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Modules of Differential Operators on the Real Line

H. Gargoubi and V. Ovsienko UDC 517.9

The space Dk of kth-order linear differential operators on R is equipped with a natural two-
parameter family of structures of Diff(R)-modules. To specify this family, one considers the action
of differential operators on tensor densities. We give a classification of these modules.

1. Modules of differential operators. Let D k be the space of kth-order linear differential
operators

A = Ak(x)∂k +Ak−1(x)∂k−1 + · · ·+A0(x), ∂ =
d

dx
, Ai(x) ∈ C∞(R), (1)

on R (or S1). There exists a natural two-parameter family of structures of Diff(R)- (and Vect(R)-
)modules on D k , where Diff(R) is the group of diffeomorphisms of R and Vect(R) is the Lie algebra
of vector fields on R. To define these structures, we assume that differential operators act on tensor
densities on R; namely, A : Fλ → Fµ , where Fλ is the Diff(R)-module of tensor densities of degree
−λ, λ ∈ R, that is, densities of the form ϕ(x)(dx)−λ (see [6]). Let D k

λ,µ be the Diff(R)- (and
Vect(R)-)module of kth-order differential operators acting from Fλ to Fµ . The action of Vect(R)
on D k

λ,µ is given by the formula

Lλ,µ
X (A) = Lµ

X ◦ A−A ◦ Lλ
X , X = X(x)∂, (2)

where Lλ
X = X∂ − λX ′ is the operator of Lie derivative on Fλ and X ′(x) = dX(x)/dx.

The module Dλ,µ of all differential operators acting from Fλ to Fµ has the natural filtration
D 0

λ,µ ⊂ D 1
λ,µ ⊂ · · · ⊂ D k

λ,µ ⊂ . . . .
The aim of the present paper is to classify these modules. We shall give a complete list of

isomorphisms between distinct modules D k
λ,µ .

The classification problem for modules of differential operators on a smooth manifold was posed
(for λ = µ) and solved for modules of second-order operators in [3]. The modules D k

λ,λ on R (or
S1) were classified in [8]. In the multidimensional case, this classification problem was recently
solved in [12, 16]. The one-dimensional case proves to be exceptional, and here the results are more
interesting.

2. Preliminary remarks. First, note that the difference δ = µ− λ of weights is an invariant:
the condition D k

λ,µ
∼= D k

λ′,µ′ implies that µ− λ = µ′ − λ′ . This is a consequence of the equivariance
with respect to the vector field x∂ .

Recall that the passage to the adjoint differential operator defines an isomorphism ∗ : D k
λ,µ

∼=→
D k
−1−µ,−1−λ of Vect(R)-modules. The module on the right-hand side is called the adjoint module

of D k
λ,µ . A module with λ+ µ = −1 is said to be self-adjoint.

3. Classification results. Let us now give a complete classification of the modules D k
λ,µ .

Theorem 1. For k � 3, all Diff(R)-modules D k
λ,µ with given k and δ = µ − λ are isomor-

phic except for the modules listed in the following table and the corresponding adjoint modules
D k
−1−µ,−1−λ :
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Fig. 1

k 1 2 3
(λ, µ) (0,−1) (0, µ) (0, µ)

(1/2,−3/2) (λ,−1− λ)
(λ, (4λ− 1)/(−3λ+ 1))

(λ, λ− 2)

(3)

We say that a module D k
λ,µ is singular if it is not isomorphic to any other module except for

the adjoint module.
Theorem 2. All modules listed in table (3) are singular.
Figure 1 shows the singular modules D 3

λ,µ .
Note that the line µ = −1 corresponds to the adjoint modules of the modules with λ = 0 in

the table.
Remark. The best-known classical example of modules of differential operators is the module

of Sturm–Liouville operators A = ∂2 +u(x) on S1 acting from F1/2 to F−3/2 . This is a submodule
of the self-adjoint singular module D 2

1/2,−3/2 . Note that this module is related to the Virasoro
algebra [10]. We hope that the other singular modules defined above also have some interesting
interpretation.

