) ∈ D3
µ, since the operator T is equivariant. The normal symbol is

unique up to normalization (cf. Proposition 4.1, part (ii)), and therefore the polynomial

PT (A)(x, ξ) defined by the formula (5) is of the form

PT (A)(x, ξ) = α3ξ
3ā3(x) + α2ξ

2ā2(x) + α1ξā1(x) + α0ā0(x),

where αi ∈ R are some constants depending on λ and µ. Choose α3 = 1. It follows

immediately from the formula (6) (after substitution a4 ≡ 0) that the formula (7) gives the

unique choice of the constants α2, α1, α0 such that the operator T is equivariant.

Theorem 3 is proven.

Proof of Theorem 2. Suppose now that Φ : D4
λ → D4

µ is an isomorphism. In the same

way, it follows that in terms of normal symbols, operator Φ is diagonal. More precisely,

if A ∈ D4
λ, then the normal symbol of the operator Φ(A) ∈ D4

µ is

PΦ(A)(x, ξ) = α4ξ
4ā4(x) + α3ξ

3ā3(x) + α2ξ
2ā2(x) + α1ξā1(x) + α0ā0(x),

where āi are the components of the normal symbol of A, αi ∈ R. The condition of equiv-

ariance implies

α2

α0
= λ(λ + 1)

µ(µ + 1)
,

α3

α0
= λ(λ + 1)(2λ + 1)

µ(µ + 1)(2µ + 1)

α4

α0
= λ(λ + 1)(12λ2 + 12λ + 11)

µ(µ + 1)(12µ2 + 12µ + 11)
,

α4

α2
= 6λ2 + 6λ − 5

6µ2 + 6µ − 5

α3

α1
= 3λ2 + 3λ − 1

3µ2 + 3µ − 1
,

α4

α1
= λ(λ + 1)(2λ + 1)

µ(µ + 1)(2µ + 1)
.
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This system of equations has solutions if and only if λ = µ or λ+µ = −1. For λ = µ

one has α0 = α1 = α2 = α3 = α4, and for λ + µ = −1 one has α0 = −α1 = α2 = −α3 = α4.

Theorem 2 is proven for k = 4.

Theorem 2 follows now from one of the results of [9]: given an isomorphism

Φ : Dk
λ → Dk

µ, then the restriction of Φ to D4
λ is an isomorphism of Vect(R)-modules:

D4
λ → D4

µ. (To prove this, it is sufficient to suppose equivariance of Φ with respect to the

affine algebra with generators d/dx, xd/dx; see [9]).

This implies that λ = µ or λ + µ = −1. Theorem 2 is proven.

7 Relation with the cohomology group H1(Vect(R); Hom(Fλ, Fµ))

The problem of isomorphism of Vect(R)-modules Dk
λ for different values of λ is related to

the first cohomology group H1(Vect(R); Hom(Fλ, Fµ)). This cohomology group has already

been calculated by B. L. Feigin and D. B. Fuchs (in the case of formal series) [5].

Nontrivial cocycles. The relation of Vect(R)-action on the space of differential operators

and the cohomology groups H1(Vect(R); Hom(Fλ, Fµ)) is given by the following construc-

tion.

Let us associate to the bilinear mappings Jm, defined by the formula (6), a linear

mapping cm : Vect(R) → Hom(Fs, Fs+1−m):

cm(X)(a) := Jm(X, a),

where a ∈ Fs.

A remarkable property of transvectants J3 and J4 is the following lemma.

Lemma 7.1. For each value of s, the mappings c3 and c4 are nontrivial cocycles on

Vect(R):

(i) c3 ∈ Z1(Vect(R); Hom(Fs, Fs−2)),

(ii) c4 ∈ Z1(Vect(R); Hom(Fs, Fs−3)).

Proof. From the fact that the formula (6) defines a Vect(R) action, one checks that, for

any X, Y ∈ Vect(R),

[LX, cm(Y)] − [LY , cm(X)] = cm([X, Y])

with m = 3, 4. This means that c3 and c4 are cocycles.

 at B
IU

S
 Jussieu on O

ctober 14, 2010
im

rn.oxfordjournals.org
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


248 Gargoubi and Ovsienko

The cohomology classes [c3], [c4] 6= 0. Indeed, verify that c3 and c4 are cohomolog-

ical to the nontrivial cocycles:

c̃3(X)(a) = X′′′a + 2X′′a′,

c̃4(X)(a) = X′′′a′ + X′′a′′

from [5]. Lemma 7.1 is proven.

Proof of Theorem 1, part (ii). First, remark that for every α1, α2, α3 ∈ R, the formula

ρX(a3) = L3
X(a3)

ρX(a2) = L2
X(a2)

ρX(a1) = L1
X(a1) + α1J3(X, a3)

ρX(a0) = L0
X(a0) + α2J3(X, a2) + α3J4(X, ā3)

defines a Vect(R)-action. Indeed, this formula coincides with (6) in the case a4 ≡ 0 and

for the special values of α1, α2, α3; however, the constants α1, α2, α3 are independent.

The Vect(R)-action ρ is a nontrivial 3-parameter deformation of the standard

action on the direct sum F3 ⊕ F2 ⊕ F1 ⊕ F0.

The fact that the cocycles c3 and c4 are nontrivial is equivalent to the fact that

the defined Vect(R)-modules with

(a) α1, α2, α3 6= 0,

(b) α1 = 0, α2 6= 0, α3 6= 0,

(c) α1 6= 0, α2 = 0, α3 6= 0,

(d) α1 6= 0, α2 6= 0, α3 = 0,

are not isomorphic to each other.

