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Abstract

This thesis is a contribution to arithmetic combinatorics. We present the Green-Tao

method and the Green-Tao-Ziegler theorem concerning asymptotics for linear configura-

tions of primes. Then we show extensions of our own to this theorem: first to some family

of quadratic configurations, and secondly to configurations with unbounded coefficients.

As a result, we are able to provide an asymptotic for configurations of primes inside the

set of shifted squarefree numbers.

We then leave integers and move to vector spaces over finite fields. In this context,

we prove a bidirectional additive smoothing result for sets of pairs P ⊂ Fn
p × Fn

p . This

is a bilinear version of Bogolyubov’s theorem. We then equip these vector spaces with

a multiplicative structure, that is, we consider polynomial rings over finite fields. Using

the Croot-Lev-Pach method, we show that sets of polynomials of degree less than n that

contain no nontrivial solution to a given polynomial equation (of some specific type) is

exponentially small.

Finally, we seek to apply the Green-Tao method on polynomial rings, with the intention

of deriving asymptotics for configurations of irreducible polynomials. To this aim, we bound

correlations of the Möbius function with linear and quadratic phases.
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And last but not least, thanks to you, my dearest fiancée Katie. In spite of the distance

to Bristol, you never abandoned me and took interest in my research, even accepting to

proofread a draft. Thanks for your tenacity and confident support.



Declaration

I declare that the work in this dissertation was carried out in accordance with the re-

quirements of the University’s Regulations and Code of Practice for Research Degree Pro-

grammes and that it has not been submitted for any other academic award. Except where

indicated by specific reference in the text, the work is the candidate’s own work. Work

done in collaboration with, or with the assistance of, others, is indicated as such. Any

views expressed in the dissertation are those of the author.

Date: July 23, 2018

vii





ix



Contents

Abstract iii

Acknowledgments v

Declaration vii

1 Introduction 2

1.1 Probabilistic heuristics about prime tuples . . . . . . . . . . . . . . . . . . 3

1.2 A higher-dimensional Siegel-Walfisz theorem . . . . . . . . . . . . . . . . . 6

1.3 Polynomial configurations in the primes . . . . . . . . . . . . . . . . . . . . 8

1.4 Bilinear structures in vector spaces over finite fields . . . . . . . . . . . . . 9

1.5 Polynomial equations in function fields . . . . . . . . . . . . . . . . . . . . 11
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Chapter 1

Introduction

One central topic in arithmetic combinatorics is the study of combinatorial structures inside

large subsets of the integers or other abelian groups. Remarkably, certain structures occur

almost inevitably. Szemerédi’s theorem [82] from 1975, which we now state, is archetypical

of this theme. Let [N ] = {1, . . . , N}.

Theorem 1.1. Any set A ⊂ N satisfying lim supN→+∞
|A∩[N ]|

N > 0 contains arbitrarily long

nontrivial arithmetic progressions.

The first meaningful case, the case of arithmetic progressions of length three (3-APs),

had already been known since Roth [75].

A set A that satisfies the hypothesis of Theorem 1.1 is called dense, while sets that do

not are called sparse. Erdős conjectured that the set of primes, a sparse set, contains

arbitrarily long arithmetic progressions as well. Green and Tao famously proved this

conjecture.

Theorem 1.2. The set of primes contains arbitrarily long arithmetic progressions. In

fact, the number of arithmetic progressions of length k among the primes smaller than N

is asymptotic to ck
N2

logk N
for some constant ck > 0.

The first part of the statement is the main result of [44]. The second part follows from

[45] combined with later inputs [47, 48] by Green, Tao and Ziegler.

To pass from Theorem 1.1 to Theorem 1.2, Green and Tao devised the transference

principle. The basic philosophy of the transference principle is that a dense subset S

of a large but sparse random-looking subset X ⊂ [N ] of the integers satisfies the same

asymptotics for linear configurations as a dense subset S ′ ⊂ [N ] of the integers. A theorem
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CHAPTER 1. INTRODUCTION

of this type was first proven by Kohayakawa, "Luczak and Rödl [57], who found that almost

surely, any dense subset of a sparse random set contains a 3-term arithmetic progression.

Green and Tao’s idea was to show that, in a way, primes are “pseudorandom”, that is,

they have a lot in common with typical random sets. For a state-of-the-art survey on the

transference principle, see [22].

It turns out to be natural not to focus on arithmetic progressions, but instead to consider

general linear configurations of primes, that is, tuples of the form (ψ1(n), . . . ,ψt(n)) for

n ∈ Zd and a given system Ψ = (ψ1, . . . ,ψt) of linear forms with integer coefficients, as we

do in the sequel.

In the next section, we discuss heuristics concerning configurations of primes (also

known as prime tuples) and state a more general version of Theorem 1.2. We then provide

an overview of the thesis chapter by chapter.

1.1 Probabilistic heuristics about prime tuples

The prime number theorem says that the number of primes smaller than x is asymptotic, as

x tends to infinity, to x/ log x. We can express it more conveniently using the von Mangoldt

function Λ, which is defined on the set N of natural numbers by setting Λ(n) = log p if n

is a power of a prime p and Λ(n) = 0 otherwise. The prime number theorem then states

that the average of the von Mangoldt function on [1, x] tends to 1 as x tends to ∞.

The prime number theorem can be reinterpreted as saying that when picking an integer

in an interval near x (say [x, 2x)) uniformly at random, the selected number will be a prime

with probability roughly 1/ log x. We write

Pn≈x(n is a prime) ∼ 1

log x
,

where Pn≈x denotes the proportion of integers n ∈ [x, 2x) that satisfy a given property,

and a(x) ∼ b(x) means that a is asymptotic to b, that is, a/b tends to 1 as x tends to +∞.

When we condition on n being coprime to a fixed prime p, we increase the probability by

a factor p/ϕ(p), where ϕ is Euler’s function (in particular ϕ(p) = p− 1), because

Pn≈x(n is a prime|(n, p) = 1) =
Pn≈x(n is a prime)

Pn≈x((n, p) = 1)
∼ p

ϕ(p)

1

log x
.

Moreover these biases are multiplicative: if one knows that an integer n ≈ x is coprime to

3



1.1. PROBABILISTIC HEURISTICS ABOUT PRIME TUPLES

both primes p ̸= q, one should update one’s estimate of the probability that n is prime by

a factor pq/ϕ(pq) = (p/ϕ(p))(q/ϕ(q)). On the other hand, if one knows that an integer

n ≈ x is divisible by some fixed prime p, one should update its probability of being prime

to 0, because if x is large enough (x > p), no prime in [x, 2x) is divisible by p.

Now fix two positive integers a, b. What is Pn≈x(an+ b is prime)? A first guess (prior,

in Bayesian statistical terms) is 1/ log x, since when n ≈ x, we have an+b ∈ [ax+b, 2ax+b)

and on this interval, the probability of being a prime is approximately 1/ log(ax) ∼ 1/ logx.

However, an + b is not any number in [ax+ b, 2ax+ b). For instance, if a prime p divides

a but not b, we know that an + b is coprime to p. So we should multiply our estimate by

p/ϕ(p) for each prime p that divides a and not b. If a prime p divides both a and b, then

an+b cannot be prime and we should multiply our estimate by 0. Being of the form an+b

does not seem to include any other useful information for our estimate. So we might guess

that

Pn≈x(an + b is prime) ∼ 1

log x

∏

p|a

p

ϕ(p)
1(p,b)=1 (1.1)

or, in terms of the von Mangoldt function, En≈xΛ(an + b) ∼
∏

p|a
p

ϕ(p)1(p,b)=1. Here we

denoted by E the averaging operator, thus En≈x = 1
x

∑
n∈[x,2x) f(n). For simplicity, for any

integer q, we introduce the local von Mangoldt function ΛZ/qZ defined on Z or Z/qZ by

ΛZ/qZ(b) =
q

ϕ(q)
1(q,b)=1. (1.2)

Observe that ΛZ/qZ depends only on the radical of q, defined by rad(q) =
∏

p|q p.

In fact, equation (1.1) is true, and it is the content of the prime number theorem in

arithmetic progressions; in other words, if a and b are fixed and coprime, then the number

of integers n ≈ x such that an + b is prime is asymptotic to a
ϕ(a)

x
log x . In particular, this

asymptotic (and so the probability (1.1)) does not depend on b, as long as (a, b) = 1.

Before making this precise, we pause to introduce some standard notation. We write

X = O(Y ) to say that the quantity |X| is bounded by a constant times |Y |. Equivalently,
we may write X ≪ Y or X ≫ Y or Y = Ω(X). We may add subscripts to indicate

on which parameters the implied constant depends. The notation X = o(Y ) means that

|X|/|Y | tends to 0 when the asymptotic parameter tends to infinity.

In fact, the asymptotic (1.1) still holds if a and b are not fixed but satisfy a = O(logA x)

and b = O(x logA x) for some A > 0; in that regime, the Siegel-Walfisz theorem [55,

4



CHAPTER 1. INTRODUCTION

Equation (17.3)] precisely states that

En≈xΛ(an+ b) =
∏

p|a

ΛZ/pZ(b) +OA(log
−A x). (1.3)

More generally, fix a tuple (we shall call it a system) Ψ = (ψ1, . . . ,ψt) : Zd → Zt of

affine-linear forms with positive integer coefficients. These coefficients may even depend

on the asymptotic parameter x. Note that in the present chapter and the next one, we

use bold characters to denote tuples of integers, in order to distinguish them from mere

integers. One can then ask for

Pn≈x(Ψ(n) is prime)

where n ≈ x means that n = (n1, · · · , nd) lies in [x, 2x)d, and the vector Ψ(n) is said to

be prime if all its coordinates are. Given that each ψi(n) has size O(x), a first, naive guess

assuming that the variables ψi(n) are pairwise independent, is that

Pn≈x(Ψ(n) is prime) ∼ 1

(log x)t
.

The prime number theorem in arithmetic progressions might lead one to suspect that this

crude guess only needs to be updated by the biases induced by primes to be true. To

understand how much the prime p affects the prior, one needs to reduce the system Ψ

modulo p and consider how often the tuple (ψ1(n), · · · ,ψt(n)) ∈ (Z/pZ)t has no vanishing

coordinate. This gives rise to the local factor

βp = βp(Ψ) = Ea∈(Z/pZ)d

t∏

i=1

ΛZ/pZ(ψi(a)), (1.4)

which quantifies the bias induced by the prime p. Note that βp is the ratio between the

actual probability Ea∈(Z/pZ)d
∏t

i=1 1(ψi(a),p)=1 that each of the values ψi(a) is coprime to

p when a ranges (uniformly) over (Z/pZ)d, and the probability (ϕ(p)/p)t that each of t

independent uniform variables on Z/pZ is coprime to p.

Supposing the biases are again multiplicative, one is thus led to the (generalised) Hardy-

5



1.2. A HIGHER-DIMENSIONAL SIEGEL-WALFISZ THEOREM

Littlewood conjecture [45, Conjecture 1.2]

En≈x

t∏

i=1

Λ(ψi(n)) ∼
∏

p

βp, (1.5)

which is the multivariate analogue of the original Hardy-Littlewood conjecture [49]. Un-

der a reasonable linear-algebraic assumption that discards for instance the twin prime

configuration, this is what Green, Tao and Ziegler proved [45].

Theorem 1.3. Let L be a constant and let Ψ = (ψ1, . . . ,ψt) : Zd → Zt be a system of

affine-linear forms such that no two are affinely related. Suppose that the linear coefficients

of the forms have magnitude at most L and that the constant coefficients have magnitude

at most LN . Let K ⊂ [−N,N ]d be a convex body. Then

∑

n∈Zd∩K

t∏

i=1

Λ(ψi(n)) = β∞
∏

p

βp + od,t,L(N
d),

where

β∞ = Vol(K ∩ Ψ−1(Rt
+))

and βp is as in equation (1.4).

We will discuss this theorem in more depth in Chapter 2, where we will give a more

detailed introduction to the Green-Tao method.

1.2 A higher-dimensional Siegel-Walfisz theorem

Theorem 1.3 presents three important (and related) limitations, which we shall overcome

in Chapter 3. The first concerns the convex body K: for the theorem to be nontrivial,

it needs to be included and dense in [−N,N ]d, that is, Vol(K) ≫ Nd. To get rid of this

limitation, one would need to replace the error term o(Nd) by o(Vol(K)). The second

one is that the constant coefficients of Ψ are required to be O(N), and the third one is

that the linear coefficients have to be bounded. We shall say that a system satisfying the

latter condition is bounded ; otherwise, it is called unbounded. In view of the Siegel-Walfisz

theorem, that is, equation (2.2), it is natural to believe that the constant coefficients could

be of size O(N logO(1)N) and the linear ones of size O(logO(1) N). Then it is natural to

6



CHAPTER 1. INTRODUCTION

consider convex bodies K of volume potentially O(Nd log−O(1) N), in order for the forms

ψi to remain O(N) across K.

The second limitation was already overcome by Green and Tao together with Ford and

Konyagin [29], as they showed that the constraint on the constant coefficients can indeed

be relaxed to O(N logO(1) N). This relaxed condition recently allowed Tao and Ziegler [89,

Theorem 1.3] to obtain an improvement of the error term o(Nd) to o(Vol(K)) in the case

where K = [1, N ] × [1,M ]d−1 with M ≫ N log−O(1)N and ψi(n) = n1 + Pi(n2, . . . , nd−1)

for some affine-linear forms P1, . . . , Pt whose linear coefficients are bounded; this is a first

step towards removing the first limitation.

We now present our result [9, Theorem 1.3], which addresses all the aforementioned

limitations. A system of affine-linear forms is called admissible if no two forms are affinely

related and none of the local factors βp (introduced in equation (1.4)) vanish.

Theorem 1.4. Let d, t be positive integers. Assume that Ψ = (ψ1, . . . ,ψt) : Zd → Zt

is an admissible system of affine-linear forms. Suppose that the constant coefficients are

O(N logO(1) N) while the linear coefficients are O(logO(1) N). Finally let K ⊂ [−N,N ]d be

a convex body satisfying Vol(K) ≫ Nd log−O(1)N and Ψ(K) ⊂ Rt
+. Then

∑

n∈Zd∩K

t∏

i=1

Λ(ψi(n)) = Vol(K)
∏

p

βp(1 + o(1)).

Still in Chapter 3, we will show how Theorem 1.4 can be applied to extend Theorem 1.3

in yet another direction, namely to cover linear configurations inside specific subsets of the

primes. More precisely, we derive asymptotics for the count of linear configurations within

the primes p such that p − 1 is squarefree. Let F (n) = Λ(n + 1)µ2(n), where µ2 is the

indicator function of the squarefree integers.

Theorem 1.5. Let Ψ : Zd → Zt be an admissible system of affine-linear forms and let

K ⊂ [−N,N ]d be a convex body. Suppose that the linear coefficients are O(1), the constants

ones are O(N) and that Ψ(K) ⊂ Rt
+. Then there exists a constant C(Ψ) (possibly equal to

0) such that ∑

n∈K∩Zd

∏

i∈[t]

F (ψi(n)) = C(Ψ)Vol(K) + o(Nd).

7



1.3. POLYNOMIAL CONFIGURATIONS IN THE PRIMES

1.3 Polynomial configurations in the primes

In the previous section, we saw that the arithmetic progressions of primes in Theorem 1.2

can in fact be located inside the set of shifted squarefree numbers. It is interesting to ask

whether one can force the common difference of the progression to lie in a special set of

integers, too. A special case of a theorem of Tao and Ziegler [88] states that the primes

contain arbitrarily long arithmetic progressions whose common difference is a square. This

amounts to the investigation of prime tuples inside the set

{(n, n+ d2, . . . , n+ (k − 1)d2) | (n, d) ∈ Z2}. (1.6)

They were able to obtain a lower bound of the expected order of magnitude for the

number of such configurations, but not an asymptotic (at that time).

To get an asymptotic, it is natural to increase the number of variables. Adding a degree

of freedom to the set (1.6), we consider

{(a, a+ b2 + c2, . . . , a + (k − 1)(b2 + c2)) | (a, b, c) ∈ Z2}, (1.7)

the set of arithmetic progressions whose common difference is a sum of two squares.

In Chapter 4, we derive an asymptotic for the number of prime tuples inside (1.7),

counted with multiplicity; that is, each arithmetic progression is counted as many times

as the common difference is represented as a sum of two squares. This amounts to an

extension of Theorem 1.3 to the case of a polynomial system Ψ, which we now state.

Theorem 1.6. Let k ≥ 1 be an integer and

L = {(a, b, c) ∈ R3 | 1 ≤ a ≤ a+ (k − 1)(b2 + c2) ≤ N}.

Let Ψ = (ψ0, · · · ,ψk−1) ∈ Z[a, b, c]k be the polynomial system defined by

ψi(a, b, c) = a+ i(b2 + c2).

Then
∑

n∈Z3∩L

k−1∏

i=0

Λ(ψi(n)) = β∞
∏

p

βp + o(N2)

8



CHAPTER 1. INTRODUCTION

with β∞ = Vol(L) and

βp = En∈(Z/pZ)3

k−1∏

i=0

ΛZ/pZ(ψi(n)).

This result is a special case of a much more general one (Theorem 4.1) that we will

state and prove in Chapter 4.

In the next two sections, we abandon the specific topic of patterns in the primes to

return to the general combinatorial topic of patterns in dense sets illustrated by Theo-

rem 1.1. However, we will replace the set of integers N by a popular and useful model,

namely vector spaces over finite fields.

1.4 Bilinear structures in vector spaces over finite

fields

Vector spaces over finite fields are a particularly interesting frame for arithmetic combi-

natorics. This model arose from the desire to replace natural but untractable problems in

the integers by toy problems retaining most of the flavour of the original, but is now exten-

sively studied in its own right. It basically consists in replacing the set [N ] = {1, . . . , N}
by the group G = Fn

p where one thinks of the prime p as a small constant and N = pn as

tending to infinity. The appeal of this so-called finite field model resides in the abundant

supply of substructures in the group G = Fn
p . Indeed, G has many subgroups, that is,

subspaces. Given the importance of the density increment method in arithmetic combina-

torics, an iterative method that progressively zooms in on substructures, one can imagine

how convenient this model is. For more details on the model, see [38, 93].

A prime example of an additive combinatorial result in vector spaces is Meshulam’s

theorem [70], that is, Roth’s theorem in Fn
3 . While Roth’s original proof used arithmetic

progressions as substructures of [N ] for the density increment strategy, Meshulam showed

the argument was cleaner in Fn
3 with subspaces in place of arithmetic progressions, and ob-

tained better bounds, namely N/ logN instead of N/ log logN in the integers. Meshulam’s

paper inspired researchers to try to achieve a similar bound in the integers [16, 77, 14].

Another related problem which benefited from translation to the vector space setting

was the so-called corner problem. Posed by Erdős [28] (and Graham), it was first solved

by Ajtai and Szemerédi [1]. It consists in proving that if a set A ⊂ [N ] × [N ] contains

no three points of the form (x, y), (x+ d, y), (x, y + d) with d > 0, then it must have size

o(N2), and in making the decay rate explicit. The distinctive feature of this problem, which
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1.4. BILINEAR STRUCTURES IN VECTOR SPACES OVER FINITE FIELDS

occurs again in the result discussed in this section, is its bidirectional structure: there is a

horizontal direction and a vertical direction. It was brilliantly exploited by Shkredov [80],

who was the first to provide an explicit decay rate. His ideas are also fruitful in the vector

space setting, as shown by Green [40, 38].

Additive smoothing, which will be the core topic of Chapter 5, is a further topic of

additive combinatorics that translates well to the vector space setting. The idea is that

however “rough” or unstructured a set A ⊂ [N ] may be, by considering the set of sums or

differences of sufficiently many elements of A, one obtains a set that inevitably contains

various large structures. A good example is Bogolyubov’s theorem [15], originally formu-

lated in the integers, which we now state in the finite field setting [38]. We fix a prime p.

The density of a subset A ⊂ Fn
p = V is the quantity α = |A|

|V | .

Theorem 1.7 (Bogolyubov). If A ⊂ V is a set of density α > 0, then the sumset

A+ A− A− A := {a1 + a2 − a3 − a4 | (a1, . . . , a4) ∈ A4}

contains a vector subspace of codimension c(α) = O(α−2).

The notation A + A − A − A is often abbreviated as 2A − 2A. The (simple) proof of

Theorem 1.7 will be provided in Chapter 5. We state, without proof, a deep improvement

of the constant c(α) appearing in Theorem 5.1, due to Sanders [78, Theorem 11.1].

Theorem 1.8. We can take c(α) = O(log4 α−1) in Theorem 5.1.

One can interprete Bogolyubov’s theorem as the statement that performing a bounded

number of operations A /→ A ± A (indeed two here) is sufficient to essentially close a set

with respect to these operations.

Observe that if A is already a subspace, then the set 2A − 2A = A is a subspace of

codimension logp α
−1, so Sanders’ result is optimal up to the exponent.

We now consider a bilinear version of Theorem 1.7. Given a set P ⊂ V × V of pairs

(x, y), a natural smoothing operation one can perform is a vertical or horizontal sum or

difference. More precisely, let

P
V
± P = {(x, y1 ± y2) | (x, y1), (x, y2) ∈ P}

be the set of vertical sums or differences, respectively. Note that the letter V , which stands

for vertical here, is also used to denote the ambient space, but this should not create any

confusion.

10



CHAPTER 1. INTRODUCTION

Then similarly define P
H
± P the set of horizontal sums or difference. We denote by φV

the operation

P /→ (P
V
+ P )

V
− (P

V
+ P )

and define the operation φH similarly. In view of Bogolyubov’s theorem, it is natural to

imagine that performing these operations sufficiently many times, one obtains a large closed

substructure. Now what sets are closed under both horizontal and vertical operations?

Reasonable examples are Cartesian products of vector subspaces as well as zero sets of

bilinear forms. We say a set P ⊂ V ×V is a bilinear set of codimensions (r1, r2, r3) if there

exist subspaces W1 ≤ V,W2 ≤ V of codimension r1, r2, respectively, and bilinear forms

Q1, . . . , Qr3 on W1 ×W2 such that

P = {(x, y) ∈ W1 ×W2 | Q1(x, y) = · · · = Qr3(x, y) = 0}.

We show that sets of this form inevitably appear when iterating the operations φV and

φH .

Theorem 1.9. For any δ > 0, there exists a constant c(δ) > 0 such that the following

holds. Let P ⊂ V × V have density δ. Let P ′ = φHφV φH(P ). Then P ′ contains a

bilinear set of codimensions (r1, r2, r3) where max(r1, r2, r3) ≤ c(δ). Moreover, c(δ) =

O(exp(exp(exp(logO(1) 1/δ)))).

It is reasonable to imagine that, like in the linear case, the bound on the codimensions

should be polylogarithmic, whence the following conjecture.

Conjecture 1.10. In Theorem 1.9, one can take c(δ) = O(logO(1) δ−1).

We call this statement the polylogarithmic bilinear Bogolyubov conjecture. We give

some evidence for it in Chapter 5. We will rely on it in Chapter 7 in order to prove a

number-theoretic result in function fields.

The next section precisely introduces function fields from the arithmetic combinatorial

viewpoint, and describes the content of Chapter 6.

1.5 Polynomial equations in function fields

As observed in the previous section, problems about linear equations or linear structures in

sets of integers can be conveniently phrased in the context of vector spaces over finite fields.

11
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In this chapter, we will consider more general polynomial equations in the vector space

model. As an example, let us mention Sarkőzy’s theorem [79]. Originally formulated in

the integers, it states that if A ⊂ Z is a dense set of integers, it must contain two elements

a ̸= b whose difference is a perfect square. We can rephrase this problem in the realm of

vector spaces over finite fields, if we view a vector f = (f0, . . . , fn−1) ∈ Fn
q as the vector

of coefficients of the polynomial
∑n−1

i=0 fiti in the ring Fq[t]. The operation of squaring a

polynomial then corresponds to a polynomial map Fn
q → F2n−1

q . We will refer to Fq[t] as a

function field, although it is really a polynomial ring.

Until recently, the methods devised to tackle arithmetic-combinatorial questions in

vector spaces or function fields were mostly Fourier-analytic and inspired by the solutions

given to the original problems in the integers. Consequently, the best upper bounds known

for subsets of Fn
p free of certain given configurations often looked similar to their coun-

terparts in Z. This is no longer the case: the algebraic method of Croot-Lev-Pach [24],

exploited by Ellenberg-Gijswijt [26], brought the maximal size of a progression-free set in

Fn
3 down to N c = 3cn for some constant c < 1. In contrast, in the set of integers up to N ,

progression-free sets of size N1−o(1) are known [5]. This method proved relevant in function

fields too, where it allowed Green to considerably lower the bound in Sarkőzy’s theorem

[42].

In Chapter 6, we present the method of Croot-Lev-Pach, alongside a new application

[11], and a discussion of its limits. We now give a precise statement of the main theorem

of Chapter 6. We fix a prime power q and write Gq,n for the set of polynomials of degree

strictly less than n over Fq, so that |Gq,n| = qn.

Theorem 1.11. Let r, k and d be integers satisfying k ≥ 2r2+1. Suppose that a1, . . . , ak are

polynomials over Fq of degree at most d satisfying
∑k

i=1 ai = 0. Then there exist constants

0 < c(r, q) < 1 and C = C(d, r, q) such that any A ⊂ Gq,n satisfying |A| ≥ kCqc(r,q)n must

contain a nontrivial solution to the equation

k∑

i=1

aif
r
i = 0,

that is, there exists a solution (f1, f2, . . . , fd) ∈ Ad which is not of the form (f, f, . . . , f)

for any f ∈ A.

In the next section, we combine our interest in configurations of primes (studied in the

first three sections) and in finite fields analogues (studied in the last two sections) as we

12
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discuss configurations of irreducible polynomials over Fq[t].

1.6 Uniformity of the Möbius function on polynomial

rings

Just like the ring Z, the ring Fq[t] is euclidean, and hence a unique factorisation domain.

The study of irreducible polynomials is thus analogous to the study of prime numbers.

The interval IN = {x ∈ N | x < N} is analogous to the space Gq,n of polynomials over

Fq of degree less than n. Thinking of |n| as the cardinality of the quotient ring Z/nZ, one is
lead to write |f | = |Fq[t]/(f)| = qdeg f . Then Gq,n = {f ∈ Fq[t] | |f | < qn}, which underlines

the analogy to the interval IN . Thus N corresponds to the cardinality |Gq,n| = qn, and the

degree n to the logarithm logN . The two units ±1 of Z correspond to the set F∗
q of units

of Fq[t], and accordingly positive integers correspond to monic polynomials.

The prime number theorem has an analogue [74] that says that the number of monic

irreducibles of degree n is qn/n + O(qn/2/n), where the implied constant depends neither

on q nor n. Now observe that two distinct limit regimes exist: one where the cardinality q

tends to infinity while the degree n is fixed, and one where the degree n tends to infinity

while q is fixed. In the first case, a lot is known regarding configurations of irreducibles.

In fact, the analogue of the Hardy-Littlewood prime-tuple conjecture (1.5) is known [4], so

there is little left to do.

In Chapter 7, we focus on the second regime, so we fix a prime power q = ps (for a

prime p and an integer s ≥ 1) and discuss asymptotics when n tends to infinity. Because

of the aforementioned prime number theorem in polynomial rings and of the Ellenberg-

Gijswijt theorem from Section 1.5, we see that any dense (or just not too sparse) subset of

the set of irreducible polynomials of degree n contains a nontrivial three-term arithmetic

progressions.

However, the best known bounds for subsets of Fn
p without any four-term arithmetic

progressions do not allow us to draw a similar conclusion for this configuration. So specific

properties of the set of irreducibles have to be exploited if one wants to prove that it

contains long arithmetic progressions, or other linear configurations. In this vein, Lê [60]

proved the following.

Theorem 1.12. The set of monic irreducible polynomials contains affine subspaces of

arbitrary dimensions.
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He did not provide asymptotics for the number of subspaces of dimension k inside the set

of polynomials of degree at most n. As in Section 1.1, we can use probabilistic heuristics

to conjecture these asymptotics. It turns out that the validity of such a conjecture is

essentially equivalent to a non-correlation property of the Möbius function µ, the arithmetic

function defined on Fq[t] by

µ(f) =

{
(−1)k where k is the number of monic irreducible factors of f , if f is squarefree,

0 otherwise.

The required non-correlation property is a bound of the form

∑

deg f<n

µ(f)χ(P (f)) = o(qn) (1.8)

for any polynomial P in the coefficients f0, . . . , fn−1 of f =
∑n−1

i=0 fiti, and any additive

character χ of Fq. Chapter 7 deals with such correlations for polynomials P of degree at

most 2. Here is the result we prove there.

Theorem 1.13. The bound (1.8) holds uniformly in P when P is a linear polynomial or

a Hankel quadratic form, i.e. P (f) =
∑n−1

i,j=0 ai+jfifj for some coefficients a0, . . . , a2n−2.

Under Conjecture 1.10, the bound (1.8) holds uniformly in P when P is any quadratic

polynomial.

We have concluded our overview of the main results of this thesis. The next chapter

contains the necessary background material for the results in Chapters 3 and 4.
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Chapter 2

The Green-Tao method

This chapter contains no original material; it is merely an exposition of the method laid

out by Green and Tao [45], which enabled Green, Tao and Ziegler to prove Theorem 1.3.

Compared to the original exposition, we state the various ingredients in as much generality

as possible in order to prepare the ground for the extensions we prove in the next two

chapters.

This chapter and the next two ones rely on the Appendices A, B and C, where we have

collected and proved a number of facts that are necessary but not really enlightening.

2.1 Statement of the Green-Tao-Ziegler theorem

Let Ψ = (ψ1, . . . ,ψt) : Zd → Zt be a system of affine-linear forms. The vital restriction

that we impose is the finite complexity condition [45, Definition 1.5], which we now define.

For an affine-linear form ψ, let ψ̇ be its linear part.

Definition 2.1. For A ⊂ [t], let VA be the set of affine forms on Zd whose linear part

belongs to span(ψ̇i | i ∈ A). Let i ∈ [t]. The system Ψ is said to be of complexity at most

k at i if there exists a partition of [t] \ {i} into at most k + 1 parts such that ψ̇i /∈ VA for

each part A of the partition. It is said to be of complexity at most k if it is of complexity

at most k at any i ∈ [t]. The complexity is the minimum k such that the complexity is at

most k, if there is any such k ∈ N. Otherwise it is said to be infinite.

Thus Ψ is of finite complexity if and only if no two of the forms are affinely dependent,

i.e. for any i ̸= j, the linear parts ψ̇i and ψ̇j are not proportional. If a system of t forms

is of finite complexity, it is of complexity at most t − 2 as the trivial partition into t − 1

singletons is admissible.
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2.1. STATEMENT OF THE GREEN-TAO-ZIEGLER THEOREM

We give some examples. The system defining an arithmetic progression of length t ≥ 3

is given by ψi(a, b) = a+ (i− 1)b for i ∈ [t]. It has complexity t− 2 at each i ∈ [t]; indeed,

no two forms are proportional but any two forms span any third one. On the contrary, the

twin prime system Ψ(n) = (n, n + 2) is not of finite complexity; in general, if d = 1 and

t > 1, the system is of infinite complexity.

Let N be an asymptotic parameter. The system Ψ is implicitly allowed to depend on

N .

Definition 2.2. The size of Ψ at scale N is the quantity

∥Ψ∥N =
∑

i∈[t]

∣∣∣∣
ψi(0)

N

∣∣∣∣ +
∑

i∈[t],j∈[d]

|ψ̇i(ej)|

where (e1, . . . , ed) is the canonical basis of Rd.

As an example, let us consider the ternary Goldbach system Ψ(a, b) = (a, b, N − a− b).

The size ∥Ψ∥N = 1 + 4 = 5 is bounded. In general, the chosen normalisation means that

for the system to have bounded size, we need the constant coefficients to be O(N) and the

linear coefficients to be O(1).

We are now ready to state the theorem of Green, Tao and Ziegler [45, Main Theorem].

For convenience we extend Λ to a function on Z by setting Λ(−n) = 0 for any n ∈ N.

Theorem 2.1. Let L be a constant and Ψ = (ψ1, . . . ,ψt) : Zd → Zt be a system of affine-

linear forms of finite complexity. Suppose that ∥Ψ∥N ≤ L. Let K ⊂ [−N,N ]d be a convex

body. Then
∑

n∈Zd∩K

t∏

i=1

Λ(ψi(n)) = β∞
∏

p

βp + od,t,L(N
d),

where

β∞ = Vol(K ∩ Ψ−1(Rt
+))

and βp is as in equation (1.4).

For each prime p, we call βp the local factor modulo p. It remains to prove that
∏

p βp is

convergent, which we proceed to do below. Throughout the thesis, the letter p is reserved

for primes so
∏

p is a product over primes. A prime p is called exceptional for Ψ (and we

write p ∈ PΨ) if there exist i ̸= j such that ψi and ψj are affinely related modulo p. In

particular, if a form ψi is a constant modulo p, then p is exceptional. We highlight that

our definition of an exceptional prime is different (less restrictive) than that of Green and
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CHAPTER 2. THE GREEN-TAO METHOD

Tao [45, Theorem D.3]. Even so, only finitely many primes are exceptional for any given

finite complexity system as we prove now.

Lemma 2.2. Let Ψ = (ψ1, . . . ,ψt) be a finite-complexity system of affine-linear forms.

Then PΨ is finite.

Proof. If ψi and ψj are affinely related modulo p for i ̸= j ∈ [t], then all the 2×2-minors of

the matrix (ψ̇k(eℓ))k∈{i,j},ℓ∈[d] are divisible by p. However, at least one of these minors has

to be nonzero because the matrix has rank 2, as the forms ψ̇i and ψ̇j are not proportional

over Z. Consider one of these nonzero minors. It is divisible by finitely many primes, which

concludes our proof.

We now check that
∏

p βp is convergent.

Lemma 2.3. Let Ψ = (ψ1, . . . ,ψt) be a system of affine-linear forms. Then if p is not

exceptional,

βp = 1 +Od,t(p
−2).

In particular, if Ψ is of finite complexity and no βp is zero, then the product
∏

p βp is

convergent and nonzero.

Proof. If two forms ψi and ψj are not affinely related modulo p, then the probability

as a ranges over (Z/pZ)d that they vanish simultaneously at a is p−2, by elementary

linear algebra (see Proposition A.5). Inclusion-exclusion then yields βp = 1 + O(p−2) for

unexceptional p. For the second part of the lemma, it suffices to note that if Ψ is of finite

complexity, only finitely many primes are exceptional thanks to Lemma 2.2.

We now show that we can introduce a few additional hypotheses in Theorem 2.1 at no

extra cost. First, upon intersecting K by the half-spaces {n ∈ Rd | ψi(n) > 0}, we can

suppose that β∞ = Vol(K). In fact, it will be convenient to suppose that ψi(n) > N9/10

for all i ∈ [t] (9/10 is arbitrary here). We can see that the set

{n ∈ K ∩ Zd : ∃i ∈ [t] ψi(n) ≤ N9/10}

contains only O(Nd−1/10) elements, and Λ is bounded by O(log(NL)). So intersecting K by

the half-spaces {n ∈ Rd | ψi(n) > N9/10} for i ∈ [t], we can suppose Ψ(K) ⊂ [N9/10,+∞)t.

Besides, prime powers pk with k ≥ 2 are so sparse that we can replace Λ by Λ′ = 1P log

where P is the set of primes. We still call Λ′ the von Mangoldt function.
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We will find it convenient to impose on systems of linear forms the following combina-

torial condition that is stronger than that of finite complexity.

Definition 2.3. The system Ψ is in s-normal form at i ∈ [t] if there exists a set Ji ⊂ [t]\{i}
of cardinality at most s + 1 such that

∏
j∈Ji ψ̇i(ej) ̸= 0 whereas for all k ∈ [t] \ {i}, we

have
∏

j∈Ji ψ̇k(ej) = 0. The system Ψ is in s-normal form if it is in s-normal form at each

i ∈ [t].