Now let us state the most general result.
Theorem 3. For k � 4, there are no isomorphisms between distinct Diff(R)-modules D k

λ,µ

except for the passage to the adjoint module.
We note that the counterpart of Theorem 3 in the multidimensional case holds for k � 3 (see

[12, 16]).
4. Modules of symbols. The space of symbols of differential operators (1) is isomorphic to

the space Polk(T ∗
R) of all functions on T ∗

R polynomial (of order � k) in the fibers. Being treated
as a Diff(R)- (and Vect(R)-)module, the symbol space corresponding to Dλ,µ has the form

Pol(T ∗
R) ⊗Fδ

∼= Fδ ⊕Fδ+1 ⊕ · · · ⊕Fδ+k ⊕ · · · , δ = µ− λ. (4)

For brevity, we denote Polk(T ∗
R) ⊗Fδ by S k

δ and Pol(T ∗
R) ⊗Fδ by Sδ .

The module of symbols is isomorphic to the graded module associated with the filtered module
of differential operators: Sδ = grDλ,µ .

5. Modules of differential operators over sl(2,R)sl(2,R)sl(2,R). Consider the Lie algebra sl(2,R) ⊂
Vect(R) with basis {∂, x∂, x2∂} and the restriction of the action (2) to it. This Lie algebra plays a
special role and allows one to identify D k

λ,µ with S k
δ , where δ = µ− λ, in a canonical way.

The following result shows that for generic values of δ the sl(2,R)-module D k
λ,µ is isomorphic

to S k
δ .

Theorem 4. (i) If δ �= −1,−3/2,−2,−5/2, . . . ,−k, then D k
λ,µ is isomorphic to S k

δ as an
sl(2,R)-module.
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(ii) There exists a unique isomorphism σ : D k
λ,µ → S k

δ of sl(2,R)-modules preserving the prin-
cipal symbol.

The isomorphism σ is called the projectively equivariant symbol mapping. We need an ex-
plicit formula borrowed from [2] (see also [11, 13] for the multidimensional case). The map-
ping σ takes each homogeneous kth-order differential operator A = Ak(x)∂k to the polynomial
σ(A) =

∑k
i=0 α

k
iA

(i)
k ξ

i , where A(i)
k = ∂iAk and the constants αk

i are given by

αk
i =

(
k
i

)(
2λ−k+i
2λ−k

)
(

2δ+2k−i+1
2δ+2k−2i+1

) . (5)

The singular values of δ at which the denominator in (5) is zero are called resonances. In this
case, the Casimir operator of sl(2,R) on the module Dλ,µ has multiple eigenvalues (see [4]).

Let us now state the result for the resonant case.
Proposition 1. If δ = −1,−3/2,−2,−5/2, . . . ,−k, then the desired isomorphism σ of sl(2,R)-

modules exists if and only if

(λ, µ) =

{
(�/2,−(�+ 2)/2), 0 � � � k − 1,
(�/2,−(�+ 1)/2) or ((�− 1)/2,−(�+ 1)/2), 1 � � � k − 1.

However, in this case the isomorphism of sl(2,R)-modules is no longer unique.
The main idea of proof of Theorems 1 and 3 is to use the sl(2,R)-equivariant symbol mapping

to reduce the action of Vect(R) on Dλ,µ to a canonical form. In other words, we shall use the
diagram

Dλ,µ
Lλ,µ

X−−−−→ Dλ,µ

σ

� �σ

Sδ
σ◦Lλ,µ

X ◦σ−1

−−−−−−−→ Sδ

(6)

and compare the action σ ◦ Lλ,µ
X ◦ σ−1 with the standard action of Vect(R) on Sδ .

6. The action of Vect(R)Vect(R)Vect(R) in sl(2,R)sl(2,R)sl(2,R)-invariant form. Let us compute the action of Vect(R)
on D k

λ,µ for k � 4 in terms of the sl(2,R)-equivariant symbol.

A straightforward computation results in the following formula. The action σ ◦ Lλ,µ
X ◦ σ−1 of

Vect(R) on the space of fourth-order polynomials P = P4ξ
4+· · ·+P0 has the form σ ◦ Lλ,µ

X ◦ σ−1(P ) =
PX

4 ξ
4 + · · ·+ PX

0 with

PX
4 = Lδ+4

X (P4),

PX
3 = Lδ+3

X (P3),

PX
2 = Lδ+2

X (P2) + β4
2J3(X,P4),

PX
1 = Lδ+1

X (P1) + β3
1J3(X,P3) + β4

1J4(X,P4),

PX
0 = Lδ

X(P0) + β2
0J3(X,P2) + β3

0J4(X,P3) + β4
0J5(X,P4),

(7)

where the βj
i are some constants (see formula (9) below) and the bilinear mappings J�(X,Pk) are

so-called transvectants, i.e., the unique (up to a constant) sl(2,R)-equivariant bilinear mappings on
tensor densities (see [9] and references therein).