The Vect(R)-modules D3
λ (given by the formula (6) with a4 ≡ 0) corresponds to the

case (a) for general values of λ, to the case (b) for λ = −1/2 ± √
21/6, to the case (c) for

λ = −1/2, and to the case (d) for λ = 0, −1. Therefore, one obtains 5 critical values of

the degree for which Vect(R)-module structure on the space of third-order operators is

special. Theorem 1 (ii) is proven.

Remark. For each value of λ, at least one of constants α1, α2, α3 6= 0. This implies that

the module D3
λ is not isomorphic to the direct sum F3 ⊕ F2 ⊕ F1 ⊕ F0.
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8 Explicit formula for the intertwining operator

We give here the explicit formula for the operator (2) intertwining Vect(R)-actions on D3,

which follows from the expression for the operator T in terms of the normal symbol (7).

For every A ∈ D3
λ, the operator T (A) ∈ D3

µ

T (A) = aT
3

d3

dx3
+ aT

2
d2

dx2
+ aT

1
d

dx
+ aT

0

is given by the following formula:

aT
3 = a3,

aT
2 = 2µ + 1

2λ + 1
a2 + 3(µ − λ)

2λ + 1
a′

3,

aT
1 = 3µ2 + 3µ − 1

3λ2 + 3λ − 1
a1

+ (λ − µ)(µ(12λ − 1) − λ + 3)

2(2λ + 1)(3λ2 + 3λ − 1)
a′

2

+3
2

µ2(5λ − 1) − µ(6λ2 + λ − 1) + λ3 + 2λ2 − λ

(2λ + 1)(3λ2 + 3λ − 1)
a′′

3

aT
0 = µ(µ + 1)(2µ + 1)

λ(λ + 1)(2λ + 1)
a0

−µ3(3λ + 5) − µ2(3λ2 − 6) − µ(5λ2 + 6λ)

(λ + 1)(2λ + 1)(3λ2 + 3λ − 1)
a′

1

+µ3(3 − λ) − µ2(6λ2 + 7λ − 5) + µ(7λ3 + 4λ2 − 5λ)
2(λ + 1)(2λ + 1)(3λ2 + 3λ − 1)

a′′
2

−µ3(3λ2 + 1) − 3µ2(λ2 + 2λ − 1) − µ(3λ4 − 3λ3 − 5λ2 + 3λ)
2(λ + 1)(2λ + 1)(3λ2 + 3λ − 1)

a′′′
3 . (8)

We de not prove this formula since we do not use it in this paper.

Remarks. (a) If λ = µ, then the operator T defined by this formula is the identity; if

λ + µ = −1, then T is the operator of conjugation.

(b) The fact that operator T is equivariant implies that the formula (8) does not

depend on the choice of the coordinate x.

9 Discussion and final remarks

Let us give here a few examples and applications of the normal symbols (5).

Examples. The notion of normal symbol was introduced in [4] in the case of second-

order differential operators. In this case, for λ = 1/2 (operators on −1/2-densities), the
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normal symbol (5) is just the standard total symbol: ā2 = a2, ā1 = a1, ā0 = a0. This

corresponds to the classical example of second-order operators on −1/2-densities (cf. the

footnote in the introduction).

In the same way, the semi-integer values λ = 1, 3/2, 2, . . . correspond to partic-

ularly simple expressions of the normal symbol for operators of order k = 3, 4, 5, . . . .

Modules of second-order differential operators on R. (a) The module of second-order

operators D2
λ with λ = 0, −1, is decomposed to a direct sum

D2
0

∼= D2
−1

∼= F2 ⊕ F1 ⊕ F0.

Indeed, the coefficients ā2, ā1, ā0 transform as tensor-densities (cf. formula (6)). This mod-

ule is special: D2
λ is not isomorphic to D2

0 for λ 6= 0, −1 (see [4]).

(b) For every λ, µ 6= 0, −1, D2
λ

∼= D2
µ.

Operators on 1/2-densities. For every k ≥ 3, the module Dk
−1/2 (corresponding to 1/2-

densities) is special. It is decomposed into a sum of submodules: of symmetric operators

and of skew-symmetric operators.

Normal symbol and Weil symbol. The Weil quantization defines a 1-parameter family

of mappings from the space of polynomials C[ξ, x] to the space of differential opera-

tors on R with polynomial coefficients. One associates to a polynomial the symmetric

expression in ~(d/dx) and x: F(ξ, x) 7→ Sym F(~(d/dx), x). This 1-to-1 correspondence be-

tween differential operators and polynomials is sl2-equivariant. However, in the Weil

quantization the action of the Lie algebra sl2 on differential operators is generated by

x2, x(d/dx) + (d/dx)x, (d2/dx2), and, therefore, is completely different from the normal

symbol.

Automorphic (pseudo-) differential operators. The notion of canonical symbol is re-

lated (and in some sense inverse) to the construction of the recent work by P. Cohen,

Yu. I. Manin, and D. Zagier [3] of a PSL2-equivariant (pseudo-) differential operator asso-

ciated to a holomorphic tensor-density on the upper half-plane.

Exotic ?-product. Another way to understand this sl2-equivariant correspondence be-

tween linear differential operators and polynomials in ξ, x leads to a ?-product on the

algebra of Laurent polynomials on T ∗R. This ?-product is projectively invariant and

nonequivalent to the standard Moyal-Weil ?-product (see [10]).
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