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Theorem on six vertices of a plane curve via

the Sturm theory
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Abstract

We discuss the theorem on the existence of six points on a convex
closed plane curve in which the curve has a contact of order six with
the osculating conic. (This is the “projective version” of the well
known four vertices theorem for a curve in the Euclidean plane.) We
obtain this classical fact as a corollary of some general Sturm-type
theorems.
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1 introduction

The well known classical theorem states that a convex curve on the
Euclidean plane has at least four vertices (critical points of its cur-
vature). This theorem has been frequently discussed in mathematical
literature (see [1, 8]). Beautiful applications of this theorem to sym-
plectic geometry were discovered by V.I. Arnol’d [1, 2, 3]. The relation
to the Sturm theory is given by S. Tabachnikov [8]. His proof of the
four vertices theorem is based on the fact that a function on S1 with-
out n first harmonics of the Fourier decomposition vanishes at least
2n times.

A point on a locally convex plane curve c is called sextactic if
the oscullating conic has a contact of order ≥ 6 with c in this point.
(Recall, that in a generic point the contact is of order 5 since a conic
is defined by 5 points.) Sextactic points can be defined also as critical
points of the affine curvature or by the fact that the projective length
element of curve c vanishes in these points.

Sextactic points are invariant under projective transformations.
This kind of singular points is an analogue of vertices in projective
(or affine) geometry. (Recall that in the Euclidean case the osculating
circle has a contact of order ≥ 4 with the curve in any vertex.)

The following classical theorem can be considered as the “projec-
tive analogue” of the four vertices theorem.

Six vertices theorem. A closed convex curve on R2 has at least six
sextactic points.

Corollary. The affine curvature of a convex closed curve on R2 has
at least six critical points.

The proof can be found in [5].
The main result of this paper is a series of general Sturm-type

theorems (in the spirit of Tabachnikov theorem). We estimate the
number of zero points of a function on S1 orthogonal to solutions of
a disconjugate linear differential equation. This approach contains at
the same time the four vertices theorem of Euclidean geometry and
the six vertices theorem.
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2 The Sturm theorems

Consider a linear differential equation on S1:

Aφ(x) = φ(n)(x) + un−1(x)φ
(n−1)(x) + · · · + u0(x)φ(x) = 0 (1)

Here ui(x) ∈ C∞(S1) (this means, all the potentials ui are periodic:
ui(x+ 1) = ui(x)).

Definition. Equation (1) is called disconjugate on S1 if:
1. Order n = 2k+1: all the solutions are periodic: φ(x+1) = φ(x)

and have at most 2k zeros (with multiplicity) on S1.
2. Order n = 2k all the solutions are anti-periodic: φ(x + 1) =

−φ(x) and have at most 2k − 1 zeros (with multiplicity) on S1.
In these cases, A is called a disconjugate operator.

2.1. Theorem 1. Given a function f ∈ C∞(S1) orthogonal to all
the solutions of a 2n + 1-order disconjugate equation:

∫

S1

f(x)φ(x)dx = 0

then f has at least 2n + 2 distinct zero points on S1.

This is a generalization of the Tabachnikov theorem [8] stating the
same fact for a function f(x) ∈ C∞(S1) without n first harmonics.
Indeed, such a function is orthogonal to the solutions of the equation
∂x(∂2

x + 1)(∂2
x + 4) · · · (∂2

x + n2)φ = 0.

Corollary. A function f in the image of a 2n+ 1-order disconju-
gate operator A (f = Ag where g ∈ C∞(S1) is any function) vanishes
at least 2n+ 2 times on S1.

Indeed, f is orthogonal to the solutions of the equation A∗φ = 0,
where A∗ is the operator adjoint to A. It is sufficient to remark that
the operator A∗ is disconjugate if A is disconjugate.

Theorem 2. Given a function f ∈ C∞(S1) orthogonal to all the
products of solutions of a n-order disconjugate equation:

∫

S1

f(x)φ1(x)φ2(x)dx = 0

then f has et least 2n distinct zero points on S1.
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Remark. There exist straightforward generalizations of Theorems
1 and 2. It is sufficient to consider a function orthogonal to a product
of any 3, 4 etc. solutions of a disconjugate equation.

