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Conformally equivariant quantum Hamiltonians

C. Duval and V. Ovsienko

Abstract. Let (M, g) be a pseudo-Riemannian manifold and Fλ(M) the space of densities of
degree λ on M . We study the space D2

λ,µ(M) of second-order differential operators from Fλ(M)
to Fµ(M). If (M, g) is conformally flat with signature p− q, then D2

λ,µ(M) is viewed as a module
over the group of conformal transformations of M . It turns out that, for almost all values of µ−λ,
the O(p + 1, q + 1)-modules D2

λ,µ(M) and the space of symbols (i.e., of second-order polynomials
on T ∗M) are canonically isomorphic. This yields a conformally equivariant quantization for
quadratic Hamiltonians. We furthermore show that this quantization map extends to arbitrary
pseudo-Riemannian manifolds and depends only on the conformal class [g] of the metric. As an
example, the quantization of the geodesic flow yields a novel conformally equivariant Laplace
operator on half-densities, as well as the well-known Yamabe Laplacian. We also recover in this
framework the multi-dimensional Schwarzian derivative of conformal transformations.
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1. Introduction

The aim of this article is to investigate the relationship between differential oper-
ators on a smooth pseudo-Riemannian manifold (M, g) of signature p− q, and the
polynomial functions on its cotangent bundle T ∗M .

We will consider the space D(M) of differential operators on C∞-function of M
viewed as a module for the group Diff(M) of all diffeomorphisms of M . We are, in
fact, interested in a two-parameter family of modules which can be understood as
follows. Considering that the arguments of these differential operators are, indeed,
tensor densities of, say weight λ, and their values tensor densities of weight µ, we
will, hence, deal with a new Diff(M)-module structure denoted by Dλ,µ(M).

The natural Diff(M)-module of symbols associated with Dλ,µ(M) is the space of
fiberwise polynomials on T ∗M with values in the (µ−λ)-densities over M . There-
fore, we have a one-parameter family of Diff(M)-modules, Sδ(M), where δ = µ− λ.
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The modules Dλ,µ(M) have already been considered in the classic literature on
differential operators and, more recently, in a series of papers [8], [9], [10], [19], [13],
[20], [12], [22]. The general problem of classification of these Diff(M)-modules has
been solved in these articles.

We will be considering the modules of second-order operators, D2
λ,µ(M), and

symbols, S2
δ (M).

The main purpose of this article is to define a canonical isomorphism

Qλ,µ : S2
µ−λ(M)

∼=−→ D2
λ,µ(M) (1.1)

that satisfies the following properties:

1. It is conformally invariant , i.e., it depends only on the conformal class [g]
of the metric.

2. In the conformally flat case, it is equivariant with respect to O(p+1, q+1),
the group of conformal diffeomorphisms.

We will show that the isomorphism (1.1) exists for generic λ and µ; in the most
interesting case λ = µ = 1

2 , it provides a natural quantization of the cotangent
bundle of a pseudo-Riemannian manifold.

In the conformally flat case, the problem has been solved in [9]: the isomor-
phism (1.1) is characterized by the second property of O(p+ 1, q+ 1)-equivariance
and is essentially unique (up to a natural normalization).

This article constitutes the final stage of work started with the preprint [9]
where the point of view of conformally equivariant quantization was first espoused.

1.1. Conformally flat case

Let us assume that the manifold M is endowed with a flat conformal structure
which enables us to look for a conformally equivariant quantization with respect to
the group O(p+ 1, q+ 1) (or its Lie algebra o(p+ 1, q+ 1)) where dim(M) = p+ q
acting (locally) on M . The starting point of the present article consists in the
following two results which first appeared in [9].

Theorem 1.1. Given a conformally flat pseudo-Riemannian manifold M of di-
mension n = p+ q ≥ 2,

(i) there exists an isomorphism (1.1) of o(p+ 1, q + 1)-modules provided

µ− λ 6∈
{

2
n
,
n+ 2
2n

, 1,
n+ 1
n

,
n+ 2
n

}
. (1.2)

(ii) For every λ and µ as in (1.2), this isomorphism is unique under the condi-
tion that the principal symbol be preserved at each order.
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Theorem 1.1 has recently been generalized in [10] to the case of higher-order
polynomials. The purpose of this paper is to provide explicit expressions for the
isomorphism (1.1) that are out of reach in the higher-order case. Such a study is
motivated by the special relevance of second-order Hamiltonians in mathematical
physics.

The singular values (1.2) of the shift δ = µ− λ are called resonances and lead
to special and interesting modules. It worth noticing that for any λ and µ there is
no isomorphism (1.1) equivariant with respect to the full group Diff(M).

Theorem 1.2. For each resonant value of δ, there exist particular pairs (λ, µ) of
weights such that the o(p+ 1, q+ 1)-modules S2

δ (M) and D2
λ,µ(M) are isomorphic,

namely

δ 2
n

n+2
2n 1 n+1

n
n+2

n

λ n−2
2n 0, n−2

2n 0 0,− 1
n − 1

n

µ n+2
2n

n+2
2n , 1 1 n+1

n , 1 n+1
n

(1.3)

The isomorphism (1.1) is, in fact, not unique; there exists a one-parameter
family of such isomorphisms in each resonant case.

Remark 1.3. This point of view on equivariant quantization was adopted in [20]
where a projectively equivariant symbol calculus and quantization was introduced
if M is endowed with a flat projective structure. In this case the group of (local)
symmetries is G = SL(n + 1,R) with n = dim(M). See also [18] for a cohomo-
logical treatment of this subject. Bearing in mind that the best-known geometries
associated with a local and maximal symmetry group are the projective and con-
formal geometries (cf. [20], [3]), we have been led to look, in the same spirit, for a
conformally equivariant quantization.

Remark 1.4. In the particular case n = 1, the projective and conformal symme-
tries coincide; our results are in full accordance with those obtained in [13], [12],
[7] and the resonances are simply {1, 3

2 , 2}.

1.2. Generic pseudo-Riemannian case

It turns out that the isomorphism Qλ,µ makes sense for an arbitrary pseudo-
Riemannian manifold (not necessarily conformally flat). We will prove here the
following fundamental property of this isomorphism: Qλ,µ depends only on the
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conformal class [g] of the metric (i.e., it is conformally invariant) — see Theo-
rem 4.7.

We will show that the condition of conformal invariance uniquely determines the
isomorphism Qλ,µ in some natural class of differential linear maps. This enables
us to introduce a conformally invariant quantization on the cotangent bundle of a
pseudo-Riemannian manifold.

Note that we understand the term “quantization” in a somewhat generalized
sense as λ and µ remain essentially arbitrary. In the case λ = µ = 1

2 , we recover
the usual terminology using the Hilbert space of half-densities considered in the
framework of geometric quantization. However, our approach yields a new form
for the quantized Hamiltonian. For example, our quantization of the geodesic flow
brings a novel coefficient in front of the scalar curvature.

As an illustration of our general results, we consider a number of examples. The
celebrated Yamabe-Laplace operator is, among others, naturally included into our
considerations. It appears as the quantized geodesic flow in one of the resonant
cases (1.3); the corresponding symbol is itself conformally invariant. This explains
why the Yamabe-Laplace operator is the unique conformally invariant Laplace-
Beltrami operator. It should be stressed, however, that it is unjustified to consider
the Yamabe-Laplace operator as quantum Hamiltonian for the geodesic flow.

The paper is organized as follows.
In Section 2 we recall the basic definitions concerning the space of differential

operators on tensor densities, as well as the space of symbols. We put emphasis on
their Diff(M)- and Vect(M)-module structures.

We present, in Section 3, an explicit intrinsic formula for the isomorphism Qλ,µ

which defines our conformally equivariant quantization map Qλ,µ;~ for an arbitrary
pseudo-Riemannian manifold. We also prove the conformal invariance of Qλ,µ.

Section 5 provides specific examples, namely the quantization of the geodesic
flow, and of the magnetic minimal coupling prescription. We also give examples of
quantized Hamiltonians pertaining to the resonant cases.