In our case,

J3(X,Ps) = X ′′′Ps,

J4(X,Ps) = sX(IV )Ps + 2X ′′′P ′
s,

J5(X,Ps) = s(2s− 1)X(V )Ps + 5(2s− 1)X(IV )P ′
s + 10X ′′′P ′′

s

(8)

for s = 2, 3, 4.
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Note that the higher-order coefficients P4 and P3 are transformed as tensor densities; the
additional terms arising in the transformation of lower-order coefficients distinguish the action
σ ◦ Lλ,µ

X ◦ σ−1 from the standard action of Vect(R) on Sδ .
The numerical coefficients βj

i in (7) are given by

β4
2(λ, µ) =

(6λ− 4)δ + 6λ2 + 6λ− 5
7 + 2δ

,

β3
1(λ, µ) =

(3λ− 1)δ + 3λ2 + 3λ− 1
5 + 2δ

,

β4
1(λ, µ) =

(δ + 2λ+ 1)[(4λ− 1)δ + 4λ(λ+ 1)]
(2 + δ)(3 + δ)(4 + δ)

,

β2
0(λ, µ) =

λ(δ + λ+ 1)
3 + 2δ

,

β3
0(λ, µ) =

λ(δ + λ+ 1)(δ + 2λ+ 1)
(1 + δ)(2 + δ)(3 + δ)

,

β4
0(λ, µ) =

λ(δ + λ+ 1)(4δ2 + 12λδ + 12δ + 12λ2 + 12λ+ 11)
(1 + δ)(3 + 2δ)(5 + 2δ)(7 + 2δ)(4 + δ)

.

(9)

Note that the resonant values of δ in Theorem 4 and Proposition 1 are just the ones for which the
coefficients (9) are not defined.

7. The construction of isomorphisms. Here we outline the proofs of Theorems 1 and 3.
Details and computations will be published elsewhere.

To prove Theorem 1, let us construct the desired isomorphism explicitly in terms of the projec-
tively equivariant symbol. We set P4 ≡ 0 and consider the linear mapping T : D 3

λ,µ → D 3
λ′,µ′ defined

by

T (P3ξ
3 + · · ·+ P0) = P3ξ

3 +
β′30β2

0

β3
0β

′2
0

P2ξ
2 +

β′31
β3

1

P1ξ
1 +

β′30
β3

0

P0, (10)

where the β′ji = βj
i (λ

′, µ′) are the coefficients of the action (7). This mapping proves to be an
isomorphism of Vect(R)-modules. Indeed, one readily checks that this mapping commutes with the
action of the Lie algebra Vect(R) on D 3

λ,µ and D 3
λ′,µ′ . This proves Theorem 1 for nonresonant values

of δ (i.e., for δ �= −1,−3/2,−2,−5/2,−3), since we have used the projectively equivariant symbol
in the construction of the isomorphism.

The isomorphism (10), however, makes sense even for resonant δ , which completes the proof of
Theorem 1. To check this, one can rewrite formula (10) in terms of the coefficients of differential
operators (1). We omit this computation, which is straightforward.

Let us now consider an isomorphism T : D k
λ,µ → D k

λ′,µ′ with k � 4. Since T is an isomorphism
of Vect(R)-modules, it is also an isomorphism of sl(2,R)-modules. The uniqueness of the sl(2,R)-
equivariant symbol mapping shows that the linear mapping σ ◦ T ◦ σ−1 on S k

δ is diagonal and is
given by multiplication by a constant on each homogeneous component (as is the isomorphism (10)
above).