Besides, we will say that a form (x1, . . . , xd) /→ ψ(x1, . . . , xd) uses the variable xi if

ψ̇(ei) ̸= 0. Thus, in a system in normal form, each form ψi uses its own set of variables

that none of the other forms uses completely. We can then split the remaining forms into

|Ji| classes by associating to j ∈ Ji the set of forms that do not use ej, that is, the forms

ψk such that ψ̇k(ej) = 0. A form may be covered by several classes, but we can then

arbitrarily select a single one and get a partition.

We will want to reparametrise any system of complexity s to obtain one that is in s-

normal form. We start off with an example. Recall that the system defining an arithmetic

progression of length t ≥ 3, which is given by ψi(a, b) = a+(i−1)b for i ∈ [t], has complexity

t− 2 at each i ∈ [t]. To reparametrise it, let b = x1 + · · ·+ xt and a = −
∑

j∈[t](j − 1)xj .

Then ψi(a, b) =
∑

j∈[t](i − j)xj = φi(x1, . . . , xt) uses all variables xj except xi, so setting

Ji = [t] \ {i}, we find that the new system Φ : Zt → Zt is in (t − 2)-normal form.

Besides Φ(Zt) = Ψ(Z2). We shall provide an algorithm that “normalises” the system. An

important feature of it is to keep the size of the system under control. We first define

formally what it is we want to construct.

Definition 2.4. Let Ψ : Zd → Zt be a system of affine-linear forms. An extension of Ψ

is a system Ψ′ : Zd′ → Zt of affine-linear forms such that Ψ(Zd) = Ψ′(Zd′) and Ψ is the

restriction of Ψ′ to Zd identified with Zd × {0}d′−d.

We now prove that any finite complexity system admits a normal form extension of the

same complexity, using not too many variables nor too large coefficients. We essentially

reproduce the statement and the proof of [45, Lemma 4.4], but make the quantitative

dependence precise, which will be useful in Chapter 3.

Proposition 2.4. Let Ψ : Zd → Zt be a system of affine-linear forms of complexity

s. Then Ψ admits an s-normal form extension Ψ′ : Zd′ → Zt where d′ = Od,t(1) and

∥Ψ′∥N = O(∥Ψ′∥O(1)
N ).
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Proof. We produce an extension which is in s-normal form at i for any given i ∈ [t]; the

proposition follows by iterating the process t times, once for each i ∈ [t].

The system Ψ being of complexity at most s at i, we have a partition [t] \ {i} =
⋃

k∈[s+1]Ak such that ψ̇i /∈ span(ψ̇j | j ∈ Ak) for any k ∈ [s + 1]. As a certificate to this

linear independence property, there are vectors f1, . . . , fs+1 in Zd satisfying ψ̇i(fk) ̸= 0 and

ψ̇j(fk) = 0 if j ∈ Ak. Besides, we can take the vectors fi for i ∈ [s+1] to be integer valued

and of norm ∥fi∥ = O(∥Ψ∥O(1)
N ) (for any norm chosen on Rd): indeed, using Cramer’s rule,

these vectors’ coordinates can be taken to be products of determinants of matrices of size

at most d whose coefficients are at most ∥Ψ∥N . We then introduce s+1 extra variables that

ψi will be the only one to use fully. That is, we define d′ = d+ s+ 1 and Ψ′ : Zd′ → Zt by

Ψ′(n, m1, . . . , ms+1) = Ψ(n+m1f1+ · · ·+ms+1fs+1) for n ∈ Zd and (m1, . . . , ms+1) ∈ Zs+1.

It is clear that Ψ′ is an extension which is in s-normal form at i, and that the complexity

has not been increased anywhere else in the process. Thus iterating the procedure proves

the proposition.

The next proposition shows that the count of Ψ-configurations can be reduced to the

count of Ψ′-configurations.

Proposition 2.5. Let Ψ : Zd → Zt be a system of complexity s and Ψ′ : Zd′ → Zt be

its normal form extension constructed above. Let K ⊂ [−N,N ]d be a convex body and

M = ⌊N/∥Ψ′∥N⌋. Then there exists a convex body K ′ ⊂ [−N ′, N ′]d where N ′ = O(N)

such that Vol(K ′) = (2M)d
′−dVol(K) and for any t functions g1, . . . , gt : Z → R, we have

(2M + 1)d
′−d

∑

n∈Zd∩K

∏

i∈[t]

gi(ψi(n)) =
∑

n∈Zd′∩K ′

∏

i∈[t]

gi(ψ
′
i(n)).

Proof. Let fd+1, . . . , fd′ be the vectors of size bounded by O(∥Ψ∥O(1)
N ) produced by Propo-

sition 2.4, so that

Ψ′(n, md+1, . . . , md′) = Ψ(n+
d′∑

i=d+1

mifi).

The convex body

K ′ = {(n, md+1, . . . , md′) ∈ Rd × [−M,M ]d
′−d | n+

d′∑

i=d+1

mifi ∈ K}

satisfies the requirements, thanks to the change of variable r = n +
∑d′

i=d+1 mifi ∈ K for
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(n,m) ∈ Zd′ ∩K.

We can now reduce Theorem 2.1 to the following proposition.

Proposition 2.6. Let L be a constant and Ψ = (ψ1, . . . ,ψt) : Zd → Zt be a system of

affine-linear forms in s-normal form. Suppose that ∥Ψ∥N ≤ L. Let K ⊂ [−N,N ]d be a

convex body such that Ψ(K) ⊂ [N9/10,+∞)t. Then

∑

n∈Zd∩K

t∏

i=1

Λ′(ψi(n)) = Vol(K)
∏

p

βp + od,t,L(N
d), (2.1)

where βp is as in equation (1.4).

In the next chapter, we will extend Theorem 2.1 to the case where ∥Ψ∥N = O(logO(1)N),

which is why we made the dependence on ∥Ψ∥N explicit.

2.2 The W -trick

We want to free the von Mangoldt function from the biases induced by small primes, in

order to make it a function of average 1 + o(1) on any congruence class to small modulus.

Such a property of stability of the average upon restriction to rather structured sets like a

congruence class is called uniformity and it is highly desirable; we shall return to it later.

It is clear that the bias p/ϕ(p) is significant only when p is quite small (say smaller than

some threshold w), so if we remove the bias coming from small primes, we should be left

with a rather uniform function. One then fixes a growth function w(N) = O(log logN)

and a parameter W̃ divisible by W =
∏

p≤w(N) p = O(logO(1)N) and still satisfying W̃ =

O(logO(1) N). So W̃ = WQ where Q = O(logO(1)N). The exact choice of Q depends on

the desired application; it may be divisible by higher powers of small primes p ≤ w and

by a few additional larger primes. In Chapter 4, we will want w(N) = O(log log logN), so

for the sake of definiteness we decide once and for all that w(N) = log log logN , although

for the current discussion it is not necessary.

We introduce the tricked von Mangoldt function defined by

Λ′
W̃ ,b

(n) =
ϕ(W̃ )

W̃
Λ′(W̃n+ b).

An important property of this function is that it has average 1+ o(1) by the Siegel-Walfisz

theorem, whenever (b, W̃ ) = 1. More generally, for any arithmetic progression P of length
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|P | ≫ N log−O(1)N and modulus q = O(logO(1)N) satisfying rad(q) | W̃ (where rad(q) is

the radical of q, i.e. the product of its prime factors), if the initial term of P is bounded

by O(N logO(1)N), we have

1

|P |
∑

n∈P

Λ′
W̃ ,b

(n) = 1 + o(1). (2.2)

Theorem 2.1 can then be reduced to the following statement involving this modified von

Mangoldt function.

Proposition 2.7. Let L be a constant and Ψ = (ψ1, . . . ,ψt) : Zd → Zt be a system of

affine-linear forms in s-normal form. Suppose that ∥Ψ∥N ≤ L. Let K ⊂ [−N,N ]d be a

convex body such that Ψ(K) ⊂ [N9/10,+∞)t. Let b1, . . . , bt be integers in [W̃ ] and coprime

to W . Then
∑

n∈Zd∩K

t∏

i=1

Λ′
W̃ ,bi

ψi(n) = |K ∩ Zd|+ od,t,L(N
d). (2.3)

Proof that Proposition 2.7 implies Theorem 2.1. We decompose the left-hand side of (2.1)

into sums over congruence classes. We write

Zd ∩K =
⋃

a∈[W̃ ]d

Zd ∩ (W̃Ka + a),

where

Ka = {x ∈ Rd | W̃x+ a ∈ K}

is again a convex body. Putting

F (n) =
t∏

i=1

Λ′(ψi(n))

we can write the left-hand side of (2.1) as

∑

n∈Zd∩K

F (n) =
∑

a∈[W̃ ]d

∑

n∈Zd∩Ka

F (W̃n+ a). (2.4)

Moreover, for j ∈ [t], we can write ψj(W̃n + a) = W̃ ψ̃j(n) + cj(a) where cj(a) ∈ [W̃ ]

and ψ̃j is an affine-linear form differing from ψj only in the constant term. We note that

if ψi(a) is not coprime to p for some i ∈ [t] and some prime p ≤ w(N), then for each
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n ∈ Ka ∩ Zd we have F (W̃n + a) = 0 (if (ψi(a), p) > 1, the integer ψi(a) ≥ N9/10 > w is

not a prime). Thus the residues a which bring a nonzero contribution to the right-hand

side of (2.4) are all mapped by Ψ to tuples (b1, . . . , bt), each entry of which is coprime to

W̃ . We denote by AΨ ⊂ [W̃ ]d the set

{a ∈ [W̃ ]d | ∀i ∈ [t] (ψi(a), W̃ ) = 1}.

We can then rewrite equation (2.4) as

∑

n∈Zd∩K

F (n) =

(
W̃

ϕ(W̃ )

)t ∑

a∈AΨ

∑

n∈Zd∩Ka

t∏

i=1

Λ′
W̃ ,ci(a)

(ψ̃i(n)). (2.5)

Applying Proposition 2.7 to the inner sum in the right-hand side of (2.5) for a ∈ AΨ, we

conclude that
∑

n∈Zd∩K

F (n) =

(
W̃

ϕ(W̃ )

)t

|AΨ|(Vol(Ka) + o(N/W̃ )d).

Moreover, we see that (W̃/ϕ(W̃ ))t|AΨ| = W̃ d
∏

p|W̃ βp. Lemma 2.3 implies that
∏

p/∈PΨ
βp =

1 + O(1) and the boundedness of the coefficients of Ψ implies that PΨ is bounded. In

particular,
∏

p∈PΨ
βp is bounded, from which it follows that

∏
p|W̃ βp =

∏
p βp(1 + o(1)) =

∏
p βp + o(1). Combining this with the fact that W̃ dVol(Ka) = Vol(K), we obtain the

conclusion.

2.3 The transference principle, Gowers norms and pseu-

dorandom majorants

The transference principle or dense model theorem, first stated in [44, 88], says that if an

unbounded function f is dominated by a pseudorandom measure ν, then when it comes to

evaluating multilinear averages, f can be approximated by a 1-bounded function g; that is

∑

n∈Zd∩K

t∏

i=1

f(ψi(n)) ≈
∑

n∈Zd∩K

t∏

i=1

g(ψi(n))

for some function g : Z → C satisfying |g| ≤ 1. For instance, equation (2.3) asserts that

the functions Λ′
W̃ ,b

can be approximated by the constant function 1.
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In order to make this statement more precise, we need to define pseudorandom measures

and the Gowers norms.

Definition 2.5. Let g : Z → C be a function and k ≥ 1 an integer. The Gowers norm or

Uk norm of g on [N ] is the expression

∥g∥Uk[N ] =

⎛

⎝Ex∈[N ]Eh∈[N ]k

∏

ω∈{0,1}k
C|ω|g(x+ ω · h)

⎞

⎠
2−k

,

where C is the conjugation operator and |ω| =
∑

i∈[k] ωi.

These norms originated in Gowers’ new proof of Szemerédi’s theorem [34].

Definition 2.6. Let D ≥ 1. A D-pseudorandom measure is a sequence of functions

ν = νM : Z/MZ → R+, satisfying1 En≤Mν(n) = 1+o(1). and theD-linear forms conditions

defined as follows. Let 1 ≤ d, t ≤ D. For every finite-complexity system of affine-linear

forms Ψ : Zd → Zt with coefficients bounded by D, and any convex set K ⊂ [−M,M ]d

such that Ψ(K) ⊂ [1,M ]t, the following estimate holds

En∈(Z/MZ)d
∏

i∈[t]

ν(ψi(n)) = 1 + o(1). (2.6)

A D-pseudorandom majorant of a function f : [M ] → C is a D-pseudorandom measure

ν : [M ] → R+ such that |f | ≤ cν for some constant c > 0 (independent of M).

Pseudorandom measures are defined on cyclic groups rather than intervals of integers,

so the values of the linear forms ψi(n) are understood modulo M . Similarly, some authors

prefer defining the Gowers norms on cyclic groups, and then on intervals of integers by

embedding them in cyclic groups, but these definitions are equivalent [45, Appendix B].

The reason why these notions are precious is the following so called generalised von

Neumann theorem [45, Proposition 7.1], which essentially says that the Us+1 norm con-

trols averages of functions bounded by a common pseudorandom measure along linear

configurations of complexity at most s.

Theorem 2.8. Let t, d, L, s be positive integer parameters. Then there are positive con-

stants 1 ≤ Γ and D, depending on t, d and L such that the following holds. Let C be a

1In earlier works such as [45] or [68], there was a correlation condition, but it is no longer necessary
due to the work of Fox, Conlon and Zhao [22], and its integration by Tao and Ziegler [87].
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constant satisfying Γ ≤ C ≤ Ot,d,L(1) and suppose that M ∈ [CN ′, 2CN ′] is a prime. Let

ν : Z/MZ → R+ be a D-pseudorandom measure, and suppose that f1, . . . , ft : [N ′] → R are

functions with |fi(x)| ≤ ν(x) for all i ∈ [t] and x ∈ [N ′]. Suppose that Ψ = (ψ1, . . . ,ψt) is a

system of affine-linear forms of complexity at most s whose linear coefficients are bounded

by L. Let K ⊂ [−N ′, N ′]d be a convex set such that Ψ(K) ⊂ [0, N ′]t. Finally, suppose that

min
1≤j≤t

∥fj∥Us+1[N ′] = o(1). (2.7)

Then we have

En∈K∩Zd

∏

i∈[t]

fi(ψi(n)) = o(1).

Theorem 2.8 is proved by repeated applications of the Cauchy-Schwarz inequality. It

is in this proof that the normal form parametrisation introduced above is necessary. We

do not provide the proof of Theorem 2.8, but we give one later for a variant thereof,

Theorem 3.6.

We highlight that this theorem actually replaces a linear system Ψ with another one,

the system (x,h) /→ (x+ω ·h)ω∈{0,1}t−1 , so that it is not immediately obvious that we have

reduced the difficulty of the problem. However, it so happens that functions that have a

large average along this system can be characterised in another way: this is the inverse

theorem for the Gowers norms [48] due to Green, Tao and Ziegler, to which we shall return

in Section 2.5.

The transference principle may then be reformulated as the statement that for an

unbounded function f : Z → R that satisfies |f | ≪ ν for some pseudorandom measure,

there exists a 1-bounded function g : Z → C such that ∥f − g∥Uk is small. We will

want to apply it to f = Λ′
W̃ ,b

. Besides, we need g = 1 to get asymptotics; with any

other g, we get at best lower or upper bounds. Finally, we need f to be bounded by

a pseudorandom measure. In the next two sections, which cover the number-theoretic

content of Theorem 2.1, we address the needs for a pseudorandom majorant and a Gowers

norm estimate.

2.4 A pseudorandom majorant

We recall that

Λ(n) =
∑

d|n

µ(d) log
n

d
(2.8)
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for any n ≥ 1. Goldston and Yıldırım, in a preprint about small gaps between primes,

that was improved to a landmark paper with Pintz [32], introduced the truncated version

ΛR(n) =
∑

d|n
d≤R

µ(d) log
R

d
(2.9)

where R = Nγ and γ > 0 is a sufficiently small constant. Following Green and Tao [45,

Appendix D], we will rather work with the following variant

Λχ,γ(n) = logR

⎛

⎝
∑

ℓ|n

µ(ℓ)χ

(
log ℓ

logR

)⎞

⎠
2

, (2.10)

where χ is a smooth even function R → [0, 1] supported on [−1, 1] satisfying χ(0) = 1. Due

to the truncated nature of this sum, it is fairly easy to see that this arithmetic function

has a constant average, depending only on χ, as we show in the next proposition.

Proposition 2.9. We have the asymptotic

1

N

∑

n≤N

Λχ,γ(n) = c(χ) + o(1) (2.11)

for some constant c(χ) > 0. More generally, for any q such that rad(q) = O(logO(1) N)

and b coprime to q, we have

1

N

∑

n≤N

ϕ(q)

q
Λχ,γ(qn+ b) = c(χ) + o(1). (2.12)

Proof. We expand the squared sum defining Λχ,γ and exchange the order of summation to

obtain

∑

n≤N

Λχ,γ(qn + b) = logR
∑

ℓ,ℓ′≤R

µ(ℓ)µ(ℓ′)χ

(
log ℓ

logR

)
χ

(
log ℓ′

logR

)∑

n≤N

1[ℓ,ℓ′]|qn+b. (2.13)

Whenever [ℓ, ℓ′] is coprime to q, the inner sum equals N
[ℓ,ℓ′] + O(R2) (uniformly in q);
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otherwise it is 0. Let S be the left-hand side of (2.13) divided by N logR. So we have

S =
1

N logR

∑

n≤N

Λχ,γ(qn + b) =
∑

([ℓ,ℓ′],q)=1

µ(ℓ)µ(ℓ′)

[ℓ, ℓ′]
χ

(
log ℓ

logR

)
χ

(
log ℓ′

logR

)
+O(N4γ−1),

(2.14)

where the last term is o(1) as soon as γ < 1/4. We now use the Fourier transform. Letting

θ be the Fourier transform of the smooth compactly supported function x /→ exχ(x), it is

well known that

∀A > 0 θ(ξ) ≪A (1 + |ξ|)−A. (2.15)

This allows us to reconstruct χ from θ as an integral over the compact interval2

I = {ξ ∈ R | |ξ| ≤ log1/2R}

at the cost of a tolerable error; more precisely, for any A > 0, we have

χ

(
log x

logR

)
=

∫

R
x− 1+iξ

logR θ(ξ)dξ =

∫

I

x− 1+iξ
logR θ(ξ)dξ +O(x− 1

logR log−AR). (2.16)

Plugging this into our equation, and neglecting the error term for the moment (a justifi-

cation for that will be given in Appendix C), we find

S =

∫

I2
θ(ξ)θ(ξ′)

⎛

⎝
∑

([ℓ,ℓ′],q)=1

µ(ℓ)µ(ℓ′)

[ℓ, ℓ′]
ℓ−zℓ′−z′

⎞

⎠ dξdξ′, (2.17)

where we have defined z = 1+iξ
logR and z′ analagously. Thus ℜ(z) > 0 and |z| = O(1/ logR).

For a fixed (ξ, ξ′), the inner sum in equation (2.17) can be rewritten, by multiplicativity,

as the convergent product

Pq(z, z
′) =

∏

p!q

(1− p−1−z − p−1−z′ + p−1−z−z′).

Write Ep = 1−p−1−z−p−1−z′ +p−1−z−z′, omitting the dependence in z, z′. We can see that

Ep = E ′
p +O(1/p2) when p → +∞ (uniformly in z, z′), where E ′

p =
(1−p−1−z)(1−p−1−z′ )

1−p−1−z−z′ . We

want to replace Pq by q/ϕ(q)
∏

pE
′
p. This is allowed, up to a small error, by the following

lemma.

2We prefer integrating over a compact set, in order to be able to easily swap summation and integration
using Fubini’s theorem.
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Lemma 2.10. As R → ∞, we have

ϕ(q)

q
Pq = (1 +O(log−1/10 R))

∏

p

E ′
p.

Proof. We split the set of primes into large primes p > log1/10 R and the remaining ones.

We have

∏

p|q
p>log1/10 R

Ep =
∏

p|q
p>log1/10 R

(1 +O(p−2))E ′
p = (1 +O(log−1/10 R))

∏

p|q
p>log1/10 R

E ′
p. (2.18)

Now q has onlyO(1) prime factors p > log1/10 R ≫ log1/10 N , because rad(q) = O(logO(1)N).

Given that E ′
p = 1 +O(p−1), we can write

∏

p|q
p>log1/10 R

Ep = (1 +O(log−1/10 R))
∏

p

E ′
p.

We now take care of primes p ≤ log1/10R. In that range, we can write

Ep = (1− p−1)(1 +O(log p/ log1/2R))

uniformly in p by a simple Taylor expansion in the vicinity of z = 0 (or equivalently, in

the regime where R → +∞), and similarly

E ′
p = (1− p−1)(1 +O(log p/ log1/2 R)). (2.19)

Because
∏

p≤log1/10 R(1 +O(log p/ log1/2R)) = 1 +O(log−1/3 R), we infer

Pq = (1 +O(log−1/10 R))
∏

p!q

E ′
p.

It remains to discuss the role of primes p | q. As already observed, we can suppose

p ≤ log1/10 R. Then because of the bound (2.19), we have
∏

p|q E
′
p =

ϕ(q)
q (1+O(log−1/10 R)).

This concludes the proof of Lemma 2.10.
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Now one recognises that

∏

p

E ′
p =

ζ(1 + z + z′)

ζ(1 + z)ζ(1 + z′)

where ζ is the Riemann zeta function, which satisfies the asymptotic ζ(1+z) = 1/z+o(1/z)

as z → 0. It follows that

∏

p

E ′
p =

zz′

z + z′
(1 + o(1)) =

1

logR

(1 + iξ)(1 + iξ′)

2 + i(ξ + ξ′)
(1 + o(1))

when R tends to ∞. As a result,

1

N

∑

n≤N

ϕ(q)

q
Λχ,γ(qn+ b) = (1 + o(1))

∫

I2
θ(ξ)θ(ξ′)

(1 + iξ)(1 + iξ′)

2 + i(ξ + ξ′)
dξdξ′. (2.20)

We can now undo the truncation of the integral to I2, causing only a multiplicative (1+o(1))

factor. We thus obtain the desired result with the constant in (2.11) equal to

c =

∫

R2

θ(ξ)θ(ξ′)
(1 + iξ)(1 + iξ′)

2 + i(ξ + ξ′)
dξdξ′.

We check that it is a positive constant. Indeed, because of the identity

1

2 + i(ξ + ξ′)
=

∫ ∞

0

exp(−(2 + i(ξ + ξ′))x)dx,

we find that

c =

∫ ∞

0

(∫
θ(ξ)(1 + iξ) exp(−(1 + iξ)x)dξ

)2

dx

where the inner integral equals −χ′(x). Hence c =
∫
R+

|χ′|2 is the desired positive constant,

depending only on χ.

Accordingly, for any integer q and any b ∈ [q] coprime to q, we define the Green-Tao

majorant

νGT,q,b : n /→ ϕ(q)

qc(χ)
Λχ,γ(qn+ b).

The following lemma shows that this function indeed majorises the tricked von Mangoldt

function. We write N ′ = N/W̃ .
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Proposition 2.11. For any b ∈ [W̃ ] coprime to W , we have

Λ′
W̃ ,b

(n) ≪ νGT,W̃ ,b(n)

for n ∈ [R,N ′], where the implied constant depends only on γ. Moreover, for any q such

that rad(q) = O(logO(1) N) and any b coprime to q, we have

1

N

∑

n≤N

νGT,q,b(n) = 1 + o(1). (2.21)

Proof. To prove the upper-bound property, we need concern ourselves only with the integers

n ∈ [R,N ′] such that W̃n + b is prime. In this case, the left-hand side is bounded above

by a constant multiple of ϕ(W̃ )

W̃
logN , while the right-hand side is ϕ(W̃ )

W̃
logR, with logR =

γ logN ≫ logN . The second part of the statement of Proposition 2.11 is a reformulation

of Propostion 2.9.

The next proposition, originally [45, Proposition 6.4], states that νGT,W̃ ,b is a pseudo-

random majorant for Λ′
W̃ ,b

.

Proposition 2.12. Fix a constant D > 0, and a positive integer t. Then there exists a

constant C0(D) such that the following holds. For any bounded C ≥ C0(D) there exists

γ = γ(C,D) such that if M ∈ [CN ′, 2CN ′] is a prime, if b1, . . . , bt are in [W̃ ] and coprime

to [W̃ ], the function ν∗ defined on Z/MZ ⊃ [N ′] by

ν∗(n) =

{
1+ν

GT,W̃ ,b1
(n)+···+ν

GT,W̃ ,bt
(n)

1+t if n ∈ [N ′]

1 otherwise

is a D-pseudorandom measure that majorises each of the functions 1,Λ′
W̃ ,b1

, . . . ,Λ′
W̃ ,bt

on

[N ′3/5, N ′].

The majorisation was already proven in Proposition 2.11 (we suppose γ < 3/5). The

rest of the proposition follows from a slightly more general one.

Proposition 2.13. Let b1, . . . , bt be in [W̃ ] and coprime to W̃ . Let Ψ = (ψ1, . . . ,ψt) be a

system of linear forms whose exceptional primes all divide W̃ . Let K ⊂ [−N,N ]d be such

that Vol(K) ≥ Nd−o(1). Then

∑

n∈K∩Zd

∏

i∈[t]

Λχ,γ(W̃ψi(n) + bi) = Vol(K)

(
c(χ)

W̃

ϕ(W̃ )

)t

(1 + o(1)).
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Observe that this statement does not require any bound on the coefficients, but if the

coefficients are bounded, the exceptional primes are automatically bounded so they divide

W̃ . Proposition 2.13 can essentially be read out from [45, Theorem D.3], itself largely

inspired from [32]. However, we will prove it again in the thesis as as special case of

Proposition C.1.

The deduction of Proposition 2.12 from Proposition 2.13 is standard, though not en-

tirely obvious, because of the piecewise definition of ν∗; see [44, Proposition 9.8] or [22,

Proposition 8.4].

2.5 Uniformity of the von Mangoldt and Möbius func-

tions

As mentioned at the end of Section 2.3, we need an estimate for the Gowers norms, which

is given by the following theorem.

Theorem 2.14. Let s be an integer. Let w = O(log logN) tend to infinity with N and W̃

be an integer multiple of W =
∏

p≤w p such that W̃ = O(logO(1) N). Then

∥Λ′
W̃ ,a

− 1∥Us[N ] = o(1) (2.22)

for any a ∈ [W̃ ] coprime to W̃ .

This is essentially [45, Proposition 7.2], with W̃ instead of W . The proof of that bound

fills alone two intricate papers, each proving a difficult theorem.

The first one [48], called the inverse theorem for the Gowers norms, asserts that the only

obstruction to uniformity is the existence of a significant correlation with some sequence

from a family of structured sequences called (s− 1)-step nilsequences. We shall not define

these objects formally. The reader may wish to think of n /→ e(αsns+αs−1ns−1+· · ·+α0) as

an example of s-step nilsequence. More generally, nilsequences are abstract generalisations

of such sequences, which in turn are generalisations of the additive characters n /→ e(αn)

from Fourier analysis.

The second one [47] establishes that the Möbius function, and thus Λ′
W̃ ,a

− 1, does

not correlate with nilsequences. In Chapter 7, we revisit these theorems in the realm of

function fields.

This concludes our overview of the Green-Tao method. The next two chapters rely on

it.
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Chapter 3

A higher-dimensional Siegel-Walfisz

theorem

This chapter, based on the author’s publication [9], presents an extension of Theorem 2.1.

Recall from the introduction that an admissible system of linear forms is a system of finite

complexity whose local factors βp (introduced in equation (1.4)) are all nonzero. Here then

is the chapter’s main theorem.

Theorem 3.1. Let d, t be positive integers and A,B, L be positive constants. Assume that

Ψ = (ψ1, . . . ,ψt) : Zd → Zt is an admissible system. Suppose that ∥Ψ∥N ≤ L logB N and

that K ⊂ [−N,N ]d is a convex body satisfying Vol(K) ≫ Nd log−A N and Ψ(K) ⊂ Rt
+.

Then
∑

n∈Zd∩K

t∏

i=1

Λ(ψi(n)) = Vol(K)
∏

p

βp(1 + od,t,A,B,L(1)). (3.1)

Note that from now on, we abandon the convention that tuples of integers should be

bold, considering that the distinction between integers and tuples thereof is now sufficiently

clear without this typographic help. The product
∏

p βp still converges, as Lemma 2.3 still

applies; the set of exceptional primes PΨ is finite by Lemma 2.2, even though its cardinality

may tend to infinity with N .

Some special cases, Theorem 3.1 follow easily from the work of Green and Tao. For

instance, Proposition 2.6 gives an asymptotic for the unbounded system WΨ+ b where Ψ

is a bounded system, W =
∏

p≤w p = O(logN) and b = (b1, . . . , bt) ∈ [W ]t is a t-tuple of

integers coprime to W . More generally, Proposition 2.6 implies that an unbounded system

qΨ+b with q = O(logO(1) N) and Ψ bounded is tractable, via an asymptotic for the system

W̃Ψ + c where W̃ = Wq. By decomposing into residue classes, this method extends to
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systems Ψ such that for each j, the coefficients (ψ̇i(ej))i∈[t] are bounded multiples of a

common coefficient qj . We illustrate this with an example, which corresponds to the count

of k-term progressions of primes whose common difference is a multiple of q. We have

∑

1≤n,d
n+(k−1)qd≤N

k−1∏

i=0

Λ(n+ iqd) =
∑

a∈[q]

∑

1≤n,d
n+(k−1)d≤N−a

q

k−1∏

i=0

Λ(q(n+ id) + a)

and are thus left with a system of the form qΨ + b with Ψ bounded.

We now provide some less immediate examples where Theorem 3.1 applies.

Example 1. What is the proportion of arithmetic progressions n+dN whose q1th,. . .,qkth

terms are all primes? Assume that qi = ⌊logi N⌋. The answer is given by

∑

1≤n,d≤N

k∏

i=1

Λ(n+ qid).

For this system, the factors βp can be easily expressed, using the notation h(p) for the

number of classes modulo p occupied by q1, . . . , qk, as

βp =

(
p

p− 1

)k (p− 1)(1 + p− h(p))

p2
.

Example 2. We can also count k-term arithmetic progressions of primes up to N whose

common difference is q = ⌊logN⌋ times a prime. This time the sum to consider is

∑

1≤n≤n+(k−1)qd≤N

Λ(d)
k−1∏

i=0

Λ(n+ iqd).

To simplify the expression of the local factors, assume
∏

p≤k p | q. Then

βp =

(
p

p− 1

)k+1 1

p2

{
(p− 1)2 if p | q

(p− 1)(p− k) if p ! q.

Example 3. We provide the asymptotic count of solutions to linear equations in the

shifted squarefree primes, that is, primes p for which p − 1 is squarefree. As it is not a

direct application, we give the details in the final section of this chapter.
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In view of the Siegel-Walfisz theorem (1.3), one may hope to write

∑

n∈Zd∩K

t∏

i=1

Λ(ψi(n)) = Vol(K)

(
∏

p

βp + od,t,A,B,L(1)

)

instead of the estimate (3.1), but unfortunately our method does not yield this. Such an

estimate is genuinely stronger than (3.1) given that
∏

p βp may well tend to infinity with

N , if the linear coefficients do. This weaker bound is ultimately due to the ineffectiveness

of the Gowers norm estimate in Proposition 2.14.

To prove Theorem 3.1, we first get rid of the convex body by decomposing it into

reasonably small boxes, so that the theorem simply needs to be proven on boxes. In this

context, the variables all have the same range and are independent of each other, which

makes it possible, after the introduction of the W -trick, to prove a suitable von Neumann

theorem. Indeed, as we shall see, the von Neumann theorem (Theorem 2.8) of Green and

Tao does not apply when the linear coefficients are unbounded.

3.1 First reductions

As discussed in Section 2.1, we may assume that ψi > N9/10 on K for each i and replace

Λ by Λ′. In the next proposition, analogous to Proposition 2.6, we check that the normal

form parametrisation goes through as usual in spite of the presence of large coefficients.

Proposition 3.2. Let d, t be positive integers and A,B, L be positive constants. Assume

Ψ = (ψ1, . . . ,ψt) : Zd → Zt is an admissible system in normal form. Suppose that ∥Ψ∥N ≤
L logB N and that K ⊂ [−N,N ]d is a convex body satisfying Vol(K) ≫ Nd log−AN and

Ψ(K) ⊂ [N9/10,+∞)t. Then

∑

n∈Zd∩K

t∏

i=1

Λ′(ψi(n)) = Vol(K)
∏

p

βp(1 + od,t,A,B,L(1)). (3.2)

Proof. This is a straightforward application of Proposition 2.5. Indeed, with the notation

of that proposition, we have ∥Ψ′∥N = ∥Ψ∥O(1)
N = O(logO(1)N) and K ′ ⊂ [−N ′, N ′] with

N ′ = O(N) and

Vol(K ′) ≫ N ′d log−D N ′

for some constant D. Finally, the local factors are left unchanged by this operation. In
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3.2. REDUCTION TO THE CASE OF A BOX

particular, if the system Ψ is admissible, so is Ψ′, so that Proposition 3.2 can be applied

to Ψ′ and K ′, which concludes the proof of the reduction.

3.2 Reduction to the case of a box

The convex body being potentially somewhat unbalanced, it is slightly awkward to handle,

as all variables do not have the same range. It is much more convenient when K = [1,M ]d

is a box, because in that case, the variables n1, . . . , nd have independent and equal ranges.

Fortunately, some simple geometric arguments allow one to decompose K into boxes, and

so to reduce Theorem 3.1 to the following statement. We introduce the notation ∥Ψ∥N,b =
1

logb N
∥Ψ∥N .

Proposition 3.3. Let d, t be positive integers and A, b, L be positive constants. Let Ψ =

(ψ1, . . . ,ψt) : Zd → Zt be an admissible system in normal form. Suppose that ∥Ψ∥M,b ≤ L

and that Ψ([M ]d) ⊂ [M9/10,+∞)t. Then

∑

n∈[M ]d

t∏

i=1

Λ′(ψi(n)) = Md
∏

p

βp (1 + od,t,b,L(1)) .

Proof that Proposition 3.3 implies Proposition 3.2. Let K ⊂ [−N,N ]d be a convex body

satisfying Vol(K) ≫ Nd log−A N . Let

K ′ = {x ∈ K | d(x, ∂K) ≥ N log−A−1N}

and

K ′′ = {x ∈ Rd | d(x,K) ≤ N log−A−1N}.

These are two convex bodies. The arguments from elementary convex geometry contained

in [45, Appendix A] allow one to infer that

Vol(K ′) = Vol(K) +O(Nd log−A−1N) = Vol(K)(1 + o(1)),

and similarly for K ′′. Now let M = N log−A−1N/
√
d and consider the grid (MZ)d. Let

B = {c + [M ]d | c ∈ J} be the collection of boxes defined by this grid that are included

in K, and let B′ = {c+ [M ]d | c ∈ J ′} be the collection of boxes defined by this grid that
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meet K. Note that

K ′ ∩ Zd ⊂
⋃

B∈B

B ⊂ K ∩ Zd ⊂
⋃

B∈B′

B ⊂ K ′′ ∩ Zd. (3.3)

The first inclusion is because if a box B from the grid meets K ′, then it is included in K.

Now let Ψ = (ψ1, . . . ,ψt) : Zd → Zt be a system of affine-linear forms of finite complex-

ity. Suppose that ∥Ψ∥M,b ≤ L and that Ψ([M ]d) ⊂ [M9/10,+∞)t. Equation (3.3) implies

that ∑

B∈B

∑

n∈B

∏

i∈[t]

Λ(ψi(n)) ≤
∑

n∈K∩Zd

∏

i∈[t]

Λ(ψi(n)) ≤
∑

B∈B′

∑

n∈B

∏

i∈[t]

Λ(ψi(n)). (3.4)

Now if B = c+ [M ]d with c ∈ Zd, letting Ψc = Ψ(c) + Ψ̇, we can write

∑

n∈B

∏

i∈[t]

Λ(ψi(n)) =
∑

n∈[M ]d

∏

i∈[t]

Λ(ψc,i(n)).