We develop in Section 6 the algebraic theory of Euclidean invariants which
we use in the proofs of the uniqueness theorem for the conformally equivariant
quantization map.

In Sections 7 and 8 we give the technical proofs of the main theorems.
Following the concluding Section 9, an Appendix presents in a somewhat de-

tailed fashion the covariant calculus for density-valued symbols entering the tech-
nical calculations.
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2. Differential operators and symbols

2.1. Differential operators on tensor densities

Let us start with the definition of the Diff(M)-module Dλ,µ(M) (or Dλ,µ for short)
of differential operators on a smooth manifold M with λ, µ ∈ R (or C).

Consider the determinant bundle ΛnT ∗M → M . Let us recall that a tensor
density of degree λ on M is a smooth section, φ, of the line bundle |ΛnT ∗M |⊗λ.
The space of tensor densities of degree λ is naturally a Diff(M)-module which we
call Fλ.

It is evident that F0 = C∞(M); if M is oriented, the space F1 coincides with
the space of differential n-forms: F1 = Ωn(M).

Definition 2.1. An operator A : Fλ → Fµ is called a local operator on M if, for
all φ ∈ Fλ, one has Supp(A(φ)) ⊂ Supp(φ).

It is a classical result (see [24]) that such operators are in fact locally given by
differential operators. The space Dλ,µ of differential operators from λ-densities to
µ-densities on M is naturally a Diff(M)-module.

There is a filtration D0
λ,µ ⊂ D1

λ,µ ⊂ · · · ⊂ Dk
λ,µ ⊂ · · · , where the module of

zero-order operators D0
λ,µ

∼= Fµ−λ consists of multiplication by (µ − λ)-densities.
The higher-order modules are defined by induction: A ∈ Dk

λ,µ if [A, f ] ∈ Dk−1
λ,µ for

every f ∈ C∞(M).
To our knowledge, the whole family of modules of differential operators viewed

as a deformation were first studied in [8] in the case λ = µ; see also [19], [20], [13],
[12], [22].

2.2. Classical examples

(a) The best known example is the Sturm-Liouville operator L = (d/dx)2+u(x)
in the one-dimensional case, M = S1. It should, indeed, be considered as
an element L ∈ D2

− 1
2 , 3

2
as λ = −1/2 and µ = 3/2 are the only degrees for

which its form is preserved by the action of Diff(S1).
(b) Again, in the one-dimensional case, the study of the modules Dk

1−k
2 , 1+k

2
goes

back to the pioneering work of Wilczynski [27].
(c) Yet another remarkable example is provided by the Yamabe-Laplace oper-

ator A = ∆ − (n− 2)/(4(n− 1))R, where ∆ is the usual Laplace-Beltrami
operator and R the scalar curvature on a (pseudo-)Riemannian manifold
(M, g) of dimension n ≥ 2. (See, e.g. [1].) This operator has been ex-
tensively used in the mathematical and physical literature because of its
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characteristic property of being invariant under conformal changes of met-
rics. It is well known that A ∈ D2

n−2
2n , n+2

2n

.

Observe that, for n = 1, the latter module of differential operators precisely
coincides with the Sturm-Liouville module. We will see that this is by no means
accidental and will prove below (Section 5.6) that the suitably regularized Yamabe
operator equals ∆ − S(ϕ)/(2g), where S is the Schwarzian derivative and ϕ the
diffeomorphism which defines the metric g = ϕ∗(dx2).

(d) The special module D 1
2 , 1

2
has been introduced in the context of geomet-

ric quantization by Blattner [2] and Kostant [17]. This module will also
naturally arise in our quantization procedure.

2.3. The modules Fλ and Dλ,µ

If M is orientable, which we will assume throughout the paper, then Fλ can be
identified with C∞(M) as a vector space. Given a volume form, vol, on M , one
can write any λ-tensor density as φ = f |vol|λ with f ∈ C∞(M), and define the
Diff(M)-module structure of Fλ via the action of ϕ ∈ Diff(M):

ϕλ(f) = ϕ∗(f)
∣∣∣∣ϕ∗ vol

vol

∣∣∣∣λ . (2.1)

With this identification, the module Dλ,µ can be viewed as a two-parameter
family of the standard module D0,0 of differential operators on smooth functions F0.
The natural Diff(M)-action on Dλ,µ then reads

ϕλ,µ(A) = ϕµ ◦A ◦ ϕ−1
λ . (2.2)

The expression of a differential operator A ∈ Dk
λ,µ in a local coordinate sys-

tem (xi) is then
A = Ai1...ik

k ∂i1 . . . ∂ik
+ · · · +Ai

1∂i +A0 (2.3)

where ∂i = ∂/∂xi and Ai1...i`

` ∈ C∞(M) with ` = 0, 1, . . . , k. (From now on we
suppose a summation over repeated indices.)

The infinitesimal version of the action (2.2) is

Lλ,µ
X (A) = Lµ

X A−ALλ
X (2.4)

where X ∈ Vect(M), while the infinitesimal version of the action (2.1) is given by
the Lie derivative on Fλ, namely

Lλ
X(f) = X(f) + λ Div(X) f. (2.5)



Vol. 7 (2001) Conformally equivariant quantum Hamiltonians 297

2.4. The module of symbols Sδ

Consider the space S = Γ(S(TM)) of contravariant symmetric tensor fields on M
which is naturally a Diff(M)-module. We can locally identify S with the space of
polynomials

P (ξ) =
k∑

`=0

P i1...i`

` ξi1 · · · ξi`
, (2.6)

with P i1...i`

` ∈ C∞(M), on the cotangent bundle of M .

Definition 2.2. The one-parameter family of Diff(M)-actions on S:

ϕδ(P ) = ϕ∗(P )
∣∣∣∣ϕ∗ vol

vol

∣∣∣∣δ (2.7)

identifies the space S with the Diff(M)-module S ⊗ Fδ. We denote this module
by Sδ.

We will need in the sequel the infinitesimal version of the Diff(M)-action on Sδ.
The action of Vect(M) on Sδ deduced from (2.7) reads as

Lδ
X(P ) = LX(P ) + δ Div(X)P (2.8)

where
LX = X i ∂

∂xi
− ξj∂iX

j ∂

∂ξi
(2.9)

is the cotangent lift of X ∈ Vect(M).
Again, there is a filtration S0

δ ⊂ S1
δ ⊂ · · · ⊂ Sk

δ ⊂ · · · , where Sk
δ denotes the

space of symbols of degree less or equal to k. In contrast to the filtration on the
space Dλ,µ of differential operators, the above filtration on the space of symbols
actually leads to a Diff(M)-invariant graduation

Sδ =
∞⊕

k=0

Sk,δ (2.10)

where Sk,δ denotes the space of homogeneous polynomials (isomorphic to Sk
δ/Sk−1

δ ).

3. Quantization map in the conformally flat case

There is no fully Diff(M)-equivariant quantization since the modules Dλ,µ are not
isomorphic to the module Sµ−λ of symbols. One is thus led to impose some extra
geometric structure on M and to look for a symbol calculus, equivariant with
respect to the automorphisms of this structure.

In this article, we will assume — unless otherwise stated — that the manifold M
is endowed with a flat conformal structure.
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3.1. A compendium on conformally flat structures

A conformal structure on a manifold M is given by a smooth field [ g ] of directions
of metrics. This structure is called flat if M can be locally identified with Rn

endowed with the canonical action of the conformal Lie algebra o(p + 1, q + 1),
where n = p+ q.

The Lie algebra o(p+ 1, q + 1) ⊂ Vect(Rn) is generated by the vector fields:

Xi =
∂

∂xi
,

Xij = xi
∂

∂xj
− xj

∂

∂xi
,

X0 = xi ∂

∂xi
,

X i = xjx
j ∂

∂xi
− 2xix

j ∂

∂xj

(3.1)

with i, j = 1, . . . , n; we have used the notation xi = gijx
j where the flat metric

g = diag(1, . . . , 1,−1, . . . ,−1) has trace p− q.
The subalgebra generated by the vector fields Xi and Xij is the Euclidean Lie

algebra e(p, q) = o(p, q) n Rn. The operator X0 is the generator of homotheties
while the vector fields Xi generate inversions.