2.2. Proof of Theorem 1. Consider a function f ∈ C∞(S1)
orthogonal to all the solutions of a disconjugate equation Aφ = 0.

First, observe that f has at least one zero. Indeed, there exists a so-
lution φ positive almost everywhere on S1 (take for example a solution
vanishing in some point with order 2n, then the disconjugacy condition
implies that it has no more zero points). From

∫

S1 f(x)φ(x)dx = 0
one concludes that function f changes its sign at least once.

Let us prove that the number of points of S1 in which function f
has odd-order zeros (changes its sign) is superior to 2n. Suppose that
f has 2k odd-order zero points x1, . . . , x2k on S1 and k ≤ n. Consider
a solution φ with two properties:

a) φ has a zero of order 2(n − k) + 1 in x1,
b) φ vanishes in all points x1, . . . x2k.
The existence of such a solution is evident. In fact, there exists a

2k−1-dimensional space of solutions vanishing with order 2(n−k)+1
in x1. The subspace of this space which consists of solutions vanishing
in x2 has the dimension ≥ 2k−2, etc. Now, the disconjugacy condition
implies that

a) Points x1, . . . x2k are simple zeros of φ,
b) φ has no more zeros on S1.
Finally, (replacing if necessary φ by −φ) one obtains that func-

tions f(x) and φ(x) have the same sign sequence on the segments
]x1, x2[, ]x2, x3[, . . .]x2k, x1[ which implies the contradiction:
∫

S1 f(x)φ(x)dx > 0. The theorem is proven.

2.3. Proof of Theorem 2 is analogue to those of Theorem 1.
Suppose that f has 2k odd-order zero points x1, . . . , x2k on S1 and
k ≤ n − 1. Take any number s which is even if n is odd and odd
if n is even, such that k ≤ s ≤ n − 1. Then there exists a solution
φ1 having odd order zero points in x1, . . . , xs and such that it has no
more zero points on S1 (see above). In the same way, there exists
a solution φ2 having odd order zero points in xs+1, . . . , x2k and such
that it has no more zero points on S1. Their product φ1φ2 has the
same sign sequence as f on the segments ]x1, x2[, ]x2, x3[, . . .]x2k, x1[
which implies the contradiction:
∫

S1 f(x)φ1φ2(x)dx 6= 0. The theorem is proven.

4



3 Affine and projective lengths; affine

and projective curvatures

We recall some classical definitions of affine and projective geometry
of curves. It is very interesting to compare the notion of length in
the Euclidean, affine and projective cases. If in the Euclidean case it
measures in some sense the distance between the curve and a fixed
point, then the affine and the projective lengths measure respectively:
the distance between the curve and a straight line, and the distance
between the curve and a conic.

3.1. Affine length. Consider a parametrised locally convex curve
c(x) = (c1(x), c2(x)) in R2 ( a curve without inflection points). For
any x, vectors c′(x) and c′′(x) are linearly independent. Define the
element of affine length by

dσ =

∣

∣

∣

∣

∣

∣

c′1(x) c′2(x)

c′′1(x) c′′2(x)

∣

∣

∣

∣

∣

∣

1

3

dx

Then σ is called the affine parameter.

3.2. Affine curvature. Vector c′′′(x) is a linear combination of
c′(x) and c′′(x): c′′′(x) = a(x)c′′(x) + b(x)c′(x). Moreover, the affine
parameter σ is characterized by the fact that c′′′(σ) is collinear to c′:

c′′′(σ) = k(σ)c′(σ) (2)

Function k(σ) is called the affine curvature.

3.3. Wilczynski-Cartan construction [6], [9] (see also [7]).
(i) A parametrised locally convex curve c(x) ∈ RP2 canonically de-
fines a linear differential equation of the form:

φ′′′(x) = κ(x)φ′(x) + v(x)φ(x) (3)

(ii) Any equation (3) uniquely defines a locally convex curve c(x) ⊂

RP2 (modulo projective transformations of RP2).