We check that the system Ψc satisfies ∥Ψc∥M,C = O(1) for some constant C. Indeed, the

linear coefficients are unchanged, and thus still of size O(logb N) = O(logb M), and the

constant coefficients are of size O(N logb N), hence O(M logA+b+1M). It follows that we

may take C = A + b + 1. Moreover, we have Ψc([M ]d) ⊂ [N9/10,+∞)t, so we can apply

Proposition 3.3. We note that the local factor βp,c corresponding to the system Ψc is in

fact independent of c, because the translation invariance of Z/pZ allows one to write

Ea∈(Z/pZ)d
∏

i∈[t]

ΛZ/pZ(ψi(a) + ψ̇i(c)) = Ea∈(Z/pZ)d
∏

i∈[t]

ΛZ/pZ(ψi(a + c))

= Ea∈(Z/pZ)d
∏

i∈[t]

ΛZ/pZ(ψi(a)).

Consequently, the application of Proposition 3.3 on the rightmost and leftmost sides of

equation (3.4) yields

|B|Md
∏

p

βp(1 + o(1)) ≤
∑

n∈K∩Zd

∏

i∈[t]

Λ(ψi(n)) ≤ |B′|Md
∏

p

βp(1 + o(1)). (3.5)

Because of the inclusions (3.3), we see that

Vol(K)(1 + o(1)) = Vol(K ′) ≤ |B|Md ≤ |B′|Md ≤ Vol(K ′′) = Vol(K)(1 + o(1)).
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Hence, we have |B|Md = Vol(K)(1 + o(1)) as well as |B′|Md = Vol(K)(1 + o(1)). To-

gether with the lower and upper bounds in (3.5), these asymptotics complete the proof of

Proposition 3.2.

3.3 The W -trick

In Section 2.2, we introduced W =
∏

p≤w p, for a sufficiently slowly increasing parameter

w = w(N), in order to deal with the biases induced by small primes. We put W̃ = WQ

for some parameter Q = O(logO(1) N) to deal with biases potentially introduced by larger

primes. A simple one-dimensional example shows that in our situation where coefficients

are unbounded, we really need such a carefully chosen Q. Indeed, consider the system

consisting of one form in one variable, namely n /→ qn + b, with q of size roughly logN .

The W -trick consists in writing

∑

n≤N

Λ(qn+ b) =
∑

a∈[W ]
(qa+b,W )=1

W

ϕ(W )

∑

n≤N/W

ϕ(W )

W
Λ(Wqn+ qa+ b).

But imposing that (qa+ b,W ) = 1 does not ensure that the inner sum is N/W (1 + o(1)),

because qa+b could well have a common factor greater than w with q: when the coefficients

are bounded, their factors are all less than w for large enough N , but this is no longer the

case in our setting. Moreover the relevant average is not W/ϕ(W ) but Wq/ϕ(Wq) which

may be different if q has prime factors larger than w.1 This suggests that the coefficients

of the system have to be taken into account when determining a suitable parameter W̃

instead of W .

We fix an admissible system Ψ1 = (ψ1, . . . ,ψt) : Zd1 → Zt1 in normal form satisfying

∥Ψ1∥M,B ≤ L for some constants B,L > 0. Let

Q =
∏

i∈[t1],j∈[d1]
ψ̇i(ej )̸=0

ψ̇i(ej)×
∏

1≤i<k≤t1
1≤j<ℓ≤d1

ψ̇i(ej)ψ̇k(eℓ)−ψ̇i(eℓ)ψ̇k(ej )̸=0

(ψ̇i(ej)ψ̇k(eℓ)− ψ̇i(eℓ)ψ̇k(ej)) (3.6)

1Nevertheless, it is easy to check using Mertens’ theorem that if w = log logN and q ≤ logB N that

Wq/ϕ(Wq) = (1 + oB(1))W/ϕ(W ).
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be the product of the nonzero minors of size 1 and 2 in the matrix (ψ̇i(ej))i,j; thus Q =

OL(log
Od,t,B(1) N). The proof of Lemma 2.2 reveals that if a prime p is exceptional for Ψ1,

then it must divide Q.

We will now state a W -tricked reduction of Theorem 3.3, in the same way that we

reduced Theorem 2.1 to Proposition 2.7. The latter reduction shows that it is enough to

prove ∑

n∈[M/W̃ ]d1

(
∏

i∈[t1]

Λ′
W̃ ,bi

(ψi(n))− 1) = o((M/W̃ )d1) (3.7)

for any b1, . . . , bt ∈ [W̃ ] coprime to W̃ .

We then use the trivial identity Λ′
W̃ ,bi

(ψi(n)) = (Λ′
W̃ ,bi

(ψi(n)) − 1) + 1 for each i.

This decomposes the left-hand side of equation (3.7) into 2t1 sums, each sum featuring a

subsystem of Ψ1, that is, a system Ψ′ = (ψi1 , . . . ,ψis) for some sequence 1 ≤ i1 < . . . <

is ≤ t1, whence the following reduction.

Proposition 3.4. Let Ψ0 = (ψ0
1, . . . ,ψ

0
t0) : Z

d0 → Zt0 be a subsystem of Ψ1. Suppose that

Ψ0([M ]d0) ⊂ ([M8/10,+∞))t0 and that bi ∈ [W̃ ] is coprime to W̃ for any i ∈ [t0]. Then

∑

n∈[M/W̃ ]d0

∏

i∈[t0]

(Λ′
W̃ ,bi

(ψ0
i (n))− 1) = o((M/W̃ )d0). (3.8)

3.4 Reduction to a Gowers norm estimate

Write X = M/W̃ and fix a system Ψ0 and a tuple b1, . . . , bt0 satisfying the conditions

of Proposition 3.4. If t0 = 1, this proposition follows directly from the one-dimensional

Siegel-Walfisz theorem (1.3), so we suppose that t0 ≥ 2. Let Q0 be the product of 2 × 2

minors for the system Ψ0 as defined by equation (3.6). In particular, Q0 | Q. We have to

prove that ∑

n∈[X]d

∏

i∈[t0]

Fi(ψ
0
i (n)) = o(Xd)

for Fi = Λ′
W̃ ,bi

− 1.

We would like to apply Theorem 2.8 at this point, in order to reduce the problem to the

Gowers-norm estimate (2.22). Unfortunately, Theorem 2.8 requires bounded coefficients

so we cannot apply it. The purpose of this section is therefore to prove a replacement for

Theorem 2.8.
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3.4.1 A pseudorandom majorant

Theorem 2.8 required some notion of pseudorandomness. In our setting, it turns out to be

convenient to modify this notion. Thus in this subsection, we introduce a variant of the

notion of a pseudorandom measure from Definition 2.6.

Recall that we have fixed an admissible system

Ψ0 = (ψ0
i )i∈[t0] : Zd0 −→ Zt0 .

First, we introduce the notion of a derived system. It captures the important properties

of those systems that arise from the original one by repeated applications of the Cauchy-

Schwarz inequality.

Definition 3.1. A system Ψ : Zd → Zt of affine-linear forms is said to be derived from Ψ0

if the following conditions are satisfied:

• d ≤ 2d0;

• t ≤ 2d0t0;

• ∥Ψ∥N,B ≪ ∥Ψ0∥N,B;

• any exceptional prime for Ψ divides Q0.

We are now able to propose our new definition of a pseudorandom measure.

Definition 3.2. We say that a function ν : [Z] → R+ satisfies the Ψ0-linear forms condition

if for any system Ψ = (ψ1, . . . ,ψt) derived from Ψ0 we have

En∈[Z]d

∏

i∈[t]

ν(ψi(n)) = 1 + o(1)

as Z → +∞. We also say that ν is a Ψ0-pseudorandom measure.

The next proposition is about the existence of a pseudorandom majorant for a W̃ -

tricked von Mangoldt function.

Proposition 3.5. For any integers b1, . . . , bt0 in [W̃ ] coprime to W̃ , for Z ≫ N log−O(1) N ,

there exists a Ψ0-pseudorandom measure ν on [Z] such that

1 + Λ′
W̃ ,b1

+ · · ·+ Λ′
W̃ ,bt0

≪ ν (3.9)
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on [Z3/5, Z].

The construction of the majorant was explained in Section 2.3. Its Ψ0-pseudorandomness

follows from Proposition 2.13.

3.4.2 Generalised von Neumann theorem

We now prove the announced variant of Theorem 2.8. The proof of this theorem [45,

Proposition 7.1] starts by embedding the convex body in a large discrete torus (Z/MZ)d

for M prime, in such a way that the convex body is dense in it and its image under Ψ

involves no “wrap-around”. This is impossible with unbounded coefficients.

Recall that Ψ0 : Zd0 → Zt0 is a fixed system of affine-linear forms in s-normal form;

thus without loss of generality, we can write its first form as

ψ1(n1, . . . , ns+1, y) = q1n1 + · · ·+ qs+1ns+1 + ψ1(0, y)

with qi ̸= 0 for all i and
∏

j∈[s+1] ψ̇i(ej) = 0 for all i > 1. Here y = (ns+2, . . . , nd) is the

projection of n ∈ Zd = Zs+1 × Zd−s−1 onto the second factor of the Cartesian product

and will not play as important a role as the first s + 1 variables. We have dropped the

superscript 0 from the forms of the system Ψ0 and shall always do so in the sequel. We

now state our variant of the von Neumann theorem [9, Theorem 5.2].

Theorem 3.6. Let f1, . . . , ft0 : Z → R be functions and ν be a Ψ0-pseudorandom measure

such that |fi| ≤ ν for all i. Then

|En∈[X]d

∏

i∈[t0]

fi(ψi(n))|

≤ |Ey∈[X]d−s−1En(0),n(1)∈[X]s+1

∏

ω∈{0,1}s+1

f1(
s+1∑

i=1

qin
(ωi)
i + ψ1(0, y))|1/2

s+1
+ o(1) (3.10)

We adapt the proof of Proposition 7.1” in [45]. To that aim, we need some notation.

For x ∈ Zs+1, and B ⊂ [s + 1], write xB = (xi)i∈B. For i ∈ [t], let Ω(i) ⊂ [s + 1] be the

subset of the first s+ 1 variables that ψi genuinely uses, that is, {j ∈ [s+ 1] | ψ̇i(ej) ̸= 0}.
Thus Ω(i) = [s + 1] if and only if i = 1. For B ⊂ [s + 1] and (x, y) ∈ Zs+1 × Zd−s−1, we

introduce

FB,y(xB) =
∏

i:Ω(i)=B

fi(ψi(xB, y))
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where we naturally view ψi as a linear map ZB × Zd−s−1 → Z. With this notation, the

left-hand side of equation (3.10) equals

|Ey∈[X]d−s−1Ex∈[X]s+1

∏

B⊆[s+1]

FB,y(xB)|. (3.11)

For the moment, we fix y ∈ [X ]d−s−1. For B = [s+ 1], in particular, we observe that

F[s+1],y(x[s+1]) = f1(
∑

i∈[s+1]

qixi + ψ(0, y)).

Similarly, we define

νB,y(xB) =
∏

i:Ω(i)=B

ν(ψi(xB, y)).

The functions FB,y and GB,y are both functions on the Cartesian product [X ]B. We think

of them as purely set-theoretic objects, ignoring the arithmetic background. We have the

bound

|FB,y| ≤ νB,y.

Next we define Gowers box norms [45, Appendix B] relative to the family (νB,y)B⊂[s+1] by

putting

∥G∥2|B|

!(νB,y)
= Ex(0),x(1)∈[X]B

∏

ω∈{0,1}B
F (x(ω))

∏

C"B

νC,y((x
(ωi)
i )i∈C)

for any B ⊂ [s + 1] and any function G : [X ]B → R. We now apply [45, Corollary B.4],

with A = [s+ 1] and Xα = [X ] for all α ∈ [s+ 1], which implies that

|Ex∈[X]s+1

∏

B⊆[s+1]

FB,y(xB)| ≤ ∥F[s+1],y∥!(ν[s+1],y)

∏

B"[s+1]

∥νB,y∥2
|B|−(s+1)

!(νB,y)
.

Averaging over y and using the triangle inequality, we bound expression (3.11) by

Ey∈[X]d−s−1∥F[s+1],y∥!(ν[s+1],y)

∏

B"[s+1]

∥νB,y∥2
|B|−(s+1)

!(νB,y) . (3.12)
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By Hölder’s inequality, in order to prove the bound (3.10), it suffices to show that

Ey∈[X]d−s−1∥F[s+1],y∥2
s+1

!(ν[s+1],y)

= Ey∈[X]d−s−1En(0),n(1)∈[X]s+1

∏

ω∈{0,1}s+1

f1

⎛

⎝
∑

i∈[s+1]

qin
(ωi)
i + ψ1(0, y)

⎞

⎠+ o(1) (3.13)

and that

Ey∈[X]d−s−1∥νB,y∥2
|B|

!(νB,y)
= 1 + o(1) (3.14)

for all non empty B ⊆ [s+ 1]. To prove the latter, expand the left-hand side as

Ey∈[X]d−s−1En(0),n(1)∈[X]B

∏

C⊆B

∏

i:Ω(i)=C

∏

ω∈{0,1}C
ν(ψi((n

(ωj)
j )j∈Ω(i), y)), (3.15)

which is an expression involving the average of ν on a system

Ψ = (ψi,ω)i∈[t0],ω∈{0,1}Ω(i) : Zd → Zt

of linear forms. Let us prove that this system is derived from Ψ0 in the sense of Definition

3.1, which will allow us to apply the linear forms condition of Definition 3.2 to the expression

(3.15). It easy to check that d ≤ 2d0 and t ≤ 2d0t0. It is also obvious that ∥Ψ∥M,B ≪
∥Ψ0∥M,B. Let p be an exceptional prime for Ψ and let us check that it divides Q0. Suppose

that ψi,ω ̸= ψk,α are two forms that are affinely related modulo p. Then if i ̸= k, we conclude

that ψi and ψk are related and thus the prime is exceptional for Ψ0, which implies that it

divides Q0. Otherwise i = k and thus ω ̸= α, in other words there exists j ∈ [d0] such that

ψ̇i(ej) ̸= 0 and ωj ̸= αj. Thus p must divide ψ̇i(ej) and hence also Q0. This concludes the

proof of the asymptotic (3.14).

It remains to verify (3.13). At this point, Green and Tao use the translation invariance

of Z/N ′Z to perform a change of variable which is not possible here, but we make do

without it. As the system is in normal form and t ≥ 2, the form ψ2 must also have its

set of s+ 1 variables that it is the only one to use fully. In particular, ψ1 does not use all

d variables. Without loss of generality, let us thus assume that ψ1 only uses x1, . . . , xd−k

where 1 ≤ k ≤ d− (s+1), which enables us, by a slight abuse of notation, to regard ψ1 as
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a map from Zd−k to Z. Upon expanding the norm, the left-hand side of (3.13) becomes

Ex(0),x(1)∈[X]s+1

y∈[X]d−k−s−1

∏

ω∈{0,1}s+1

f1

(
s+1∑

i=1

qix
(ωi)
i + ψ1(0, y)

)

Ez∈[X]k

∏

ω∈{0,1}s+1

∏

C"[s+1]

νC,(y,z)(x
(ωC)
C )

where (y, z) is the vector in Zd−s−1 obtained by concatenating y and z. We want to replace

the inner expectation over z, which is a function of (x(0), x(1), y) of average 1+ o(1), by the

constant 1. To do that, by Cauchy-Schwarz, it is enough to prove

Ex(0),x(1)∈[X]s+1

y∈[X]d−k−s−1

∏

ω∈{0,1}s+1

ν(
s+1∑

i=1

qix
(ωi)
i + ψ1(0, y)) = 1 + o(1) = O(1),

which follows directly from the linear forms condition, and

Ex(0),x(1)∈[X]s+1

y∈[X]d−k−s−1

∏

ω∈{0,1}s+1

ν

(
s+1∑

i=1

qix
(ωi)
i + ψ1(0, y)

)

|EzW (x, y, z)− 1|2 = o(1),

where W (x, y, z) =
∏

ϵ∈{0,1}s+1

∏
C"[s+1] νC,(y,z)(x

(ϵC)
C ). So it is enough to prove that

Ex(0),x(1)∈[X]s+1

y∈[X]d−k−s−1

∏

ω∈{0,1}s+1

ν

(
s+1∑

i=1

qix
(ωi)
i + ψ1(0, y)

)
(EzW (x, y, z))j = 1 + o(1)

for j = 0, 1, 2. Let us inspect the left-hand side in the most intricate case, namely j = 2,

the other cases being similar. Upon expanding the square, we get an expectation over

x(0), x(1), y, z(0), z(1), thus the system has at most 2d0 variables. There are 2s+1 forms

arising from ψ1 and at most 2s+2(t − 1) other forms, which means together at most 2d0t0

forms. Now the reasoning we used to analyse the average (3.15) also applies here and yields

that the system is derived from Ψ0. Thus the linear forms condition applies and equation

(3.13) is proven, hence also Theorem 3.6.

3.4.3 A Gowers norm estimate

Together with the existence of a pseudorandom majorant provided by Proposition 3.5,

Theorem 3.6 reduces Proposition 3.4 to the following.

Proposition 3.7. Let b ∈ [W̃ ] be coprime to W̃ . Let B > 0 and d ∈ N be constants.

Suppose that q1, . . . , qd are divisors of Q satisfying qi = O(logB N) while c = O(N logB N).
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Then we have

Ex(0),x(1)∈[X]d

∏

ω∈{0,1}d
(Λ′

W̃ ,b
(

d∑

i=1

qix
(ωi)
i + c)− 1) = o(1). (3.16)

Compared to Proposition 3.4, we have made progress in that each variable x(ϵ)
i for

i ∈ [d] and ϵ ∈ {0, 1} is affected throughout the system by one and the same coefficient qi.

We now attempt to transform the system so that all variables have the same coefficient

Q′; the price we pay is that the variables will no longer have the same ranges.

To this effect, we introduce

Qi =
∏

j ̸=i

qj

and variables n(ωi)
i , m(ωi)

i such that x(ωi)
i = Qin

(ωi)
i + m(ωi)

i . Then the left-hand side of

equation (3.16) decomposes as

E
m

(ωi)
i ∈[qi]

E
n
(ωi)
i ∈[X/qi]

∏

ω∈{0,1}d
(Λ′

W̃ ,b
(

d∑

i=1

Q′n(ωi)
i + qim

(ωi)
i + c)− 1) + o(1),

where Q′ = qiQi for any i.

Fix two d-tuples (m(0)
i ) and (m(1)

i ) in
∏

i∈[d][Xi] where Xi = X/qi. To prove Proposi-

tion 3.7, it suffices to prove that

E
n
(ωi)
i ∈[Xi]

∏

ω∈{0,1}d
(Λ′

W̃ ,b
(

d∑

i=1

Q′n(ωi)
i + qim

(ωi)
i + c)− 1) = o(1). (3.17)

We recognise the function

n /→ Fa(n) =
ϕ(W̃ )

W̃
Λ′(Q′W̃n+ a) = Λ′

Q′W̃ ,a
,

where the last equality holds because ϕ(W̃ )/W̃ = ϕ(W̃Q′)/(W̃Q′) as ϕ(x)/x depends only

on rad(x). The parameters a occurring are

aω = W̃ (
d∑

i=1

qim
(ωi)
i + c) + b.
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Given that (b, W̃ ) = 1, we also have (aω, W̃ ) = 1 and therefore (aω, W̃Q′) = 1. Now with

this notation, the left-hand side of equation (3.17) is

E
n
(ωi)
i ∈[Xi]

∏

ω∈{0,1}d
(Faω(

d∑

i=1

n(ωi)
i )− 1).

We observe that for any tuple a ∈ [W̃Q′]2
d
of integers coprime to W̃Q′, we can create a

common Ξ-pseudorandom majorant for the functions 1 + Faω , where Ξ = (ξω)ω∈{0,1}d is

defined by

ξω = (n(0)
1 , . . . , n(0)

d , n(1)
1 , . . . , n(1)

d ) /−→
d∑

i=1

n(ωi)
i .

In fact, thanks to Proposition 2.13, we can rewrite Proposition 3.5 with W̃Q′ instead of

W̃ , because Q′ still satisfies Q′ = O(logO(1)N).

We now prove the bound (3.17). Observe that each Xi satisfies N log−C N ≪ Xi ≤ N .

Letting Z = maxi Xi and K =
∏

i[Xi], we have K ⊂ [Z]d and Vol(K) ≫ Zd log−C′
Z.

Thus we can apply the same reasoning as in Section 3.2, where we approximated such a

convex body K by a set of small boxes with equal side lengths,2 and reduce to proving

that

En(0),n(1)∈[Y ]d

∏

ω∈{0,1}d
(Faω(

d∑

i=1

n(ωi)
i )− 1) = o(1) (3.18)

for some Y ≫ N log−D N . Now that the linear forms have bounded coefficients (namely

0 and 1) and the average is on a box with equal sides, there is no more objection to

the use of Green-Tao’s generalised von Neumann theorem [45, Proposition 7.1], as long

as the functions Λ′
Q′W̃ ,aω

− 1 are dominated by a pseudorandom measure in the sense of

Definition 2.6, which follows from Proposition 2.12. Thus equation (3.18) follows from the

claim that

∥Fa − 1∥Uk([Y ]) = ∥Λ′
Q′W̃ ,a

− 1∥Uk([Y ]) = o(1) (3.19)

for any a ∈ [Q′W̃ ] coprime to Q′W̃ . Equation (3.19) itself follows from Theorem 2.14.

This completes, at last, the proof of Theorem 3.1.

2The reader might object that we then used the positivity of the function to average, which is not
available here, but we can just as well use the majorant and the linear forms condition to bound the
contribution of the few boxes included in K ′′ but not in K ′.
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3.5 Application to linear equations in the set of primes

p such that p− 1 is squarefree

Theorem 1.2 actually holds in any dense subset of the primes [44]. That is, any subset

A of the set P of primes such that lim sup |A∩[N ]|
|P∩[N ]| > 0 contains arbitrarily long arithmetic

progressions. However, it is in general impossible to determine an asymptotic for the

number of k-term arithmetic progressions in A, except in the special case where A is the

intersection of P with a congruence class a mod b where (a, b) = 1: indeed, in that case,

we can apply Theorem 2.1 with the forms ψi(n, d) = a(n + (i − 1)d) + b for i ∈ [k]. In

this section, as an application of Theorem 3.1, we derive an asymptotic for arithmetic

progressions (or general linear configurations) inside a special subset A of the primes. The

set A we shall consider is the set of squarefree shifted primes, i.e. the primes p such that

p − 1 is squarefree. By a theorem of Mirsky [71], it is a dense subset of the primes, of

density
∑

a
µ(a)
ϕ(a2) =

∏
p(1− 1/p(p− 1)).

For convenience, let F be the von Mangoldt function restricted to the squarefree shifted

primes, that is F (n) = Λ(n + 1)µ2(n). We now state this section’s main theorem [9,

Proposition 7.1].

Theorem 3.8. Let Ψ : Zd → Zt be a system of affine-linear forms of finite complexity

and let K ⊂ [−N,N ]d be a convex body. Suppose that the linear coefficients are O(1),

the constants ones are O(N) and that Ψ(K) ⊂ Rt
+. Then there exists a constant C(Ψ)

(possibly equal to 0) such that

∑

n∈K∩Zd

∏

i∈[t]

F (ψi(n)) = C(Ψ)Vol(K) + o(Nd). (3.20)

The constant C(Ψ) will appear explicitly in the proof as a convergent series, but it is

possible to write it as a product

C(Ψ) =
∏

p

γp

where

γp =

(
p

p− 1

)t

Ea∈(Z/p2Z)d
∏

i∈[t]

1ψi(a)+1̸≡0 mod p1ψi(a)̸≡0 mod p2 .

As in Chapter 2 for local factors βp, it is easy to show that γp = 1 + O(p−2) when p

tends to infinity. We infer that C(Ψ) ̸= 0 unless there is some prime p such that for any

a ∈ (Z/p2Z)d, there is i ∈ [t] such that ψi(a) + 1 ≡ 0 mod p or ψi(a) ≡ 0 mod p2.
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Throughout the proof of this theorem, we will need the notation

αΨ(k1, . . . , kt) = Ea∈(Z/mZ)d
∏

i∈[t]

1ki|ψi(a) (3.21)

where m = lcm(k1, . . . , kt). According to Lemma A.2, we have

∑

n∈K∩Zd

∏

i∈[t]

1di|ψi(n) = Vol(K)αΨ(d1, . . . , dt) +O(Nd−1lcm(d1, . . . , dt)). (3.22)

We now prove Theorem 3.8.

Proof. We substitute the formula µ2(n) =
∑

a2|n µ(a) in the left-hand side of (3.20). Thus

∑

n∈K∩Zd

∏

i∈[t]

F (ψi(n)) =
∑

(a1,...,at)∈Nt

∏

i∈[t]

µ(ai)
∑

n∈K∩Zd

∀i∈[t] a2i |ψi(n)

∏

i∈[t]

Λ(ψi(n) + 1). (3.23)

Now for any a = (a1, . . . , at) ∈ Nt, we introduce the set

La = {n ∈ Zd : ∀i ∈ [t] a2i | ψi(n)}.

Fix an a for which La ̸= ∅ and let n0 ∈ La. Then

La = n0 +
t⋂

i=1

ker gi

where gi : Zd → Z/a2iZ is the group homomorphism obtained by applying ψ̇i and then

reducing modulo a2i . It follows that
⋂t

i=1 ker gi is a subgroup of Zd, that is, a lattice.

We can see that it is a lattice of full rank, because it contains {
∏

i a
2
i e1, . . . ,

∏
i a

2
i ed}.

By analogy with affine spaces, we think of La as an affine sublattice of Zd of direction
−→
La =

⋂t
i=1 ker gi

As a lattice of full rank, the direction
−→
La of La has a Z-basis: there exist f1, . . . , fd such

that

La = {n0 +
d∑

i=1

mifi | (m1, . . . , md) ∈ Zd}.

Because of a theorem of Mahler, we can assume that ∥fi∥ ≤ iλi for i = 1, . . . , d, where

λ1 ≤ · · · ≤ λd are the successive minima of the lattice
−→
La with respect to the Euclidean
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unit ball. Let Ra be the affine transformation of Rd defined by Ra(0) = n0 and Ṙa(ei) = fi

for each i ∈ [d]. Note that La∩K = Ra(Zd∩Ka), where Ka is also a convex body. For the

notions of geometry of numbers alluded to here, see for instance the notes of Green [41] or

the classic book of Cassels [20] (Chapters I and VIII).

Now if one of the ai is larger than logC N , thenKa is small. Indeed, the set of n ∈ K∩Zd

such that there exists i ∈ [t] and ai > logC N satisfying a2i | ψi(n) has O(Nd log−C N)

elements. This follows from equation (3.22) combined with the bound αψi(a
2
i ) ≪ a−2

i ,

deduced from Corollary A.4 and the fact that the coefficients of ψi are bounded, and

finally
∑

a>x a
−2 ≪ x−1. Bounding the contribution to the left-hand side of (3.23) of this

exceptional set of n ∈ K ∩ Zd using F ≪ log, and supposing that C ≥ 2t, we obtain

∑

n∈K∩Zd

∏

i∈[t]

F (ψi(n)) =
∑

n∈K∩Zd

∀i∈[t]∀a>logC N a2!ψi(n)

∏

i∈[t]

F (ψi(n)) +O(Nd log−C/2 N)

=
∑

1≤a1,...,at≤logC N

∏

i∈[t]

µ(ai)
∑

n∈K∩La

∏

i∈[t]

Λ(ψi(n) + 1)

+ O(Nd log−C/2N).

For each i ∈ [t], the map ψa
i : La → Z defined by

ψa
i (n) =

ψi(n)

a2i

is an affine map. Let φa
i = ψa

i ◦ Ra. These maps define a system Φa : Zd → Zt of affine-

linear forms which is again of finite complexity. Thus the inner sum on the right-hand side

of equation (3.23) may be written as

∑

n∈K∩La

∏

i

Λ(ψi(n) + 1) =
∑

m∈Ka∩Zd

∏

i

Λ(a2iφ
a
i (m) + 1). (3.24)

We now apply Theorem 3.1 to this expression. One can check that the linear coefficients of

Φa have size O(logO(1) N). To do this, it is enough to examine the size of the basis vectors

fj of the lattice
−→
La. Indeed,

a2i |φ̇a
i (ej)| = |ψ̇i(fj)| ≤ ∥ψ̇i∥∥fj∥ ≪ ∥fj∥.
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Moreover, the constant coefficients are O(N). As observed, if n0 ∈ La, the lattice

{n0 +
∑

i∈[d]

kia
2
i ei | k ∈ Zd}

is a sublattice of La and its determinant is
∏

i a
2
i ≤ log2dC N . Hence using Minkowski’s

second theorem [20, Chapter VIII], one finds that

∏

i∈[d]

∥fi∥ ≤ d!
∏

i∈[d]

λi ≪d |detLa| ≤ log2dC N.

Similarly, we obtain the bound

Vol(Ka) = Vol(K) det(Ra)−1 ≥ Vol(K) log−2dC N.

Now Theorem 3.1 tells us that the right-hand side of (3.24) is equal to Vol(Ka)
∏

p βp(1+

o(1)) as soon as none of the local factors βp(a) corresponding to the system of forms

a2iφ
a
i + 1 vanishes. Note that if any βp(a) is 0, then for all m there exists i ∈ [t] such that

p | a2iφa
i (m) + 1. Then it is easy to see that

∑

m∈Ka∩Zd

∏

i

Λ(a2iφ
a
i (m) + 1) = O(Nd−1 logO(1)N).

Moreover, equation (3.22) reveals that

Vol(Ka) = |Ka ∩ Zd|+O(Nd−1)

= |K ∩ La|+O(Nd−1)

= Vol(K)αΨ(a
2
1, . . . , a

2
t ) +O(Nd−1 logO(1)N).

Thus, up to an error term of size O(Nd log−C/2N), the left-hand side of equation (3.20)

equals

Vol(K)(1 + o(1))
∑

1≤a1,...,at≤logC N

αΨ(a
2
1, . . . , a

2
t )
∏

p

βp(a)
∏

i∈[t]

µ(ai). (3.25)

We claim that the sum over a is absolutely convergent. To see this, first observe that the

exceptional primes for the system of forms a2iφ
a
i +1 are divisors of a2i or exceptional primes

for the system Φa; in either case, they are divisors3 of a parameter Q(a) = O(
∏

i a
O(1)
i ).

3See the proof of Lemma 2.2.
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For all other primes, we have βp = 1 +O(p−2) by Lemma 2.3, so that

∏

p

βp(a) ≪
∏

p|Q(a)

βp(a) ≤
(

Q(a)

ϕ(Q(a))

)t

≪ (log logQ(a))t ≪ (log log
∏

i

ai)
t.

Next, note that the sum

∑

a1,...,at

(log log
∏

i

ai)
tαΨ(a

2
1, . . . , a

2
t )

is convergent. Indeed, we have the bound

αΨ(a
2
1, . . . , a

2
t ) =

∏

p

αΨ(p
2vp(a1), . . . , p2vp(at)) ≪

∏

p

p−2vp(maxi ai)

= lcm(a1, . . . , at)
−2,

where the inequality holds because the forms ψi have bounded linear coefficients and if

p ! ψi, then αψi(p
k) ≤ p−k (this is Corollary A.4). The convergence of the sum over a in

equation (3.25) then follows from a trivial bound for the number of t-tuples a of prescribed

least common multiple k, namely τ(k)t. This convergence result implies that

∑

1≤a1,...,at≤logC N

αΨ(a
2
1, . . . , a

2
t )
∏

p

βp(a)
∏

i∈[t]

µ(ai) = C(Ψ) + o(1),

where

C(Ψ) =
∑

(a1,...,at)∈Nt

αΨ(a
2
1, . . . , a

2
t )
∏

p

βp(a)
∏

i∈[t]

µ(ai).

This concludes the proof.
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Chapter 4

Asymptotics for some polynomial

patterns in the primes

This chapter is based on the author’s publication [10]. It draws heavily on Matthiesen’s

paper on linear correlations of binary quadratic forms [68]. The author is thankful to Sean

Prendiville for suggesting the problem.

4.1 The main theorem

The motivation for this chapter stems from the desire to derive asymptotics for polynomial

configurations. In general, the Green-Tao method of deriving asymptotics for prime tuples

does not work when linear systems are replaced by polynomial ones. In spite of this,

the present chapter proposes an asymptotic for very specific polynomial configurations of

primes, namely arithmetic progressions whose common difference is a sum of two squares,

or more generally a number represented by a given quadratic forms. We introduce some

terminology before stating our result. A binary quadratic form is a polynomial

f(x, y) = ax2 + bxy + cy2

where a, b and c are integers. Its discriminant is D = b2 − 4ac. A positive definite binary

quadratic form (abbreviated as PDBQF) is a binary quadratic form of negative discriminant

satisfying a > 0. The representation function of f is the arithmetic function defined by

Rf (n) = |{(x, y) ∈ Z2 | f(x, y) = n}|.
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A function of the form Rf for some PDBQF f is called a quadratic representation function.

For any integers q and β, we let

ρf,β(q) = |{(x, y) ∈ [q]2 | f(x, y) ≡ β mod q}|.

We are now ready to state this chapter’s main result [10, Theorem 1.2].

Theorem 4.1. Let Ψ = (ψ1, . . . ,ψt+s) : Zd → Zt+s be a system of affine-linear forms

of finite complexity. Suppose that the coefficients of the linear part Ψ̇ are bounded1 by

some constant L. Let K ⊂ [−N,N ]d be a convex body such that Ψ(K) ⊂ [0, N ]t+s. Let

ft+1, . . . , ft+s be PDBQFs of discriminants Dj < 0 for j = t+ 1, . . . , t+ s. Then

∑

n∈Zd∩K

t∏

i=1

Λ(ψi(n))
t+s∏

j=t+1

Rfj (ψj(n)) = β∞
∏

p

βp + o(Nd),

where

β∞ = Vol(K)
t+s∏

j=t+1

2π√
−Dj

and

βp = lim
m→+∞

Ea∈(Z/pmZ)d

t∏

i=1

ΛZ/pZ(ψi(a))
t+s∏

j=t+1

ρfj ,ψj(a)(p
m)

pm
.

As in Theorem 2.1, the error term is non effective and the implied decaying function

depends on d, t, s, L and the discriminants. For each prime p, we call βp the local factor

modulo p. Like in the previous chapters, the quantities βp are called local factors. The

existence of the limit as m tends to infinity that defines it is proven in Proposition B.1; the

convergence of the infinite product
∏

p βp is a consequence of Lemma B.3. The technical

proofs of these facts are postponed to appendices in order not to disrupt the flow of the

argument.

Two important special cases arise when s = 0 or t = 0, that is, when the functions

featuring are either all equal to the von Mangoldt function, or all quadratic representation

functions. Then one of the products is trivial.

• When s = 0, one immediately recovers the result of Green and Tao [45, Main Theo-

1One can check that the condition that the system has bounded size at scale N is equivalent to the
boundedness of the linear part together with the condition on the image of K used in the previous chapter.
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rem]. Indeed, for m ≥ 1, we have

Ea∈(Z/pmZ)d

t∏

i=1

ΛZ/pZ(ψi(a)) = Ea∈(Z/pZ)d

t∏

i=1

ΛZ/pZ(ψi(a))

so that

βp = Ea∈(Z/pZ)d

t∏

i=1

ΛZ/pZ(ψi(a)).

• When t = 0, Theorem 3.1 boils down to the formula of Matthiesen [68, Theorem 1.1].

Sometimes one can get an asymptotic even when the system has infinite complexity,

but the asymptotic takes a completely different form then. For instance it is easy to see

that ∑

n≤N

Λ(n)R(n) ∼ 8
∑

p≤N
p≡1 mod 4

log p ∼ 4N

by Fermat’s theorem on sums of two squares and the prime number theorem in arithmetic

progressions. We do not address such systems in this paper.