Remark 3.1.

(a) It is well known that the conformal flatness of a n-dimensional pseudo-
Riemannian manifold is equivalent to the vanishing of the Weyl curva-
ture tensor if n ≥ 4, and to that of the Weyl-Schouten curvature tensor if
n = 3 [1]. All two-dimensional pseudo-Riemannian manifolds are confor-
mally flat.

(b) In the one-dimensional case the conformal Lie algebra is isomorphic to the
projective Lie algebra since o(2, 1) ∼= sl(2,R).

3.2. Conformal equivariance

Let M be endowed with a flat conformal structure: there exists a local action of the
group O(p+1, q+1) on M , which enables us to restrict the Diff(M)-modules Dλ,µ

to the conformal group. Our problem amounts then to the determination of inter-
twining differentiable linear maps Qk

λ,µ between the o(p + 1, q + 1)-modules Sk
λ−µ

and Dk
µ,λ.

Here, we give the solution for the case k = 2 which is the most relevant one
for applications. Indeed, the existence and uniqueness of a conformally equivariant
quantization map for any order k has recently been established in [10]; however,
no explicit formula is available.
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3.3. Expression in adapted coordinates

If we fix the local coordinate system on M for which the generators of o(p+1, q+1)
retain the form (3.1), we have the following

Theorem 3.2. For any dimension, n, and any δ as in (1.2) the unique conformally
equivariant isomorphism Qλ,µ : S2

δ → D2
λ,µ, viz

P 7−→ Qλ,µ(P ) = Aij
2 ∂i∂j +Ai

1∂i +A0

that preserves the principal symbol is as follows

Aij

2 = P ij
2

Ai
1 = P i

1 + β1 ∂jP
ij
2 + β2 g

ijgk` ∂j P
k`
2

A0 = P0 + α∂iP
i
1 + β3 ∂ijP

ij
2 + β4 g

ijgk` ∂ijP
k`
2

(3.2)

where P (ξ) = P ij
2 ξiξj + P i

1ξi + P0 ∈ S2
δ ; the numerical coefficients are given by

α =
λ

1 − δ
(3.3)

and
β1 =

2(nλ+ 1)
2 + n(1 − δ)

β2 =
n(λ+ µ− 1)

(2 + n(1 − δ))(2 − nδ)

β3 =
nλ(nλ+ 1)

(1 + n(1 − δ))(2 + n(1 − δ))

β4 =
nλ(n2µ(2 − λ− µ) + 2(nλ+ 1)2 − n(n+ 1))

(1 + n(1 − δ))(2 + n(1 − δ))(2 + n(1 − 2δ))(2 − nδ)
.

(3.4)

We will prove this theorem in Section 8.3.
In the one-dimensional case, n = 1, formula (3.2) can be written as



A2 = P2

A1 = P1 +
2λ+ 1
2 − δ

P ′
2

A0 = P0 +
λ

1 − δ
P ′

1 +
λ(2λ + 1)

(3 − 2δ)(2 − δ)
P ′′

2 .

(3.5)

Remark 3.3. The projectively equivariant isomorphism Sδ → Dλ,µ has been con-
structed in [20] in the special case λ = µ in any dimension. (See also [18] for
arbitrary λ and µ, and [7], [12] for the one-dimensional case.)
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4. Quantization map in the generic case

In this section we show that the isomorphism (3.2) can be generalized to an arbi-
trary pseudo-Riemannian manifold. This kind of problem is natural and often arises
in conformal geometry. We refer to [4], [11], [14], [15] for the study of conformally
invariant differential operators on tensor fields. Let us nevertheless emphasize that
our modules Dλ,µ of differential operators are totally different, and non-isomorphic
to the latter spaces, cf. [8].

4.1. The covariant derivative of densities

Given a conformally flat manifold M of signature p− q, one can choose, locally, a
pseudo-Riemannian metric g which represents the conformal class of the manifold.
We will denote by ∇ the Levi-Civita connection. Let us now recall the definition of
the covariant derivative of densities. If φ ∈ Fλ, then ∇φ ∈ Ω1(M) ⊗ Fλ is defined
by ∇φ = df ⊗ |vol|λ, using the local representation φ = f |vol|λ with f ∈ C∞(M).

Choose an arbitrary coordinate system (xi) on M (with associated coordinate
system (ξi, xi) on T ∗M); one has, for every φ ∈ Fλ, the local expression

∇iφ = ∂iφ− λΓiφ (4.1)

with Γi = Γj
ij .

4.2. Case of first-order polynomials

Let us start with the simplest case, namely that of first-order symbols S1
δ on the

cotangent bundle of any pseudo-Riemannian manifold (M, g).

Definition 4.1. For any δ 6= 1, we call quantization map the linear map Qλ,µ :
S1

δ → D1
λ,µ defined by

Qλ,µ(P ) = P i
1∇i + α∇i(P i

1) + P0 (4.2)

where P (ξ) = P i
1ξi + P0 and α is as in (3.3).

Note that the map (4.2) preserves the principal symbol, and coincides with (3.2)
in the flat case.

It can be verified that Qλ,µ in (4.2) is, actually, equivariant with respect to the
full Lie algebra Vect(M). This formula holds in any dimension.

Remark 4.2. In the resonant case, δ = 1, the modules are still isomorphic if and
only if (λ, µ) = (0, 1) as given by Theorem 1.2. The isomorphism is not unique and
given by the formula (4.2) with arbitrary α.
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4.3. Case of quadratic polynomials in higher dimension

Let us now give our main definition of the quantization map for homogeneous
second-order symbols S2,δ in the case dim(M) ≥ 3.

Definition 4.3. If n ≥ 3, for any δ as in (1.2) we call quantization map the linear
map Qλ,µ : S2,δ → D2

λ,µ which preserves the principal symbol and is defined by

Qλ,µ(P ) =P ij∇i∇j

+
(
β1∇iP

ij + β2 gijgk`∇iP
k`

) ∇j

+ β3∇i∇j(P ij) + β4 gijgk`∇i∇j(P k`) + β5RijP
ij + β6R gijP

ij

(4.3)

where P (ξ) = P ijξiξj ; the coefficients β1, . . . , β4 are given by (3.4) and

β5 =
n2λ(µ− 1)

(n− 2)(1 + n(1 − δ))

β6 =
n2λ(µ − 1)(nδ − 2)

(n− 1)(n− 2)(1 + n(1 − δ))(2 + n(1 − 2δ))

(4.4)

and Rij (resp. R) denote the Ricci tensor components (resp. the scalar curvature)
of the metric g.

This definition introduces the main object of our study; the crucial property of
the map (4.3) is its conformal invariance (see Theorem 4.7). Again, the map (4.3)
coincides with (3.2) in the flat case.

Remark 4.4. Another quantization formula for second-order polynomials has
been proposed in [21] using a (pseudo-)Riemannian metric on M and the local
identification of T ∗M with R2n endowed with its standard sp(2n,R) action.

The general formula (4.3) for the quantization map is obviously non applicable
in the cases n = 1 and n = 2. We must therefore consider each of these cases
separately.

4.4. One-dimensional case and the Schwarzian derivative

Let us consider the one-dimensional case for which all metrics are equivalent. In this
case, say M = S1, the metric retains the form g = ϕ∗(dx2) for some ϕ ∈ Diff(S1)
with x an arbitrary coordinate.

Definition 4.5. If n = 1, and δ 6= 3
2 , 2, we introduce the quantization map as

Qλ,µ(P ) =P ∇2 +
2λ+ 1
2 − δ

(∇P )∇

+
λ(2λ+ 1)

(3 − 2δ)(2 − δ)
(∇2P ) − 2λ(µ− 1)

3 − 2δ
S(ϕ)

g
P

(4.5)
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where P (ξ) = Pξ2 and

S(ϕ) =
ϕ′′′

ϕ′ − 3
2

(
ϕ′′

ϕ′

)2

(4.6)

is the Schwarzian derivative of ϕ.

