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Abstract. The pentagram map is a projectively natural iteration defined on

polygons, and also on a generalized notion of a polygon which we call twisted
polygons. In this note we describe our recent work on the pentagram map,

in which we find a Poisson structure on the space of twisted polygons and

show that the pentagram map relative to this Poisson structure is completely
integrable in the sense of Arnold-Liouville. For certain families of twisted poly-

gons, such as those we call universally convex , we translate the integrability

into a statement about the quasi-periodic motion of the pentagram-map or-
bits. We also explain how the continuous limit of the pentagram map is the

classical Boussinesq equation, a completely integrable P.D.E.

1. Introduction and main results

The pentagram map, T , is a natural operation one can perform on polygons. This
map was considered for pentagons as early as 1945 – see [3]. In general, see [5], [6]
and [4]. Though this map can be defined for an essentially arbitrary polygon over
an essentially arbitrary field, it is easiest to describe the map for convex polygons
contained in R2. Given such an n-gon P , the corresponding n-gon T (P ) is the
convex hull of the intersection points of consecutive shortest diagonals of P . Figure
1 shows two examples.

Thinking of R2 as a natural subset of the projective plane RP 2, we observe that
the pentagram map commutes with projective transformations. That is, φ(T (P )) =
T (φ(P )), for any φ ∈ PGL(3,R). Let Cn be the space of convex n-gons modulo
projective transformations. The pentagram map induces a self-diffeomorphism T :
Cn → Cn. T is the identity map on C5 and an involution on C6, cf. [5]. For n ≥ 7,
the map T exhibits quasi-periodic properties. Experimentally, the orbits of T on
Cn exhibit the kind of quasiperiodic motion associated to a completely integrable
system. Indeed, as we will discuss below, the continuous limit of the pentagram map
is the classical Boussinesq equation, a completely integrable P.D.E. A conjecture
[6] that T is completely integrable on Cn is still open. However, our recent paper
[4] very nearly proves this result.
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Figure 1. The pentagram map defined on a pentagon and a hexagon

Rather than work directly with Cn, we work with a slightly larger space. A
twisted n-gon is a map φ : Z → RP 2 such that

φ(n + k) = M ◦ φ(k); ∀k ∈ Z,

for some fixed element M ∈ PGL(3,R) called the monodromy. We let vi = φ(i)
and assume that vi−1, vi, vi+1 are in general position for all i. We denote by Pn

the space of twisted n-gons modulo projective equivalence.
Let An denote the algebra of smooth functions on Pn. A Poisson bracket is

an antisymmetric and bilinear map {·, ·} : An × An → An that satisfies both the
Leibniz and Jacobi identites:

(1) {f, g1g2} = g1{f, g2}+ g2{f, g1};
∑

{f1, {f2, f3}} = 0.

The second sum is a cyclic sum. Two functions f and g are said to Poisson commute
if {f, g} = 0. In the presence of a Poisson bracket, the space Pn is (generically)
foliated into symplectic leaves. The co-rank of the bracket is the dimension of a
generic leaf. Here is our main algebraic result.

Theorem 1.1. The space Pn admits an invariant Poisson structure having co-
rank 2 when n is odd and co-rank 4 when n is even. At the same time, there exists
2bn/2c+ 2 algebraically independent functions that are invariant under the penta-
gram map and commute with the Poisson structure. In particular, the pentagram
map is a completely integrable system on Pn, in the sense of Arnold-Liouville.

Here bn/2c denotes the floor of n/2. Below, we will define both the Poisson
structure and the invariants. The space Cn is naturally a subspace of Pn, and our
algebraic results say something about the action of the pentagram map on Cn, but
not quite enough for us to get the complete integrability on Cn. To get a crisp
geometric result, we work with a related space, which we describe next.

We say that a twisted n-polygon is universally convex if the map φ is such that
φ(Z) ⊂ R2 ⊂ RP 2 is convex and contained in the positive quadrant. We also
require that the monodromy M : R2 → R2 is a linear transformation having the
form

(2) M =
[
a 0
0 b

]
; a < 1 < b.

The image of φ looks somewhat like a “polygonal hyperbola”. We say that two
universally convex twisted n-gons φ1 and φ2 are equivalent if there is a positive
diagonal matrix µ such that µ ◦ φ1 = φ2. Let Un denote the space of universally
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convex twisted n-gons modulo equivalence. It turns out that Un is a pentagram-
invariant and open subset of Pn. Here is our main geometric result.