4.2 Special cases

Our first application concerns arithmetic progressions in the primes whose common differ-

ence is required to be a sum of two squares. It shows that the Green-Tao theorem (case

s = 0 of Theorem 3.1) holds not only for linear systems, but also for some – admittedly

very specific – polynomial systems. Here R and ρ (see Section 4.1) will implicitly refer to

the form f(x, y) = x2 + y2 whose discriminant is −4.

Corollary 4.2. Let k ≥ 1 be an integer and let

L = {(a, b, c) ∈ R3 | 1 ≤ a ≤ a+ (k − 1)(b2 + c2) ≤ N}.

Let Ψ = (ψ0, . . . ,ψk−1) ∈ Z[a, b, c]k be the polynomial system defined by

ψi(a, b, c) = a+ i(b2 + c2).

Then
∑

n∈Z3∩L

k−1∏

i=0

Λ(ψi(n)) = β∞
∏

p

βp + o(N2), (4.1)
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where β∞ = Vol(L) and

βp = En∈(Z/pZ)3

k−1∏

i=0

ΛZ/pZ(ψi(n)). (4.2)

Proof of Corollary 4.2 assuming Theorem 3.1. We note that the left-hand side of equa-

tion (4.1) can be written as

∑

(a,d)∈Z2∩K

Λ(a)Λ(a+ d) · · ·Λ(a+ (k − 1)d)R(d), (4.3)

where K = {(a, d) ∈ R2 | 1 ≤ a ≤ a + (k − 1)d ≤ N} is a convex body in R2. Applying

Theorem 3.1 to this convex body and the system (a, d) /→ (a, a + d, . . . , a + (k − 1)d, d),

which is of finite complexity, we get

∑

n∈Z3∩L

k−1∏

i=0

Λ(ψi(n)) = β∞
∏

p

βp + o(N2), (4.4)

with β∞ = π N2

2(k−1) and

βp = lim
m→∞

E(a,d)∈(Z/pmZ)2
ρd(pm)

pm

(
p

φ(p)

)k k−1∏

i=0

1(a+id,p)=1.

It is easy to see that Vol(L) = β∞. It remains to prove that the local factors are of the

form (4.2). First, observe that

E(a,d)∈(Z/pmZ)2
ρd(pm)

pm

k−1∏

i=0

1(a+id,p)=1 = E(a,b,c)∈(Z/pmZ)3

k−1∏

i=0

1(a+i(b2+c2),p)=1. (4.5)

Now let a /→ ã be the canonical map Z/pmZ → Z/pZ. We notice that it is a pm−1-to-1

map and that (a+ i(b2 + c2), p) = 1 if and only if (ã + i(b̃2 + c̃2), p) = 1. Hence

E(a,b,c)∈(Z/pmZ)3

k−1∏

i=0

1(a+i(b2+c2),p)=1 = E(a,b,c)∈(Z/pZ)3

k−1∏

i=0

1(a+i(b2+c2),p)=1

does not depend on m, and the local factors are of the desired form.

Corollary 4.2 now appears as a special case of a posterior result of Tao and Ziegler [88,

Theorem 1.4]. However, our result is more robust in the following sense. Although we do
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not formally prove it here, an adaptation of our method can deal with a variant where L

is replaced by

[1, N ]× {(b, c) ∈ R2 | b2 + c2 ≤ N log−AN} ⊂ [1, N ]× [−
√
N log−A/2N,

√
N log−A/2N ]2

for any constant A > 0, thus we could allow the step of the progression to be markedly

smaller than the terms of the progression. Indeed, in the proof above, this change amounts

to replacing K ∩ Zd with [N ] × [N log−AN ] in equation (4.3). To handle equation (4.3)

then, we can proceed as in Chapter 3. In contrast, Tao and Ziegler’s method cannot restrict

b and c to such a small range.

Let us now compute explicitly the local factors βp. Suppose first that p ≥ k. We remark

that

βp =

(
p

p− 1

)k 1

p

∑

a∈(Z/pZ)∗
(1−

k−1∑

i=1

P(b,c)∈(Z/pZ)2(b
2 + c2 ≡ −ia mod p)),

where i is the inverse of i modulo p. Moreover, for any a ∈ (Z/pZ)∗, setting e(x) =

exp(2iπx) as customary, we have

|{(b, c) ∈ (Z/pZ)2 | b2 + c2 ≡ a mod p}| =
∑

(b,c)∈(Z/pZ)2

1

p

∑

h∈Z/pZ

e

(
h(b2 + c2 − a)

p

)

=
1

p

⎛

⎝
∑

h∈(Z/pZ)∗
e

(
−ha

p

)⎛

⎝
∑

b∈Z/pZ

e

(
hb2

p

)⎞

⎠
2

+ p2

⎞

⎠

=

⎧
⎪⎨

⎪⎩

p− 1 if p ≡ 1 mod 4

p+ 1 if p ≡ −1 mod 4

p if p = 2.

The last equality follows from the classical computation of Gauss sums (see [55, 3.38]).

For p ≥ k, this leads to

βp =

⎧
⎪⎨

⎪⎩

(
1 + 1

p−1

)k (
1− k

p + 2k−1
p2 − k−1

p3

)
if p ≡ 1 mod 4

(
1 + 1

p−1

)k (
1− k

p +
k−1
p3

)
if p ≡ −1 mod 4.
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It is easy to compute the local factors for p ≤ k, namely

βp =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
p

p−1

)k
(p−1)(2p−1)

p3 if p ≡ 1 mod 4
(

p
p−1

)k
p−1
p3 if p ≡ −1 mod 4

2k−2 if p = 2.

We notice that βp is nonzero for every p and that βp = 1 + O(p−2). It follows that
∏

p βp

is a nonzero convergent product. We prove in Lemma B.3 that the product of the local

factors is always convergent for systems of finite complexity.

Corollary 4.2 counts the number of weighted arithmetic progressions of primes up to

N whose common difference is a sum of two squares, each such arithmetic progression

being weighted by the number of representations of the common difference. It would be

interesting to count these progressions without the weight, but it is not possible to derive

such a count from Corollary 4.2.

In general, the only polynomial patterns we are able to deal with are the ones which

can be converted into linear patterns using quadratic representation functions, as in the

proof of Corollary 4.2. The ability to deal with arithmetic progressions whose common

difference is a sum of two squares as if they were a linear pattern is reminiscent of a result

of Green [37]: he proved that if a set A ⊂ [N ] does not contain any such progressions of

length 3, then |A| ≪ N(log logN)−c for some c > 0.

Theorem 3.1 can yield many further asymptotics for the number of solutions to equa-

tions in primes and sums of squares, some of which are not covered by Tao and Ziegler

[88]. In particular, one can count asymptotically (with multiplicity) progressions in the set

of sums of two squares whose common difference is a prime. Such an asymptotic is given

by the sum

∑

1≤n≤n+(k−1)d≤N

k−1∏

i=0

R(n+ id)Λ(d),

where R is again the representation function of sums of two squares. The system of linear

forms at hand is of finite complexity, so Theorem 3.1 applies.

We claim, but do not formally prove, that our method yields a result similar to Theorem

3.1 with the divisor function τ instead of the representation functions Rfi . In fact, this

result is easier to prove, since the treatment of the representation function of a binary

quadratic form by Matthiesen [68] relies on her earlier paper on the divisor function [66].
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Theorem 4.3. Let Ψ = (ψ1, . . . ,ψt+s) : Zd → Zt+s be a system of affine-linear forms of

finite complexity. Suppose that the coefficients of the linear part Ψ̇ are bounded by L. Let

K ⊂ [−N,N ]d be a convex body such that Ψ(K) ⊂ [0, N ]t+s. Write Φ = (ψt+1, . . . ,ψt+s)

and Φ̇ for the linear part. Then

∑

n∈Zd∩K

t∏

i=1

Λ(ψi(n))
t+s∏

j=t+1

τ(ψj(n)) = (logN)sβ∞
∏

p

βp + od,t,s,L(N
d logs N),

where

β∞ = Vol(K)

and

βp =

(
p

p− 1

)t−s

Ea∈[p]d

t∏

i=1

1(ψi(a),p)=1

∑

(k1,...,ks)∈Ns

αΦa,p(p
k1 , . . . , pks)

with Φa,p : b /→ Φ(a) + pΦ̇(b) and α as in Definition A.1.

This theorem provides an asymptotic for the number of triples of nonnegative integers

(a, b, c) such that a, a+ bc, a+2bc are primes. This is again a polynomial pattern of degree

2; in fact, τ can be viewed as the representation function of the bilinear form (x, y) /→ xy.

We can obtain a result similar to Corollary 4.2. We let

L = {(a, b, c) ∈ [1,+∞[3| a+ (k − 1)bc ≤ N}.

This is not a convex body, but we have Vol(L) ∼ |L ∩ Z3| ∼ N2 logN/(k − 1). It is not

difficult to deduce from Theorem 4.3 that

∑

(a,b,c)∈L∩Z3

t−1∏

i=0

Λ(a+ ibc) = Vol(L)
∏

p

βp + o(N2 logN)

with

βp =
t−1∏

i=0

ΛZ/pZ(a+ ibc).

Again, this result has the same shape as the Green-Tao theorem although the configuration

involved is nonlinear.

We remark that the idea of mixing Λ and τ is quite old. Titchmarsh [91] considered
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sums such as ∑

p≤N

τ(p+ a)

or equivalently ∑

n≤N

Λ(n)τ(n+ a)

for a ∈ Z. Assuming the Riemann hypothesis, he proved that that

∑

n≤N

Λ(n)τ(n+ a) = c1(a)N logN +O(N log logN)

for some explicit constant c1(a). The result was proven unconditionally by Linnik [63].

Fouvry [30] proved the refined asymptotic formula

∑

n≤N

Λ(n)τ(n+ a) = c1(a)N logN + C2(a)Li(N) +OA(N(logN)−A)

for any A > 0. Notice that this problem does not belong to the scope of our method,

because the involved linear system is of infinite complexity.

We also mention that Matthiesen, together with Browning [17], was able to generalise

her result about quadratic forms to norm forms originating from a number field. This

implies a generalisation of Theorem 3.1, but we refrain, for the sake of simplicity, from

inspecting this general case.

4.3 Overview of the general strategy

We now turn to a proof of the main theorem, Theorem 3.1. The proof follows the usual

Green-Tao method, as sketched in Chapter 2. In Section 4.4.2, we perform the W -trick to

mitigate the preference of the von Mangoldt function and the representation function for

some residue classes. Because of the notably different behaviours of these functions with

respect to arithmetic progressions, this is a delicate matter.

On the one hand, the uniformity property of the von Mangoldt function holds for

congruence classes to moduli q of size O(logO(1)N), which sets a bound on the size of a

tolerable W . On the other hand, to “uniformise” the representation function of a quadratic

form, we need to pass to congruence classes qn + b where q is divisible by large prime

powers and b is nonzero modulo any of these prime powers. This generates a conflict that
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we carefully resolve.

Assuming some convergence properties of the local factors, which we prove in Appendix

B, the implementation of the W -trick reduces the main theorem to Theorem 4.7, which is

the statement that a multilinear average

En∈Zd∩K(F0(ψ0(n))− 1)
t∏

i=1

Fi(ψi(n))

is asymptotically o(1). Thanks to a generalised von Neumann theorem, it suffices to

ensure that F0 − 1 has small Gowers uniformity norm and that all the functions Fi and

F0 − 1 are bounded by a common enveloping sieve or pseudorandom majorant. This is

another novelty of our result: while individual pseudorandom majorants for Λ and for Rf

were known before [10], we needed to construct a common one that works for Λ and Rf

simultaneously.

We remark that although we want to prove a result concerning quadratic and not

linear patterns in the primes, we do not need the pseudorandom majorant to satisfy the

polynomial forms condition introduced in [88]. This is because the polynomial character of

our configurations is encapsulated in the representation functions of the quadratic forms.

4.4 Proof of Theorem 3.1

We fix some arbitrarily large integer N , so that our asymptotic results are valid in the

limit where N tends to infinity. We use the notation [N ] for the set of the first N integers.

Many of the parameters introduced in the sequel implicitly depend on N (such as the

convex body K, the map p /→ ι(p), the numbers w,W,W , the set X0...).

4.4.1 Elimination of a negligible set

We start our proof by taking care of a technicality. We would like to eliminate slightly

awkward integers from the support of the von Mangoldt and the representation functions.

In fact, as already noticed in Chapter 2, it will turn out handy to exclude prime powers and

small primes from the support of Λ, so we introduce Λ′ = 1P\[N2γ ] log, for some constant

γ ∈ (0, 1/2) to be fixed later. It coincides with Λ on the bulk of its support up to N ,

namely large primes.

Similarly, there is a fairly sparse subset X0 ⊂ [N ], depending on some constants C1 > 0
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and γ > 0, on which the divisor function and the representation function behave abnor-

mally, so that our process of majorising by a pseudorandom measure (carried out in Section

4.5) fails there. We recall the following definition originating from [66] and taken up in

[68].

Definition 4.1. Let γ = 2−k for some k ∈ N to be decided later, and let C1 > 1. We

define X0 = X0(γ, C1, N) to be the set containing 0 and the set of positive integers n ≤ N

satisfying one of the following.

1. n is excessively “rough”, i.e. divisible by some large prime power pa > logC1 N with

a ≥ 2, or

2. n is excessively smooth in the sense that if n =
∏

p p
ap then

∏

p≤N(1/ log logN)3

pap ≥ Nγ/ log logN

or

3. n has a large square divisor m2 | n that satisfies m > Nγ .

We will settle on values for γ and k later. The constant γ is the same as that introduced

at the end of Chapter 2, where it had to be small enough for Proposition 2.13 to hold. We

will find in the current chapter a further smallness condition it needs to satisfy.

The following lemma, which is Lemma 3.2 from [68], itself a synthesis of Lemmas 3.2

and 3.3 from [66], shows how negligible this set is.

Lemma 4.4. For Ψ and K as in Theorem 3.1, we have

En∈K∩Zd

t+s∑

i=t+1

1ψi(n)∈X0 ≪γ,d,s log
−C1/2N.

This enables us to state the next lemma, which allows us to ignore X0 altogether. For

any PDBQF f , we use to the notation Rf (n) to denote 1n/∈X0Rf (n).

Lemma 4.5. If the parameter C1 in Definition 4.1 is large enough, and for any choice of

the constant γ ∈ (0, 1/2), Theorem 3.1 holds if and only if, under the same conditions, we

have
∑

n∈K∩Zd

t∏

i=1

Λ′(ψi(n))
t+s∏

j=t+1

Rfj(ψj(n)) = β∞
∏

p

βp + o(Nd). (4.6)
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Proof. We first show that

∑

n∈K∩Zd

∃j∈[[ t+1 ; t+s ]] : ψj(n)∈X0

t∏

i=1

Λ(ψi(n))
t+s∏

j=t+1

Rfj (ψj(n)) = o(Nd),

where we introduced the notation [[ t+1 ; t+ s ]] = {t+1, . . . , t+ s}. We get rid of the von

Mangoldt factors by bounding their product by logtN . Then we use the Cauchy-Schwarz

inequality followed by the triangle inequality, which implies that

⎛

⎜⎜⎝
∑

n∈K∩Zd

∃j∈[[ t+1 ; t+s ]] : ψj(n)∈X0

t+s∏

j=t+1

Rfj (ψj(n))

⎞

⎟⎟⎠

2

≤
∑

n∈K∩Zd

(
t+s∏

j=t+1

Rfj (ψj(n))

)2 ∑

n∈K∩Zd

t+s∑

j=t+1

1ψj(n)∈X0 .

Finally, we use Lemma 3.1 of [68] which ensures that the first factor is O(Nd logOs(1)N),

while the second one is O(Nd log−C1/2N) according to Lemma 4.4, so that taking C1 larger

than 2(t+Os(1)), we have the result.

To replace Λ by Λ′, we remark that for each i ∈ [t], the number of n ∈ K∩Zd such that

ψi(n) ≤ N2γ is O(Nd−1+2γ), while the number of n ∈ K ∩ Zd such that ψi(n) is a prime

power and not a prime is O(Nd−1 logN
√
N). Using Cauchy-Schwarz or even pointwise

bounds such as the divisor bound Rfj (n) ≪ τ(n) ≪ϵ N ϵ, we conclude the proof of Lemma

2.2.

From now on we will drop the bar, so that Rf coincides with the actual representation

function of f on [N ] \X0 and is 0 on X0.

4.4.2 Implementation of the W -trick

Recall that when performing the W -trick in Chapter 2, we had allowed some freedom in

the precise choice of the modulus W̃ , which will come in handy. As already mentioned, the

representation functions of quadratic forms require large prime powers to be incorporated

into W̃ . We therefore introduce a new modulus

W =
∏

p≤w

pι(p),
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where ι(p) is defined by

pι(p)−1 < logC1+1N ≤ pι(p) (4.7)

for some C1 large enough as in Lemma 4.5. We observe that

W ≤
∏

p≤w

p logC1+1N ≪ exp((C1 + 2)w log logN)),

which is less than any power of N . In particular, we can ensure that W < Nγ − 1 by

choosing N large enough. Notice that for N large enough and p ≤ w(N) = log log logN ,

we always have ι(p) ≥ 2.

Of course, W is larger than any power of logN , hence outside of the range of the

Siegel-Walfisz theorem and as a result, we cannot claim that ∥Λ′
W,b

−1∥U t = o(1), not even

for t = 1. We will make do without this bound.

Following Matthiesen [68, Definition 7.2], we define

r′f,b(m) =

√
−D

2π

W

ρf,b(W )
Rf (Wm+ b), (4.8)

for any b such that ρf,b(W ) > 0, and if ρf,b(W ) = 0, we define r′f,b(m) to be 0. By

construction, Rf (n) equals 0 in the case where n ∈ X0, in particular in the case where

n ≡ 0 mod pι(p) with p ≤ w(N). Hence, r′f,b = 0 if b ≡ 0 mod pι(p). Moreover (see [68,

Definition 7.2]) for b ̸≡ 0 mod pι(p) and any p ≤ w(N) satisfying ρf,b(W ) ̸= 0, we have

En≤Mr′f,b(n) = 1 +O(W
3
M−1/2).

This average in arithmetic progressions relies on elementary convex geometry and is valid

uniformly in the modulus, in sharp contrast with the analogous result for primes, the

Siegel-Walfisz theorem (1.3).

We now decompose the left-hand side of (4.6) into sums over congruence classes as in

Proposition 2.7. Letting

F (n) =
t∏

i=1

Λ′(ψi(n))
t+s∏

j=t+1

Rfj (ψj(n)),
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we can write the left-hand side of (4.6) as

∑

n∈Zd∩K

F (n) =
∑

a∈[W ]d

∑

n∈Zd∩Ka

F (Wn + a), (4.9)

where

Ka = {x ∈ Rd | Wx+ a ∈ K}

is again a convex body. Moreover, for j ∈ [t+s], we can write ψj(W̃n+a) = W̃ ψ̃j(n)+cj(a)

where cj(a) ∈ [W ] and ψ̃j is an affine-linear form differing from ψj only in the constant

term. We remark that if ψi(a) is not coprime to W for i ∈ [t], or if ρfj ,ψj(a)(W ) = 0 or

ψj(a) ≡ 0 mod pι(p) for some j ∈ [[ t + 1 ; t + s ]] and some prime p ≤ w(N), then for each

n ∈ Ka ∩ Zd we have F (Wn + a) = 0 (even if (ψi(a),W ) > 1, the integer ψi(a) could

still be a prime p ≤ w(N) < Nγ , but given that primes smaller than Nγ are not in the

support of Λ′, we still have F (Wn + a) = 0). Thus the residues a which make a nonzero

contribution to the right-hand side of (4.9) are all mapped by Ψ to tuples (b1, . . . , bt+s)

belonging to the following set.

Definition 4.2. We denote by Bt,s the set of residues b ∈ [W ]t+s such that

1. for any i ∈ [t], (bi,W ) = 1;

2. for any j ∈ [[ t+ 1 ; t + s ]] and any prime p ≤ w(N), we have bj ̸≡ 0 mod pι(p);

3. for any j ∈ [[ t+1 ; t+ s ]], bj is representable by fj modulo W , that is, ρfj ,bj(W ) > 0.

Moreover, for an affine-linear system Ψ : Zd → Zt+s, we define AΨ to be the set of all

a ∈ [W ]d such that (ci(a))i∈[t+s] ∈ Bt,s. We recall that ci(a) is the reduction modulo W in

[W ] of ψi(a); we also denote by c(a) the vector (ci(a))i∈[t+s]. We usually drop the subscripts

on Bt,s and AΨ when there is no ambiguity.

Now we rewrite equation (4.9) as

∑

n∈Zd∩K

F (n) =
∑

a∈AΨ

(
W

ϕ(W )

)t t+s∏

j=t+1

2π√
−Dj

ρfj ,ψj(aj )(W )

W

∑

n∈Ka∩Zd

F ′
a(n)

=
t+s∏

j=t+1

2π√
−Dj

∑

a∈[W ]d

Q(a)
∑

n∈Ka∩Zd

F ′
a(n),
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where

Q(a) =
t∏

i=1

ΛZ/WZ(ψi(a))
t+s∏

j=t+1

ρfj ,ψj(a)(W )

W
1∀p≤w,ψj(a)̸≡0 mod pι(p), (4.10)

and

F ′
a(n) =

t∏

i=1

Λ′
W,ci(a)

(ψ̃i(n))
t+s∏

j=t+1

r′fj ,cj(a)(ψ̃j(n)).

In equation (4.10), we have used the notation ΛZ/WZ for the local von Mangoldt function

introduced in equation (1.2).

Furthermore, we use the identity

F ′
a(n) =

t∏

i=1

Λ′
W,ci(a)

(ψ̃i(n)) +
t+s∑

j=1+t

(r′fj ,cj(a)(ψ̃j(n))− 1)F ′
a,j(n),

where

F ′
a,j(n) =

∏

k<j

r′fk,ck(a)(ψ̃k(n))
t∏

i=1

Λ′
W,ci(a)

(ψ̃i(n)).

Thus, equation (4.9) yields

(
t+s∏

j=t+1

2π√
−Dj

)−1 ∑

n∈Zd∩K

F (n) = T1 + T2, (4.11)

where

T1 =
∑

a∈[W ]d

Q(a)
∑

n∈Zd∩Ka

t∏

i=1

Λ′
W,ci(a)

(ψ̃i(n)) (4.12)

and

T2 =
t+s∑

j=t+1

∑

a∈A

Q(a)
∑

n∈Zd∩Ka

(r′fj ,cj(a)(ψ̃j(n))− 1)F ′
a,j(n). (4.13)

Here, the first term is expected to be the main term, of the order of magnitude of

Vol(K). The second one, which involves the difference of a W -tricked representation func-

tion to its average 1, is expected to be negligible, that is, o(Nd).
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4.4.3 Analysis of the main term

To deal with the main term (4.12), we would ideally like to claim that the inner sum

satisfies
∑

n∈Zd∩Ka

t∏

i=1

Λ′
W,ci(a)

(ψ̃i(n)) = Vol(Ka) + o((N/W )d).

Unfortunately, W is too large for that, even for the case where t = 1.

If we were able to lower the prime powers pι(p) ≈ logC1 N involved in W to smaller

prime powers pη(p) ≈ log logN , the resulting W̃ would be small enough for Siegel-Walfisz

(and more generally Proposition 2.7) to apply. Let us then define η(p) by

pη(p)−1 < log logN ≤ pη(p) (4.14)

and W̃ =
∏

p≤w pη(p) ≤
∏

p≤w p log logN = logo(1) N .

The reader may wonder at this point why we performed the W trick at all if we really

want to deal with congruence classes modulo W̃ . The reason for this is that Lemma 4.5

would not hold if X0 contained all integers smaller than N that have a prime power factor

larger than log logN : this is not a sufficiently sparse set, given the possibly large values

of Rf and Λ. Thus, performing the W̃ -trick, we could not force the residues to satisfy

cj(a) ̸≡ 0 mod pη(p), whereas the W -trick allowed us to force cj(a) ̸≡ 0 mod pι(p). Imposing

such a nonzero congruence will prove crucial to ensuring that r′fj ,cj(a) is dominated by a

pseudorandom majorant, and thus to establishing that the term T2 is negligible.

To reduce the size of the prime powers, we shall rely on the powerful lift-invariance

property of Matthiesen [68, Lemma 6.3].

Lemma 4.6. Let f be a PDBQF of discriminant D. Let p0 be a prime and α ≥ vp0(D)

be an integer. Suppose that b ̸≡ 0 mod pα0 . Then for all β ≥ α and c ≡ b mod pα0 , we have

ρf,b(p
α
0 )p

−α
0 = ρf,c(p

β
0 )p

−β
0 .

We decompose the residue set [W ]d into X1 and X2, where

X1 = {a ∈ [W ]d | ∀j ∈ [[ t + 1 ; t+ s ]] ∀p ≤ w(N) ψj(a) ̸≡ 0 mod pη(p)}

and X2 is the complement of X1 in [W ]d. We also introduce

Y1 = {a ∈ [W̃ ]d | ∀j ∈ [[ t+ 1 ; t+ s ]] ∀p ≤ w(N) ψj(a) ̸≡ 0 mod pη(p)}.
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First we remark that, for a ∈ X1, Q(a) depends only on the reduction ã ∈ Y1 of a. Indeed,

writing

Q̃(a) =
t∏

i=1

ΛW (ψi(a))
t+s∏

j=t+1

ρfj ,ψj(a)(W̃ )

W̃
1∀p≤w,ψj(a)̸≡0 mod pη(p),

we have Q̃(ã) = Q(a). This shows that

∑

a∈X1

Q(a)
∑

n∈Zd∩Ka

t∏

i=1

Λ′
W,ci(a)

(ψ̃i(n)) =
∑

a∈Y1

Q(a)
∑

b∈[W ]d

b≡a mod W̃

∑

n∈Zd∩Kb

t∏

i=1

Λ′
W,ci(b)

(ψ̃i(n))

=
∑

a∈Y1

Q(a)
∑

n∈Zd∩Ka

t∏

i=1

Λ′
W̃ ,ci(a)

(ψ̃i(n)). (4.15)

We admit a slight abuse of notation: in the last term, ψ̃i may be different from the other

occurrences of ψ̃i (differing at most in the constant term) and ci(a) ≡ ψi(a) mod W̃ lies in

[W̃ ]. They satisfy ψi(W̃n+a) = W̃ ψ̃i(n)+ ci(a). Now we can apply Proposition 2.7 to the

inner sum of (4.15). Thus for any a ∈ Y1 that has a nonzero contribution, in particular,

satisfying (ci(a),W ) = 1 for all i ∈ [t], we have, uniformly in a, the relation

∑

n∈Zd∩Ka

t∏

i=1

Λ′
W̃ ,ci(a)

(ψ̃i(n)) = Vol(Ka) + o((N/W̃ )d).

Inserting this formula in (4.15) yields

∑

a∈X1

Q(a)
∑

n∈Zd∩Ka

t∏

i=1

Λ′
W,ci(a)

(ψ̃i(n)) = (Vol(K) + o(Nd))Ea∈[W̃ ]dQ(a)1a∈Y1 .

We exploit multiplicativity to write

Ea∈[W̃ ]dQ(a)1a∈Y1 =
∏

p≤w

Ea∈(Z/pη(p)Z)d

t∏

i=1

ΛZ/pZ(ψi(a))
t+s∏

j=t+1

ρfj ,ψj(a)(p
η(p))

pη(p)
1ψj(a)̸≡0 mod pη(p),

and invoke results from Appendix B. Indeed, setting m = η(p) in Lemma B.2, we find that

Ea∈(Z/pη(p)Z)d

t∏

i=1

ΛZ/pZ(ψi(a))
t+s∏

j=t+1

ρfj ,ψj(a)(p
η(p))

pη(p)
1ψj(a)̸≡0 mod pη(p) = βp+O((log logN)−1/3).
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Using Lemma B.3, we conclude that

Ea∈[W̃ ]dQ(a)1a∈Y1 =
∏

p

βp + o(1),

and finally we can write

∑

a∈X1

Q(a)
∑

n∈Zd∩Ka

t∏

i=1

Λ′
W,ci(a)

(ψ̃i(n)) = β∞
∏

p

βp + o(Nd).

4.4.4 The sum over X2

We now turn to the set of bad residues X2. We need to show that

∑

a∈X2

Q(a)
∑

n∈Zd∩Ka

t∏

i=1

Λ′
W,ci(a)

= o(Nd).

In the absence of an asymptotic for the inner sum, we shall be content with an upper bound.

To that aim, we use the majorant of the von Mangoldt function described in Chapter 2,

and its uniformity property given by Proposition 2.13. Indeed, we have rad(W ) = W =

O(logN) and the exceptional primes for the system of linear forms Ψ̃ are bounded, so these

propositions apply. In particular, for any a ∈ X2, we have

∑

n∈Zd∩Ka

t∏

i=1

Λ′
W,ci(a)

(ψ̃i(n)) ≪
∑

n∈Zd∩Ka

t∏

i=1

νGT,W ,ci(a)
(ψ̃i(n)) = Vol(Ka) + o((N/W )d).

From this, we infer that

∑

a∈X2

Q(a)
∑

n∈Zd∩Ka

t∏

i=1

Λ′
W,ci(a)

(ψ̃i(n)) ≪ NdEa∈[W ]dQ(a)1a∈X2 .

We use the triangle inequality to bound the expectation in the right-hand side of the above

equation by ∑

p≤w
j∈[[ t+1 ; t+s ]]

Ea∈[W ]d1pη(p)|ψj(a)Q(a),
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which, by multiplicativity, can be rewritten as

∑

q≤w
j∈[[ t+1 ; t+s ]]

Ea∈(Z/qι(q)Z)d1qη(q)|ψj(a)Qq(a)
∏

p≤w,q ̸=p

Ea∈(Z/pι(p)Z)dQp(a).

Here, as the reader may be able guess, we have written

Qp(a) =
t∏

i=1

Λp(ψi(a))
t+s∏

j=t+1

ρfj ,ψj(aj)(p
ι(p))

pι(p)
1ψj(a)̸≡0 mod pι(p),

for any prime p, so that Q(a) =
∏

p≤w(N)Qp(a). Again, we invoke Appendix B. Lemmas

B.2 and B.3 imply that ∏

p≤w,q ̸=p

Ea∈(Z/pι(p)Z)dQp(a) = O(1),

while the proof of Proposition B.1 shows that

Ea∈(Z/qι(q)Z)d1qη(q)|ψj(a)Qq(a) = O((log logN)−1/3).

Because w(N) = log log logN is so small, we obtain the desired bound

∑

a∈X2

Q(a)
∑

n∈Zd∩Ka

t∏

i=1

Λ′
W,ci(a)

(ψ̃i(n)) = o(Nd).

4.4.5 Reduction of the main theorem

Given the above discussion, the main theorem (Theorem 3.1) boils down to proving that the

term T2 defined in equation (4.13) is o(Nd). This is a consequence of the next proposition.

Theorem 4.7. Let d, t and s be nonnegative integers, and let f0, ft+1, . . . , ft+s be PDBQF.

Let N ′ = N/W , and Φ = (φ0, . . . ,φt+s) be a system of affine-linear forms Zd → Zt+s+1 of

finite complexity whose linear coefficients are bounded by a constant. Let L ⊂ [0, N ′]d be a

convex set such that Φ(L) ⊂ [1, N ′]t+s+1. Then for any b ∈ Bt,s+1, we have

∑

n∈Zd∩L

(r′f0,b0(φ0(n))− 1)
∏

i∈[t]

Λ′
W,bi

(φi(n))
t+s∏

j=t+1

r′fj ,bj (φj(n)) = o(N ′d).

The set B = Bt,s+1 was introduced in Definition 4.2. Notice the slight change of
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notation with respect to the original definition, due to the fact that our quadratic forms

are now labelled f0, ft+1, ft+2, . . . , ft+s.

We prove this theorem in the next section.

4.5 Majorant and uniformity of quadratic represen-

tation functions

Here and in the remainder of the chapter, N ′ = N/W . To prove Theorem 4.7, we have to

show that the average along a linear system of a product is o(N ′d), knowing that one of

the factors has average o(N ′d). Because of Theorem 2.8, this follows if we can prove two

things:

• the uniformity estimate ∥r′f,b − 1∥Uk[N ′] = o(1) for any k;

• that the representation functions of quadratic forms and the von Mangoldt function

are dominated by a common pseudorandom majorant.

For the first item, we can use wholesale the following result of Matthiesen, proven in [68,

Sections 14-18].

Proposition 4.8. Let f be a PDBQF, and let b ∈ [W ] be representable by f modulo W

and not divisible by any pι(p) for p ≤ w(N). Then the tricked representation function of f

defined by (4.8) satisfies, for all k ∈ N, the estimate

∥r′f,b − 1∥Uk[N ′] = o(1).

The discussion of the second item will occupy the rest of this section. We use a pseu-

dorandom majorant from Matthiesen’s work. For this we need to recall some notation and

facts from [68]. Given a set A of primes, ⟨A⟩ stands for the set of integers whose prime

factors are all in A. Let τA(n) =
∑

d∈⟨A⟩ 1d|n.

Proposition 4.9. For any integer D ≡ 0, 1 mod 4, there exists a set of primes PD of

density 1/2, which is a union of congruence classes modulo D, such that putting P∗
D =

PD ∪ {p ∈ P : p | D} and QD = P \ P∗
D, we have, for any PDBQF f of discriminant D,

the bound

Rf(n) ≪D τD(n)
∑

m∈⟨QD⟩
m2|n

1⟨P∗
D⟩(n/m

2).
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To understand this result, which is the starting point of the construction of the pseudo-

random majorant in [68], we recall that the number of representations of any odd number

n as a sum of two squares is 4
∑

d|n χ(d), where χ is the only nontrivial character modulo

4. By multiplicativity, this is easily seen to equal 4τA(n)
∏

p≡3 mod 4 1vp(n)≡0 mod 2, with A
being the set of primes congruent to 1 modulo 4, from which we derive a majorant of the

desired form. This works similarly for other quadratic forms.

Thus, to majorise the function Rf it will be enough to majorise the functions τD and

1⟨P∗
D⟩. The heuristic to bound τD (or rather τD/

√
logN) is as follows (see [66, Lemma 4.1]).

We would like to truncate the divisor sum defining it at Nγ (possibly with a smooth cut-

off), just as was done earlier for the von Mangoldt function. The function defined by this

truncated divisor sum is called τγ . Unfortunately, it turns out that the inequality τ ≤ Cτγ

is not entirely true, at least not true with the same constant C throughout the first N

integers. Nevertheless, a heuristic of Erdős [27] says that an integer is either excessively

rough or excessively smooth or has a cluster of many prime factors close together. We have

excluded the first two possibilities when we took out the set X0, so it remains to majorise

τ(n) in the third case. Then the bound depends on the position of this cluster of primes

and on its density. For more details on the majorant of the divisor function see [66].

To bound 1⟨P∗
D⟩ (or rather 1⟨P∗

D⟩
√
logN), that is, the indicator function of the integers

without any prime factor belonging to QD, we use a sieving-type majorant, that is, a

majorant similar to the one introduced above for the von Mangoldt function. Indeed,

integers without any prime factor in QD are similar to prime numbers (integers without

any nontrivial prime factors at all).

To formalise this heuristic, let us introduce the following definition. Recall that the

constant γ = 2−k was introduced in Definition 4.1, and its exact value (or the value of k)

is yet to be chosen.

Definition 4.3. Let ξ = γ/2 = 2−k−1. We define sets U(i, s) for integers i, s as follows.

Let log2 be the base 2 logarithm. For i = log2(2/ξ)− 2 = k, we let U(i, 2/ξ) be {1} and

otherwise U(i, 2/ξ) = ∅. If s > 2/ξ and i ≥ log2−s, write U(i, s) for the set of all products

of m0(i, s) = ⌈ξs(i+ 3− log2 s)/100⌉ distinct primes from the interval [N2−i−1
, N2−i

].