Note that this expression is precisely (3.5) if one fixes an affine coordinate.
Comparison with the expression (4.3) strengthens the saying according to which
the Schwarzian derivative is nothing but “curvature”.

4.5. Two-dimensional case and the conformal Schwarzian

The two-dimensional case, n = 2, is especially interesting since all surfaces (M, g)
are conformally flat. The Riemann uniformization theorem can be invoked to
express the metric (locally) as

g = F−1ϕ∗g0 (4.7)

where ϕ is a conformal diffeomorphism of M , and F ∈ C∞(M,R∗
+), and g0 is

a metric of constant curvature. Let us emphasize that this weaker form of the
uniformization theorem still holds in the Lorentz case (see, e.g., [25]).

There exists in the recent literature an interesting generalization of the Schwar-
zian derivative for conformal diffeomorphisms in the multi-dimensional case. In
the situation (4.7) with F = e2f , the Schwarzian derivative of ϕ is defined [23], [6]
as the symmetric twice-covariant tensor S(ϕ) such that

S(ϕ)(X,Y ) = X(Y f) − (∇XY )f − (Xf)(Y f) +
1
2
‖df‖2

g g(X,Y ) (4.8)

for any X,Y ∈ Vect(M).
In our notation, it reads

S(ϕ) =
1

2F
∇dF − 3

4F 2 dF ⊗ dF +
1

8F 2 g−1(dF, dF ) g. (4.9)

This new object will enter naturally the expression of the conformally equivariant
map (1.1) for surfaces.

Note that the definition (4.9) yields the classical Schwarzian derivative in the
one-dimensional case.

Definition 4.6. If n = 2, for any δ as in (1.2) we put for the quantization map:

Qλ,µ(P ) =P ij∇i∇j

+
(
β1∇iP

ij + β2 gijgk`∇iP
k`

) ∇j

+ β3∇i∇j(P ij) + β4 gijgk`∇i∇j(P k`)

+
4λ(µ− 1)

2δ − 3

(
S(ϕ)ijP

ij +
1

8(δ − 1)
R gijP

ij
) (4.10)
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where P (ξ) = P ijξiξj and S(ϕ) is as in (4.9) while R denotes the scalar curvature
of g; the coefficients β1, . . . , β4 are given by (3.4).

Notice that the scalar curvature of g is related to the trace of the Schwarzian
derivative by

R = −2gijS(ϕ)ij (4.11)

provided (4.7) holds.

4.6. Conformal invariance

The preceding definitions for the quantization map were actually prompted by a
fundamental requirement, namely that of the conformal invariance of Qλ,µ with
respect to a rescaling of the metric.

Theorem 4.7. The map Qλ,µ : S2
µ−λ −→ D2

λ,µ defined by (4.2), (4.3), (4.5)
and (4.10) is conformally invariant, i.e., it depends only on the conformal class
of the metric.

Proof. Let us choose another metric ĝ = Fg with F a strictly positive valued
function. In the special case of conformally flat manifolds, the map Qλ,µ is given,
in an adapted coordinate system, by Theorem 3.2. Now, the adapted coordinate
systems for g and ĝ are the same. This proves the theorem in the conformally flat
case, in particular for n = 1 and n = 2 in full generality.

The case of an arbitrary pseudo-Riemannian manifold needs a separate proof
which goes as follows. We have

Γ̂k
ij = Γk

ij +
1

2F
(
Fiδ

k
j + Fjδ

k
i − F kgij

)
(4.12)

where we have used the notation Fi = ∂iF and F k = gjkFj .
Let us start with the proof for first-order symbols. With the help of

∇̂iφ = ∇iφ− nλ

2
Fi

F
φ and ∇̂iP

i
1 = ∇iP

i
1 +

n(1 − δ)
2

FiP
i
1

F

and, using (4.1), for every P ∈ S1
δ we find that

Q̂λ,µ(P ) = Qλ,µ(P ) +
n

2
(α(1 − δ) − λ)

FiP
i

F
.

The equality Q̂λ,µ(P ) = Qλ,µ(P ) is now equivalent to (3.3).
As for the second-order symbols, P ∈ S2,δ, the proof involves the calculation of

∇̂i∇̂jφ and ∇̂iP
jk together with ∇̂i∇̂jP

k`, which is straightforward. It also relies
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on the well-known transformation law [1] of the Ricci tensor, Ric = Rij dx
i ⊗ dxj ,

under a conformal rescaling, ĝ = Fg, namely

R̂ic = Ric − (n− 2)
2

(∇dF
F

− 3
2
dF ⊗ dF

F 2

)

− 1
2

(
∆F
F

− (n− 4)
2

‖dF‖2

F 2

)
g

(4.13)

where ∆F = gij∇i∂jF and ‖dF‖2 = gij∂iF∂jF . The scalar curvature transforms
accordingly as

R̂ =
R

F
− (n− 1)

(
∆F
F 2 +

(n− 6)
4

‖dF‖2

F 3

)
. (4.14)

Using the formula (4.3) as an Ansatz with undetermined coefficients β1, . . . , β6, a
tedious calculation then shows that the condition Q̂λ,µ(P ) = Qλ,µ(P ) is equivalent
to an overdetermined linear system of 9 equations for these coefficients. For generic
values of δ, the solution turns out to be unique and given by (3.4) and (4.4). �

5. Applications

We apply these results to the quantization of the geodesic flow on a conformally flat
manifold (M, g), where, locally, gij = F gij for some smooth strictly positive func-
tion F , i.e., to the quantization of the quadratic polynomial H = gijξiξj on T ∗M .
We will furthermore quantize the Hamiltonian H = gij(ξi − Ai)(ξj − Aj), where
A = Ai dx

i is a U(1)-connection, describing the motion of a charged particle on a
conformally flat manifold, minimally coupled to an electromagnetic field. We will
also pay special attention to the resonant cases corresponding to the table (1.3).

5.1. Introducing i~

Let us now introduce, as usual, a real parameter ~ and replace the momenta ξj by
their quantum substitutes i~ξj . More specifically, let us consider a new operator
on symbols I~ : Sδ → (Sδ)C by

I~(P )(ξ) = P (i~ ξ). (5.1)

We will then define a one-parameter family of conformally equivariant quantization
maps Qλ,µ;~ : S2

δ → (D2
λ,µ)C by

Qλ,µ;~ = Qλ,µ ◦ I~ (5.2)

where Qλ,µ is as in (4.2), (4.3) and I~ given by (5.1).
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Let us recall that if
λ+ µ = 1, (5.3)

there exists a Vect(M)-invariant pairing (Fλ)C ⊗ (Fµ)C → C defined by

ϕ⊗ ψ 7→
∫

M

ϕψ (5.4)

for compactly-supported densities. The quantization map (5.2) enjoys the following
crucial property.

Proposition 5.1. The differential operators Qλ,µ;~(P ) defined by (5.2) are sym-
metric (i.e., formally self-adjoint) for the pairing (5.4) provided (5.3) holds.

Proof. A more general version of this proposition has been proved in [10]. In our
case, it can be proved directly. Easy calculation already gives, in any coordinate
system, the (formal) adjoints (P jk∂j∂k)∗ = ∂j∂k ◦ P jk, and (P j∂j)∗ = −∂j ◦ P j.
Using the expression (3.2) in an adapted coordinate system, we find that Qλ,µ;~(P )
is symmetric for any P ∈ S2

δ if and only if α = 1
2 , β1 = 1 and β2 = 0. Returning to

the values (3.3) and (3.4) of the numeric coefficients, these conditions are satisfied
if λ+ µ = 1. �

5.2. Conformally equivariant Laplacian in the generic case

Consider the quadratic polynomial H ∈ S2,δ given in local coordinates on T ∗M by

H = gijξiξj (5.5)

where g = gij dx
i ⊗ dxj is a pseudo-Riemannian metric of signature p− q on M .