Theorem 1.2. Almost every pont of Un lies on a smooth torus that has a T -
invariant affine structure. Hence, the orbit of almost every universally convex n-gon
undergoes quasi-periodic motion under the pentagram map.

2. Ingredients in the proofs

In this section we will sketch the main ideas in the proofs of Theorem 1.1 and
1.2. We refer the reader to [4] for more results and details.

2.1. Coordinates. Recall that the cross ratio of 4 collinear points in RP 2 is given
by

[t1, t2, t3, t4] =
(t1 − t2) (t3 − t4)
(t1 − t3) (t2 − t4)

,

where t is an (arbitrary) affine parameter. We use the cross ratio to construct
coordinates on the space of twisted polygons. We associate to every vertex vi two
numbers:

xi = [vi−2, vi−1, ((vi−2, vi−1) ∩ (vi, vi+1)) , ((vi−2, vi−1) ∩ (vi+1, vi+2))]

yi = [((vi−2, vi−1) ∩ (vi+1, vi+2)) , ((vi−1, vi) ∩ (vi+1, vi+2)) , vi+1, vi+2]

called the left and right corner cross-ratios, see Figure 2. We call our coordinates
the corner invariants.

*

vi!1
vi

vi+2
vi+1

vi

vi!2

Figure 2. Points involved in the constructions

This construction is invariant under projective transformations, and thus gives
us coordinates on the space Pn. At generic points, Pn is locally diffeomorphic to
R2n.

We will work with generic elements of Pn, so that all constructions are well-
defined. Let φ∗ = T (φ) be the image of φ under the pentagram map. The points
of T (φ) are given by v∗1 , v∗2 , etc., as indicated in Figure 2.

In coordinates, the pentagram map has the following form.

(3) T ∗xi = xi
1− xi−1 yi−1

1− xi+1 yi+1
, T ∗yi = yi+1

1− xi+2 yi+2

1− xi yi
.
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2.2. The invariants. From the formula in Equation 3, one sees rather easily the
functions

(4) On =
n∏

i=1

xi; En =
n∏

i=1

yi

are invariants of the pentagram map for any n, and the functions

(5) On/2 =
∏

i even

xi +
∏

i odd

xi; En/2 =
∏

i even

yi +
∏

i odd

yi.

are invariants of the pentagram map when n is even. In all cases, the products in
this last equation run from 1 to n.

Let M be the monodromy of φ. We lift M to an element of GL3(R). By slightly
abusing notation, we also denote this matrix by M . The two quantities

Ω1 =
trace3(M)
det(M)

; Ω2 =
trace3(M−1)
det(M−1)

;

are only dependent on the conjugacy class of M .
We define

Ω̃1 = O2
nEnΩ1; Ω̃2 = OnE2

nΩ2.

In [6] (and again in [4]) it is shown that Ω̃1 and Ω̃2 are polynomials in the corner
invariants. Since the pentagram map preserves the monodromy, and On and En

are invariants, the two functions Ω̃1 and Ω̃2 are also invariants. One immediate
consequence of Equation 3 is that the pentagram map commutes with the following
scaling operation.

(6) Rt : (x1, y1, ..., xn, yn) → (tx1, t
−1y1, ..., txn, t−1yn).

We say that a polynomial in the corner invariants has weight k if

R∗
t (P ) = tkP.

For instance, On has weight n and En has weight −n. In [6] it shown that

Ω̃1 =
[n/2]∑
k=1

Ok; Ω̃2 =
[n/2]∑
k=1

Ek

where Ok has weight k and Ek has weight −k. Since the pentagram map com-
mutes with the rescaling operation and preserves Ω̃1 and Ω̃2, it also preserves their
“weighted homogeneous parts”. That is, the functions O1, E1, O2, E2, ... are also
invariants of the pentagram map. These are the monodromy invariants. They are
all nontrivial polynomials. In [6] it is shown that the monodromy invariants are
algebraically independent.

The explicit formulas for the monodromy invariants was obtained in [6]. Intro-
duce the monomials

Xi := xi yi xi+1.