One can readily show (see [12]) that the restriction of T to D 4
λ,µ ⊂ D k

λ,µ must be an isomorphism
onto the submodule D 4

λ′,µ′ . Again, assuming that δ is nonresonant, so that there exists a projectively
equivariant symbol, one checks that the linear mapping T (P4ξ

4+· · ·+P0) = P4ξ
4+τ3P3ξ

3+· · ·+τ0P0

with indeterminate τi depending on λ, µ, λ′ , and µ′ intertwines the actions (7) of Vect(R) on D 4
λ,µ

and D 4
λ′,µ′ if and only if

τ4β
′4
2 = τ2β4

2 , τ4β
′4
1 = τ1β4

1 , τ4β
′4
0 = τ0β4

0 ,

τ3β
′3
1 = τ1β3

1 , τ3β
′3
0 = τ0β3

0 , τ2β
′2
0 = τ0β2

0 .
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One can readily check that this system has solutions only if λ = λ′ or λ + µ′ = −1. The first
isomorphism is tautological, and the second isomorphism is just the passage to the adjoint module.
This proves Theorem 3 for nonresonant δ .

We omit the computations in the resonant case.
8. The cohomology of Vect(R)Vect(R)Vect(R) related to the modules D k

λ,µD k
λ,µD k
λ,µ. It is a general fact that

a filtered module V over a Lie algebra g can be viewed as a deformation of the corresponding
graded module grV . This deformation is related to the first cohomology group with coefficients in
End(grV ). We refer here to the classical theory of Richardson–Nijenhuis [17, 18].

The module Dλ,µ is therefore a nontrivial deformation of the symbol module Sδ with µ−λ = δ
(see [3, 8, 14]). This module is related to the cohomology space

H1(Vect(R); End(Sδ)) =
⊕
k>�

H1(Vect(R); Hom(Fδ+k,Fδ+�)).

More precisely, the transvectants J�(X,Ps) with � = 3, 4, 5 define nontrivial 1-cocycles on Vect(R)
with values in Hom(Fδ+s,Fδ+s−�+1) by the formula

C�(X) = J�(X, · ) (11)

(see [8]). The action (7) of Vect(R) is a nontrivial deformation of the action on the space of symbols.
Remark. The cohomology space H1(Vect(R); Hom(Fν ,Fν′)) was defined in [5] for the Lie

algebra of polynomial vector fields on R; see also [15] for the case of polynomial vector fields on
S1 . For the Lie algebra of smooth vector fields, the corresponding space was described in [14] (see
also [1]).

Let us use the nontrivial cocycles (11) to prove Theorem 2. The fact that these 1-cocycles are
nontrivial implies the existence of singular modules whenever at least one of the coefficients βj

i in
(7) is zero. Theorem 2 now follows from the explicit formulas (9).

Remark. Note that the cocycles C�(X) with � = 3, 4, 5 vanish on sl(2,R) and define nontrivial
classes in the relative cohomology H1(Vect(S1), sl(2,R); Hom(Fλ,Fµ)).

9. Obstructions to the existence of an sl(2,R)sl(2,R)sl(2,R)-equivariant symbol mapping. For the
resonant values δ = −1,−3/2,−2,−5/2, . . . ,−k, there exist a series of cohomology classes of sl(2,R)
that are obstructions to the existence of the isomorphism in Theorem 4. More precisely, consider
the linear mappings Cn

2 : sl(2,R) → Hom(Fn/2,F−1−n/2) given by

Cn
2 (X)(a(dx)−n/2) := X ′′a(n)(dx)1+n/2. (12)

One can check (see [7]) that these mappings are nontrivial 1-cocycles on sl(2,R) for every n ∈ N.
These cocycles arise in the action (2) of sl(2,R) on Dλ,µ .

One can nevertheless define a canonical symbol mapping in the resonant case such that its
deviation from sl(2,R)-equivariance is measured by the corresponding cocycle (12). Then the proofs
of Theorems 1 and 3 can be obtained for the resonant case in the same way as for the generic case.

Remark. (a) The cohomology of sl(n+ 1,R) with coefficients in Hom(S k
δ ,S

�
δ ) was computed

in [11]. Multidimensional analogs of Theorem 4 and Proposition 1 were also obtained in this paper.
(b) The quotient modules D k

λ,λ/D
�
λ,λ with k > � were classified in [13].

(c) The relative cohomology space H1(Vect(S1), sl(2,R);Dλ,µ) (i.e., the cohomology of the
complex of cocycles on Vect(R) vanishing on sl(2,R)) was first considered in [8] and completely
described in [1, 14].

We acknowledge numerous enlightening discussions with C. Duval, B. Feigin, and P. Lecomte.
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