Proposition 5.2. In the case n ≥ 2, and for λ, µ fulfilling the condition (1.2), the
quantization map (5.2) yields the following expression:

Qλ,µ;~(H) = −~
2 (∆ + Cλ,µR) (5.6)

with

Cλ,µ =
n2λ(µ− 1)

(n− 1)(n+ 2 − 2nδ)
(5.7)

where ∆ is the Laplace operator and R the scalar curvature of (M, g).

Proof. If n ≥ 3, let us substitute the symbolH given by (5.5) into the formula (4.3).
The second-order term of Qλ,µ(H) is nothing but the Laplace operator ∆. Since
all covariant derivatives ∇igjk vanish, we are left with the scalar term (β5 +nβ6)R.
The result follows from (4.4); note that the coefficient ~

2 comes from (5.2) applied
to the quadratic-homogeneous polynomial H .

In the case n = 2, the result follows from (4.10) and (4.11). �
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5.3. The quantum Hamiltonian

In the special instance where H ∈ S0 ∼= Pol(T ∗M), the Hamiltonian flow of H
projects onto the geodesics of (M, g). Furthermore, in the most interesting case

λ = µ =
1
2

(5.8)

naturally associated with geometric quantization, the operator (5.6) takes the form

Q 1
2 , 1

2 ;~(H) = −~
2
(

∆ − n2

4(n− 1)(n+ 2)
R

)
. (5.9)

The self-adjoint operator (5.9) on the Hilbert space F 1
2

(the completion of the
compactly supported half-densities) is a natural new candidate for the quantized
Hamiltonian of the geodesic flow on a (pseudo-)Riemannian manifold. None of
the expressions obtained in the literature by different methods of quantization
(see, e.g., [8] for relevant references) corresponds to this one; all these expressions
therefore lack the conformal equivariance property (in the conformally flat case).

5.4. Minimal coupling and quantization

One can, as well, incorporate into the Hamiltonian (5.5) additional terms needed
to describe electromagnetic interaction. This is usually performed via the so-called
“minimal coupling” prescription to a U(1)-connection, locally given by A = Ai dx

i.
This procedure leads to a Hamiltonian H ∈ S2

δ of the form

H = gjk(ξj −Aj)(ξk −Ak) (5.10)

on any pseudo-Riemannian manifold (M, g).

Proposition 5.3. In the case n ≥ 2, and for λ, µ as in (1.2), the quantization
map (5.2) yields

Qλ,µ;~(H) = − ~
2gjk

(
∇j +

i

~
Aj

)(
∇k +

i

~
Ak

)
− ~

2Cλ,µR

+ i~
(1 − λ− µ)

(1 − δ)
gjk∇jAk

(5.11)

where Cλ,µ is given by (5.7).

The proof of the above proposition is completely analogous to that of Proposi-
tion 5.2 and will be omitted.

Notice that the first line in (5.11) corresponds to what is called quantum minimal
coupling in the physics literature. Thus, our conformally equivariant quantization
Qλ,µ;~ intertwines minimal coupling if and only if condition (5.3) holds.
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5.5. The resonant cases: the Yamabe operator and its analogs

According to Theorem 1.2, there exist pairs (λ, µ) for which the modules D2
λ,µ

and S2
µ−λ are isomorphic. However, we mentioned that this isomorphism is not

unique. But, imposing the condition (5.8) for the module D2
λ,µ enables us to look

for the operators Qλ,µ;~(H) which are symmetric (formally self-adjoint).

Proposition 5.4. In each of the following resonant cases, there exists a unique
isomorphism Qλ,µ;~ for which the operator Qλ,µ;~(H) is symmetric:

Qn−2
2n , n+2

2n ;~(H) = −~
2
(
∆ − n− 2

4(n− 1)
R

)
, (5.12)

Q0,1;~(H) = −~
2∆, (5.13)

Q− 1
n , n+1

n ;~(H) = −~
2
(
∆ +

1
(n− 1)(n+ 2)

R
)
. (5.14)

The proof of the preceding proposition will be given in Section 8.6.
We notice that the constraint (5.8) selects only three (out of five) resonances

in (1.3).
We recognize in (5.12) the so-called “Yamabe” operator and in (5.13) the

ordinary Laplace operator on functions. At last, the operator (5.14) is a new
o(p+1, q+1)-equivariant Laplacian which should be put quite on the same footing
as the other two.

Remarks.

(a) It is well known that the Yamabe operator (5.12) is the unique Laplace
operator which is invariant under conformal changes of metrics: g 7→ F g.
In this framework, the symbol H ∈ S2,δ, given by (5.5) with δ = 2

n , is also
invariant under conformal changes of metrics.

(b) Note that, in contradistinction with the operator (5.9), the conformal Lapla-
cians (5.12)–(5.14) cannot serve as self-adjoint quantum-mechanical opera-
tors on a Hilbert space since λ 6= µ.

(c) It is worth mentioning that the numerical coefficients in front of the scalar
curvature in (5.12)–(5.14) actually correspond to the expression (5.7) that
holds in the generic case.

5.6. The Sturm-Liouville operator

The operator Qλ,µ;~(H) for the symbol (5.5) can be computed in the case n = 1
by (4.5); it appears to be still defined in the resonant case, δ = 2. In general, it
does not yield an sl(2,R)-equivariant quantization map Qλ,λ+2;~ unless λ = − 1

2
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and µ = 3
2 (the “Yamabe” weights in (5.12)). In this case one obtains a special

instance of Sturm-Liouville operator

Q− 1
2 , 3

2 ;~(H) = −~
2
(
∆ − S(ϕ)

2g

)
(5.15)

which can be interpreted as the Yamabe operator in the one-dimensional case.
We now start the more technical part of our work in which we will provide

the proofs of the main theorems. We will derive the formulæ for the conformally
equivariant isomorphism (1.1) by means of the algebraic theory of invariants.

6. Euclidean invariant theory

In this section we will recall the results of [9] (see also [10]); we will introduce a Lie
algebra of differential operators acting on the space of symbols Sµ−λ and commut-
ing with the canonical action of the Euclidean algebra. The associated universal
enveloping algebra will provide us with the ingredients needed to construct the
conformally equivariant map Qλ,µ (see [10] for the abstract theory of conformally
equivariant quantization) on a conformally flat n-dimensional manifold. Through-
out this section we will assume n ≥ 2.

6.1. The Weyl-Brauer Theorem

Consider first the space of polynomials C[ξ1, . . . , ξn] with the canonical action of the
orthogonal Lie algebra o(p, q) with p+q = n, generated by Xij = ξi∂/∂ξ

j −ξj∂/∂ξi

(cf. (3.1)). A classical theorem [26], [5] states that the commutant o(p, q)! in the
space End(C[ξ1, . . . , ξn]) is the associative algebra generated by

R = ξiξi, E = ξi
∂

∂ξi
+
n

2
, T =

∂

∂ξi

∂

∂ξi
(6.1)

whose commutation relations are those of sl(2,R). We will find it useful to deal
with the Euler operator

E = E −n

2
. (6.2)

The explicit formulæ in coordinates are as follows:

R(Pk)i1...ikij = P
(i1...ik

k gij),

E(Pk)i1...ik = k P i1...ik

k ,

T(Pk)i1...ik−2 = k(k − 1)gijP
iji1...ik−2
k ,

(6.3)

where round brackets denote symmetrization.
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Remark. The associative algebra o(p, q)! is isomorphic to the universal enveloping
algebra U(sl(2,R)). It is worth noticing that the converse property holds, namely
sl(2,R)! = U(o(p, q)) showing that sl(2,R) and o(p, q) form a so-called dual pair of
Lie algebras.