Let us fix an integer D ≡ 0, 1 mod 4. We now describe a majorant for the W -tricked

representation function of a PDBQF of discriminant D, which was designed by Matthiesen

[68]. We again need the smooth function χ (this should not be mistaken with a character,
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as there are no more characters in the sequel) introduced for the majorant of the von

Mangoldt function. We use the function

rD,γ(n) = β ′
D,γ(n)ν

′
D,γ(n), (4.16)

where

ν ′D,γ =
⌊(log logN)3⌋∑

s=2/ξ

⌊6 log log logN⌋∑

i=log2 s−2

∑

u∈U(i,s)

2s1u|nτ
′
D,γ(n),

with

τ ′D,γ(n) =
∑

d∈⟨PD⟩
p|d⇒p>w(N)

1d|nχ

(
log d

logNγ

)
,

and

β ′
D,γ(n) =

∑

m∈⟨QD⟩
p|m⇒p>w(N)

m<Nγ

⎛

⎜⎜⎝
∑

e∈⟨QD⟩
p|e⇒p>w(N)

1m2e|nµ(e)χ

(
log e

logNγ

)
⎞

⎟⎟⎠

2

.

As we will state in the next lemma, there exists a positive constant CD,χ such that the

function rD,γ has average CD,χ + o(1).

We now define for any integer q and any b ∈ [q] the function νMatt,b,D : [N ′] → R by

νMatt,q,b,D(n) = rD,γ(qn+ b)/CD,χ. (4.17)

When q is implicitly understood to be W , it may be omitted from the subscripts of ν. The

next lemma, drawn from [68, Lemma 7.5], also asserts that this function is a pseudorandom

majorant for the representation function of any PDBQF of discriminant D.

Lemma 4.10. For any PDBQF f of discriminantD and b ∈ [W ] satisfying b ̸≡ 0 mod pι(p)

for any p ≤ w(N) and ρf,b(W ) > 0, the following bound holds

r′f,b(n) ≪ νMatt,b,D(n).

Furthermore, for some positive constant CD,χ = O(1), we have En∈[N ′]rD,γ = CD,χ + o(1)

and νMatt,b,D(n) = 1 + o(1).

The crucial property of νMatt is that it is a truncated divisor sum, like νGT. Indeed, all
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divisors appearing in it are constrained to be less than R = Nγ . It is obvious by definition

of χ for the divisors called d,m, e, and less obvious, but proven by Matthiesen, for u (see

Remark 3 following Proposition 4.2 in [68]). Moreover, the divisors d,m, e only have prime

factors larger than w(N) while u only has prime factors larger than N (log logN)−3
.

The majorant of the divisor function we have just introduced looks extremely compli-

cated, and other majorants are available in the literature, also of the form of truncated

divisor sums. Let us mention the work of Landreau [59], revisiting a theorem of van der

Corput [92], in which inequalities of the form

τ(n) ≤ kk(k−1)
∑

d≤n1/k

τ(d)k

for any integer k ≥ 1 are discussed. Unfortunately, the right-hand side has an average of

size logC(k) N up to N , where C(k) > 1 for k > 1. This is much larger than the average of

the left-hand side, which is asymptotic to logN . Thus, such majorants cannot be used as

pseudorandom measures, and we are left with the sixty years old idea of Erdős.

Finally, we need to produce a common majorant for the t + s + 1 functions occurring

in Theorem 4.7, which are copies of the von Mangoldt functions and quadratic repre-

sentation functions. Now each of them is bounded individually by some pseudorandom

majorant defined above, so we define our common majorant by averaging all these majo-

rants. Recall that N ′ = N/W ; we take M to be a prime satisfying N ′ < M ≤ O(N ′).

Given a family f0, ft+1, . . . , ft+s of PDBQF of discriminants D0, Dt+1, . . . , Dt+s and a family

(b0, . . . , bt+s) ∈ B, we define a function ν∗ on [N ′] ⊂ Z/MZ by

ν∗(n) =
1

t+ s+ 2
(1 +

t∑

i=1

νGT,bi(n) +
t+s∑

j=t+1

νMatt,bj ,Dj(n) + νMatt,b0,D0(n)), (4.18)

where νGT,bi is a shortcut νGT,W ,bi
. We extend ν∗ to Z/MZ by setting ν∗(n) = 1 outside

[N ′]. Our strategy of forming a common majorant for a family of functions by averaging

a family of majorants is not unheard of. In fact, Green and Tao [45] had to combine

the majorants n /→ Λχ,γ(Wn + bj) for various bj and so did Matthiesen [68]. Notice also

that Lê and Wolf [62] devised a certain condition of compatibility for two pseudorandom

majorants. However, in our case the majorants have rather different origins. But they

have a similar structure, the structure of a truncated divisor sum, so that the proof of the

linear forms condition will not be much harder than the ones in [45] or [68].
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We observe that ν∗ satisfies

1 +
t∑

i=1

Λ′
W,bi

+
t+s∑

j=t+1

r′fj ,bj + r′f0,b0 ≪ ν∗

and has average 1 + o(1) by Proposition 2.11 and Lemma 4.10. So to ensure that ν∗ is a

pseudorandom measure, it remains to prove the linear forms condition (2.6). This is the

content of the next proposition.

Proposition 4.11. Fix a constant D > 0, and positive integers t, s. Then there exists a

constant C0(D) such that the following holds. For any bounded C ≥ C0(D) there exists

γ = γ(C,D) such that if M ∈ [CN ′, 2CN ′] is a prime, b ∈ Bt,s+1 and f0, ft+1, . . . , ft+s

are PDBQF and ν∗ is defined as in equation (4.18), then ν∗ satisfies the D-linear forms

condition, and for any i ∈ [t] we have

Λ′
W,bi

≪ ν∗.

Similarly, we have

|r′f0,b0 − 1| ≪ ν∗,

and for any j ∈ [[ t + 1 ; t+ s ]], we have

r′fj ,bj ≪ ν∗

where all inequalities are valid on [N ′].

The inequalities have already been observed above. The linear forms condition will

follow from the following proposition.

Proposition 4.12. Let 1 ≤ d, t, s ≤ D, where D is the constant appearing in Theorem 2.8.

Let cGT(χ) be the constant appearing in Proposition 2.9. For any finite complexity system

Ψ : Zd → Zt+s whose linear coefficients are bounded by D and every convex K ⊂ [0, N ]d

such that Ψ(K) ⊂ [1, N/W ]t, and any b ∈ B (as in Definition 4.2), the estimate

En∈Zd∩K

t+s∏

j=t+1

νMatt,Dj ,bj (ψj(n))
∏

i∈[t]

νGT,bi(ψi(n)) = 1+OD

(
Nd−1+OD(γ)

Vol(K)

)
+oD(1) (4.19)

holds, provided γ is small enough.
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Notice that t and s are not the same as in Proposition 4.11. The proof is postponed to

Appendix C, due its utter length and complexity.

As mentioned in Section 2.4, deriving the linear forms conditions for ν∗ (Proposition

4.11) from Proposition 4.12 is a standard procedure. The argument does not need any

modification, so we do not reproduce it here and invite the reader to consult one of the

references [44, Proposition 9.8] or [22, Proposition 8.4]. We can now prove Theorem 4.7.

Proof of Theorem 4.7 assuming Proposition 4.11. Take any integers d, t and s, and a sys-

tem Φ : Zd → Zt+s+1 of affine-linear forms of finite complexity, where the coefficients of

the linear part are bounded by L, and let f0, ft+1, . . . , ft+s be any PDBQF. Let D be the

constant indicated by Theorem 2.8. Fix γ = 2−k such that Proposition 4.11 holds. Take

a convex set K ⊂ [1, N ′]d such that Φ(K) ⊂ [N ′]t+s+1. Let b ∈ B. Then Proposition

2.8 and Proposition 4.11 provide constants C0 and Γ, of which we take the maximum

C = max(C0,Γ). Now take a prime M ∈ [CN ′, 2CN ′]. Such a prime exists by Bertrand’s

postulate. Define ν∗ as in (4.18). Define F0 = r′f0,b0 − 1. Set Fi = Λ′
W,bi

for i ∈ [t] and

Fj = r′fj ,bj for j ∈ {t+ 1, . . . , t+ s}. Then we have that |Fj | ≪ ν∗ for all j ∈ {0, . . . , t+ s}
and ν∗ is a pseudorandom measure by Proposition 4.11, so that we can invoke the von Neu-

mann theorem (Theorem 2.8). Together with the statement of Proposition 4.8 (specialised

to k = t+ s), it implies Theorem 4.7.
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Chapter 5

Bilinear structures in vector spaces

over finite fields

This chapter is based on a preprint of Thai Hoàng Lê and the author [12], submitted to

the Journal de l’Ecole Polytechnique. Most of the mathematics and redaction was done

by the author.

Thanks are due to Ben Green and Terence Tao for suggesting respectively this chapter’s

main result, Theorem 5.8, and a sketch of proof. Before stating our main result, we review

Bogolyubov’s theorem and some basic facts of discrete Fourier analysis.

5.1 Preliminaries

We fix a prime p. We work in the finite field model introduced in Section 1.4, so we let V

be an Fp-vector space of dimension n, where we think of n as tending to infinity. Recall

from the introduction that the density of a subset A ⊂ V is the quantity α = |A|
|V | .

Theorem 5.1 (Bogolyubov). If A ⊂ V is a set of density α > 0, then the sumset

A+ A− A− A := {a1 + a2 − a3 − a4 | (a1, . . . , a4) ∈ A4}

contains a vector subspace of codimension c(α) = O(α−2).

The notation A+ A−A− A is often abbreviated as 2A− 2A. We shall give a (short,

folklore) proof of Theorem 5.1. To this aim, and for the rest of the chapter, we need to

introduce the basics of discrete Fourier analysis.
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We denote by V̂ the dual of V , the set of characters on V . A character χ ∈ V̂ takes

values in the p-th roots of unity, that is, 1,ω, . . . ,ωp−1 where ω = exp(2iπ/p). The trivial

character is χ = 1. Let f : V → C be a function. Then the Fourier transform f̂ is defined

on V̂ by

f̂(χ) = Ex∈V f(x)χ(x).

In particular, if A ⊂ V has density α and indicator function 1A, we have 1̂A(1) = α.

Besides, we have 1̂−A = 1̂A.

Let W be an affine subspace of V of direction
−→
W , that is, W = a+

−→
W for some a ∈ V

and some subspace
−→
W of V . If f : W → C is a function, we define the function f̃ on the

vector space
−→
W by f̃(v) = f(a+ v). We then define the Fourier transform of f relative to

W as the Fourier transform of f̃ on
−→
W . We will abuse notation and denote by Ŵ the dual

of
−→
W . Thus the notion of Fourier transform depends on the (potentially affine) subspace

W one is considering, but when no ambiguity is possible, the space considered may not be

made explicit.

Besides, if f, g : V → C are two functions, we define their convolution f ∗ g : V → C by

f ∗ g(x) = Ey∈V f(y)g(x− y).

We define the U2 norm by

∥f∥4U2(V ) = Ex∈V |f ∗ f(x)|2.

A quadruple (x1, x2, x3, x4) ∈ V 4 satisfying x1+x2 = x3+x4 is called an additive quadruple.

Observe that if f = 1A is the indicator function of the subset A ⊂ V , then

∥1A∥4U2(V ) =
|{(x1, x2, x3, x4) ∈ A4 | x1 + x2 = x3 + x4}|

|V |3

and we refer to this quantity as the density of additive quadruples in A. Again if W is an

affine subspace of V and f : W → C is a function, we will write ∥f∥U2(W ) = ∥f̃∥
U2(

−→
W )

. Note

that the connection with the additive quadruples of A ⊂ W is preserved, because additive

quadruples are invariant by translation. When it is obvious from the context which space

one is considering, one will simply write ∥f∥U2.

We recall without proof a few basic properties of the Fourier transform.
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1. Parseval’s identity is the statement that

Ex∈V |f(x)|2 =
∑

χ∈V̂

|f̂(χ)|2.

In particular, for a subset A ⊂ V of density α, we have

∑

χ∈V̂

|1̂A(χ)|2 = α. (5.1)

2. The Fourier transform of a convolution is the product of the Fourier transforms, that

is

f̂ ∗ g = f̂ ĝ. (5.2)

3. Combining the previous two points, we see that the U2 norm of a function is the L4

norm of its Fourier transform, that is

∥f∥U2(V ) = ∥f̂∥4.

In particular if f = 1A for a subset A of density α, Parseval’s identity implies that

α4 ≤ ∥1̂A∥44 = α4 +
∑

χ∈V̂ ,χ ̸=1

|1̂A(χ)|4 ≤ α4 + α max
χ∈V̂ ,χ ̸=1

|1̂A(χ)|2. (5.3)

When a set A ⊂ W of density α has about as few additive quadruples as it can, that

is, α4 ≤ ∥1A∥4U2(W ) ≤ α4(1 + ϵ), we will call it ϵ-pseudorandom. In particular, A is

ϵ-pseudorandom in W if maxχ∈Ŵ ,χ ̸=1|1̂A(χ)| ≤ α3/2ϵ1/2.

4. The Fourier inversion formula is the statement that

f =
∑

χ∈V̂

f̂(χ)χ. (5.4)

We now give the proof of Theorem 5.1. We observe that 2A − 2A is the support of

the convolution g = 1A ∗ 1A ∗ 1−A ∗ 1−A. So we simply need to find a large subspace W

such that g(x) > 0 for all x ∈ W . Because of equation (5.2), we have ĝ(χ) = |1̂A(χ)|4.
Let K = {χ ∈ V̂ | |1̂A(χ)| ≥ ρ} for some constant ρ to be determined later, and let

W = {x ∈ V | ∀χ ∈ K χ(x) = 1}. It is a vector subspace of codimension at most |K|.
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Because of Parseval’s identity, or rather equation (5.1), we have |K| ≤ ρ−2α. Furthermore,

using equation (5.4), we have

g =
∑

χ∈V̂

|1̂A(χ)|4χ =
∑

χ∈K

|1̂A(χ)|4χ +
∑

χ/∈K

|1̂A(χ)|4χ.

On W , the first sum is simply
∑

χ∈K |1̂A(χ)|4 ≥ 1̂A(0)4 = α4 by positivity. Meanwhile,

the second sum is bounded by supχ/∈K |1̂A(χ)|2
∑

χ∈V̂ |1̂A(χ)|2 ≤ ρ2α. By taking ρ = α3/2/2

and using the triangle inequality, we see that g > 0 on W , while codimW = O(α−2). This

concludes the proof.

In the same vein, we prove the following useful lemma. It says that if A is sufficiently

pseudorandom in terms of its density then 2A− 2A is the whole space.

Lemma 5.2. Let W be an affine subspace of V and A ⊂ W have density α. If ∥1A −
α∥U2(W ) < α, or equivalently, ∑

χ ̸=1

|1̂A(χ)|4 < α4, (5.5)

then 2A− 2A =
−→
W . Consequently, if maxχ∈Ŵ ,χ ̸=1|1̂A(χ)| < α3/2 then 2A− 2A =

−→
W .

Proof. For any x ∈ −→
W , by the Fourier inversion formula (5.4), we have

1A ∗ 1A ∗ 1−A ∗ 1−A(x) =
∑

χ∈Ŵ

|1̂A(χ)|4χ(x) ≥ α4 −
∑

χ ̸=1

|1̂A(χ)|4 > 0.

This implies that x ∈ 2A− 2A.

We also need the following standard fact which relates the lack of pseudorandomness

to density increment.

Lemma 5.3 ([38, Lemma 3.4]). Let W be an affine subspace of V and A ⊂ W have density

α. Suppose there exists χ ∈ Ŵ ,χ ̸= 1 such that |1̂A(χ)| ≥ β. Then there exists an affine

subspace H ≤ W of codimension 1 such that the density of A∩H on H is at least α+β/2.

Our next tool is a regularity lemma.

Lemma 5.4. Let W be an affine subspace of V and A ⊂ W have density α. Let ϵ > 0.

For any t, there exists an affine subspace H ≤ W of codimension O(tϵ−1 logα−1) such that

|A′| = α′|H| (where A′ = A∩H) with α′ ≥ α and for any affine subspace F of codimension

at most t of H, |A∩F |
|F | ≤ α(1 + ϵ). Consequently, for any affine subspace F of codimension

at most t of H, we also have |A∩F |
|F | ≥ α(1− ptϵ).
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Proof. Let us prove the first conclusion. If W does the trick already, we do nothing. If

not, there exists a subspace H of codimension at most t such that |A∩H|
|H| > α(1 + ϵ). We

replace W by H , and A by A∩H . And we iterate. We duplicate the density in at most ϵ−1

iterations. And we may duplicate up to logα−1 times before hitting 1. At every iteration

we may lose up to t dimensions. Whence the first conclusion. The second conclusion

follows from summing the upper bound over all cosets of F .

In particular, when t = 1, the following corollary says that we can always suppose that

a set A ⊂ W is pseudorandom, at the cost of passing to a subset in an affine subspace.

Corollary 5.5. Let W be an affine subspace of V and A ⊂ W have density α. Let ϵ > 0.

Then there exists an affine subspace H ≤ W of codimension O((αϵ)−1/2 logα−1) such that

A′ = A ∩H has density ≥ α and is ϵ-pseudorandom in H.

Proof. We use Lemma 6 with β = α3/2ϵ1/2, and Lemma 7 with t = 1 and ϵ′ = α1/2ϵ1/2/2

to obtain the conclusion.

Next we state a standard lemma, which plays a key role in the proof of the U3 inverse

theorem [43], and which results from the combination of the Balog-Szemerédi-Gowers [83,

Theorem 2.29] and Freiman-Ruzsa theorems. A useful reference for this lemma is [40,

Lecture 2]. We reproduce the proof as we want to incorporate the quasipolynomial bound

of Sanders [78, Theorem 11.4] for the Freiman-Ruzsa theorem (see [65] for an accessible

survey centered on finite fields). Note that under the polynomial Freiman-Ruzsa conjecture

[93, Conjecture 2.10], this bound is polynomial.

Lemma 5.6. Let W ≤ V be F-vector spaces and A ⊂ W have density α. Let c > 0 be

a constant. Suppose ξ : A → V is such that are at least c|A|3 additive quadruples in the

graph Γ = {(y, ξ(y)) | y ∈ A}. Then there is a subset S ⊂ A such that ξ|S coincides with

an affine-linear map. Moreover, the density of S in A can be taken quasipolynomial in c,

that is |S| ≫ |A| exp(− logO(1) c−1).

Proof. First, the Balog-Szemerédi-Gowers theorem implies that there exists a set A′ ⊂ A

satisfying |A′| ≥ C|A| that induces a subgraph Γ′ ⊂ Γ satisfying |Γ′ + Γ′| ≤ C ′|Γ|, where
both C and C ′ can be taken polynomial in c. Using the Freiman-Ruzsa theorem (with

Sanders’ bounds from [78, Theorem 11.4]), we get a subgraph Γ′′ ⊂ Γ′ corresponding to

a subset A′′ ⊂ A′ satisfying |Γ′′| ≥ D|Γ′| and |span(Γ′′)| ≤ E|Γ′′| with D polynomial and

E quasipolynomial in c. Write H = span(Γ′′) ≤ W × V and π : H → W the canonical

projection of W ×V to the first coordinate restricted to H . Then π(H) ⊃ A′′ by definition.
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Because |H| ≤ E|A′′|, the size of the kernel of π is at most E. Then we can partition H

into at most E cosets of some subspace H ′ so that π is injective on each of them. By the

pigeonhole principle, there exists such a coset that has a large intersection with Γ′′, that

is, an x ∈ W such that

|(x+H ′) ∩ Γ′′| ≥ |Γ′′|/E.

Let now ∆ = (x +H ′) ∩ Γ′′ and S be the corresponding subset of A′′. The map π|x+H′ is

a bijection onto its image, an affine space M ≤ V . Its inverse function is an affine map

ψ : M → W such that (s,ψ(s)) ∈ Γ′′ for all s ∈ S, that is, ψ(s) = ξ(s). Moreover,

|S| = |∆| ≥ |A′′|/E ≥ K|A|

where K is quasipolynomial in c.

A variant of Lemma 5.6 can be found in [43]. There the conclusion is that ξ is linear in

a subset of polynomial (in c) density inside an affine subspace of polynomial codimension.

Unfortunately, due to various losses in other places of our argument (in particular, the fact

that c itself is ultimately quasipolynomial in α), we cannot make this improvement on the

density bear fruit.

To conclude this section, we state, without proof, a deep improvement on the constant

c(α) appearing in Theorem 5.1, which is due to Sanders [78, Theorem 11.1].

Theorem 5.7. We can take c(α) = O(log4 α−1) in Theorem 5.1.

As noted in the introduction, the case of a subspace A shows that Sanders’ result is

optimal up to the exponent 4.

5.2 The bilinear Bogolyubov theorem

Our aim is to prove a bilinear version of Theorem 5.1. Let P ⊂ V × V be a set of pairs.

As in Section 1.4, let

P
V
± P = {(x, y1 ± y2) | (x, y1), (x, y2) ∈ P}

be the set of vertical sums or differences. Similarly define P
H
± P the set of horizontal

sums or differences, where V and H stand for “vertical” and “horizontal”, respectively.
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We denote by φV the operation

P /→ (P
V
+ P )

V
− (P

V
+ P ),

and define the operation φH analogously. Recall from Section 1.4 that a bilinear set of

codimensions (r1, r2, r3) is a set P ⊂ V ×V for which there exist subspaces W1 ≤ V,W2 ≤ V

of codimension r1, r2, respectively, and bilinear forms Q1, . . . , Qr3 on W1 ×W2 such that

P = {(x, y) ∈ W1 ×W2 | Q1(x, y) = · · · = Qr3(x, y) = 0}. (5.6)

A bilinear set satisfies φV (P ) = φH(P ) = P , so it is natural to imagine that iterating the

operations φV and φH always produces large bilinear sets. We show that this is indeed the

case.

Theorem 5.8. For any δ > 0, there exists a constant c(δ) > 0 such that the following

holds. Let P ⊂ V × V have density δ. Let P ′ = φHφV φH(P ). Then P ′ contains a

bilinear set of codimensions (r1, r2, r3), where max(r1, r2, r3) ≤ c(δ). Moreover, c(δ) =

O(exp(exp(exp(logO(1) 1/δ)))).

If P is a Cartesian product A × B for some subsets A,B ⊂ V , then using Theorem

5.1 once on each coordinate, we obtain a product A′ × B′ of subspaces of codimension

O(log4 δ−1). Also it is easy to see that c(δ) ≫ log δ−1 by considering a bilinear set. It is

reasonable to believe that, like in the linear case, this lower bound on δ should not be too

far from the truth. Indeed, the proof of Theorem 5.8 will show that φHφV φH(P ) contains

a set as in (5.6) with r1, r3 = O(logO(1) δ−1) but unfortunately we do not currently have a

matching bound for r2. We state the following conjecture.

Conjecture 5.9 (polylogarithmic bilinear Bogolyubov). In Theorem 5.8, one can take

c(δ) = O(logO(1) δ−1).

The conjecture remains equally interesting and useful for the application we have in

mind if O(1) operations φV or φH are required instead of 3.

We point out that Gowers and Milićević [35] independently proved a result very similar

to Theorem 5.8. Interestingly, they obtained the bound exp(exp(logO(1) 1/δ)) for all three

parameters ri, which is better than our bound for r2 but worse for r1 and r3. Their proof

is quite different and draws on ingredients from [34]. As a crucial step in their program

towards a quantitative version of the inverse theorem for the Gowers norm U4(Fn
p ), they
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also devised a variant of the bilinear Bogolyubov theorem that is based on convolutions of

functions rather than sumsets [36, Section 4].

5.3 A quick application

Our first application concerns matrices of low rank. Roughly speaking, it says that if a

two-parameter, bilinearly varying family of matrices is often of rank at most ϵ, then it must

be of rank O(ϵ) on a whole bilinear set. We now state this application precisely. Given a

matrix A ∈ Matm(Fp), let rkA be its rank.

Corollary 5.10. Suppose that we have a bilinear map ψ : V × V → Matm(Fp). Suppose

that the set

Pϵ = {(f, g) ∈ V × V | rk(ψ(f, g)) ≤ ϵ}

has density δ > 0. Then the set

P64ϵ = {(f, g) ∈ V × V | rk(ψ(f, g)) ≤ 64ϵ}

contains a set of the form (5.6) of codimensions at most c(δ). Besides, if δ is large enough

(in terms of n), then P64ϵ contains a diagonal pair (x, x) with x ̸= 0.

This corollary, with the conjectured bound on c(δ) in Theorem 5.8, will play a crucial

role in Chapter 7.

Proof. We apply Theorem 5.8 to P . Observe that the set P ′ it produces is included in P64ϵ

by the bilinearity of ψ and the fact that rk(A + B) ≤ rkA + rkB for any two matrices A

and B. The second part of the statement is a direct consequence of the following lemma

of independent interest, which is reminiscent of [40, Lemma 4.2].

Lemma 5.11. Let W be an Fp-vector space of dimension n, and Q1, . . . , Qr be quadratic

forms on W . Then the set of isotropic vectors

X = {x ∈ W |Q1(x) = · · · = Qr(x) = 0} (5.7)

contains at least (1− p−1/2)pn−2r(r+1) elements.

More compactly, we can write |X| ≫ pn−O(r2). We now prove Lemma 5.11.
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Proof. The density |X|/|W | of isotropic vectors is given by

Ex∈WEt1,...,tr∈Fpω
∑

i tiQi(x) = Et1,...,trEx∈Wω
∑

i tiQi(x). (5.8)

Let m ≤ n be a parameter to be determined later (in terms of r). Now if a quadratic form

Q on W ×W has rank at least m, it is well known that

|Ex∈Wω
Q(x)| ≤ p−m/2

(see also Lemma 7.10). Thus, if for any nonzero (t1, . . . , tr), the rank of
∑

i tiQi is at least

m, we see from equation (5.8) that the density of isotropic vectors is at least p−r − p−m/2.

Otherwise, there exists a form Qi such that Qi =
∑

j ̸=i tjQj + R with rkR < m; without

loss of generality, suppose i = r. Let W ′ be the kernel of R, a subspace of codimension

less than m. Then the set

X ′ = {x ∈ W ′|Q1(x) = · · · = Qr−1(x) = 0} (5.9)

is a subset of X , and we will now count isotropic vectors in X ′. Thus incurring a dimension

loss of at most m, we reduce the number of quadratic forms by 1. We iterate this process

until we obtain a family of quadratic forms any nontrivial linear combination of which has

rank at least m (or an empty family). At that point, this is a family of at most r forms

on a space of dimension at least n− rm. Thus it must have at least

pn−r(m+1) − pn−rm−m/2

isotropic vectors. Taking m = 2r + 1, we obtain the result.

This concludes the proof of Corollary 5.10.

5.4 Proof of the main theorem

To prove our theorem, we will apply the linear Bogolyubov theorem (Theorem 5.1) several

times.

Write P = ∪y∈V By × {y}. Because P has density δ, the set A of elements y ∈ V such

that |By| ≥ δ|V |/2 has density at least δ/2. Using Theorem 5.1 on each set By for y ∈ A,

we see that φH(P ) contains a set P ′ = ∪y∈AVy×{y} where Vy is a subspace of codimension
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O(log4 1/δ). This argument reduces Theorem 5.8 to the following proposition.

Proposition 5.12. Let A ⊂ V have density α > 0. Let P = ∪y∈AVy × {y} ⊂ V × V ,

where each Vy is a subspace of codimension at most r = O(log4 α−1). Let P ′ = φHφV (P ).

Then there exist subspaces W1,W2 of codimension r1, r2 and bilinear forms Q1, . . . , Qr3 on

W1 ×W2 such that

{(x, y) ∈ W1 ×W2 | Q1(x, y) = · · · = Qr3(x, y) = 0} ⊂ P ′

with r3, r1, r2 of size O(exp(exp(exp(logO(1) α−1)))).

We now prove Proposition 5.12. The theorem will be achieved through the following

iteration scheme. Let V ∗ be the linear dual of V , that is, the set of linear forms on V .

For (x, ξ) ∈ V × V ∗, we denote x · ξ = ξ(x). For a set U ≤ V , we let U⊥ = {ξ ∈ V ∗ |
∀x ∈ U x · ξ = 0}. Roughly speaking, this iteration scheme consists in finding a spanning

set (ξ1(y), . . . , ξr(y)) of V ⊥
y where more and more linear forms ξi(y) are constant or vary

linearly (or more generally affinely) with y.

Proposition 5.13. Let V be an F-vector space, and W be an affine subspace. Let r ≤
dimV be an integer and α > 0. Let ϵ = p−r/256. Then there exists a constant c(r,α)

such that the following holds. Let A ⊂ W be an ϵ-pseudorandom subset of density α. Let

P = ∪y∈AVy×{y} ⊂ V ×W where each Vy is a subspace of codimension at most r. Suppose

there exist s ≤ r and affine maps ξ1, . . . , ξs from W to V ∗ and spaces Uy ≤ V ∗ for y ∈ A

of dimension at most r − s such that V ⊥
y = span(ξj(y))j∈[s] + Uy. Then at least one of the

following statements holds.

1. (Termination) The set φV (P ) contains

{(x, y) ∈ X3 ×W2 | x ·
−→
ξ1 (y) = · · · = x ·

−→
ξs (y) = 0}

where
−→
ξ denotes the linear part of an affine map ξ, W2 is the direction of W and

X3 is a subset of density at least p−r/12 in V .

2. (Reduction of codimension) There exist a space V ′ ≤ V of codimension at most 4r and

subspaces V ′
y ≤ V ′ of codimension r−1 for each y ∈ A such that P ⊃

⋃
y∈A V ′

y ×{y}.
Besides there exist affine maps ξ′1, . . . , ξ

′
s from W to V ′∗ and spaces U ′

y ≤ V ′∗ for

y ∈ A of dimension at most r − s such that (V ′
y)

⊥ = span(ξj(y))j∈[s] + U ′
y.
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3. (Linearisation) There exist a set S ⊂ A of density c(r,α) and an affine map ξs+1 :

W → V and a space U ′
y < Uy such that for all y ∈ S, we have

V ⊥
y = span(ξ1(y), . . . , ξs+1(y)) + U ′

y.

Moreover c(r,α) can be taken quasipolynomial in αp−r, that is,

c(r,α) = O(exp(logO(1)(α−1pr))).

We will now use Proposition 5.13 to prove Theorem 5.8. Applying Corollary 5.5 with

ϵ = p−r/256 and r = O(logO(1) α−1), we obtain an affine subspace W (0) of V of codimension

O((ϵα)−1/2 logα−1) = O(pr/2α−2/3)

such that the set A0 := A ∩ W (0) has density α0 ≥ α and is ϵ-pseudorandom in W0.

We set V (0) = V, P0 = ∪y∈A0Vy × {y} ⊂ P and apply Proposition 5.13 with the tuple

(V (0),W (0), A0, P0) and s0 = 0, r0 = r.

If the first alternative of Proposition 5.13 holds, we stop.

Suppose the second alternative of Proposition 5.13 holds. We set V (1) ⊂ V (0) to be

the subspace V ′ given by the second alternative, of codimension O(r). We are also given

subspaces V (1)
y ≤ V (1) of codimension at most r1 ≤ r − 1 such that P ⊃

⋃
y∈A V (1)

y × {y}.

Suppose the third alternative holds. We obtain a set S ⊂ A0 of density c(r,α0) in W (0),

an affine map ξ1 : W0 → V ∗ and subspaces U (1)
y ≤ V ∗

y of dimension at most r1 ≤ r − 1

such that V ⊥
y = span(ξ1(y)) + U (1)

y . Then we let V (1) = V and V (1)
y = Vy. We can find

an affine subspace W (1) ⊂ W (0) of codimension O(pr/2α−2/3
0 ) in W (0) such that the set

A1 := S ∩W (1) is ϵ-pseudorandom and has density α1 ≥ c(r,α0) in W (1). Let s1 = 1 and

r1 = r.

Set P1 =
⋃

y∈A1
V (1)
y × {y}. We have P0 ⊃ P1.

We can now apply Proposition 5.13 with (V (1),W (1), A1, P1, r1, s1) and start an iterative

process. This iterative process stops whenever one can apply the first item of Proposition

5.13, or when r − s vanishes. When applying either of the last two alternatives, at least

one of the parameters r or r − s is decreased by at least one, while the other one cannot

increase, so the iteration does eventually stop.

At the i-th stage, we obtain a subspace V (i) ⊂ V of codimension O(ri), an affine
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subspace W (i) ⊂ W of codimension

O(exp(logC
i
α−1)),

where C is a constant (depending at most on p), an ϵ-uniform set Ai ⊂ W (i) of density

αi = Ω(exp(− logC
i
α−1))

and a set

Pi = ∪y∈AiV
(i)
y × {y} ⊂ V (i) ×W (i)

where each V (i)
y ⊂ V (i) has codimension ri ≤ r. Besides, we have affine maps ξ1, . . . , ξsi

fromW i to V (i)∗ and subspaces U (i)
y ≤ V (i)∗ of dimension at most ri−si such that (V (i)

y )⊥ =

span(ξ1(y), · · · , ξs1(y)) + U (i)
y . Furthermore, P ⊃ Pi.

Suppose the algorithm stops after the i-th iteration, where i ≤ 2r. Note that we have

si ≤ r,

codimV (i) = O(r2) = O(logO(1) α−1),

and

codimW (i) = O(exp(logC
r

α−1)) = O(exp(exp(exp(logO(1) α−1)))).

There are two possibilities.

Case 1: ri = si, and

Pi = {(x, y) ∈ V (i) ×Ai | x · ξ1(y) = · · · = x · ξsi(y) = 0}

where ξ1, . . . , ξsi are affine maps from W (i) to V (i)∗, Ai ⊂ W (i) is a set of density γ := αi =

Ω
(
exp(− exp(exp(logO(1) α−1)))

)
.

Case 2: The first alternative of Proposition 5.13 holds, and

φV (Pi) ⊃ {(x, y) ∈ X ×W2 | x ·
−→
ξ1 (y) = · · · = x ·

−→
ξsi(y) = 0},

where ξ1, . . . , ξsi are affine maps from W (i) to V (i)∗, X ⊂ V (i) is a set of density Ω (p−ri) =

Ω
(
exp

(
− logO(1) α−1

))
and W2 is the direction of W (i).

Since the two cases are similar, we will work with Case 1. By translating P by (0, a)

for some a ∈ Ai if necessary, we may assume that W (i) is a vector subspace of V . Let

η = 1
10γ

3/2p−r−1. Applying Lemma 5.4 with t = r + 1, there is a subspace H ≤ W (i) of
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codimension O(rη−1 log γ−1) such that |A′| = γ′|H| (where A′ = Ai ∩H) with γ′ ≥ γ and

for any subspace F of codimension at most r + 1 of H , |A′∩F |
|F | ≤ γ(1 + η).

For each x ∈ V (i), let Bx = {y ∈ H | x · ξ1(y) = · · · = x · ξsi(y) = 0}. Then Bx

is a subspace of codimension at most r inside H . Let Ax = A′ ∩ Bx. We claim that

2Ax − 2Ax =
−→
Bx.

By Lemma 5.2, it suffices to show |1̂Ax(χ)| < γ3/2x for any χ ̸= 1, where γx is the density

of Ax in Bx.

Suppose for a contradiction that this is not true. Then Lemma 5.3 implies that there

is a hyperplane F of Bx on which the density of A is at least γx + γ3/2x /2. From Lemma

5.4 we also have γx ≥ γ(1− ηpr). Therefore,

γx + γ3/2x /2 ≥ γ(1− ηpr+1) +
1

2
γ3/2(1− ηpr+1)3/2

≥ γ(1− ηpr+1) +
1

2
γ3/2(1− 2ηpr+1)

≥ γ − 1

10
γ3/2 +

2

5
γ3/2 = γ +

3

10
γ3/2 > γ + η. (5.10)

This contradicts the assumption on H since F is a subspace of codimension at most r + 1

of H . Therefore, 2Ax − 2Ax =
−→
Bx and

φV (P ) ⊃ ∪x∈V (i){x}×
−→
Bx = {(x, y) ∈ V i ×H | x ·

−→
ξ1 (y) = · · · = x ·

−→
ξsi(y) = 0}.