(1) We call Xi and Xj consecutive if j ∈ {i− 2, i− 1, i, i + 1, i + 2} ;
(2) we call Xi and xj consecutive if j ∈ {i− 1, i, i + 1, i + 2} ;
(3) we call xi and xi+1 consecutive.
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Let O(X, x) be a monomial obtained by the product of the monomials Xi and
xj , i.e.,

O = Xi1 · · ·Xis xj1 · · ·xjt .

Such a monomial is called admissible if none of the indices are consecutive. For every
admissible monomial, we define the weight |O| = s+t and the sign sign(O) = (−1)t.
One then has

Ok =
∑
|O|=k

sign(O) O; k ∈
{

1, 2, . . . ,
[n

2

]}
.

The same formula works for Ek, if we make all the same definitions with x and y
interchanged.

2.3. The Poisson bracket. In [4] we introduce the Poisson bracket on C∞(Pn).
For the coordinate functions we set

(7) {xi, xi±1} = ∓xi xi+1, {yi, yi±1} = ±yi yi+1

and all other brackets vanish. Once we have the definition on the coordinate func-
tions, we use linearity and the Leibniz rule to extend to all rational functions. An
easy exercise shows that our bracket satisfies all the axioms.

A function f is said to be a Casimir (relative to the Poisson structure) if f
Poisson commutes with all other functions. We have already mentioned that a
Poisson structure induces a (generic) foliation of a manifold by symplectic leaves.
These symplectic leaves can be locally described as levels fi = const of the Casimir
functions.

The main lemmas of [4] concerning our Poisson bracket are as follows.
(1) The Poisson bracket (7) is invariant with respect to the pentagram map.
(2) The monodromy invariants Poisson commute.
(3) The invariants in Equations (4) and (in the even case) (5) are Casimirs.
(4) The Poisson bracket has corank 2 if n if odd and corank 4 if n is even.

A dimension count shows that, after we exclude the Casimirs, the number of
independent invariants – e.g. n− 1 in the odd case – coincides with the dimension
of the symplectic leaves defined by the Poisson bracket. This gives the complete
integrability of Theorem 1.1.

Remarks: (i) We think that perhaps there is another invariant Poisson struc-
ture on Pn, compatible with the one we have defined. The existence of a second
structure would allow us to bring bi-Hamiltonian techniques to bear on the analysis
of the pentagram map.
(ii) The space Pn is naturally a cluster manifold, and our Poisson bracket bears a
striking resemblence to the canonical Poisson bracked defined on cluster manfolds
[2]. It would be nice to work out this connection in detail.

2.4. The universally convex case. Now we specialize our algebraic result to the
space Un of universally convex twisted n-gons. We check that Un is an open and
invariant subset of Pn. The invariance is pretty clear. The openness result derives
from three facts.

(1) Local convexity is stable under perturbation.
(2) The linear transformations in Equation 2 extend to projective transforma-

tions whose type is stable under small perturbations.
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(3) A locally convex twisted polygon that has the kind of hyperbolic mon-
odromy given in Equation 2 is actually globally convex.

As a final ingredient in our proof, we show that the leaves of Un, namely the level
sets of the monodromy invariants, are compact. We don’t need to consider all the
invariants; we just show in a direct way that the level sets of En and On together
are compact.

The rest of the proof is the usual application of Sard’s theorem and the definition
of integrability. We explain the main idea in the odd case. The space Un is locally
diffeomorphic to R2n, and foliated by leaves which generically are smooth compact
symplectic manifolds of dimension 2n− 2. A generic point in a generic leaf lies on
an (n− 1)-dimensional smooth compact manifold, the level set of our monodromy
invariants. On a generic leaf, the symplectic gradients of the monodromy functions
are linearly independent at each point of the leaf.

The n− 1 symplectic gradients of the monodrony invariants give a natural basis
of the tangent space at each point of our generic leaf. This basis is invariant
under the pentagram map, and also under the Hamiltonian flows determined by
the invariants. This gives us a smooth compact (n− 1)-manifold, admitting n− 1
commuting flows that preserve a natural affine structure. From here, we see that
the leaf must be a torus. The pentagram map preserves the canonical basis of the
torus at each point, and hence acts as a translation. This is the quasi-periodic
motion of Theorem 1.2.

3. Connection to the Boussinesq equation

The classical Boussinesq equation is one of the best known infinite-dimensional
integrable systems. We will explain below how the Boussinesq equation is the
continuous limit of the pentagram map. This limit was noted in [6] and used
systematically in [4]. We discovered the Poisson structure on Pn by comparing the
pentagram map (in suitable coordinates) and the Boussinesq equation.