6.2. The Lie algebra of Euclidean invariants

Consider then the space of polynomials C[x1, . . . , xn, ξ1, . . . , ξn] with the canon-
ical action of the Euclidean Lie algebra e(p, q) = o(p, q) n R

n generated by the
canonical lifts to T ∗Rn of the vector fields Xij and Xi given by (3.1). We are thus
looking for the commutant e(p, q)! in End(C[x1, . . . , xn, ξ1, . . . , ξn]). The following
propositions originally proved in [9] extend the Weyl-Brauer theorem.

Proposition 6.1.

(i) The sl(2,R)-module structure on C[x1, . . . , xn, ξ1, . . . , ξn] extends to a mod-
ule structure for the semi-direct product sl(2,R)nh1, where h1 is the Heisen-
berg Lie algebra generated by

G = ξi ∂

∂xi
, D =

∂

∂ξi

∂

∂xi
, L =

∂

∂xi

∂

∂xi
. (6.4)

(ii) The commutant e(p, q)! is the associative algebra generated by the operators
given in (6.1) and (6.4).

Proof. Consider the commutant o(p, q)! in the space End(C[x1, . . . , xn, ξ1, . . . , ξn]).
As in the proof of the Weyl-Brauer theorem we identify these endomorphisms with
polynomials C[x1, . . . , xn, p1, . . . , pn, ξ1, . . . , ξn, y

1, . . . , yn], where the pi and yi

are in duality with xi and ξi, respectively. According to [26] the o(p, q)-invariant
polynomials are generated by the ten (scalar) products: xix

i, pix
i, . . . , yiy

i. These
second-order polynomials form a Poisson algebra isomorphic to sp(4,R) therefore
o(p, q)! is isomorphic to (some quotient of) U(sp(4,R)).

The commutant e(p, q)! is the subalgebra of o(p, q)! which is invariant under
translations generated by ∂/∂xi. This subalgebra is clearly generated by ξiξi, ξiyi,
yiy

i, ξipi, yipi, pipi, in other words by the operators (6.1) and (6.4). �
Again, one easily finds that

G(Pk)i1...iki = ∂jP
(i1...ik

k gi)j ,

D(Pk)i1...ik−1 = k ∂iP
ii1...ik−1
k ,

L(Pk)i1...ik = gij∂i∂jP
i1...ik

k .

(6.5)

Remark. If n ≥ 3, one has o(p, q)! = U(sp(4,R)) and sp(4,R)! = U(o(p, q)). This
is also a well-known instance of duality between the orthogonal and symplectic
algebras.

We furthermore prove the following:
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Theorem 6.2. The commutant e ( p, q )! is isomorphic to quotient algebra
U(sl(2,R) n h1)/I where the ideal I is as follows:

(i) If n = 2, the ideal I is generated by
Z = (C + 3

2 ) L + 1
4

(
D [G, C] + [G, C] D− G [D, C] − [D, C] G

)
, (6.6)

where C = E2 − 1
2 (R T + T R) is the Casimir of sl(2,R);

(ii) if n ≥ 3, one has
I = {0}. (6.7)

Proof. Again, we identify the generators (6.1), (6.4) with the six quadratic poly-
nomials given in the preceding proof.

If n ≥ 3, one finds that these polynomials are functionally, hence algebraically
independent. Indeed, d(ξiξi) ∧ d(ξjyj) ∧ · · · ∧ d(pkpk) 6= 0.

In the case n = 2, any five distinct polynomials from the previous set of qua-
dratic polynomials turn out to be independent. One then checks that the operator
given by Z in (6.6) vanishes identically. Moreover, Z ∈ U(sl(2,R) n h1) is of
minimal degree (three). Working, as above, in terms of polynomials (principal
symbols), one immediately gets, by using the implicit functions theorem, that any
other polynomial in this ideal is a multiple of the symbol of Z. �

We do not know whether the converse to Theorem 6.2 is true: our conjecture is
that (sl(2,R)nh1)! = U(e(p, q)) for n ≥ 3, in other words, U(e(p, q))!! = U(e(p, q)).
Similar problems have recently been investigated by A.A. Kirillov [16].

7. Equation characterizing conformal equivariance

7.1. Equivariance with respect to the affine subalgebra

We first consider, for the sake of completeness, the case of the whole affine Lie
subalgebra of Vect(Rn).

Lemma 7.1. The actions (2.4) and (2.8), (2.9) of the affine Lie algebra gl(n,R)n

R
n on the modules Dλ,µ and Sµ−λ for the local expressions (2.3) and (2.6) coincide

identically.

Proof. The Vect(M)-action (2.4) has the following form in local coordinates:

Lλ,µ
X (A)` = Lµ−λ

X (A`) + (higher order derivatives of X) (7.1)
for X ∈ Vect(M). The affine Lie algebra being characterized by the property
that all second derivatives ∂i∂jX

k vanish, (7.1) implies that each coefficient of the
operator A transforms as a symbol of degree `. �

From now on, we identify locally the operators and the symbols by using the
formula (7.1).
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7.2. Action of the inversions on Dk
λ,µ

At this stage, we need an explicit formula for the action (7.1) of the inversions,
generated by Xi (see (3.1)), on the space of differential operators.

In order to make calculations more systematic, let us introduce the following
useful notation

LX = ξi ⊗ LXi
(7.2)

which captures the entire structure of the abelian subalgebra of inversions. Experi-
ence proved that this operator is compatible with all algebraic structures introduced
so far.

Lemma 7.2. The action of the inversions on Dk
λ,µ takes, with the convention

(7.2), the following form:

Lλ,µ

X
(A)` = Lµ−λ

X
(A`) + (`+ 1)

(
−1

2
` R T +2(`+ nλ)

)
A`+1 (7.3)

for ` = 0, 1, . . . , k.

Proof. Standard calculation leads to the general expression:

Lλ,µ
X (A)i1...i`

` =Lµ−λ
X (A`)i1...i`

− `+ 1
2

∑̀
s=1

Aiji1...îs...i`

`+1 ∂i∂jX
is − (`+ 1)λAii1...i`

`+1 ∂i∂jX
j

+ (higher order derivatives of X)

for any X ∈ Vect(M). In the case of inversions, namely, if X = Xr, one has

∂i∂jX
s

r = 2
(
gijδ

s
r − δs

i gjr − δs
jgir

)
, (7.4)

where gij are the components of the flat metric on Rn given in Section 3.1. The
previous formula, therefore, becomes

Lλ,µ

Xr
(A)i1...i`

` =Lµ−λ

Xr
(A`)i1...i`

− (`+ 1)
∑̀
s=1

gij A
iji1 ...îs...i`

`+1 δr
is

+ 2(`+ 1)(`+ nλ)Ari1...i`

`+1 .

Then, using (6.3), one finds that the second term in the sum ξrL
λ,µ

Xr
(A)` is equal to

− 1
2`(`+1)R T(A`+1). The third term in the same expression is plainly proportional

to the identity. �
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7.3. Equivariance equation

It is now possible to derive the main equation that guarantees the equivariance of
the symbol map and the quantization map with respect to the inversions.

Proposition 7.3. A linear map Qλ,µ : Sk
µ−λ → Dk

λ,µ intertwines the action of the
inversions if and only if the following equation holds:

[Qλ,µ, L
µ−λ

X
] =

(− 1
2 R T(E − 1) + 2E + 2(nλ− 1)

) E ◦ Qλ,µ. (7.5)

Proof. The equivariance condition writes that Qλ,µ◦Lµ−λ

X
= Lλ,µ

X
◦ Qλ,µ. Applying

then equation (7.3) to this condition readily yields the result. �

8. Proofs of the main results in the conformally flat case

8.1. Locality of the o(p+ 1, q + 1)-equivariant maps

It should be emphasized that the isomorphism (1.1) is necessarily given by a dif-
ferential map, namely (3.2). This fact is already guaranteed by the equivariance
with respect to the subalgebra R n Rn generated by homotheties and translations
(which is a common subalgebra of o(p+ 1, q + 1) and sl(n+ 1,R)), i.e., by the

Proposition 8.1 [20]. If k ≥ `, any R n R
n-equivariant map Sk

δ → S`
δ is local.

By Peetre’s theorem [24] such maps are locally given by differential operators.