Since the codimension of H in W (i) is O(rϵ−1 log γ−1), Theorem 5.8 follows.

5.5 Proof of the iterative step

In this section, we prove Proposition 5.13. So we take a set P ⊂ V × V of the form given

in the hypothesis of this proposition. First, suppose there exists a nonzero λ ∈ Fs
p such

that ξ′0 =
∑

j∈[s] λjξj satisfies rk
−→
ξ′0 < 2r + 10 ≤ n. Let V ′ = span(ξ′0(y) | y ∈ A)⊥. By

completing λ into a basis of Fs
p, we obtain affine maps ξ′0, . . . , ξ

′
s−1 from W to V ∗ such that

span(ξ′0(y), . . . , ξ
′
s−1(y)) = span(ξ1(y), . . . , ξs(y)) for any y ∈ A. Then P ⊃

⋃
y∈A V ′

y × {y}
where (V ′

y)
⊥ = span(ξ′1(y), . . . , ξ

′
s−1(y)) + U ′

y and U ′
y is the projection of Uy onto V ′∗. This

proves the second alternative.

So let us now suppose that there exists no nonzero λ ∈ Fs
p such that ξ′0 =

∑
j∈[s] λjξj

satisfies rk
−→
ξ′0 < 2r + 10. We call this condition the high rank condition.
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For x ∈ V , let Ax = {y ∈ A | x ∈ Vy} ⊂ W . Also, let

Bx = {y ∈ W | x · ξ1(y) = · · · = x · ξs(y) = 0};

this is an affine subspace of codimension at most s, and Ax ⊂ A ∩ Bx. Now let us show

that Px∈V (codimBx < s) ≤ ϵp−r/4.

Note that
−→
Bx = {y ∈ −→

W | y ·
−→
ξ1

T (x) = · · · = y ·
−→
ξs

T (x)}

is a subspace of codimension s unless there exists a nonzero λ ∈ Fs
p such that

∑
j∈[s] λj

−→
ξj T (x) =

0. For any fixed such λ, the set of x that satisfy this relation is a linear subspace, namely

the kernel Kλ of
∑

j∈[s] λj
−→
ξj T whose codimension equals the rank of

∑
j∈[s] λj

−→
ξj , hence at

least 2r + 10. Hence |Kλ|/|V | ≤ p−2r−10 ≤ ϵp−r/4. Because there are at most pr tuples λ

to consider, we conclude that Px∈V (codimBx < s) ≤ p−rϵ/4.

Let αx be the density of Ax in Bx. Let X = {x ∈ V | codimBx = s}. Observe that

Ex∈V αx =
1

|V |
∑

x∈V

|Ax|
|Bx|

=
1

|V |

(
ps
∑

x∈X

|Ax|
|W | +

∑

x∈Xc

|Ax|
|Bx|

)

≥ psEx∈V
|Ax|
|W |

− ps
1

|V |
∑

x∈Xc

|Ax|
|W |

≥ psEy∈W1y∈AEx∈V 1x∈Vy − αps
|Xc|
|V |

≥ αps−r(1− ϵ/4).

Proposition 5.13 will follow from Lemmas 5.14 and 5.15.

Lemma 5.14. At least one of the following statements holds.

1. For at least p−r|V |/4 elements x ∈ V , we have 2Ax − 2Ax =
−→
Bx (the direction of

Bx).

2. Among additive quadruples y1+ y2 = y3+ y4 in A, a proportion at least p−4rϵ has the

property that codim
⋂4

i=1 Vyi < 4r − s.

Proof. Let Q be the set of additive quadruples y = (y1, . . . , y4) of A. Let m = dimW . We
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have

Ex∈V ∥1Ax∥4U2(Bx) = Ex∈V E y1,...,y4∈Bx
y1+y2=y3+y4

4∏

i=1

1yi∈Ax

≤ 1

p3(m−s)

∑

(y1,...,y4)∈A4

y1+y2=y3+y4

Ex∈V 1∀i x∈Vyi

=
1

p3(m−s)

∑

y∈Q

p−codim
⋂

i Vyi

≤ α4(1 + ϵ)
(
Ey∈Q(p

3s−codim
⋂

i Vyi )
)

≤ α4p−4(r−s)(1 + ϵ)(1 + p4r−sPy∈Q(codim
⋂

Vyi < 4r − s).

So either

Py∈Q

(

codim
4⋂

i=1

Vyi < 4r − s

)

≥ p−4r+sϵ (5.11)

or

Ex∈V ∥1Ax∥4U2(Bx) ≤ α4p−4(r−s)(1 + ϵ)2. (5.12)

Equation (5.11) is exactly the second clause of Lemma 5.14, so assume instead that (5.12)

holds. We infer that

Ex∈V ∥1Ax − αx∥4U2 = Ex∈V (∥1Ax∥4U2 − α4
x)

≤ Ex∈V ∥1Ax∥4U2 − α4p−4(r−s)(1− ϵ/4)4

≤ α4p−4(r−s)(2ϵ+ ϵ2 + ϵ)

≤ 4ϵα4p−4(r−s) = γ

where we used Jensen’s inequality, the lower bound Ex∈V αx ≥ p−(r−s)(1− ϵp−r/4) and the

elementary inequality (1−ϵ/4)4 ≥ 1−ϵ. Thus, if X1 = {x ∈ V | ∥1Ax −αx∥4U2(Bx)
≤ 4prγ},

by Markov’s inequality, we have |X1| ≥ |V |(1 − p−r/4). Also, because αx ≤ αps for any

x ∈ V , the set X2 = {x ∈ V | αx ≥ αp−(r−s)/2} has density at least p−r(1/2−ϵ/4) ≥ p−r/3.

So X3 = X1 ∩X2 must have density at least p−r/12 by inclusion-exclusion.

Besides, if ϵ = 1/(256pr), then for x ∈ X3 we have ∥1Ax − αx∥4U2 < α4
x and then

2Ax − 2Ax =
−→
Bx.

We now prove Proposition 5.13. When the first outcome of Lemma 5.14 holds, we see
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that φV (P ) contains

{(x, y) ∈ X3 ×
−→
W | Q1(x, y) = · · · = Qs(x, y) = 0},

where Qi(x, y) = x ·
−→
ξi (y).

The real challenge lies in extracting something from the second outcome of Lemma

5.14. This is the purpose of the next lemma.

Lemma 5.15. Suppose r > s and a proportion at least κ of the additive quadruples

(y1, . . . , y4) of A have the property that codim
⋂4

i=1 Vyi < 4r − s. Then there is a sub-

set S ⊂ A of density σ = σ(r,α, κ) such that one of the following holds.

1. There is a subspace V ′ ≤ V of codimension at most one and spaces V ′
y ≤ V ′ of

codimension at most r − 1 such that P ⊃ V ′
y × {y}. Besides, there exist affine maps

ξ′1, . . . , ξ
′
s from W to V ∗ and spaces U ′

y ≤ V ′∗ of dimension at most r − s such that

V ′
y
⊥ = span(ξ′1(y), . . . , ξ

′
s(y)) + U ′

y.

2. There is an affine map ξs+1 : W → V ∗ and a subspace U ′
y ≤ V ∗ of dimension at most

r − s− 1 such that V ⊥
y = span(ξj(y) | j ∈ [s+ 1]) + U ′

y.

Moreover σ can be taken to be quasipolynomial1 in ακp−r.

Applying Lemma 5.15 with κ = p−4rϵ = p−5r/256, the first alternative implies the

second statement of Proposition 5.13, while the second alternative yields the third one of

Proposition 5.13.

Our goal is now to prove Lemma 5.15.

Proof of Lemma 5.15. Let ξs+1, . . . , ξr be maps from A to V ∗ such that

Uy = span(ξs+1(y), . . . , ξr(y))

for any y ∈ A. The number of additive quadruples in A is at least α4|W |3 = α|A|3, and
we assume at least κα|A|3 of them have the property that the 4r vectors ξj(yi) satisfy at

least s + 1 linearly independent equations. For any additive quadruple in A, we already

have s obvious equations

ξj(y1) + ξj(y2) = ξj(y3) + ξj(y4) for j ∈ [s], (5.13)

1Polynomial under the polynomial Freiman-Ruzsa conjecture.
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so there needs to be one more (independent) equation. Because there are only p4r possible

linear equations
r∑

j=1

4∑

i=1

ai,jξj(yi) = 0, (5.14)

the pigeonhole principle implies that we can find (ai,j) ∈ F4r \ {0} (linearly independent

from the vectors bi,j = 1j=j0 for j0 ∈ [s]) such that there are at least κα|A|3/p4r quadruples
(y1, . . . , y4) ∈ W 4 for which y1 + y2 = y3 + y4 and equation (5.14) holds. Let T be that set

of quadruples. Write ai = (ai,j)j=1,...,r.

If one of the four families a1, . . . , a4, say a4, satisfies a4,j = 0 for every j > s, we can

use the equations (5.13) to eliminate y4 in equation (5.14). We obtain φ1+φ2+φ3 = 0 for

some vectors φi ∈ V ⊥
yi for i ∈ [3]. Write r(φ) = |{y ∈ A | φ ∈ V ⊥

y }| for any φ ∈ V ∗. Then

we have

p−4rκα|A|3 ≤ |T | ≤
∑

φ1,φ2∈V

r(φ1)r(φ2)r(−φ1 − φ2) ≤ max
φ∈V

r(φ)

(
∑

φ∈V

r(φ)

)2

.

A double counting argument shows that
∑

φ∈V r(φ) ≤ pr|A|. So max r(φ) ≥ καp−6r|A|,
which implies that there exists a linear form φ ∈ V ∗ such that for a positive proportion

of y ∈ A, we have φ ∈ V ⊥
y . Name S ⊂ A this set of elements y ∈ A, and V ′ = φ⊥.

Projecting the maps ξi onto (V ′)∗, we get affine maps ξ′i : W → (V ′)∗ for i ∈ [s], and

letting V ′
y = span(ξ′1(y), . . . , ξ

′
r(y))

⊥, for any y ∈ S, we have codimV ′V ′
y ≤ r − 1. This

concludes.

So now suppose none of the four families satisfies ai,j = 0 for every j > s. We shall

aim at linearity instead of constancy. By the probabilistic method, we can find a partition

of A = A1 ∪ A2 ∪ A3 ∪ A4 in four parts such that there are a lot of quadruples of T in

A1 × · · ·× A4. We prove this claim now. Removing quadruples for which two entries are

equal (there are O(|A|2) such quadruples), we still have a set T of quadruples satisfying

|T | ≥ C|A|3 for some constant C ≫ καp−4r. Now for a random partition of A where

each y ∈ A is assigned a part Ai with i ∈ {1, 2, 3, 4} chosen independently, uniformly with

probability 1/4, we have

E[|T ∩ A1 × A2 ×A3 ×A4|] = E
∑

(y1,...,y4)∈T

4∏

i=1

1yi∈Ai =
∑

(y1,...,y4)∈T

E
4∏

i=1

1yi∈Ai . (5.15)

Let (y1, . . . , y4) ∈ T . In particular the yi are pairwise distinct. Then by uniform distribu-
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tion and independence, for any (m1, . . . , m4) ∈ [4]4, we have

P(yi ∈ Ami for each i ∈ [4]) = 4−4.

Together with equation (5.15), this implies that

E[|T ∩ A1 × A2 ×A3 ×A4|] = |T |/256 ≥ C|A|3/256.

In particular, we can pick a partition A = A1 ∪ A2 ∪ A3 ∪A4 such that the set

T ′ = T ∩ A1 ×A2 × A3 × A4

satisfies |T ′| ≥ C|A|3/256. For i ∈ [4] and y ∈ Ai, set ξ′s+1(y) = zi
∑

j∈[r] ai,jξj(y)

where z1 = z2 = 1 and z3 = z4 = −1. Observe that ξ′s+1(y) is a nonzero vector

in V ⊥
y . For i ∈ [4], let ji > s be any index such that ai,ji ̸= 0. For y ∈ Ai, let

U ′
y = span(ξs+1(y), · · · , ξ̂ji(y), · · · , ξr(y)), where the hat denotes an omitted form; this

is a space of dimension at most r− s− 1. We have V ⊥
y = span(ξ1(y), . . . , ξs(y), ξ′s+1) +U ′

y.

Further, for a quadruple y ∈ T ′, we observe that (yi, ξ′s+1(yi))i∈[4] is an additive quadruple.

So there are at least C|A|3/256 additive quadruples in the graph {(y, ξ′s+1(y)) | y ∈ A}. We

then invoke Lemma 5.6 to obtain a set S ⊂ A whose density in A is quasipolynomial (in

C), such that ξ′s+1 coincides with an affine map on S. This concludes the proof of Lemma

5.15, and hence also that of Proposition 5.13.

5.6 Remarks on transverse sets

Let V1 and V2 be two Fp-vector spaces. Say a set P ⊂ V1×V2 is transverse if it is horizontally

and vertically closed, that is, P
V
+ P = P

H
+ P = P . Write Px· = {y ∈ V2 | (x, y) ∈ P} and

P·y = {x ∈ V1 | (x, y) ∈ P}, borrowing the notation from [35]; these sets are subspaces, or

the empty set. Thus

P =
⋃

x∈V1

{x}× Px· =
⋃

y∈V2

P·y × {y}. (5.16)

Examples of transverse sets are bilinear sets defined in equation (5.6), that is, zero-sets of

bilinear forms on cartesian products of vector spaces. A special case of Theorem 5.8 is that

a transverse set of density δ contains a rather large bilinear set. However, in that essentially

algebraic case, it would be interesting to find a cleaner proof, with better bounds. This is
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what we do in this section, in the case where the vertical fibers Px· are hyperplanes. The

proof involves a geometric, exact analogue of Lemma 5.14, but here the second alternative

of that lemma always holds.

Proposition 5.16. Suppose that codimV2Px· ≤ 1 for any x ∈ V1. Then either there exist

W ≤ V1 and a hyperplane H ≤ V2 such that P = W ×V2∪V1×H, or there exists a bilinear

form b on V1 × V2 such that P = {(x, y) ∈ V1 × V2 | b(x, y) = 0}.

In particular, P contains a bilinear set of codimensions (0, 1, 0) or (0, 0, 1).

Proof. Let P ⊂ V1×V2 be a transverse set. Then P0· contains every Px·, because if y ∈ Px·,

we have (x, y) ∈ P and thus (0, y) ∈ P , hence y ∈ P0·. For x ̸= 0, the set Px· depends

only on the class [x] ∈ P (V1) = V ∗
1 /F∗

p of x in the projective space. Moreover, the stability

under horizontal operations is equivalent to the property that if [z] is on the projective line

spanned by x and y, we have Pz· ⊃ Px· ∩ Py·. Because P ⊂ V1 × P0·, we may suppose that

V2 = P0·.

By hypothesis, for any x ∈ V1, the fiber Px· is a hyperplane or the full space V2. Write

Px· = ξ(x)⊥ for some vector ξ(x) ∈ V2 that is defined up to homothety. So ξ(0) = 0 and

whenever [z] is on the projective line spanned by x and y, we have ξ(z) ∈ span(ξ(x), ξ(y)).

It is easy to see that {x ∈ V1 | Px· = V2} is a vector subspace which we callW . Furthermore,

if x − y = w ∈ W , we have ξ(x) ∈ span(ξ(y), ξ(w)) = span(ξ(y)), that is, ξ(x) = ξ(y) up

to homothety, so that ξ descends to a map P (V1/W ) → P (V2). Let V ′
1 = V1/W . Thus ξ

is a map P (V ′
1) → P (V2) that maps aligned points to aligned points. It is easy to see that

on each projective line, the map ξ is either constant or injective. Let us prove that ξ is

either constant or injective on all of P (V ′
1). If P (V ′

1) is a line, the conclusion is exactly the

previous observation, so suppose that dim V ′
1 ≥ 3. Assume that ξ is neither injective nor

constant. This means that there exist two distinct points x, y such that ξ(x) = ξ(y), and a

third point z satisfying ξ(z) ̸= ξ(x). This implies that x, y, z are not (projectively) aligned,

so they span a projective plane. The reader may wish to follow the proof on Figure 5.1.

Take a point w /∈ {y, z} on the line spanned by y and z. Because ξ is a bijection on both

lines (yz) and (xz), we can find w′ /∈ {x, z} on (xz) such that ξ(w) = ξ(w′) ̸= ξ(x). Now

consider the intersection u = (ww′) ∩ (xy) in the projective plane span(x, y, z). Then we

have ξ(u) = ξ(x) = ξ(y) ̸= ξ(w), so that on the line (ww′) the map ξ is neither constant

nor injective, a contradiction.

If ξ is constant on P (V ′
1), we can take ξ(x) to be a nonzero constant vector φ ∈ V2 for all

x ∈ V1/W , viewed as the complement of W , while ξ(x) = 0 on W . So P = W×V2∪V ×φ⊥.
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x

z

y
w′

w

u

Figure 5.1: Proof of Proposition 5.16.

If ξ is injective and dimV ′
1 ≥ 3, the fundamental theorem [76, Théorème 7] of projective

geometry2 implies that it comes from an injective linear map V ′
1 → V2, which we extend

to a linear map ξ : V1 → V2 of kernel W . Thus P is the zero set of the bilinear form

(x, y) /→ ξ(x) · y, which concludes the proof of Proposition 5.16.

2Here we require the field Fp to be a prime field; on a non prime finite field Fq, we would need to
incorporate Frobenius field automorphisms.
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Chapter 6

The Croot-Lev-Pach method and

applications

This chapter is based on a note of the author [11] and some unpublished work. It is

organised as follows. We introduce the Croot-Lev-Pach method in Section 6.1. Section 6.2

presents a result the author obtained using this method, namely a bound on the cardinality

of a set of polynomials free of a certain given configuration. We compare the result obtained

in this function field setting to the analogous ones in the integers, where the quantitative

aspect is much weaker. We describe some further uses of the method in Section 6.3. In

Section 6.4, we exhibit a serious obstacle to applying the method to other open problems

of additive combinatorics, namely the problems the existence of arithmetic progressions

of length 4 or corners in a given set. Finally in Section 6.5, we discuss the quality of the

bounds as a function of the cardinality of the field.

6.1 The Croot-Lev-Pach method

The traditional Fourier-analytic method on Fn
p , sketched in Section 5.1, relies on an ex-

pression for the characteristic function 1x=a, namely

1x=a = Et∈Fn
p
ω(a−x)·t = Et∈Fn

p
ωa·tω−x·t, (6.1)

where ω = exp(2πi/p) is still a root of unity. Given that the family of characteristic

functions of points a ∈ Fn
p is a basis of the space CFn

p , equation (6.1) shows that the

functions χt : x /→ ω−x·t form another basis of the same space. The coefficients f̂(t) of a
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function f in this basis define the Fourier transform f̂ of f .

Consequently, a 3-term arithmetic progression (or 3-AP) can be detected by the function

1x+y=2z = Et∈Fn
p
ω(x+y−2z)·t =: f(x, y, z).

Similarly, the basic idea of the Croot-Lev-Pach method [24] can be interpreted (see

[84]) as the identity

1x=a =
n∏

i=1

(1− (xi − ai)
p−1) (6.2)

for any x and a in Fn
p . Here, one can replace the prime p by a prime power q.

Equation (6.2), upon expanding the right-hand side, exhibits a basis of FFn
p

p , namely

the one formed by monomials
∏n

i=1 x
αi
i where αi ∈ {0, . . . , p − 1} for all i ∈ [n]. In fact,

this identity gives rise to a ring isomorphism

FFn
p

p ≃ Fp[x1, . . . , xn]/I,

where I is the ideal generated by the polynomials xp
i − xi for i ∈ [n].

As a result, 3-APs are detected by the expression

1x+y=2z =
n∏

i=1

(1− (xi + yi − 2zi)
p−1) =: fp(x, y, z). (6.3)

While the Fourier-analytic and the Croot-Lev-Pach method start with a clever way to

detect an equality, they diverge radically from this point onwards: the first one is C-valued,
while the second is Fp-valued. As a result,

T (A) =
∑

(x,y,z)∈A3

f(x, y, z)

is the number of 3-APs in A (including the trivial ones (x, x, x)), whereas

Fp ∋ Tp(A) =
∑

(x,y,z)∈A3

fp(x, y, z) ≡ T (A) mod p

only delivers the number of 3-APs modulo p. Say an AP is nontrivial if its three elements

are pairwise distinct. The existence of a nontrivial 3-AP in A is equivalent to the statement
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T (A) > |A|, whereas it cannot be phrased in terms of Tp(A).1

Instead, if A ⊂ Fn
p is AP-free (meaning that it contains no nontrivial 3-APs), the

identity (6.3) yields

(fp)|A3(x, y, z) =
∑

x∈A

δa(x)δa(y)δa(z) (6.4)

where δa is the Kronecker symbol (that is δa(x) = 1x=a). The crux of the Croot-Lev-

Pach method is that in some sense, the left-hand side of (6.4) has “low complexity”,

being a polynomial of low degree in many variables, while the right-hand side has “high

complexity”, being a diagonal tensor.

We now make this precise. Because equation (6.2) holds with a prime power q instead

of a prime p, we proceed with Fq instead of the prime field Fp. Take a subset A ⊂ Fn
q and

a map P : Ak → Fq. Let M be the set of functions Fn
q → Fq. This set of functions, as

already observed, is naturally in bijection with the set of polynomials in Fq[t1, . . . , tn] in

which no indeterminate is raised to a power greater than q − 1.

Definition 6.1. A polynomial cover for P is a tuple (M1, . . . ,Mk) ∈ Mk such that for

each j ∈ [k] and p ∈ Mj, there exists a function Fj,p : Ak−1 → Fq such that for any

(x1, . . . , xk) ∈ Ak, we have

P (x1, . . . , xk) =
∑

j∈[k]

∑

p∈Mj

p(xj)Fj,p(x1, . . . , xj−1, xj+1, . . . , xk). (6.5)

A function of the form p(xj)Fj,p(x1, . . . , xj−1, xj+1, . . . , xk) is called a slice.

The slice rank sr(P ) of P is the minimum size
∑

j∈[k]|Mj| of a polynomial cover. In

other words, it is the minimum number of slices required to write P as a linear combination

of slices.

Note that this notion is a generalisation of the linear-algebraic notion of rank. Indeed, a

square matrix with rows indexed by A can be viewed as a function f(x, y) of two variables

in A. It is well known that the rank of a matrix is the minimum number of matrices of

the form gi(x)hi(y) (a row times a column) that one needs in order to decompose f(x, y)

as f(x, y) =
∑k

i=1 gi(x)hi(y).

Another useful observation is that the slice rank is subadditive, that is, sr(P + Q) ≤
sr(P ) + sr(Q). Furthermore, the slice rank cannot increase upon restriction, that is, for

1Note that T (A) ̸≡ |A| mod p is a sufficient, but not necessary, condition for the existence of a nontrivial
3-AP.
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B ⊂ A, we have sr(P |B) ≤ sr(P ). Finally, the trivial upper bound on sr(P ) is |A|, as we
always have the decomposition

P (x1, . . . , xk) =
∑

a∈A

δa(x1)P (a, x2, . . . , xk).

Inspired by the linear-algebraic case, we now determine the slice rank of diagonal tensors.

Lemma 6.1 (drawn from [84]). For any a ∈ Fn
q let ca ∈ Fq be a coefficient. Then the slice

rank of the map defined on (Fn
q )

k by

f(x1, . . . , xk) =
∑

a∈Fn
q

ca

k∏

i=1

δa(xi) (6.6)

equals the number of a such that ca ̸= 0.

Proof. Let A be the set of a ∈ Fn
q such that ca ̸= 0. The two-dimensional case (k = 2)

follows from linear algebra, which is a good starting point for an inductive proof.

Let k > 2 and suppose that the lemma holds for k − 1. The right-hand side of (6.6)

being a sum of |A| functions of rank 1, we immediately have sr(P ) ≤ |A|. Suppose for the

sake of contradiction that sr(P ) ≤ |A| − 1. By definition, this means that there exists a

tuple (M1, . . . ,Mk) ∈ Mk satisfying
∑k

i=1|Mi| ≤ |A| − 1 such that for each j ∈ [k] and

p ∈ Mj , there exists a function Fj,p : Ak−1 → Fq such that for any (x1, . . . , xk) ∈ Ak, we

have
∑

a∈Fn
q

ca

k∏

i=1

δa(xi) =
∑

j∈[k]

∑

p∈Mj

p(xj)Fj,p(x1, . . . , xj−1, xj+1, . . . , xk). (6.7)

Consider the set V of functions h : A → Fq satisfying

∑

x∈A

Fk,p(x)h(x) = 0

for any p ∈ Mk. These |Mk| equations make V a subspace of codimension at most |Mk| of
FA
q , and hence a vector space of dimension d ≥ |A| − |Mk| ≥ 1. Fix a basis of this space

and consider the corresponding d × |A| coordinate matrix. It has rank d, which implies

that it contains a d × d invertible submatrix. This in turn means that there is a subset

A′ ⊂ A of cardinality d and a function h ∈ V such that h does not vanish on A′.
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Now if we multiply equation (6.7) by h(xk) and sum over xk ∈ A, we obtain

∑

a∈Fn
q

cah(a)
k−1∏

i=1

δa(xi) =
∑

j∈[k−1]

∑

p∈Mj

p(xj)F̃j,p(x1, . . . , xj−1, xj+1, . . . , xk−1)

for some functions F̃j,p.

The right-hand side is a sum of |A| − 1 − |Mk| slices, hence it has rank at most |A| −
1 − |Mk|. However, by the induction hypothesis and the property of h, the left-hand side

has rank at least |A′| = d ≥ |A|− |Mk|. This is the desired contradiction.

In contrast, the next lemma is a tool to bound from above the slice rank of polynomials.

Lemma 6.2. Fix ϵ ∈ (0, 1/2). Let P : (Fn
q )

k → Fq be a polynomial in n × k variables

(xj,i)j∈[k],i∈[n]. Suppose the total degree of P is at most nk(q − 1)(1/2 − ϵ). Then its slice

rank is at most kqc(ϵ,q)n for some constant c(ϵ, q) ∈ (0, 1).

Lemma 6.2 shows the importance of the parameter deg P/(nk(q − 1)), which we may

call the normalised degree per variable. If this parameter is smaller than 1/2 and bounded

away from 1/2, the polynomial has exponentially small slice rank.

Proof. Since we are interested in P as a function on (Fn
q )

k, we reduce it modulo the ideal I

generated by the polynomials xq−1
j,i − xj,i for i ∈ [n] and j ∈ [k]. We continue to use P for

the only polynomial in the class P modulo I that has degree at most q−1 in each variable

xj,i. Further, for any integer d ≥ 0, we denote by Md,n the set of monomials in n variables

of degree at most q − 1 in each variable and at most d in total.

The polynomial P is a sum of monomials of the form

p(x1, . . . , xk) =
∏

j∈[k]

pj(xj,1, . . . , xj,n),

where each pj is a monomial in n variables. For each monomial p, by the pigeonhole

principle, there exists j ∈ [k] such that

deg pj ≤ (degP )/k ≤ n(q − 1)(1/2− ϵ) =: d.

In other words, pj ∈ Md,n. We infer from the data above that there exist sets of monomials
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M1, . . . ,Mk ⊂ Md,n and functions Fj,p for (j, p) ∈ [k]×Mj such that

P =
k∑

j=1

∑

p∈Mj

p(fj)Fj,p(f1, . . . , fj−1, fj+1, . . . , fk).

Now |Md,n|/qn may be interpreted as the probability that the sum of n independent,

uniform random variables on {0, . . . , q−1} is at most d. To bound this probability, we use

Hoeffding’s concentration inequality [2, Theorem A.1.16], which implies that

|Md,n| = |M(q−1)n(1/2−ϵ),n| ≤ qne−
nϵ2

2 = qc(ϵ,q)n,

where c(ϵ, q) = (1− ϵ2

2 log q ) ∈ (0, 1). This implies that the slice rank of P is at most kqc(ϵ,q)n,

and concludes the proof of Lemma 6.2.

6.2 Application to the solubility of polynomial equa-

tions in function fields

As noted above, the notion of slice rank was originally devised for and applied to the

polynomial representation of the indicator function of 3-APs [84]. Indeed, the AP-freeness

of a set A yields a functional equality between a diagonal tensor (6.4) and a polynomial

(6.3) of degree n(q−1) in 3×n variables. A direct application of Lemmas 6.1 and 6.2 then

gives the celebrated result of Ellenberg and Gijswijt [26, Theorem 4], which we now state.

Theorem 6.3. Let A ⊂ Fn
q have no non trivial 3-AP. Then |A| ≤ q(cq+o(1))n for some

cq ∈ (0, 1).

Ellenberg and Gijswijt found that c3 could be taken such that 3c3 ≈ 2.756. We discuss

the dependence of cq on q in Section 6.5.

As the author pointed out in [11], there are much more general equations of interest to

which this method can be fruitfully applied, including polynomial equations in sufficiently

many variables. We now discuss the general set-up.

Let R be a ring and a1, . . . , ak be elements of R which sum to 0, i.e.
∑k

i=1 ai = 0. Then

the equation
k∑

i=1

aif
r
i = 0 (6.8)
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possesses a wealth of trivial solutions (f1, . . . , fk), namely constant tuples (f, . . . , f), even

though it is not necessarily a translation-invariant equation. This suggests that if a subset

A ⊂ R is free of nontrivial solutions, then it should be small. For the ring R = Z and r = 2,

this question was studied first by Smith [81], Keil [56] and Henriot [53]; they replaced the

single equation by a system comprising the initial equation and an auxiliary linear equation

in order to ensure invariance under translation and dilation. Recently, Browning and

Prendiville [18] showed, without using the auxiliary equation, that if k ≥ 5, and A ⊂ [N ]

satisfies |A| ≫ N and N is large enough, then equation (6.8) necessarily admits nontrivial

solutions (f1, . . . , fk) in Ak. Their method relies on the transference principle. Further,

Chow [21] proved that any relatively dense subset of the primes contains a solution to any

equation of the form (6.8), as long as k ≥ r2 + 1.

Similarly, one may ask whether any dense subset A of the ring R = Fq[t] is bound to

contain a nontrivial solution to (6.8). In this chapter, we answer the question under a

natural condition on the number of variables, namely k ≥ 2r2 + 1. In the function field

setting, the polynomial method of Croot, Lev and Pach [24] can be fruitfully applied and

delivers much stronger bounds than any method known in the integers. This was already

noticed by Green [42] in the case of Sarkőzy’s theorem.

We now give a precise statement of this chapter’s main theorem. We fix a prime power

q and write Gq,n for the set of polynomials of degree strictly less than n over Fq, so that

|Gq,n| = qn.

Theorem 6.4. Let r, k and d be integers satisfying k ≥ 2r2+1. Suppose that a1, . . . , ak are

polynomials over Fq of degree at most d satisfying
∑k

i=1 ai = 0. Then there exist constants

0 < c(r, q) < 1 and C = C(d, r, q) such that any A ⊂ Gq,n satisfying |A| ≥ kCqc(r,q)n must

contain a nontrivial solution to equation (6.8).

The aforementioned paper of Chow [21] implies that k ≥ r2 + 1 is sufficient in the

integers, but the bound on the size of A obtained by his analytic method is much weaker

(we get a power saving, in contrast to his logarithmic saving).

The starting point of the proof of Theorem 6.4 is to view the map f /→ f r as a

polynomial map in the coefficients of f . A map Φ : (Fn
q )

k → Fm
q is said to vanish on

the diagonal if Φ(f, . . . , f) = 0 for any f . A set A ⊂ Fn
q is called Φ-free if for any

(f1, . . . , fk) ∈ Ak, the equality Φ(f1, . . . , fk) = 0 holds if and only if (f1, . . . , fk) = (f, . . . , f)

for some f ∈ Fn
q .

We reduce Theorem 6.4 to the following proposition, which is then tractable by the

polynomial method of Croot-Lev-Pach.
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Proposition 6.5. For any ϵ ∈ (0, 1/2), there exists a constant c′(ϵ, q) ∈ (0, 1) such that

the following holds. Let Φ : (Fn
q )

k → Fm
q be a polynomial map of degree at most ℓ (i.e. each

coordinate is a polynomial of degree at most ℓ) that vanishes on the diagonal. Suppose that

A ⊂ Fn
q is Φ-free. Finally, suppose that mℓ/k ≤ (1/2− ϵ)n. Then |A| ≤ kqc

′(ϵ,q)n.

We prove that Proposition 6.5 implies Theorem 6.4. Each polynomial f =
∑n−1

i=0 fiti in

Gq,n can be viewed as a vector
−→
f = (f0, . . . , fn−1) ∈ Fn

q . Now f r ∈ Gq,(n−1)r+1 so we view

it as the vector
−→
f r = (f r

0 , rf
r−1
0 f1, . . . , f

r
n−1) ∈ F(n−1)r+1

q .

We notice that
−→
f r = Q(

−→
f ), where Q is a polynomial map of degree r. Similarly, if a ∈ Fq[t]

of degree at most d, we see that f /→
−→
af ∈ Fn+d

q is a polynomial map Fn
q → Fn+d

q (of degree

1). Thus,

Φ : (f1, . . . , fk) /→
k∑

i=1

aif
r
i

induces a polynomial map of degree r

−→
Φ : (Fn

q )
k → Fm

q

where m = (n− 1)r + d+ 1 and

−→
Φ (

−→
f1 , . . . ,

−→
fk) =

−−−−−−−−−→
Φ(f1, . . . , fk).

We observe that if A ⊂ Gq,n does not contain any nontrivial solution to (6.8), the set
−→
A = {

−→
f | f ∈ A} ⊂ Fn

q contains only trivial solutions (
−→
f , . . . ,

−→
f ) to the equation

−→
Φ (

−→
f1 , . . . ,

−→
fk) = 0.

Moreover, given that k ≥ 2r2 + 1, we have

mr

kn
=

(n− 1)r2 + dr + r

kn
≤ r2

2r2 + 1
+

(d+ 1)r

(2r2 + 1)n
.

Hence, if n ≥ 4(d+ 1)r, we have mr/k ≤ (1/2− ϵ)n, where

ϵ = ϵ(r) =
1

4(2r2 + 1)
∈ (0, 1/2).

We can now apply Proposition 6.5 and obtain |A| ≤ kqc(r,q)n for some constant c(r, q) =

c′(ϵ(r), q) ∈ (0, 1). Taking care separately of the small values of n, one can find a constant
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C(d, r, q) ≤ q4(d+1)r such that the bound

|A| ≤ kC(d, r, q)qc(ϵ,q)n

is valid for all n.

We now prove Proposition 6.5. As we did in equation (6.4) for 3-APs, we transform

the Φ-freeness into a functional identity

∀(f1, . . . , fk) ∈ Ak
m∏

i=1

(1− Φq−1
i (f1, . . . , fk)) =

∑

f∈A

k∏

j=1

δf(fj), (6.9)

where δf (fj) is 0 if f ̸= fj and 1 otherwise. The proposition then follows from Lemmas

6.1 and 6.2.

6.3 Further applications

The method described above is rather versatile. We provide a few further examples.

Proposition 6.6. Let A and V be two subsets of Fn
q and suppose that 0 ∈ V . Let ϵ ∈ (0, 1)

and suppose that one of the following two hypotheses holds.

1. A does not contain two elements x ̸= y whose difference is in V and there exists a

polynomial of degree at most (1− ϵ)n(q − 1) in Fq[x1, . . . , xn] whose support is V .

2. A does not contain any 3-AP of step d ∈ V and there exists a polynomial of degree

at most (1/2− ϵ)n(q − 1) whose support is V .

Then |A| ≤ qcn for some c = c(ϵ, q) ∈ (0, 1).