Discretization of the Boussinesq equation is an interesting and well-studied sub-
ject, see [7] and references therein. However, the known versions of the discrete
Boussinesq equation lack geometric interpretation.

3.1. Difference equations and global coordinates. To highlight the analogy
between the Poisson structure on Pn and the Poisson structure associated to the
Boussinesq equation, we first discuss a second coordinate system for the space Pn.
For technical reasons we assume throughout this section that n 6= 3m.

Let {vi} be the vertices of a twisted polygon. We think of these vertices as
points in RP 2. Now, we choose lifts Vi ∈ R3 of these vertices so that we have
det(Vi, Vi+1, Vi+2) = 1. Then

(8) Vi+3 = ai Vi+2 + bi Vi+1 + Vi

where ai, bi are n-periodic sequences of real numbers. Conversely, given two arbi-
trary n-periodic sequences (ai) and (bi), the difference equation (8) determines a
projective equivalence class of a twisted polygon. This provides a global coordinate
system (ai, bi) on the space of twisted n-gons. If n 6= 3m, then Pn is isomorphic
to R2n. When n = 3m, the topology is trickier so we ignore this case.

The relation between the coordinates here and the ones in §2 is as follows.

xi =
ai−2

bi−2 bi−1
, yi = − bi−1

ai−2 ai−1
.
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Here is the formula for the pentagram map in the new coordinates, when m 6= 3m.
(9)

T ∗ai = ai+2

m∏
k=1

1 + ai+3k+2 bi+3k+1

1 + ai−3k+2 bi−3k+1
, T ∗bi = bi−1

m∏
k=1

1 + ai−3k−2 bi−3k−1

1 + ai+3k−2 bi+3k−1
;

The monodromy invariants also have explicit formulas in these coordinates. See
[4]. Finally, here is the formula for the Poisson structure in the new coordinates.

(10)

{ai, aj} =
m∑

k=1

(δi,j+3k − δi,j−3k) ai aj ,

{ai, bj} = 0,

{bi, bj} =
m∑

k=1

(δi,j−3k − δi,j+3k) bi bj .

3.2. The continuous limit. We understand the n → ∞ continuous limit of a
twisted n-gon as a smooth parametrized curve γ : R → RP 2 with monodromy:

γ(x + 1) = M(γ(x)),

for all x ∈ R, where M ∈ PGL(3,R) is fixed. The assumption that every three
consequtive points are in general position corresponds to the assumption that the
vectors γ′(x) and γ′′(x) are linearly independent for all x ∈ R. A curve γ satisfy-
ing these conditions is usually called non-degenerate. As in the discrete case, we
consider classes of projectively equivalent curves.

The space of non-degenerate curves is very well known in classical projective
differential geometry. There exists a one-to-one correspondence between this space
and the space of linear differential operators on R:

A =
(

d

dx

)3

+
1
2

(
u(x)

d

dx
+

d

dx
u(x)

)
+ w(x),

where u and w are smooth periodic functions.
We are looking for a continuous analog of the map T . The construction is as

follows. Given a non-degenerate curve γ(x), at each point x we draw the chord
(γ(x− ε), γ(x + ε)) and obtain a new curve, γε(x), as the envelop of these chords,
see Figure 3. Let uε and wε be the respective periodic functions. It turns out that

uε = u + ε2ũ + (ε3), wε = w + ε2w̃ + (ε3),

giving the curve flow: u̇ = ũ, ẇ = w̃. We show that

u̇ = w′, ẇ = −u u′

3
− u′′′

12
,

or

ü +

(
u2

)′′
6

+
u(IV )

12
= 0,

which is nothing else but the classical Boussinesq equation.
Consider the space of functionals of the form

H(u, w) =
∫

S1
h(u, u′, . . . , w, w′, . . .) dx,
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Figure 3. Evolution of a non-degenerate curve

where h is a polynomial. The first Poisson bracket on the above space of functionals
is defined by

(11) {G, H} =
∫

S1

(
δuG (δwH)′ + δwG (δuH)′

)
dx,

where δuH and δwH are the standard variational derivatives. The Poisson bracket
(10) is a discrete version of the bracket (11).
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