Proof. To associate a locally convex curve with an equation (3),
consider space E of solutions of (3). Let Vx ⊂ E consists of solutions
vanishing at the moment x. One has a family of 2-dimensional sub-
spaces in a 3-dimensional linear space, or in other words, a curve in
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RP2. It is locally convex (which is easy to verify). In homogeneous
coordinates, c = (φ1(x) : φ2(x) : φ3(x)) where φ1(x), φ2(x), φ3(x) are
any linearly independent solutions of (3). Therefore, the equation (3)
is uniquely defined by the corresponding curve.

Lemma 1. The equation (3) corresponding to a closed convex curve
is disconjugate.

Proof. Consider a closed convex curve c ⊂ RP2 (see fig.1). Such
a curve has at most two points of intersection with any projective line
RP1 ⊂ RP2. In homogeneous coordinates c = (φ1(x) : φ2(x) : φ3(x))
where φ1(x), φ2(x), φ3(x) are solutions of the corresponding equation
(3) (see Sec. 2.3). Therefore, any solution of (3) is periodic and has
at most 2 zeros on S1.

3.4. Projective length. Rewrite (3) in more symmetric form:

φ′′′(x) =
1

2
[κ(x)φ′(x) + (κ(x)φ(x))′] + h(x)φ(x) (4)

where h(x) = v(x) − κ′(x)/2. Remark here that the operator A0 =
∂3

x − 1
2(κ(x)∂x + ∂xκ(x)) is antisymmetric.

Definition [6]. The 1-form on c dσ = h(x)
1

3 dx is called the projective
length element.

Remark. The quantity h(x) transforms as a cubic differential
h(x)(dx)3 by coordinate transformations. Therefore, the 1-form dσ is
well defined (see [7]).

The projective length shows how much the curve differs from a
conic.

Lemma 2. c is a conic if and only if h ≡ 0.

Proof. Consider a second order equation

ψ′′(x) =
κ(x)

4
ψ(x)

Verify that the solutions of the equation A0φ = 0 are given by quadratic
polynomials in its solutions. In particular, φ1 = ψ2

1 , φ2 = ψ1ψ2, φ3 =
ψ2

2 (where ψ1, ψ2 are linearly independent) is a basis of solutions.
Thus, φ2

2 = φ1φ3 and the curve c = (φ1(x) : φ2(x) : φ3(x)) is a
conic.
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3.5. Projective curvature. Let us suppose that dσ 6= 0 and so
σ defines a local parameter on c. Then, the function κ(σ)/4 is called
the projective curvature of the curve c(x).

3.6. An affine curve as a projective curve. Consider a stan-
dard embedding R2 →֒ RP2 preserving the projective structure on R2

(see fig.2). An affine locally convex curve c ⊂ R2 is embedded to RP2

as a projective locally convex curve. To define its projective length
and projective curvature, represent the equation (2) in the form (4):

c′′′(σ) =
1

2
[k(σ)c′(σ) + (k(σ)c(σ))′ ] −

1

2
k′(σ)c(σ)

Therefore, the projective length of c can be defined by the relation:

h(σ) = −
1

2
k′(σ).

On the other hand, any projective curve can be considered (locally)
as an affine curve. The equation (3) reduces to the form (2) by a
changing of the parameter.

4 Sextactic points

Definition. A point of a locally convex curve c ⊂ RP2 is called
sextactic if there exists a conic in RP2 which has a contact of order
≥ 6 with c in this point.

4.1. Critical points of the projective length. The notion of
a sextactic point can be expressed in terms of the curvature (in affine
case) and in terms of the length element (in projective case).

Proposition 1. A point of a locally convex affine curve c ⊂ R2 is
sextactic if and only if it is a critical point of the affine curvature.

Corollary. A point of a locally convex curve c ⊂ RP2 is sextactic if
and only if the projective length element dσ vanishes at this point.

Remark here that this statement is just an infinitesimal version of
Lemma 2.