Proof. Under the first hypothesis, we have

∀(x, y) ∈ A2 P (x− y) = P (0)
∑

a∈A

δa(x)δa(y),

an equality between a polynomial in 2× n variables of degree at most (1− ϵ)n(q − 1) and

a diagonal matrix. Under the second one we have

∀(x, y, z) ∈ A2 fq(x, y, z)P (y − x) = P (0)
∑

a∈A

δa(x)δa(y),
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where fq(x, y, z) is the indicator function of 3-APs viewed as in (6.3). This is an equality

between a polynomial in 3×n variables of degree at most (3/2− ϵ)n(q−1) and a diagonal

tensor. Lemmas 6.1 and 6.2 conclude the proof.

Interesting examples of sets that are the supports of polynomials of low degree include

V = Sn for any subset S ⊂ Fq (the polynomial
∏

i∈[n]
∏

j∈Fq\S(xi − j) has support V and

degree n(q− |S|)) and subspaces of low codimension. Indeed, if V is defined as the zero-set

of k linear forms ℓ1, . . . , ℓk, its indicator function is
∏k

i=1(1 − ℓi(x)q−1), a polynomial of

degree k(q − 1).

A more refined example was supplied by Green [42]: he proved that the set of squares

in Gq,n (here again, we view a polynomial f ∈ Gq,n as the vector of its coefficients in Fn
q ) is

the support of a polynomial of degree at most 3/4n(q − 1). More generally, he found that

the set of kth powers is the support of a polynomial of degree at most (1− 1/k2)n(q − 1).

This allowed him to improve Sarkőzy’s theorem in function fields: a set A ⊂ Gq,n that does

not contain any pair of elements differing by a kth power must be exponentially small.

6.4 Limits of the method

At present, the method seems unable to bound the size of a set free of any nontrivial 4-term

arithmetic progressions (or 4-APs) in Fn
q , a problem we refer to as the 4-APs problem. We

fix q = 5, the smallest cardinality which allows genuine 4-APs. The indicator function of

4-APs is

Q(x, z, y, w) = 1x+y=2z1z+w=2y =
n∏

i=1

(1− (xi + yi − 2zi)
4)

n∏

i=1

(1− (zi + wi − 2yi)
4), (6.10)

a polynomial of degree 2n(p− 1), in 4n variables, whence a normalised degree per variable

of exactly 1/2. Consequently the simple pigeonhole principle applied in Lemma 6.2 to

bound the slice rank does not work.

Another well-known problem in additive combinatorics, already mentioned in Sec-

tion 1.4, is the corners problem. It asks for a bound on the size of a set A ⊂ Fn
2 × Fn

2

which contains no nontrivial corner. Here a corner is a triple of the form {(x, y), (x +

d, y), (x, y + d)}, and it is said to be nontrivial if d ̸= 0. Equivalently, a corner is a triple

{(x, y), (u, v), (z, w)} with x = z, y = v, x+ u = y + w. The indicator function of corners
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is therefore given by

P ((x, y), (u, v), (z, w)) =
∏

i∈[n]

f((xi, yi), (ui, vi), (zi, wi)) (6.11)

where

f((x, y), (u, v), (z, w)) = (1 + x+ z)(1 + y + v)(1 + x+ u+ y + w), (6.12)

again a polynomial of normalised degree per variable equal to 1/2.

Our aim is to find a parameter that shows that the corners and 4-APs problems are

genuinely harder than the 3-APs problem. Although it is reasonable to believe that both

polynomials (6.11) and (6.10) have maximal slice ranks, that is, respectively 4n and 5n,

proving lower bounds for the slice rank is beyond current known techniques. Instead of the

slice rank, we propose the following new parameter, which we call monomial slice rank.

Definition 6.2. Let P be a function (that is, a polynomial) from (Fn
p )

k → Fp. Let N
be the set of monomials in Fp[x1, . . . , xn] that have degree at most p− 1 in each variable.

Elements of N are called elementary monomials. A monomial cover for P is a tuple

(N1, . . . , Nk) ∈ N k such that for each j ∈ [k] and p ∈ Nj , there exists a function Fj,p from

Ak−1 to Fq such that for any (x1, . . . , xk) ∈ Ak, we have

P (x1, . . . , xk) =
∑

j∈[k]

∑

p∈Nj

p(xj)Fj,p(x1, . . . , xj−1, xj+1, . . . , xk). (6.13)

A function of the form p(xj)Fj,p(x1, . . . , xj−1, xj+1, . . . , xk) is called a monomial slice.

The monomial slice rank msr(P ) of P is the minimum size
∑

j∈[k]|Nj | of a monomial

cover. In other words, it is the minimum number of slices required to write P as a linear

combination of monomial slices.

It is obvious that sr(P ) ≤ msr(P ). We observe that in Lemma 6.2, we actually bounded

msr(P ) rather than sr(P ). In contrast, we show below that the monomial slice ranks of

the polynomials (6.10) and (6.11) are as large as they can be.

Proposition 6.7. The monomial slice rank of the indicator function P of corners in

Fn
2 × Fn

2 is 4n, and that of the indicator function Q of 4-APs in Fn
5 is 5n.

Although this statement does not say anything about polynomial covers, it shows that

the corner and 4-APs problems are, in some sense, genuinely harder than the 3-AP problem.
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We give a detailed proof for the corners problem only, as it is computationally simpler but

contains all the ideas needed for the other problem.

Proof. Recall that the polynomials P and f are defined by equations (6.11) and (6.12). In

fact, we are interested in the polynomial map (F2×F2)3 → F2 induced by f , and this map

depends only on the class of f in the quotient R = F2[x, y, u, v, z, w]/I, where I is the ideal

generated by the polynomials t2+ t for t ∈ {x, y, u, v, z, w}. Upon expanding and reducing

modulo I, we find that f is the following sum of 33 monomials2

xyz + xyw + yzw + xyu+ yzu+ xyv + xzv + yzv + xwv + zwv + xuv + zuv

+ xy + xz + yz + xw + yw + zw + xu+ yu+ zu + xv + yv + zv + wv + uv

+ x+ y + z + w + u+ v + 1. (6.14)

Let (M1,M2,M3) be a monomial cover for P , that is, a triple of sets of monomials in

2n indeterminates such that for each ℓ ∈ [3] and m ∈ Mℓ, there exists a polynomial

Fℓ,m : (Fn
2 × Fn

2 )
2 → F2 so that

P =
∑

m∈M1

m(x, y)F1,m((z, w), (u, v)) +
∑

m∈M2

m(z, w)F2,m((u, v), (x, y))

+
∑

m∈M3

m(u, v)F3,m((x, y), (z, w)). (6.15)

Call the three sums featuring in equation (6.15) P1, P2, P3. We say that a monomial

appears in a polynomial if its coefficient in the expansion of the polynomial is nonzero.

Let Sn be the set of monomials that appear in P . Equation (6.11) provides a natural

bijection between Sn and Sn = S × · · · × S, where S is the set of monomials appearing

in f , given in the expansion (6.14); in particular S1 = S. Each m ∈ Sn appears either in

exactly one Pi or in all three. And if a monomial does not appear in P , it appears either

in none or exactly two of the Pi. However, we can assume that any monomial appears

exactly once or not at all. Indeed, suppose that a monomial m1(x, y)m2(z, w)m3(u, v)

appears at least twice. We may assume without loss of generality that m1 ∈ M1 and

m2 ∈ M2 and that m2(z, w)m3(u, v) appears in F1,m1 and that similarly m1(z, w)m3(u, v)

has a nonzero coefficient in F2,m2 . Then replacing F1,m1 by F1,m1 +m2(z, w)m3(u, v) and

2The corresponding polynomial for the 4-APs problem has 96 polynomials, whence our choice to focus
on the corners problem only.
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F2,m2 by F2,m2 +m1(z, w)m3(u, v), we remove the redundancy, without affecting M1 nor

M2.

We say that p ∈ Sn is covered by m ∈ Mi if it appears in Pi. Thus each p ∈ Sn is

covered by exactly one monomial, from a single Mi.

We shall show that |M1|+|M2|+|M3| ≥ 4n, but first we introduce one more definition.

Definition 6.3. Let K = {m(1), . . . , . . . , m(k)} be a set of monomials from Sn. Let Xi =

(xi, yi) and Yi = (zi, wi) as well as Zi = (ui, vi). Then let X = (X1, . . . , Xn) and let Y and

Z be defined analogously. Write m(i)(X, Y, Z) = a(i)(X)b(i)(Y )c(i)(Z). We say that K is

a monomial matching if the maps i /→ a(i)(X) as well as i /→ b(i)(Y ) and i /→ c(i)(Z) are

injective. Occasionally, we will refer to the set of triples {(a(i), b(i), c(i))} as a matching.

It is easy to see that a monomial cover and a monomial matching correspond to a vertex

cover and a matching, respectively, in some hypergraph derived from P . We also observe

that a monomial cover has to be at least large as any matching. Indeed, an elementary

monomial m ∈ Mi can cover at most one monomial from any given matching.

We remark that if K1 ⊂ S1 is a monomial matching, then a monomial matching Kn ⊂
Sn in bijection with Kn

1 can be constructed3. Indeed, for any sequence m = (m1, . . . , mn) ∈
Kn

1 , take

dm(X, Y, Z) =
n∏

i=1

mi(Xi, Yi, Zi) = am(X)bm(Y )cm(Z).

To check that this contruction gives rise to a matching, take two distinct sequences µ =

(µ1, . . . , µn) and m = (m1, . . . , mn) in Kn
1 . We need to prove that dm ̸= dµ. Let i ∈

[n] be such that mi ̸= µi. Write mi(Xi, Yi, Zi) = ai(Xi)bi(Yi)ci(Zi) and µi(Xi, Yi, Zi) =

αi(Xi)βi(Yi)γi(Zi). By definition of a matching, we have simultaneously ai ̸= αi and bi ̸= βi

and ci ̸= γi. As a result, am ̸= aµ and bm ̸= bµ and cm ̸= cµ.

It therefore suffices to construct a matching of size 4 in S = S1. It is easy to see that

{zwv, xuv, yzu, xyw} or {(1, zw, v), (x, 1, uv), (y, z, u), (xy, w, 1)} will work. Finally, this

gives rise to a monomial matching of size 4n in P , which forces a monomial cover to have

size at least 4n.

Concerning the 4-APs problem, the set

{(1, y4, 1, w4), (x, y3, z, w3), (x2, y2, z2, w2), (x3, y, z3, w), (x4, 1, z4, w)}

3One can recognise here the notion of tensor power of a hypergraph.
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is a monomial matching of size 5 for the indicator polynomial (for n = 1) shown at equation

(6.10). Because the polynomial has 96 monomials and thus can hardly be handled manually,

we employed a computer algorithm to find it.

6.5 Evolution of the Ellenberg-Gijswijt bound with

the cardinality

To bound the (monomial) slice rank of a polynomial (Proposition 6.2), we used a rather

crude tool, namely a Chernoff-type bound. By doing so, we obtained a bound of the form

qcn, for some c < 1, which was not the best exponent the Croot-Lev-Pach method affords.

Instead, Ellenberg and Gisjwijt used Cramér’s theorem [23] in large deviation theory, but

as pointed out by Tao [84], even an elementary analysis based on Stirling’s approximation

provides the optimal exponent c the method can yield. In this section we examine how

this exponent varies for large q. Let us first state the Ellenberg-Gijswijt result [26].

Proposition 6.8. For any prime power q, there is a constant hq < log q such that the

following holds. Let aq,n be the maximal size of a 3-AP-free set A ⊂ Fn
q . Then

lim sup
n→+∞

log aq,n
n

≤ hq.

Furthermore, hq can be taken to be the maximum of the entropy function

h(α0, . . . ,αq−1) = −
q−1∑

i=0

αi logαi (6.16)

subject to the constraints

∀i ∈ [0, q − 1] αi ≥ 0 (6.17)

q−1∑

i=0

αi = 1 (6.18)

q−1∑

i=0

iαi ≤
q − 1

3
. (6.19)

The constant cq in Theorem 6.3 is related to hq by exp(hq) = qcq . We do not include a

proof here (see [84]), but simply observe that the entropy function being continuous and the

domain defined by the constraints compact, a maximum does exist. In fact, the function
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being strictly concave and the domain convex, this maximum is unique. Our result is the

following.

Proposition 6.9. As q tends to infinity, we have

exp hq = qγ1 + o(q)

where γ1 > 0 is a constant approximately equal to 0.84.

We point out that, independently, Zeilberger in his survey [94] produced an implicit

expression for hq and supplied numerical values for not too large q. He did not compute

the asymptotic, however. In that survey, one can see that although Fn
pk is isomorphic

to Fkn
p as a group, the Ellenberg-Gijswijt bound is worse in Fn

pk than in Fkn
p . In fact,

cq is an increasing function of q. For instance, the Ellenberg-Gisjwijt bound for F2n
3 is

2.7562n = 7.596n, instead of 7.846n for Fn
9 .

Proof. The maximum cq is clearly not attained at a point where one coordinate is 0, because

the slope of the function x /→ −x log x at 0 is +∞, while it is finite everywhere else. The

constrained extrema theorem [58, Section 2.6.2] implies that such a maximum is attained

at a point (α0, . . . ,αq−1) satisfying

∇h = −(logα0 + 1, . . . , logαq−1 + 1) ∈ span((1, . . . , 1), (0, 1, . . . , q − 1)). (6.20)

In other words, at the maximum, there exists a pair (aq, bq) ∈ R2 such that αi = exp(1 −
aq − ibq) for all i ∈ {0, . . . , q − 1}. If bq = 0, then αi is constant, and equal to 1/q because

of constraint (6.18). This is not compatible with constraint (6.19). Therefore bq ̸= 0, that

is, constraint (6.19) is active too, in the sense that

q−1∑

i=0

iαi =
q − 1

3
. (6.21)

Let dq = exp(−bq) < 1. Inserting αi = exp(1− aq − ibq) = exp(1− aq)diq in the constraints

(6.18) and (6.21), we get

exp(1− aq)
q−1∑

i=0

diq = 1 (6.22)

and

exp(1− aq)
q−1∑

i=0

idiq =
q − 1

3
. (6.23)
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Combining equations (6.22) and (6.23) to eliminate aq, we obtain

q−1∑

i=0

idiq =
q − 1

3

q−1∑

i=0

diq. (6.24)

The left-hand side of the last equality can be computed as

((q − 1)dq − q)dqq + dq
(dq − 1)2

.

Multiplying both sides of (6.24) by dq − 1 and summing the geometric series, we obtain

((q − 1)dq − q)dqq + dq =
(q − 1)(dq − 1)

3
(dqq − 1),

which upon rearranging yields

2(q − 1)dq+1
q − (2q + 1)dqq + 3dq + (q − 1)dq = q − 1. (6.25)

Let us prove by contradiction that dq → 1 as q → ∞. Assuming the contrary, we have

lim inf dq < 1 and lim inf dqq = 0. Let sq be the left-hand side of equation (6.25). Then

lim inf sq/(q − 1) = lim inf dq < 1, which is a contradiction to sq = q − 1, the statement of

equation (6.25). To gain more precise information, let us write dq = 1−ϵq, where 0 < ϵq →
0 as q → +∞. We rewrite equation (6.25) as

q(1− dq)(1 + 2dqq) = (1− dqq)(2dq + 1). (6.26)

One can prove by contradiction that qϵq cannot tend to 0. Indeed, supposing it does, one

can write

dqq = exp(q log(1− ϵq)) = exp(−qϵq) exp(O(qϵ2q)) = 1− qϵq + (qϵq)
2/2 + o(qϵq)

2.

Inserting this equality in (6.26), we find

qϵq(3− 2qϵq + (qϵq)
2 + o(qϵq)

2) = (qϵq − (qϵq)
2/2 + o(qϵq)

2)(3− 2ϵq),

and comparing the terms in (qϵq)2 we obtain the desired contradiction.

Yet qϵq needs to have a limit point β ∈ [0,+∞]. In fact, the above reasoning shows
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that β ̸= 0. Since dqq = exp(q log(1− ϵq)), we have dqq → exp(−β) as q tends to +∞ along

some subsequence, with the obvious convention that exp(−∞) = 0. Passing to the limit

along that subsequence in equation (6.26), one obtains

β(1 + 2 exp(−β)) = 3(1− exp(−β)). (6.27)

A quick study of the function β /→ β(1+ 2 exp(−β))− 3(1− exp(−β)) shows that, besides
0, there is a unique solution to equation (6.27), which a computer reveals to be β ≈ 2.149.

Thus dqq → exp(−β) ≈ 0.11.

We now determine asymptotics for aq and bq. By definition, bq = − log dq = −(log dqq)/q =

β/q + o(1/q). To find aq, we use equation (6.22) and obtain

aq = 1 + log
1− dqq
1− dq

= 1 + log
1− exp(−β) + o(1)

ϵq

= log q + log
1− exp(−β)

β
+ 1 + o(1).

Then the maximum of the entropy function, according to equation (6.16) and the formula

αi = exp(1− aq − ibq), is

hq = −
q−1∑

i=0

αi logαi

= −
q−1∑

i=0

αi(1− aq − ibq)

= aq − 1 + bq
q − 1

3

= log q + log
1− exp(−β)

β
+ β/3 + o(1).

Exponentiating, we find that exp(hq) = γ1q + o(q) where

γ1 =
1− exp(−β)

β
exp(β/3)

and β > 0 was defined in equation (6.27). This concludes the proof of Proposition 6.9.
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Chapter 7

Linear and quadratic uniformity of

the Möbius function over Fq[t]

This chapter is based on a paper submitted to the Proceedings of the Cambridge Philosoph-

ical Society [13], written with Thai Hoàng Lê. Except Section 7.3, most of the mathematics

and the writing was done by the author.

The motivation for this chapter is the quest for asymptotics of linear configurations of

irreducible polynomials. For instance, as an analogue of Theorem 1.2, we would like to

estimate the number of k-term arithmetic progressions of irreducible polynomials of degree

less than n over Fq as n tends to infinity, while q = ps is fixed and p is a prime larger

than k and s ≥ 1. Whereas for k = 3, the method used by Hayes [51] to solve Goldbach’s

ternary problem over function fields applies, the problem remains open for k > 3 (but

lower bounds are known [60]).

Just like in the integers (see Section 2.5), one can reduce this problem to a different

one involving the Möbius function on Fq[t], namely the problem of the uniformity of this

function. The Möbius function on Fq[t] is defined, like its counterpart in the integers, by

µ(f) =

{
(−1)k where k is the number of monic irreducible factors of f , if f is squarefree,

0 otherwise.

Because q is fixed, we drop the subscript q and write Gn for Gq,n. The desired uniformity

property consists in a bound for the Gowers norm of µ of the form

∥µ∥Uk(Gn) = on→∞(1).
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The Gowers uniformity norms of a function defined on a vector space is defined analogously

to the ones of a function on the integers, thus

∥g∥Uk(Gn) =

⎛

⎝Ex∈GnEh∈(Gn)k

∏

ω∈{0,1}k
C|ω|g(x+ ω · h)

⎞

⎠
2−k

.

One can check that this is consistent with the definition of the U2-norm from Chapter 5.

Note that these norms depend solely on the additive group structure of Gn, which is

isomorphic to Fn
q . Besides, there exists a group isomorphism φ : Fq → Fs

p, which makes

Fq an s-dimensional Fp-vector space. This map induces another map φn : Fn
q → Fsn

p ,

which is an Fp-linear isomorphism, giving rise to a group isomorphism Gn
∼= Fsn

p . On the

other hand, the Möbius function relies on the ring structure of Fq[t], which depends on

the base field Fq. Thus the question of the uniformity of the Möbius function showcases

the clash of multiplicative and additive structures, one of the central themes of arithmetic

combinatorics.

Analogously to the situation over the integers discussed in Section 2.5, it turns out

that non-uniformity on Fn
p is characterised by the existence of a significant correlation with

a certain family of structured functions, namely polynomial phases. This is the content

of the inverse theorem for the Gowers norms [85] by Tao and Ziegler, based on a general

structural result by Bergelson, Tao and Ziegler [6]. Here is the statement of their inverse

theorem.

Theorem 7.1. Let δ > 0. Fix a prime p and an integer k ≤ p. Then there exists a constant

cp,k(δ) such that for any function f : Fn
p → C satisfying |f | ≤ 1 and ∥f∥Uk(Fn

p ) ≥ δ, there

exists a polynomial P ∈ Fp[x1, . . . , xn] such that

Ex∈Fn
p
f(x) exp

(
2πiP (x)

p

)
≥ cp,k(δ).

In the low-characteristic case p < k, the statement [86] requires the introduction of

nonclassical polynomials instead of the classical ones featuring here, but we will not need

this case here.

Explicit bounds are not generally known for the constant cp,k(δ). For k = 2, it is easily

seen to be polynomial in δ, while for k = 3, is is conjectured to be polynomial, the best

unconditional bound at the time of writing being quasipolynomial in δ [43]. Very recently,

Gowers and Milićević [36] obtained a doubly exponential bound for the case k = 4 (and
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p > 3).

Motivated by Theorem 7.1, we investigate correlations of µ with functions of the form

χ(Q(f)) for an additive character χ over Fq and a polynomial Q ∈ Fq[x0, . . . , xn−1] in

the coefficients (x0, . . . , xn−1) ∈ Fn
q of f =

∑
i<n xiti. We only consider polynomials Q of

degree at most 2. Recall that the group F̂q of additive characters is isomorphic to (the

additive group of) Fq. To express the isomorphism, let Tr : Fq → Fp be the trace map.

For a ∈ Fq, let us denote

eq(a) = exp

(
2πiTr(a)

p

)
.

Then the isomorphism Fq → F̂q is given by r /→ χr where for any r ∈ Fq, the character χr

is defined by χr(x) = eq(rx).

We now state our main results.

Theorem 7.2. For any ϵ > 0 and χ ∈ F̂q, for any linear form ℓ ∈ Fq[x0, . . . , xn−1], we

have ∑

deg f<n

µ(f)χ(ℓ(f)) ≪ϵ,q q
(3/4+ϵ)n. (7.1)

uniformly in n and ℓ.

It suffices to prove Theorem 7.2 for χ = χ1. In the integer case, Davenport [25] showed

that for any A > 0, we have

N∑

n=1

µ(n)e(nα) ≪A N(logN)−A

uniformly in α ∈ R/Z, where the implied constant is ineffective due to the possible existence

of Siegel zeroes. Under the Generalised Riemann Hypothesis (GRH), the best result is due

to Baker-Harman [3] and Montgomery-Vaughan (unpublished), who showed that for any

ϵ > 0,
N∑

n=1

µ(n)e(nα) ≪ϵ N
3/4+ϵ (7.2)

uniformly in α ∈ R/Z. Our exponent 3
4 + ϵ in (7.1) matches the one in (7.2) (though it is

reasonable to conjecture that in both cases the best exponent is 1
2 + ϵ). However, our proof

of (7.1) differs from that of (7.2) in some respects. In particular, our proof of (7.1) uses

L-functions of arithmetically distributed relations introduced by Hayes [50], as opposed to

Dirichlet L-functions. We remark that very recently and independently of us, Sam Porritt
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[72] proved a result similar to Theorem 7.2.

Regarding quadratic polynomials, we have the following similar but conditional result.

It depends on the polylogarithmic bilinear Bogolyubov conjecture, Conjecture 5.9.

Theorem 7.3. Assume p > 2. Let A > 0 and χ ∈ F̂q. Assuming Conjecture 5.9, we have

∑

deg f<n

µ(f)χ(Q(f)) ≪q,A qnn−A (7.3)

uniformly in n and the quadratic polynomial Q in Fq[x0, . . . , xn−1].

We have another result for quadratic phases that are more directly analogous to n /→
e(αn2+βn) in the integers. In this case, our bound is unconditional and gives a polynomial

saving. We need some extra notation to state our result (see Section 7.2.1 for more precise

definitions). Let Fq((
1
t )) be the ring of formal Laurent series in 1/t. On Fq((

1
t )), we define

the additive character e(α) = eq(α−1), where α−1 denotes the coefficient of t−1 in α.

Theorem 7.4. There exists a constant ϵ > 0 (independent of q) such that

∑

deg f<n

µ(f)e(αf 2 + βf) ≪q q
(1−ϵ)n (7.4)

uniformly in n and α, β ∈ Fq((
1
t )).

Note that we do not require p > 2 in Theorem 7.4 since when p = 2 the map f /→
(αf 2 + βf)−1 is linear and Theorem 7.4 follows from Theorem 7.2. When p is odd, the

symmetric matrix of the quadratic form f /→ (αf 2)−1 is a Hankel matrix, i.e., a matrix

whose (i, j)-entry depends only on i+ j. Thus Theorem 7.4 can be reformulated in terms

of Hankel matrices alone. We remark that in the integers, under GRH we have bounds

with polynomial savings for the sum
∑N

n=1 µ(n)e(αn
k) (see [52, 95]).

Note also that to prove the uniformity of the Möbius function on Fq[t] in the case

where q = ps is not a prime, it is not enough to inspect its correlations with polynomials

P ∈ Fq[x1, . . . , xn] as in Theorem 7.3. Instead, for f ∈ Gn
∼= Fsn

p , write f̃ = φn(f) ∈ Fsn
p

for the image of f by the isomorphism. Observe that not any Fp-quadratic form P (f̃)

can be realised as Tr(Q(f)) for some Fq-quadratic form Q(f); this can be seen by simple

counting. But controlling ∥µ∥U3(Gn) precisely requires the control of correlations of µ with

any Fp-quadratic form P (f̃), whereas Theorem 7.3 only deals with Fq-quadratic forms.
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7.1 Overview of the proof

We will first focus on linear phases and prove Theorem 7.2. This will involve bounding

correlations of the Möbius functions with Dirichlet characters and generalisations thereof

called Hayes characters. The theory of these characters and the corresponding L-functions

will be sketched in the next section, and the bounds for the character sums will be derived

in Section 7.3

By analogy with the classical circle method, one can recognise in the analysis of the

correlations of the Möbius function with quadratic phases a dichotomy “minor arcs/major

arcs”. Minor arcs correspond to very equidistributed phases, and thus to quadratic phases

of high rank. For quadratic phases of rank less than n/4 (major arcs), we note that the

saving in Theorem 7.2 allows us to conclude easily, as is shown in Corollary 7.9.

When proving Theorem 7.3, we will suppose for a contradiction that

∑

f∈Gn

µ(f)χ(Q(f)) ≥ ϵqn.

Let M be the n × n symmetric matrix corresponding to Q and k an integer. For any

a ∈ Gk+1, consider the map La : Gn−k → Gn that maps f to af . We also write La to

denote its n×(n−k) coordinate matrix in the canonical basis (i.e. the basis of monomials).

For any (a, b) ∈ G2
k+1, let Ma,b = LT

aMLb+LT
b MLa, which is a symmetric (n−k)× (n−k)

matrix.

After exploiting Vaughan’s identity in Section 7.5, we will find that for some n ≪ k ≤ n,

the matrix M has the property that the set of pairs

Ph := {(a, b) ∈ Gk+1 ×Gk+1|rkMa,b ≤ h}

is large, that is, it contains at least δq2k+2 pairs for some parameters δ and h (depending

on ϵ and n). We will want to convert this information about the ranks of many Ma,b

into a conclusion on the rank of M itself. However, we need these pairs to have some

special structure in order to extract something useful; in particular, it would be extremely

convenient if the set

{(ti, tj) | (i, j) ∈ {0, . . . , k}2} (7.5)

were in Ph, becauseMti,tj is simply the symmetric part of a submatrix ofM . Unfortunately,

its large size alone does not force Ph to contain such a nice structure, but to boost our

115



7.2. PRELIMINARIES

chances, we are ready to do some additive smoothing, that is, adjoining to our set Ph

elements such as (a1 − a2, b) whenever (a1, b) and (a2, b) are in Ph; and the same on the

second coordinate. The rank remains controlled under this operation, because rkMa1−a2,b =

rk (Ma1,b−Ma2,b) ≤ 2h. We saw in Chapter 5 that such a bidirectional additive smoothing

does indeed produce useful structures, namely sets cut out by a few (that is, c(δ)) linear

and bilinear forms.

We found in Theorem 5.8 that we can take c(δ) to be O(exp(exp(exp(logO(1) 1/δ)))),

where the implied constants may depend on q, but unfortunately, because δ will be as

small as n−5 say, this bound for c(δ) is too large to be of any use. Assuming Conjecture

5.9, we can take c(δ) as small as polylogarithmic in δ−1. Applied with δ = n−O(1), this

means that the codimensions of the bilinear set identified in P64h by Corollary 5.10 should

be polylogarithmic in n. Further, still with Corollary 5.10 we will obtain sets of the form

(7.5) inside P64h in Section 7.6.

7.2 Preliminaries

7.2.1 Notation and basic facts

A useful reference for the circle method in function fields, of which the basics are sketched

below, is [64]. Let Fq(t) be the field of fractions of Fq[t]. On Fq(t) we can define a norm by

|f/g| = qdeg f−deg g, with the convention that deg 0 = −∞. The completion of Fq(t) with

respect to this norm is

Fq

((
1

t

))
=

{

α =
n∑

i=−∞

ait
i | n ∈ Z, ai ∈ Fq for every i

}

,

the set of formal Laurent series in 1
t . It is easy to see that if α is as above and an ̸= 0 then

|α| = qn.

We observe the inclusions Fq[t] ⊂ Fq(t) ⊂ Fq((
1
t )), and think of Fq[t],Fq(t) and Fq((

1
t ))

are the analogs of Z,Q and R, respectively. Let us put T = {α ∈ Fq((
1
t )) | |α| < 1}. This

is analogous to the usual torus R/Z.
For α ∈ Fq((

1
t )), we write (α)−1 to denote the coefficient of t−1 in α and define e(α) =

eq((α)−1). This is an additive character on Fq((
1
t )) and allows us to perform Fourier analysis

on Fq[t]. All additive characters on Fq[t] are given by f /→ e(fα) for some α ∈ T.
We denote by M the set of all monic polynomials in Fq[t], and by An the set of all monic
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polynomials of degree n, while I denotes the set of all monic, irreducible polynomials.

Remember that Gn is the set of all polynomials (not necessarily monic) of degree less

than n. We use the convention that
∑

deg f=l means
∑

f∈Al
(that is, a sum over monic

polynomials).

The von Mangoldt function on Fq[t] is defined by

Λ(f) =

{
degP if f = P k for some monic irreducible P and k ≥ 1,

0 otherwise.

The “prime number theorem” [74] on Fq[t] reads

∑

deg f=l

Λ(f) = ql.

7.2.2 L-functions of arithmetically distributed relations

To prove Theorem 7.2, we first observe that any linear form on Gn can be represented as

a map f /→ (αf)−1 for some α ∈ T. Thus Theorem 7.2 can be rephrased as a bound for

sums of the form ∑

f∈Gn

µ(f)e(αf),

or, equivalently and more conveniently, of the form

∑

f∈An

µ(f)e(αf).

Now suppose that α is approximated by a fraction a/Q of polynomials up to a remainder

β =
∑−l

i=−∞ βiti for some l ≥ 2, that is, α = a/Q+β. Then e(αf) = e(af/Q)e(βf) depends

only on the residue class of f modulo Q and the coefficients of the terms of degrees at least

l − 1 of f =
∑n

i=1 ait
n−i + tn. We refer to a1, . . . , al as the first l coefficients of f (if i > n

then we define ai = 0). We thus need to understand functions on An that only depend on

the congruence class modulo a fixed modulus Q and the first l coefficients. Hence for l ≥ 0

and Q ∈ Fq[t], we define an equivalence relation Rl,Q on M as follows:

f ≡ g (mod Rl,Q) if f ≡ g (mod Q) and the first l coefficients of f and g are the same.
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The above is an example of an arithmetically distributed relation, of which Hayes [50,

Section 8] developed the theory. We briefly review it here, but the relevant facts can also

be found in [54] or [19].

It is easy to check that M/Rl,Q is a semigroup with respect to multiplication on Fq[t].

The equivalence class of a polynomial f ∈ Fq[t] is invertible in M/Rl,Q if and only if

(f,Q) = 1. Set Gl,Q := (M/Rl,Q)×, the set of invertible elements. This is a group of

cardinality qlϕ(Q), where ϕ(Q) = #(Fq[t]/(Q))×. Note that G0,Q is simply (Fq[t]/(Q))×.

We can extend any character λ on Gl,Q to all of M by setting λ(f) = 0 if (f,Q) ̸= 1.

We define the L-function associated with λ as

L(s,λ) =
∑

f∈M

λ(f)
1

|f |s
,

which converges absolutely for ℜ(s) > 1. It is convenient to define

L(z,λ) =
∑

f∈M

λ(f)zdeg(f) =
∞∑

n=1

zn
∑

f∈An

λ(f) (7.6)

so that L(s,λ) = L(q−s,λ). We have the Euler product formula

L(z,λ) =
∏

P∈I

(
1− λ(P )zdeg P

)−1
(7.7)

for |z| < 1/q.

In the same range of z, we also have

1

L(z,λ) =
∏

P

(
1− λ(P )zdeg P

)
=
∑

f∈M

µ(f)λ(f)zdeg f =
∞∑

n=1

zn
∑

f∈An

µ(f)λ(f). (7.8)

The character constantly equal to 1 on Gl,Q is called the principal character. When

λ is not the principal character, L(z,λ) is a polynomial of degree d(λ) < l + degQ [50,

Lemma 8.2]. The Generalised Riemann Hypothesis states that all roots of L(z,λ) have

modulus q−1/2 or 1 for any character λ modulo an arithmetically distributed congruence

relation such as Rl,Q. Weil’s proof of the Riemann Hypothesis (for Dirichlet characters)

was extended to these generalised characters by Rhin [73] (see in particular Chapitre 2,

118
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Sections 4 to 6). In other words, we can write

L(z,λ) =
d(λ)∏

i=1

(1− αiz), (7.9)

where |αi| = q1/2 or 1 for i = 1, . . . , d(λ). In particular, L(z,λ) can be extended to an

entire function and (7.8) remains valid when |z| < q−1/2.

As an aside, we briefly show a simple bound, derived independently by the author and

Porritt [72], which will be beaten by a more involved method in Theorem 7.6, but remains

interesting for its simplicity and the ideas it involves.

Proposition 7.5. Suppose λ is a non principal character on Gl,Q and M = l + degQ.

Then ∑

f∈An

µ(f)λ(f) ≪
(
n+M − 2

M − 2

)
qn/2. (7.10)

This is bound is particularly good when M is bounded, in which case the binomial

coefficient just varies polynomially in n. When M is of the order of magnitude of n, the

right-hand side of (7.10) can be bounded by O(q(1/2+ϵq)n) where ϵq > 0 and ϵq → 0 as q

tends to infinity [72].

Proof. The left-hand side of equation (7.10) is equal to the coefficient of zn in the power

series 1
L(z,λ) because of equation (7.8). On the other hand, equation (7.9) implies that

1

L(z,λ) =
+∞∑

n=0

zn
∑

∑M−1
i=1 ni=n

M−1∏

i=1

αni
i .

Now we use the fact that |αi| ≤
√
q and the basic counting result

|{(n1, . . . , nk) ∈ Nk |
k∑

i=1

ni = n}| =
(
n+ k − 1

k − 1

)
.

This brings about the conclusion.
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When λ is the principal character of Gl,Q, we have

L(z,λ) =
∏

P∈I,
(P,Q)=1

(
1− zdeg P

)−1

=
∏

P∈I,
P |Q

(
1− zdeg P

)∏

P∈I

(
1− zdeg P

)−1

=
∏

P∈I,
P |Q

(
1− zdeg P

) 1

1− qz
.

Consequently, L(z,λ) can be extended to a meromorphic function and

1

L(z,λ) =
∞∑

n=1

zn
∑

f∈An,(f,Q)=1

µ(f) = (1− qz)
∏

P∈I,
P |Q

(
1− zdeg P

)−1
(7.11)

for all |z| ̸= 1.

7.3 Character sum estimates

In this section we prove the following.