8.2. The Ansatz

We will use our previous results on the universal enveloping algebraU(sl(2,R) n h1)
to determine an adequate Ansatz for the quantization map Qλ,µ : Sk

µ−λ → Dk
λ,µ,

which turns out to be more convenient in our framework. But, an identical general
Ansatz would apply just as well to the symbol map.

Proposition 8.1, together with the generalized Weyl-Brauer Theorem 6.1, leads
to the general form for an e(p, q)-equivariant quantization map Qλ,µ : Sk

µ−λ →
Dk

λ,µ given by differential operators Qλ,µ = Cr,e,g,d,`,t Rr Ee Gg Dd L` Tt, where
Cr,e,g,d,`,t are constant coefficients.

Imposing, furthermore, the equivariance of Qλ,µ with respect to homotheties
generated by X0 from (3.1), one readily finds that t = r + g + ` and obtains that
any o(p+ 1, q + 1)-equivariant map Qλ,µ : Sk

µ−λ → Dk
λ,µ is of the form

Qλ,µ = Cr,e,g,d,` Rr
0 Ee Gg

0 Dd L`
0, (8.1)
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where we have put

R0 = R T, G0 = G T, L0 = L T . (8.2)

We will also impose the natural normalization condition which demands that
the principal symbol be preserved:

Cr,e,0,0,0 =
{

1 if (r, e) = (0, 0)
0 otherwise.

(8.3)

8.3. Solving the equivariance equation: proof of Theorem 3.2

In the case of second-order differential operators, which is the one this article is
devoted to, our Ansatz (8.1) implies that e(p, q)-equivariant maps:

(a) Sk
δ → Sk−1

δ are linear combinations of D and G0 for k = 1, 2;
(b) Sk

δ → Sk−2
δ are linear combinations of D2 and L0 for k = 2 (note that in

this special case the other operators taken from (8.1), namely G2
0 and G0 D

are expressible in terms of the latter).

Furthermore, the monomials in R0 vanish because of the normalization condi-
tion (8.3); the terms R0 D,R0 G0, . . . are identically zero for k ≤ 2.

Proposition 8.2. There exists a unique linear map

Qλ,µ = Id +γ1 G0 +γ2 D +γ3E D +γ4 L0 +γ5 D2 (8.4)

satisfying the equivariance equation (7.5) provided condition (1.2) holds; it is given
by

γ1 =
n(λ+ µ− 1)

2(nδ − 2)(n(δ − 1) − 2)
,

γ2 =
λ

1 − δ
,

γ3 =
1 − λ− µ

(δ − 1)(n(δ − 1) − 2)
,

γ4 =
nλ

(
2 + (4λ− 1)n+ (2λ2 − λµ− µ2 + 2µ− 1)n2

)
2(n(δ − 1) − 1)(n(2δ − 1) − 2)(nδ − 2)(n(δ − 1) − 2)

,

γ5 =
nλ(nλ+ 1)

2(n(δ − 1) − 1)(n(δ − 1) − 2)
.

(8.5)

Proof. Let us compute the left hand side of the equation (7.5) where the quantiza-
tion map given by our Ansatz (8.4). We need the commutators of the differential
operators entering (8.4) with the Lie derivative Lδ

Xi
with respect to the generators

Xi given by (3.1). Using the notation (7.2) we first prove the
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Lemma 8.3. The following commutation relations hold:

[R0, L
δ
X

] = 0,

[E , Lδ
X

] = 0,

[G0, L
δ
X

] = 2 R0(E − nδ),

[D, Lδ
X

] = −2 R0 +4E2 − 2(n(δ − 1) + 2)E ,
[L0, L

δ
X

] = −4 R0 D +8E G0 +2(n(1 − 2δ) − 2)G0,

[D2, Lδ
X

] = −4 R0 D −2 G0 +8E2 D+4(n(1 − δ) − 1)E D .

(8.6)

Proof. One finds, using (2.8), (2.9) and (3.1), [D, Lδ
Xi

] = −2ξi T +4E∂ξi −
2n(δ − 1)∂ξi . Then, the final expression for [D, Lδ

X
] follows from the definition

of the operators R0 and E given by (6.1), (8.2) and (6.2). The other commutators
in (8.6) are derived in the same fashion with the help of the commutation relations
of the operators (6.1) and (6.4). �

Using the commutation relations (8.6), we find

[Qλ,µ, L
µ−λ

X
] =2γ1(R0 E − nδR0)

+ 2γ2(− R0 +2(E2 − E) − n(δ − 1)E)

+ 2γ3(− R0(E − 1) + (2 − n(δ − 1))(E2 − E))

+ 2γ4(−2 R0 D +4E G0 +(n(1 − 2δ) − 2)G0)

+ 2γ5(− G0 −2 R0 D+4E2 D+2(n(1 − δ) − 1)E D)

while the right hand side of (7.5) is given by

(
−1

2
R0(E − 1) + 2E + 2(nλ− 1)

)
E ◦ Qλ,µ =(

−1
2

R0(E − 1) + 2(E + nλ− 1)
)

E
+ 2(E + nλ− 1)E(γ1 G0 +γ2 D +γ3E D)

since the extra terms, namely (E − 1)E(γ1 G0 +γ2 D +γ3E D+γ4 L0 +γ5 D2) and
E(γ4 L0 +γ5 D2) obviously vanish on the space of second-order symbols.

Now, the equivariance condition (7.5) amounts to equating the two previous
expressions. Identifying the coefficients of R0,G0,D and the scalar terms (of order
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one and two), respectively, one gets the following system of linear equations:




(2 − nδ)γ1 − (γ2 + γ3) = −1
2
,

(n(1 − 2δ) + 2)γ4 − γ5 = nλγ1,

2(n(1 − δ) + 1)γ5 = nλ(γ2 + γ3),

(1 − δ)γ2 = λ,

(2 + n(1 − δ))(γ2 + γ3) = nλ+ 1.

(8.7)

The solution of this system is unique and given by (8.5). �

Example. Proposition (8.2) yields, in particular, the following half-density quan-
tization map:

Q 1
2 , 1

2
= Id +

1
2

D+
n

8(n+ 1)(n+ 2)
L0 +

n

8(n+ 1)
D2 . (8.8)

Let us notice that the map Qλ,µ defined by (8.4) and (8.5) coincides with the
quantization map (3.2) in an adapted coordinate system. Proposition 8.2 is nothing
but a rephrasing of Theorem 3.2 whose proof is now complete.

8.4. Proof of Theorem 1.1

The o(p+ 1, q+ 1)-equivariant quantization map (8.4) precisely coincides with the
expression (3.2), since, taking into account the formulæ (6.3) and (6.5), one easily
establishes the correspondence between the coefficients (8.5) and (3.3), (3.4).

We have thus proved the existence of an isomorphism (1.1) provided the coef-
ficients (8.5) are well defined, i.e., condition (1.2) holds. This proves part (i) of
Theorem 1.1.

Then the formula (8.1) and the normalization condition (8.3) ensure that, up to
a multiplicative constant, every o(p+ 1, q + 1)-equivariant quantization map (1.1)
is, indeed, of the form (8.4). The uniqueness of the quantization map (part (ii) of
Theorem 1.1) immediately follows from Proposition 8.2.

8.5. Proof of Theorem 1.2

The system (8.7) determines all o(p+ 1, q + 1)-equivariant linear maps from S2
µ−λ

to D2
λµ. In the resonant cases, this system has, in general, no solution. However,

solving it for γ1, . . . , γ5 and λ as an extra indeterminate, one immediately obtains
the values of λ and µ displayed in (1.3).
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In doing so, one finds that the coefficient γ3 remains undetermined for the third
resonance, and γ4 for the rest.

8.6. Proof of Proposition 5.4

Returning to the basic system (8.7) in the presence of resonances, we easily find
that the free parameter γ3 (resp. γ4) is uniquely determined in each resonant case
where λ + µ = 1 if we require that the operators Qλ,µ;~(P ) be symmetric for
all P ∈ S2

δ . In such cases, the explicit expressions (5.12)–(5.14) are obtained in the
same manner as in the proof of Proposition 5.2.