Proof of the proposition. Consider a locally convex curve
c ⊂ RP2. Take the affine parameter on c, then the coordinates of
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c satisfies the equation (2). In the neighborhood of point c0 = c(0)
curve c is given by the Taylor series:

c(σ) = σc′0 +
σ2

2
c′′0 +

σ3

6
c′′′0 +

σ4

24
c′∨0 +

σ5

120
c∨0 + ...

From (2) one has:

c′′′ = kc′

c′∨ = k′c′ + kc′′

c∨ = (k′′ + k2)c′ + 2k′c′′

and finally

c(σ) = (σ + k0
σ3

6
+ k′0

σ4

24
+ ...)c′0 + (

σ2

2
+ k0

σ4

24
+ k′0

σ5

120
+ ...)c′′0

Fix coordinates (x, y) on RP2 generated respectively by vectors c′(0)
and c′′(0) (see fig.3).

Consider the following conic:

x2 − 2y + k0y
2

Satisfy the coordinates of c(σ) to function F (x, y) = x2 − 2y + k0y
2.

One obtains:

F (x(σ), y(σ)) = k′0
σ5

20
+ ...

Thus, the conic has a contact of order 5 with c and so this is the
osculating conic to c. If k′0 = 0, then the order of contact is 6. The
proposition is proven.

4.2. Proof of the six vertices theorem. Let us show how the
six vertices theorem follows from Theorem 1.

Lemma 3. The parameter h(x) in equation (3) satisfies the following
condition:

∫

S1

φ1(x)φ2(x)h(x)dx = 0

where φ1(x), φ2(x) are any two solutions of (3).

Proof. Let φ(x) be a solution of (3), then φh = A0φ. Lemma 3
follows now from the fact that A0 is antisymmetric. Indeed,

∫

S1 φ1(x)φ2(x)h(x)dx =
∫

S1 φ1(x)A0φ2(x)dx =
−

∫

S1 A0(φ1(x))φ2(x)dx = −
∫

S1 φ1(x)φ2(x)h(x)dx = 0
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The six vertices theorem follows now from Theorem 2 and Lemma
1. In fact, the function h(x) is orthogonal to all the products of
solutions of a disconjugate equation of order 3. Thus, it has at least 6
distinct zero points on S1 (Theorem 2). Sextactic points of a locally
convex curve c ⊂ RP2 coincide with zero points of h (Proposition 1).
One obtains, that a closed convex curve on RP2 has at least 6 distinct
sextactic points. The theorem is proven.

4.3. Geometrical properties of sextactic points. Let us give
here two geometrical descriptions of sextactic points.

A. Any curve c in general position has almost everywhere a contact
of order 5 with its osculating conic. Nondegenerate sextactic points
can be characterized by the fact that c does not cross its osculating
conic in such points (see fig.4).

B. Dual curves. Let c1 and c2 be locally convex curves, take
any two points p1 ∈ c1 and p2 ∈ c2. Then, there exists a projective
transformation Q ∈ PGL(3,R) such that Qp2 = p1 and the curve Qc2
has a contact of order ≥ 5 with c1 in p1. Let c̄ be a projectively dual

curve to the curve c.We show that c has a contact of order ≥ 5 with
c̄ in sextactic points.

Lemma 4. A point p of a locally convex curve c ⊂ RP2 is sextactic

if and only if c there exists a projective isomorphism I : RP2∗ ∼=
→ RP2

such that c has a contact of order ≥ 6 with I(c̄) in p.

Proof. Let C be the osculating conic of a locally convex curve c
in a point p. Then the dual conic C̄ ∈ RP2∗ is the osculating conic
of c̄. Take an isomorphism I : RP2∗ → RP2 which maps C̄ to C and
the point of contact of C̄ with c̄ to the point of contact of C with c.

After completion of this paper we received the preprint [4] contain-
ing the proof of Theorem 1 and its applications to the theory of space
curves. We also discovered unpublished results of A. Viro who gave
another proof of the six vertices theorem using the Sturm-Tabachnikov
approach.

Acknowledgments. It is a pleasure to acknowledge fruitful dis-
cussions with V.I. Arnol’d and S. Tabachnikov.
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