Home Search Collections Journals About Contact us My IOPscience

Classification of contact-projective structures on supercircles

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1989 Russ. Math. Surv. 44 212 (http://iopscience.iop.org/0036-0279/44/3/L20)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 147.210.110.133 The article was downloaded on 14/10/2010 at 04:47

Please note that terms and conditions apply.

Classification of contact-projective structures on supercircles

V.Yu. Ovsienko, O.D. Ovsienko, and Yu.V. Chekanov

Projective structures on circles were classified by Kuiper in [1]. In fact he solved the problems of the classification of the Hill equations and the orbits of the co-adjoint representation of a Virasoro algebra, solved independently by Lazutkin, Pankratov, as well as by Kirillov and Segal.

Our paper is devoted to the classification of contact-projective structures on the contact supermanifold $\mathbb{P}^{1|n}$ (of all 110-dimensional subspaces of the linear symplectic space ($\mathbb{R}^{2|n}, \omega$)) and its double covering $S^{1|n}$. For $n \leq 3$ it is equivalent to the classification of the orbits of the co-adjoint representation of a Lie superalgebra of Neveu-Schwartz-Ramond type [2], and also the superanalogues of the Hill equation defined in [3].

We are grateful to V.I. Arnol'd and A.M. Levin for helpful comments.

We consider the linear symplectic superspace $(\mathbb{R}^{2|n}, \omega)$, where $\omega = dp \wedge dq + \sum (dn^i)^2$. The supermanifold P^{1/n} has an induced contact structure. (All our subsequent arguments are equally valid for $S^{1/n}$.)

1. By a contact-projective atlas on $P^{1(n)}$ we mean a covering (U_i) endowed with local coordinates

 $(x, \xi^{i})_{j}$ in which a contact structure is defined by the 1-form $\alpha = dx + \sum \xi^{i} d\xi^{i}$, and the attaching transformations α_{ij} are fractional-linear contact transformations (that is, $\alpha_{ij} \in \text{SpO}_{0}(2 \mid n)$, the connected component of the supergroup of all symplectic transformations of $(\mathbb{R}^{2|n}, \omega)$). Two such atlases are said to be *equivalent* if their union is also a contact-projective atlas. An equivalence class of such atlases is called a *contact-projective structure* (c.p.s.).

2. The monodromy operator. Any c.p.s. can be defined by an atlas with a finite number N of charts such that no neighbourhood U_j lies entirely inside another. After ordering the charts so that their projections onto the support are numbered in the positive direction, we define the element $M = \Pi \alpha_{ij+1}$ of the universal covering SpO₀(2|n); we call this element the monodromy operator.

Theorem 1. The monodromy operator is the unique invariant of the c.p.s. with respect to the action of the supergroup of compact diffeomorphisms.

Proof. We introduce the following concept.

3. Contact-projective connections. Any c.p.s. defines a bundle over $P^{1|n}$ (and hence on its universal covering $\mathbb{R}^{1|n}$) with fibre \mathbb{R}^* : the coordinates (x, ξ^i) in each chart U are lifted to the coordinates (p, q, π^i) in $\mathbb{R}^* \times U$ such that x = p/q, $\xi^i = \pi^i/q$; the attaching functions on $\mathbb{R}^* \times (U_i \cap U_j)$ are linear transformations $\alpha_{ij} \in \text{SpO}_0(2 \mid n)$. The submanifolds (q = const) in $\mathbb{R}^* \times U_j$ are glued to a global (horizontal) section γ of a bundle over $\mathbb{R}^{1|n}$. A generator of the group $\pi_1(\mathbb{P}^{1|n}) = \mathbb{Z}$ acts on the section as a monodromy operator.

Lemma. The horizontal section γ is a tensor density of degree -1/2 on $\mathbb{R}^{1|n}$.

This means that under the action of a contact diffeomorphism F the submanifold q = const on each chart $\mathbb{R}^* \times U$ is taken to the submanifold $(qm\bar{F}^{1/2} = \text{const})$. The function m_F is defined on U as follows. Let the contact structure be defined on U by the 1-form $\alpha = dx + \sum \xi^i d\xi^i$; then $F^*\alpha = m_F\alpha$.

Corollary. A c.p.s. defines a $2 \ln$ -dimensional space of tensor densities of degree -1/2 on $\mathbb{R}^{1} \mathbb{n}$. A basis of it in each chart (x, ξ) is γ , $x\gamma$, $\xi^{i}\gamma$, where γ is a horizontal section.

4. We apply the homotopy method. Consider an infinitely small deformation of the c.p.s. Let $y_1, y_2, \varphi_1, ..., \varphi_n$ be an arbitrary basis in the corresponding space of tensor densities, and let $(y_i)_t = y_i + tz_i, (\varphi_j)_t = \varphi_j + t\psi_j$ be a deformation of it. It turns out that there exists an invariant differential operator on **R**¹¹ⁿ that recovers the contact vector field defining the deformation of the c.p.s.

Theorem 2. A deformation of a c.p.s. is defined by the action of the contact vector field with contact Hamiltonian (having the meaning of tensor density of degree -1)

The second Berezinian in this formula (the "Wronskian") is a constant. If the deformation preserves the monodromy, then under the action of the generator $\pi_1(P^{1_1n})$ the Hamiltonian h is multiplied by Ber M = 1 and is therefore uniquely defined on P^{1_1n} .

The proof of Theorem 2 is carried out by a straightforward calculation.

Proposition. Two c.p.s.'s with the same monodromy operators are homotopic in the class of such c.p.s.'s.

Theorem 1 is now proved.

Assertion. For $n \leq 3$ a pair of c.p.s.'s defines a Hill superequation. In the chart (z, ξ^i) of the first c.p.s. the -1/2-densities defined by the second c.p.s. satisfy the differential equation

$$[D_1 \ldots D_n \partial_z^{g-n} + u(z, \zeta)]y = 0,$$

where $D_i = \hat{\sigma}_i + \zeta^i \partial_z$, and the potential u = S/2, where S is the superSchwartzian [3]. The

potential u is an invariant of the pair of c.p.s.'s that is independent of the choice of atlases.

Corollary of Theorem 1. Under the natural projection of the c.p.s.'s (Hill superequations) defined on $P^{1|n}$, c.p.s.'s that are equivalent in the space of c.p.s.'s on $P^{1|2}$ can become inequivalent, since

$$\pi_1(\operatorname{SpO}_0(2|3)) = \mathbb{Z} \times \mathbb{Z}_2$$
 and $\pi_1(\operatorname{SpO}_0(2|2)) = \mathbb{Z} \times \mathbb{Z}$.

5. Versal deformations. Corollary of Theorem 2. A versal deformation of a c.p.s. reduces to a versal deformation of the class of adjoint elements of the supergroup $\text{SpO}_0(2|n)$ defined by the monodromy operator. This is locally the set of equivalence classes of c.p.s.'s constructed as the set of classes of adjoint elements (of orbits of the co-adjoint representation) of $\text{SpO}_0(2|n)$.

References

- N.H. Kuiper, Locally projective spaces of dimension one, Michigan Math. J. 2 (1953-54), 95-97. MR 16-282.
- [2] D.A. Leites and B.L. Feigin, New Lie superalgebras of string theories, in: *Teoretiko-gruppovye* metody v fizike (Group-theoretic methods in physics). Vol. 1, Nauka, Moscow 1983, pp.269-273.
- [3] A.O. Radul, Superanalogues of Schwarz derivations and Bott cocycles, Reports of Department of Mathematics, University of Stockholm 1986, no. 21, 40-57.

Moscow State University

Received by the Board of Governors 14 November 1988