9. Conclusion and outlook

In this work, we have taken a first step towards a conformally invariant quantiza-
tion, i.e., depending only on the conformal class of a pseudo-Riemannian metric.
This program is now achieved for the case of second-order symbols and differential
operators. The general case still remains to be tackled, however computations seem
much more intricate.

Our original idea was to relate geometric quantization and deformation quanti-
zation in a somewhat novel fashion, namely by using, from the start, equivariance
with respect to some structural symmetry group (e.g. the conformal group). In
the conformally flat case, it has been proved [10] that there exists, for any order, a
canonical quantization map equivariant with respect to the action of the conformal
group. This conformally flat case is particular and we have been able to extend
the second-order quantization map to the case of an arbitrary pseudo-Riemannian
manifold.

As a by-product, we have obtained a new quantization of the geodesic flow (5.9)
on the Hilbert space of half-densities. We have also related the Yamabe operator
to other conformally equivariant Laplacians on resonant modules of densities, and
derived the quantum version of minimal coupling in the same framework.

We have also chosen to put aside the cohomological content of many aspects
of the problem. It should be stressed that Lie algebra cohomology proved useful
in earlier work [8], [20], [12], [18] on the modules of differential operators. The
resonances appearing in (1.2) should thus certainly hide nontrivial o(p+ 1, q + 1)-
cohomology classes.

Let us finish by mentioning a crucial property of the conformal algebra which
was of central importance in our work. The Lie algebra o(p+1, q+1) is a maximal
Lie subalgebra of Vect(Rn) in the sense that any larger subalgebra is infinite-
dimensional (see [3]). This property implied the uniqueness of the isomorphisms
of the modules of differential operators and symbols under study. Recall that the
same is true for the projective Lie algebra sl(n+ 1,R).
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10. Appendix

Let us show how the formulæ (4.2), (4.3), (4.5) and (4.10) for the quantization
map for a general curved pseudo-Riemannian metric stem from formula (3.2) in
the conformally flat case. We therefore develop in this Appendix the covariant
calculus for density-valued symbols which is needed for this purpose.

10.1. First-order symbols

Let us consider a homogeneous first-order polynomial P ∈ S1,δ. From the expres-
sion (4.1) of the covariant derivative of a tensor density, one gets

∇iP
i = ∂iP

i + (1 − δ)ΓiP
i.

We then deduce from the formula (3.2) in an adapted coordinate system that

Qλ,µ(P ) = P i∂i +
λ

1 − δ

(
∇iP

i − (1 − δ)ΓiP
i
)

= P i∂i − λΓiP
i +

λ

1 − δ
∇iP

i

= P i∇i + α∇iP
i

thanks to (3.3) and (4.1), hence, the formula (4.2).
Note that the quantization map (3.2) is already intrinsic when restricted to

first-order polynomials.

10.2. Second-order symbols

Consider now a homogeneous second-order polynomial P ∈ S2,δ and let us, again,
use the formula (3.2) in adapted coordinates. Our goal is to rewrite this expression
in a general coordinate system, but in the case of a conformally flat metric.

The highest order term in the operator Qλ,µ(P ) retains the following form:

P ij∂i∂j =P ij∇i∇j +
(
P jkΓi

jk + 2λP ijΓj

) ∇i

+ P ij
(
λ2ΓiΓj + λ∂iΓj

)
which can be deduced from (4.1). Let us notice that in order to obtain such a
seemingly standard expression, we actually need to differentiate λ-densities and
tensor fields with values in Fλ. Neither the latter formula nor the following ones
are common in differential geometry.

The two first-order terms in Qλ,µ(P ) read

(∂jP
ij)∂i =(∇jP

ij)∇i − (
P jkΓi

jk + (1 − δ)P ijΓj

) ∇i

+ λ(∇iP
ij)Γj − λP ij

(
Γk

ijΓk + (1 − δ)ΓiΓj

)
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and

gijgk`(∂jP
k`)∂i =gijgk`(∇jP

k`)∇i − gijgk`

(
2Pm`Γk

jm − δP k`Γj

) ∇i

+ λΓi gijgk`

(∇jP
k` − 2Pm`Γk

jm + δP k`Γj

)
.

At last, the two zero-order terms in Qλ,µ(P ) are as follows:

∂i∂jP
ij =∇i∇jP

ij − 2(1 − δ)(∇iP
ij)Γj − 2(∇iP

jk)Γi
jk

− P ij
(
∂kΓk

ij + (1 − δ)∂iΓj − 2Γ`
ikΓk

j` − (1 − 2δ)Γk
ijΓk − (1 − δ)2ΓiΓj

)
and

gijgk`∂i∂jP
k` =gijgk`

(
∇i∇jP

k` − 4(∇jP
`m)Γk

im + 2δ(∇jP
k`)Γi + (∇mP

k`)Γm
ij

− 2P `m∂iΓk
jm + δP k`∂iΓj

+ 2P `m(Γr
imΓk

jr − 2δΓk
imΓj) + 2PmrΓk

imΓ`
jr + δ2P k`ΓiΓj

)
.

To obtain the final formula for the quantization map, let us collect the above
terms within the expression (3.2) where the coefficients β1, . . . , β4 are considered
undetermined. We also need to use the Christoffel symbols of the conformally flat
metric g = Fg, namely

Γk
ij =

1
2F

(
Fiδ

k
j + Fjδ

k
i − F kgij

)
(10.1)

where g is some flat metric and F k = gjkFj (see (4.12).
The second-order term we get is plainly P ij∇i∇j . Then, the first-order term

in Qλ,µ(P ) is just given by the second line of (4.3) if we impose the following
conditions (

1 − β1 +
n

2
(2λ− β1(1 − δ))

)
P ijFj = 0

and (
−1

2
(1 − β1) + β2

(nδ
2

− 1
))

gijgk` P
k`Fj = 0

for the extra non-intrinsic terms; these conditions are satisfied if and only if β1
and β2 are as in (3.4). As for the zero-order terms, we, again, have to rule out two
non-intrinsic terms, i.e.,(

λβ1 − 2β3

(
1 − δ +

1
n

))
(∇iP

ij)Fj = 0

and (
λβ2 +

β3

n
+ β4

(
2δ − 1 − 2

n

))
gijgk`(∇iP

k`)Fj = 0.
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These conditions determine β3 and β4 in accordance with (3.4).
We finally check that the remaining zero-order terms in Qλ,µ(P ) are as follows:

n2λ(1 − µ)
2(1 + n(1 − δ))

[
P ijFij

F
− 3

2
P ijFiFj

F 2 +
1

2 + n(1 − 2δ)
gijgk` ·

·
(
P k`Fij

F
− 1

2
(2 + n(δ − 1))

P k`FiFj

F 2

)] (10.2)

where Fij = ∂i∂jF . At this stage, some more ingredients are needed, namely the
Ricci tensor and the scalar curvature for the the conformally flat metric g = Fg with
Christoffel symbols (10.1). The corresponding expressions can be easily deduced
from (4.13) and (4.14).

One checks that, in the case n ≥ 3, the expression (10.2) organizes as the
combination β5P

ijRij + β6P
ijgijR where β5 and β6 are rigidly fixed and coincide

with (4.4). This computation therefore justifies our main Definition 4.3.
In the lower dimensional cases, n = 1 and n = 2, the calculation is similar to

that of the higher dimensional case n ≥ 3.
In order to give an intrinsic interpretation of (10.2), we resort to the defini-

tion (4.9) of the Schwarzian derivative in the case n = 2. The final formula (4.10)
for Qλ,µ(P ) then readily follows from the expression (4.14) of the scalar curvature
for the conformally flat metric g = Fg.

In the case n = 1, the formula (4.5) is obtained exactly in the same way as (4.10).
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Luminy Case 907
F–13288 Marseille
Cedex 9
France
e-mail: ovsienko@cpt.univ-mrs.fr