Theorem 7.6. Let l ≥ 0, Q ∈ Fq[t], degQ = m ≥ 0 and λ be a character of Gl,Q. Then

for any d, and ϵ > 0, we have

∣∣∣∣∣
∑

f∈Ad

µ(f)λ(f)

∣∣∣∣∣≪ϵ,q q(
1
2+ϵ)d+ϵ(m+l) (7.12)

Proof. First we assume that λ is not principal. We will prove the following more precise

bound ∣∣∣∣∣
∑

f∈Ad

µ(f)λ(f)

∣∣∣∣∣ ≤ q
d
2+

d log log(m+l)
log(m+l) +Oq

(
m+l

log2(m+l)

)

. (7.13)

Our method is a generalization of the proof of [7, Theorem 2]. As [7], we deduce (7.13)

from an estimate for logL(z,λ) near the circle |z| = q−1/2, which in turn is deduced from

an estimate for L′(z,λ)
L(z,λ) . By taking the logarithmic derivatives of (7.7) and (7.9), we have
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two different expressions for L′(z,λ)
L(z,λ) . On the one hand, we have

L′(z,λ)

L(z,λ)
=

∞∑

l=1

alz
l−1,

where

al = −
d(λ)∑

i=1

αl
i (7.14)

according to (7.9). On the other hand, according to (7.7), we have

al =
∑

deg f=l

Λ(f)λ(f). (7.15)

It follows from (7.14) that

|al| ≤ d(λ)ql/2 (7.16)

and (7.15) implies that

|al| ≤
∑

deg f=l

Λ(f) = ql. (7.17)

Let L = ⌊2 logq d(λ)⌋. For l > L we use the bound (7.16) and for l ≤ L we use the bound

(7.17). Therefore, for any z, we have

∣∣∣∣
L′(z,χ)

L(z,χ)

∣∣∣∣ ≤
L∑

l=1

ql|z|l−1 +
∞∑

l=L+1

d(λ)ql/2|z|l−1. (7.18)

Let 0 < ϵ < 1/4 (its precise value will be chosen later) and R = q−1/2−ϵ. Let w be

arbitrary on the circle |w| = R. Integrating (7.18) along the line from 0 to w, and noting

that L(0,λ) = 1, we have

|logL(w,λ)| ≤
L∑

l=1

(Rq)l

l
+

∞∑

l=L+1

d(λ)
(Rq1/2)l

l
. (7.19)

The second sum in (7.19) can be bounded by

d(λ)

L

∞∑

l=L+1

(Rq1/2)l ≤ d(λ)

L
RLq

L
2

1

1−Rq1/2
≪ d(λ)2RL

L

1

1− Rq1/2
. (7.20)

121



7.3. CHARACTER SUM ESTIMATES

As for the first sum in (7.19), we bound it crudely by

L∑

l=1

(Rq)l ≤ (Rq)L
∞∑

k=0

(Rq)−k ≤ d(λ)2RL

1− (qR)−1
≪q d(λ)

2RL (7.21)

since qR ≥ q1/4. By combining (7.20) and (7.21), we have

|logL(w,λ)| ≪q d(λ)
2RL

(
1 +

1

L(1 −Rq1/2)

)
.

Hence, ∣∣∣∣
1

L(w,λ)

∣∣∣∣ ≤ exp

(
Oq

(
d(λ)2RL

(
1 +

1

L(1− Rq1/2)

)))
. (7.22)

Let CR = {w ∈ C | |w| = R}. From (7.8) we see that

∣∣∣∣∣
∑

f∈Ad

λ(f)µ(f)

∣∣∣∣∣ =

∣∣∣∣
1

2πi

∫

CR

1

L(w,χ)
w−d−1dw

∣∣∣∣

≤ max
CR

∣∣∣∣
1

L(w,λ)

∣∣∣∣R
−d

≤ qd(1/2+ϵ)+Oq(d(λ)1−2ϵ(1+ 1
ϵ log d(λ))), (7.23)

where we have used R = q−1/2−ϵ to obtain the final inequality. We now choose ϵ =

log log d(λ)/ log d(λ). Recalling that d(λ) ≤ l +m− 1, (7.13) follows. The bound (7.13) is

stronger than (7.12) when log log(l +m)/ log(l +m) is smaller than the ϵ in (7.12), which

is the case whenever l +m is large enough. For the finitely many remaining pairs (m, l),

equation (7.12) follows from (7.23) (with the same ϵ).

We now consider the case where λ is principal. From (7.11), on the circle |z| = q−1/2,

we have
∣∣∣∣

1

L(z,λ)

∣∣∣∣ = |1− qz|
∏

P∈I,P |Q

∣∣1− zdeg P
∣∣−1

≪
∏

P∈I,P |Q

(
1− q−deg P/2

)−1

≤
∏

P∈I,P |Q

(
1− q−1/2

)−1

= (1− q−1/2)−k ≤ qOq( m
logm) (7.24)
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where k is the number of monic irreducible factors of Q and (7.24) follows from Lemma

E.1 (a divisor bound which we postpone to an appendix). Integrating z−d−1 1
L(z,λ) along

the circle |z| = q−1/2 and using (7.24), we see that

∑

f∈An,(f,Q)=1

µ(f) ≪ q
d
2+Oq( m

logm) (7.25)

from which (7.12) follows.

We remark that (7.11) readily gives a formula for
∑

f∈An,(f,Q)=1 µ(f), but it is not

immediate to derive (7.25) from this formula.

7.4 Exponential sum estimates

We say that a function F : M → C is Rl,Q-periodic if it is constant on each equivalence

class of Rl,Q. In other words, F is Rl,Q-periodic if F (f) depends only on the residue class

of f modulo Q and the first l coefficients of f . We say F is 1-bounded if |F (f)| ≤ 1 for

any f ∈ M . We first show that µ is orthogonal to Rl,Q-periodic functions by adapting the

argument of [46, Proposition 3.2].

Proposition 7.7. Suppose degQ = m. For any Rl,Q-periodic and 1-bounded function

F : M → C and ϵ > 0, we have

∑

f∈An

F (f)µ(f) ≪ϵ,q q
(1/2+ϵ)(n+m+l),

where the bound is uniform in F .

Proof. We first consider the case where F (f) = 0 whenever (f,Q) ̸= 1. This means that

F is a function on Gl,Q. Let K = |Gl,Q| = qlϕ(Q) ≤ ql+m and λ1, . . . ,λK be the characters

of Gl,Q. Define the Fourier coefficients of F by

F̂ (λ) = Ef∈Gl,Q
F (f)λ(f)

for any character λ of Gl,Q. Then F (f) =
∑K

i=1 F̂ (λi)λi(f). Plancherel’s formula implies

K∑

i=1

∣∣∣F̂ (λi)
∣∣∣
2
= Ef∈Gl,Q

|F (f)|2 ≤ 1. (7.26)
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We have

∣∣∣∣∣
∑

f∈An

F (f)µ(f)

∣∣∣∣∣ =

∣∣∣∣∣

K∑

i=1

F̂ (λi)
∑

f∈An

λi(f)µ(f)

∣∣∣∣∣

≪ϵ,q qn/2+ϵ(n+l+m)
K∑

i=1

∣∣∣F̂ (λi)
∣∣∣ (7.27)

≤ qn/2+ϵ(n+l+m)K1/2 (7.28)

≤ qn/2+(l+m)/2+ϵ(n+l+m).

Here (7.27) follows from Theorem 7.6 and (7.28) follows from the Cauchy-Schwarz inequal-

ity and (7.26).

Next we consider the general case where F (f) is not necessarily 0 when (f,Q) = 1. If

f is squarefree and (f,Q) = D, we can write f = Dg with g squarefree and (g,Q) = 1.

Hence

∑

f∈An

F (f)µ(f) =
∑

D∈M,D|Q,
D squarefree

∑

deg g=n−degD,
g squarefree

F (Dg)µ(Dg)1(g,Q)=1

=
∑

D∈M,D|Q

µ(D)
∑

deg g=n−degD,
g squarefree

F (Dg)µ(g)1(g,Q)=1 (7.29)

Now the function g /→ F (Dg)µ(g)1(g,Q)=1 is Rl,Q-periodic, and vanishes on elements of M

that are not coprime to Q. From the above, we infer that

∑

deg g=n−degD,
g squarefree

F (Dg)µ(g)1(g,Q)=1 ≪ϵ,q q
n−degD

2 + l+m
2 +ϵ(n+m+l)

for any ϵ > 0. Furthermore, still for any ϵ > 0, we observe that

∑

D|Q

q−(degD)/2 ≤ τ(Q) ≪ϵ,q |Q|ϵ = qϵm

by Lemma E.1. This completes the proof.

We will now use Proposition 7.7 and the ideas outlined at the beginning of Section 7.2.2

to prove the following exponential sum estimate.
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Theorem 7.8. Given any ϵ > 0, for all α ∈ T and n, we have

∑

f∈An

µ(f)e(αf) ≪ϵ,q q
(3/4+ϵ)n (7.30)

and ∑

f∈Gn

µ(f)e(αf) ≪ϵ,q q
(3/4+ϵ)n. (7.31)

The first bound implies the second, because

∑

f∈Gn

µ(f)e(αf) =
∑

c∈F∗
q

n−1∑

k=0

∑

f∈Ak

µ(f)e(αcf)

so we only need to prove (7.30). It is easy to see that any linear form on Gn can be written

as f /→ (αf)−1 (i.e., the coefficient of t−1 in αf) for some α ∈ T. Thus Theorem 7.2 follows

immediately from Theorem 7.8.

Proof. By Dirichlet’s approximation theorem, we can find a and g in Fq[t], where g ̸= 0

and deg g ≤ ⌊n
2 ⌋, such that

∣∣∣α− a
g

∣∣∣ < 1

q⌊
n
2 ⌋|g|

. Let β = α− a
g . Then

∑

f∈An

µ(f)e(αf) =
∑

f∈An

µ(f)e

(
af

g

)
e(βf).

Since |β| < q−⌊n
2 ⌋−deg g, we see that e(βf) depends only on the first n − ⌊n

2 ⌋ − deg g

coefficients of f . Also, e
(

af
g

)
depends only on the residue class of f modulo g. Applying

Proposition 7.7 to (l, Q) = (n− ⌊n
2 ⌋ − deg g, g), for any ϵ > 0, we have

∑

f∈An

µ(f)e

(
af

g

)
e(βf) ≪ϵ,q q

1+ϵ
2 (n+n−⌊n

2 ⌋−deg g+deg g) = q
1+ϵ
2 (2n−⌊n

2 ⌋) ≪ϵ,q q
(3/4+ϵ)n,

as desired.

As we show next, Theorem 7.2 implies that if a function is determined by the values of

a few linear forms, it does not correlate with the Möbius function.

Corollary 7.9. Let c > 0 be a constant. Let F : Fr
q → C be 1-bounded and suppose r ≤ cn.

125
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Let ℓ1, . . . , ℓr be linear forms on Gn. Then for any ϵ > 0,

∑

f∈Gn

µ(f)F (ℓ1(f), . . . , ℓr(f)) ≪ϵ,q q
(3/4+c+ϵ)n.

In particular, supposing the characteristic q is odd, for a quadratic form Q of rank at most

r and any χ ∈ F̂q, we have

∑

f∈Gn

µ(f)χ(Q(f)) ≪ϵ,q q
(3/4+c+ϵ)n.

Obviously, this is interesting only if c < 1/4.

Proof. Theorem 7.2 immediately implies that for any linear forms ℓ on Gn, we have

∑

f∈Gn

µ(f)eq(ℓ(f)) ≪ϵ,q q
(3/4+ϵ)n. (7.32)

For any a = (a1, . . . , ar) ∈ Fr
q, let Va ≤ Gn be the affine subspace defined by the equations

ℓi(f) = ai for i ∈ [r]. Then one can write

∑

f∈Gn

µ(f)F (ℓ1(f), . . . , ℓr(f)) =
∑

a∈Fr
q

F (a)
∑

f∈Va

µ(f). (7.33)

Now we observe that

1Va(f) = Eχ=(χ1,...,χr)∈F̂q
r

∏

i∈[r]

χi(ℓi(f)− ai)

so that ∑

f∈Va

µ(f) = Eχ∈F̂q
r

∏

i∈[r]

χi(−ai)
∑

f∈Gn

µ(f)
∏

i∈[r]

χi(ℓi(f)),

and by the triangle inequality

∣∣∣∣∣
∑

f∈Va

µ(f)

∣∣∣∣∣ ≤ max
χ∈F̂q

r

∣∣∣∣∣∣

∑

f∈Gn

µ(f)
∏

i∈[r]

χi(ℓi(f))

∣∣∣∣∣∣
.

126



CHAPTER 7. UNIFORMITY OF THE MÖBIUS FUNCTION ON POLYNOMIAL RINGS

Recall from Section 7.2.1 that each χi is of the form χi(x) = eq(tix), so that

∏

i∈[r]

χi(ℓi(f)) = eq

(
r∑

i=1

tiℓi(f)

)

.

We then apply (7.32) to the linear form ℓ =
∑

i∈[r] tiℓi. This shows that

|
∑

f∈Va

µ(f)| ≪ q(3/4+ϵ)n.

Plugging this bound in equation (7.33) and using the fact that |F | ≤ 1 gives the desired

result.

Finally, the last affirmation of the corollary is justified by the fact that a quadratic

form of rank r is a function that is determined by r linear forms (in fact, it is the sum of

the squares of r linear forms).

7.5 Quadratic phases and Vaughan’s identity

From now on, we assume that the field Fq we work with has characteristic p > 2. Recall

q = ps and s ≥ 1. We call quadratic form on Fn
q a homogenous polynomial of degree 2, that

is, a map of the form F (x) = xTMx where M is a symmetric matrix. The corresponding

(symmetric) bilinear form is the map

B(x, y) = xTMy.

The rank of F is the rank of the matrix M . It equals the codimension of the space K

of vectors x such that the linear form Bx defined by Bx(y) = B(x, y) satisfies Bx = 0.

A quadratic polynomial on Fn
q is a polynomial of degree 2, that is, a quadratic form plus

a linear form plus a constant. A quadratic phase is a map of the form Φ(x) = χ(P (x))

for a quadratic polynomial P and an additive character χ. Its rank is the rank of the

corresponding quadratic form. Thanks to the following standard lemma, quadratic phases

can be classified, depending on their rank, into major arcs and minor arcs, by analogy with

the circle method.

Lemma 7.10 (Gauss sums). Let Φ(x) = χ(P (x)) be a quadratic phase of rank at least r.

Then

|Ex∈Fn
q
Φ(x)| ≤ q−r/2.
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Thus quadratic phases of low rank correspond to major arcs, while the ones of high

rank correspond to minor arcs.

Proof. We use a standard technique known as Weyl differencing, consisting in squaring

the expectation to reduce the degree of the phase. We have

|Ex∈Fn
q
Φ(x)|2 = Ex,hΦ(x+ h)Φ(x)

= Ex,hχ(P (x+ h)− P (x))

= Ehχ(P (h))Exχ(2Bh(x))

where all variables range over Fn
q . Now if h /∈ K, the form 2Bh is a nonzero linear form

(recall that the characteristic p is not 2), whence Ex∈Fn
q
χ(2Bh(x)) = Ex∈Fqχ(x) = 0. This

implies that

|Ex∈Fn
q
Φ(x)|2 ≤ Eh∈Fn

q
1h∈K = q−r,

and the claim follows.

The rest of the section is devoted to the proof of Theorem 7.3. Let P be a quadratic

polynomial on Gn and let Φ = χ ◦ P be a quadratic phase. We want to bound the sum

∑

f∈Gn

µ(f)Φ(f).

As already indicated in Section 7.1, the general strategy is the following. We first observe

that when Φ is a quadratic phase of rank at most cn with c < 1/4, then Corollary 7.9

concludes: indeed, a quadratic form of rank r depends on r linear forms only, so a quadratic

polynomial of rank r depends on r+1 linear forms at most. So we will show that in order

for µ to correlate with a quadratic phase Φ, the corresponding quadratic form needs to be

of small rank (major arc). This will imply that µ cannot correlate with a quadratic phase

at all.

With the help of Vaughan’s identity, a standard tool in analytic number theory, we will

show the following.

Proposition 7.11. Let δ > 0. Suppose |
∑

f∈Gn
µ(f)Φ(f)| ≥ δqn. Then at least one of the

following two statements holds.

1. There exists k ≤ n/9 such that for at least one polynomial d of degree k, the quadratic

polynomial on Gn−k defined by

w /→ P (dw)
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has rank at most O(log(n/δ)).

2. There exists k ∈ [n/18, 17n/18] such that for at least (δ/n)O(1)q2k pairs of polynomials

d, d′ of degree k, the quadratic polynomial on Gn−k defined by

w /→ P (d′w)− P (dw)

has rank at most O(log(n/δ)).

Before proving this proposition, we underline that for any d ∈ Gk+1, we see the map

w /→ dw as a linear map from Gn−k to Gn which allows one to see w /→ P (dw) as a

quadratic polynomial.

We now start the proof of Proposition 7.11. The first tool we need is Vaughan’s identity

[55, Proposition 13.5], which reads1

µ(f) = −
∑

ab|f
deg a≤u,deg b≤v

µ(a)µ(b) +
∑

ab|f
deg a>u,deg b>v

µ(a)µ(b),

where the sum is over monic polynomials a and b, and u = v = n/18 (though in general they

can be chosen arbitrarily). We shall adopt the notational convention that N = qn, U = qu

and so on. Moreover, for f ∈ Fq[t], recall the notation |f | = qdeg f . Vaughan’s identity

implies that ∑

f∈Gn

µ(f)Φ(f) = −T1 + T2, (7.34)

where

T1 =
∑

|d|≤UV

ad
∑

w∈Gn−deg d

Φ(dw) (7.35)

and

T2 =
∑

V≤|d|≤N/U

bd
∑

w∈Gn−deg d

µ(w)Φ(dw) (7.36)

are known as Type I and Type II sums respectively. The sums over d are over monic polyno-

mials. The coefficients ad are unimportant and all we need to know is that max(|ad|, |bd|) ≤
τ(d), where τ is the divisor function. We will need upper bounds regarding this func-

tion, the proof of which are postponed to Appendix E. In the Type I sum, we have

made the change of variables d = ab, w = f/d, while in the Type II sum we wrote

1The reference we provide deals with the integer setting, but the proof is the same here.
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w = lc(f)b, d = f/w, where lc stands for leading coefficient, so that d is monic. The

decomposition of the sum into two parts in (7.34) yields the following dichotomy, which

we will use to prove Proposition 7.11.

Proposition 7.12. Let δ > 0. Suppose |
∑

f∈Gn
µ(f)Φ(f)| ≥ δqn. Then either there exists

k ≤ n/9 such that

Ed∈Ak
|Ew∈Gn−k

Φ(dw)|2 ≥ δ2/(16n5), (7.37)

or there exists k ∈ [n/18, 17n/18] such that

Ew,w′∈Gn−k
Ed,d′∈Ak

Φ(dw)Φ(dw′)Φ(d′w)Φ(d′w′) ≥ δ4/(256n10). (7.38)

Proof. If |
∑

f∈Gn
µ(f)Φ(f)| ≥ δN , the decomposition (7.34) implies that either |T1| ≥

δN/2 or |T2| ≥ δN/2. Suppose first |T1| ≥ δN/2. On the other hand, using the triangle

inequality and equation (7.35), we bound T1 by

|T1| ≤
∑

k≤u+v

∑

d∈Ak

τ(d)
N

|d|
|Ew∈Gn−k

Φ(dw)|

≤ n max
k≤u+v

N

K

∑

d∈Ak

τ(d)|Ew∈Gn−k
Φ(dw)|.

Fix an integer k ≤ u+ v = n/9 that realises the maximum in the line above. The Cauchy-

Schwarz inequality then yields

|T1|2/N2 ≤ n2
(
Ed∈Ak

τ 2(d)
) (

Ed∈Ak
|Ew∈Gn−k

Φ(dw)|2
)
.

Now Lemma E.2 ensures that

Ed∈Ak
τ 2(d) ≤ 4k3 ≤ 4n3,

so we can affirm that

δ2N2/4 ≤ |T1|2 ≤ 4n5N2Ed∈Ak
|Ew∈Gn−k

Φ(dw)|2.

This means that

Ed∈Ak
|Ew∈Gn−k

Φ(dw)|2 ≥ δ2/(16n5)

which proves equation (7.37).
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Let us now suppose that |T2| ≥ δN/2. Using the triangle inequality and equation

(7.36), we have

|T2| ≤
∑

V≤|d|≤N/U

τ(d)

∣∣∣∣∣∣

∑

w∈Gn−k

µ(w)Φ(dw)

∣∣∣∣∣∣
≤ nN max

v≤k≤n−u
Ed∈Ak

τ(d)|Ew∈Gn−k
µ(w)Φ(dw)|.

We again fix an integer k, this time k ∈ [n/18, 17n/18], that realises the maximum, and

apply Cauchy-Schwarz together with Lemma E.2, obtaining

|T2|2/N2 ≤ 4n5 Ed∈Ak
Ew,w′∈Gn−k

µ(w)µ(w′)Φ(dw)Φ(dw′).

It follows that

Ew,w′∈Gn−k
µ(w)µ(w′)Ed∈Ak

Φ(dw)Φ(dw′) ≥ δ2/(16n5).

Applying Cauchy-Schwarz again to eliminate µ yields

Ew,w′∈Gn−k
Ed,d′∈Ak

Φ(dw)Φ(dw′)Φ(d′w)Φ(d′w′) ≥ δ4/(256n10).

This is the content of clause (7.38), so the proof of Proposition 7.11 is complete.

We now derive Proposition 7.11 using Proposition 7.12. Suppose first that equation

(7.37) holds, so there is k ≤ n/9 such that

Ed∈Ak
|Ew∈Gn−k

Φ(dw)|2 ≥ δ′, (7.39)

where δ′ = δ2/(16n5). Equation (7.39) implies that there exists d ∈ Ak such that

|Ew∈Gn−k
Φ(dw)|2 ≥ δ′.

Fix such a d ∈ Ak. Lemma 7.10 now implies that the quadratic polynomial w /→ P (dw)

has rank at most logq(δ
′−1) = O(log(n/δ)). This corresponds exactly to the first statement

of Proposition 7.11.

Suppose instead that equation (7.38) holds. Then we have k ∈ [n/18, 17n/18] such that

Ew,w′∈Gn−k
Ed,d′∈Ak

Φ(dw)Φ(dw′)Φ(d′w)Φ(d′w′) ≥ δ′,
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where δ′ = δ4/(256n10). The triangle inequality ensures that

Ed,d′∈Ak
|Ew∈Gn−k

χ(P (dw)− P (d′w))| ≥ δ′.

In particular, for a proportion at least δ′/2 of pairs of monic polynomials d, d′ of degree k,

we have

|Ew∈Gn−k
χ(P (dw)− P (d′w))| ≥ δ′/2,

which implies that the rank of w /→ P (dw)−P (d′w) is at most − logq(δ
′/2) = O(log(n/δ)).

This is precisely the second part of Proposition 7.11. So in every case, Proposition 7.11

holds.

7.6 Using the polylogarithmic bilinear Bogolyubov con-

jecture

Let A > 0 be arbitrary, and let δ = n−A. To prove Theorem 7.3, it suffices to show that

|
∑

f∈Gn
µ(f)Φ(f)| < δqn for n sufficiently large. For the sake of contradiction, suppose

instead that there exists an unbounded set Z of integers n such that

∣∣∣∣∣
∑

f∈Gn

µ(f)Φ(f)

∣∣∣∣∣ ≥ δqn (7.40)

whenever n ∈ Z. We then apply Proposition 7.11. Suppose the first alternative holds.

Write P (f) = B(f, f) for some bilinear formB(x, y) on Fn
q×Fn

q (we may omit the linear part

of P as it modifies the rank by at most 1). Then we know that the form Rd : w /→ P (dw)

on Gn−k has small rank for at least one d of some degree 0 ≤ k ≤ n/9. Now the rank of

the quadratic form Rd is simply the rank of the bilinear form B restricted to the subspace

dGn−k ⊂ Gn of codimension k. Thus the rank of Rd is at least rkB − 2k, which implies

that rkB ≤ 2n/9 + c log n. If n ∈ Z is large enough, this bound on the rank is less than

c′n for some c′ < 1/4. Corollary 7.9 now yields the desired contradiction.

In Appendix D, we show how to deal with the Type I sum for k up to n/2− o(n). As

a result, we only need to consider the second alternative given by Proposition 7.11 with k

in [n/4− o(n), 3n/4 + o(n)]. Unfortunately, we were not able to use this shortened range,

which is why we relegated this argument to an appendix.

Now let us suppose that the second alternative of Proposition 7.11 holds. Let n/18 ≤
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k ≤ 17n/18 be the parameter returned by this proposition. It follows that the set

Y = {(d, d′) ∈ A2
k | w /→ P (dw)− P (d′w) has rank at most γ log n}

has size at least q2k+2/kγ for some constant γ > 0. Note that for d, d′ ∈ Gk+1,

P (dw)− P (d′w) = B((d− d′)w, (d+ d′)w)

is a quadratic polynomial in w ∈ Gn−k. For a, b ∈ Gk+1, let Ba,b be the symmetric bilinear

form on Fn−k
q × Fn−k

q (identified with Gn−k × Gn−k) defined by Ba,b(x, y) = (B(ax, by) +

B(ay, bx))/2. Thus we have a set

X = {(a, b) ∈ Gk+1 ×Gk+1 | rkBa,b ≤ γ logn}

of density at least η = k−γ in Gk+1 × Gk+1. As discussed in Section 7.1, we would like

to replace the large set X by a more structured set, namely the zero set of a (not too

large) family of bilinear forms, at the cost of slightly worsening the bounds on the rank.

Corollary 5.10, an application of the bilinear Bogolyubov theorem from Chapter 5, precisely

implies that

X ′ = {(a, b) ∈ Gk+1 ×Gk+1 | rkBa,b ≤ 64γ log n}

contains a set of the form

Y = {(a, b) ∈ W1 ×W2 | F1(a, b) = . . . = Fr(a, b) = 0},

where W1,W2 are Fp-subspaces of Gk+1 (itself viewed as an Fp-vector space of dimension

s(k+1) = O(k)) of codimension at most r = c(η), and F1, . . . , Fr are Fp-bilinear forms on

W1 ×W2. Under Conjecture 5.9, c(η) = O(logO(1) η−1) = O(logO(1) k), while the uncondi-

tional bound we have is unfortunately useless when η−1 is polynomial in n. Henceforth we

assume that Conjecture 5.9 is true.

Now take ϵ = 1/10 and consider a set of indices

I = {0 = i1 < i2 < · · · < im = ⌊k − ϵk⌋} ⊂ [0, k − ϵk]

such that ij+1 − ij < (n − k)/2 for any j and m = O(1). Such a set exists because

n − k ≥ n/18 ≥ k/18. Consider W = W1 ∩ W2 ∩ Gϵk, which is an Fp-vector space

of dimension at least ϵsk − O(logO(1) k). Consider the Fp-quadratic forms on W given by
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F i,j
l (w) = Fl(tiw, tjw) for any l ∈ [m] and i, j ∈ I, where the map w /→ tiw is identified with

the corresponding Fp-linear map between the vectors of coefficients. This is still a family

of at most O(logO(1) k) bilinear forms, so we can find at least Ω(pϵsk−O(logO(1) k)) vectors

in Gϵk which are isotropic for all of these forms, thanks to Lemma 5.11. In particular, if

k (and thus n) is large enough, there is definitely at least one nonzero polynomial w of

degree at most ϵk such that Fl(tiw, tjw) = 0 for all i, j ∈ I and l ∈ [m]. Consequently,

rkBtiw,tjw ≤ κ := 64γ log n for all i, j ∈ I.

Consider the (symmetric) matrix M of the Fq-bilinear form B restricted to the space

of the multiples of w, written in the basis (wti)0≤i<n−degw. We refer to the matrix element

B(wti, wtj) as the cell (i, j) of M . The rank of B differs from the rank of M by at most

2ϵn, so it suffices to bound the rank of M .

Now let us examine the (symmetric) matrix Ni,j of the quadratic form Btiw,tjw in the

canonical basis of Gn−k.

Observe that the map w /→ tiw, viewed as an Fq-linear map (between vectors of coeffi-

cients), transforms an element tj of the canonical basis of Gn−k into a basis element ti+jw.

This means that its matrix in the canonical basis of Gn−k and the basis (wti)0≤i<n−degw is

an (n− degw)× (n− k) matrix which we can write by block as

Ltiw =

⎛

⎜⎝
0

In−k

0

⎞

⎟⎠ ,

where the central block is an identity block of size (n− k)× (n− k) and the other blocks

are 0 blocks. Here by a block we mean a submatrix consisting of consecutive rows and

columns of a matrix. Next we observe that

2Ni,j = LT
tiwMLtjw + LT

tjwMLtiw,

which makes it easy to see that Ni,j is the symmetric part of the (n−k)×(n−k) block ofM

whose top-left corner is the (i, j) cell of M . Write Mi,j for this block, so 2Ni,j = Mi,j+MT
i,j.

We remark that if i = j, then Mi,j is a diagonal block of the symmetric matrix M ,

hence a symmetric matrix, so Mi,j = Ni,j must have small rank itself. Hence, the matrix

M contains a number of large diagonal blocks Mi,i which have small rank. To bound the

rank of M , it suffices to bound the ranks of all submatrices Mi,j for (i, j) ∈ I2. Indeed, the
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iℓ

im

iℓ + n− k

im + n− kim+1

iℓ+1

iℓ+1 + n− k

im+1 + n− k

A B
C ′

C D

Figure 7.1: Covering M by submatrices and moving away from the diagonal

matrix M being covered by these submatrices, we have the bound

rkM ≤
∑

(i,j)∈I2
rkMi,j ≤ |I|2 max

(i,j)∈I2
rkMi,j .

The cardinality |I| being bounded, bounding the ranks of these blocks suffices to bound

rkM . We now prove by induction on ℓ −m that Miℓ,im has small rank, namely at most

5ℓ−mκ. Because Miℓ,im = MT
im,iℓ

, it suffices to prove the claim in the case ℓ ≥ m. When

ℓ − m = 0, as we have already seen, the corresponding block is diagonal and of rank at

most κ. We now suppose that for some ℓ ≥ m we already know that rkMiℓ,im ≤ 5ℓ−mκ and

we inspect Miℓ+1,im. The reader may wish to consult Figure 7.1 while following through

the proof.
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In Figure 7.1 the dotted (n−k)×(n−k) blockMiℓ+1,im = E is made up of the four blocks

A,B,C,D, and is known to have a symmetric part of small rank. On the other hand, A,B

and D are already known to have rank at most 5ℓ−mκ, because they are submatrices of

Miℓ,im and Miℓ+1,im+1 respectively. Now the symmetric part E +ET admits as bottom-left

square block of the size of C the matrix C+C ′T , where C ′ is the top-right block of B (here

it is crucial that iℓ+1 − iℓ < (n− k)/2). As a submatrix of a matrix of small rank, C +C ′T

must have small rank. But C ′ has iself small rank as a submatrix of B, whence it follows

that C = (C + C ′T )− C ′T has small rank, namely a rank at most 2 · 5ℓ−mκ. Hence

rkMiℓ+1,im = rkE ≤ rkA+ rkB + rkC + rkD ≤ 5ℓ+1−mκ.

This completes the inductive proof, and implies that rkM = O(κ) = O(logn).

Finally, as already noted, the rank of B is at most the rank ofM plus 2ϵn. In particular,

given that 2ϵ = 1/5, it is surely less than c′n for some c′ < n/4, if n ∈ Z is large enough.

Again invoking Corollary 7.9, we obtain the desired contradiction with the hypothesis

(7.40). This concludes the proof of Theorem 7.3.

7.7 The Hankel case

We prove Theorem 7.4, again assuming p > 2. If α =
∑m

j=−∞ ajtj then the matrix of the

quadratic form f /→ (αf 2)−1 in the canonical basis of Gn is

M = M(α) =

⎛

⎜⎜⎜⎜⎜⎝

a−1 a−2 · · · a−n

a−2 . .
.

. .
.

a−n−1

... . .
.

. .
. ...

a−n α−n−1 · · · a−2n+1

⎞

⎟⎟⎟⎟⎟⎠
.

We will follow the same strategy as in Sections 7.5 and 7.6 with Φ(f) = e(αf 2 + βf).

Suppose for a contradiction that, for arbitrarily large n, we have

∑

f∈Gn

µ(f)Φ(f) > δqn (7.41)

with δ = q−ϵ
′n for some ϵ′ > 0 to be determined later. Applying Proposition 7.11, we

may discard the first alternative, because in that case the reasoning of Section 7.6 goes
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through without Conjecture 5.9. The parameter δ′ = (δ/n)O(1) is still at least q−ϵn for some

ϵ = O(ϵ′), if n is large enough. Thus we find a k ∈ [n/18, 17n/18] such that for at least

q(2−ϵ)(k+1) pairs of polynomials (d, d′) of degree k, the quadratic phase on Gn−k defined by

w /→ e(α(d2 − d′2)w2)

has rank at most O(ϵn). Write d − d′ = a and d + d′ = b. We infer that for at least

q(2−ϵ)(k+1) pairs of polynomials a, b of degree at most k, the quadratic phase

w /→ e(αabw2)

has rank at most cϵn for some constant c = O(1).

With the notation of the previous section, the relevant symmetric matrix is

Ma,b = LT
aM(α)Lb = LT

b M(α)La = M(αab).

In contrast to the general case, Ma,b is here a product involving M and not a sum of two

products, which makes it much easier to analyse. As in the proof of Theorem 7.3, we will

show that M has low rank by covering it by submatrices of low rank.

By Markov’s inequality, there exists a set X ⊂ Gk+1 of size q(1−ϵ)(k+1)/2 such that for

any a ∈ X , the set

Ba := {b ∈ Gk+1 | rkMa,b ≤ cϵn}

has size at least q(1−ϵ)(k+1)/2.

Let η = 2ϵ. For any i ∈ {0, . . . , k − ηk} and a ∈ X, by the pigeonhole principle, there

exist two distinct b ̸= b′ in Ba such that f = b′ − b =
∑i+ηk

m=i cmt
m for some coefficients

cm. Moreover, we have rkMa,f ≤ 2cϵn. Write f = fa,i to emphasize the dependence.

Fix (i, j) ∈ {0, . . . , k − 2ηk}2. Again, the pigeonhole principle implies that there exist

a ̸= a′ ∈ X such that g = a− a′ ∈ span(tj , . . . , tj+2ηk) and fa,i = fa′,i. If f is this common

value, we have rkMg,f = O(ϵn). Observe that for such a pair (g, f) we have

Lg =

⎛

⎜⎝
0

Cg

0

⎞

⎟⎠ ,

where the central block is a (n − k + 2ηk) × (n − k) matrix of rank n − k and the other
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blocks are 0 blocks. The same decomposition holds for Lf , with a central block Cf . So

if N is the (n − k + 2ηk) × (n − k + 2ηk) block of M whose top-left cell is (j, i), then

Mg,f = CT
g NCf , and thus rkMg,f ≥ rkN − 4ηk. As a result, rkN = O(ϵn).

Covering M by a bounded number of blocks of size (n− k + 2ηk)× (n− k + 2ηk), we

find that rkM = O(ϵn). By taking ϵ small enough, the bound O(ϵn) is constrained to

be smaller than, say, n/5, for sufficiently large n. Thus if ϵ is small enough (that is, if ϵ′

is small enough), we get a contradiction between the hypothesis (7.41) and Corollary 7.9.

Theorem 7.4 follows.
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Appendix A

Volume packing arguments and local

divisor density

In this appendix, we shall collect some frequently used facts concerning the number of

integral solutions to a system of linear equations in a convex set of Rd and in (Z/mZ)d.
The first lemma we state is borrowed from Green and Tao [45, Appendix A].

Lemma A.1. Let K ⊂ [0, N ]d be a convex body of Rd. Then

|K ∩ Zd| =
∑

n∈K∩Zd

1 = Vol(K) +Od(N
d−1).

We recall the definition of the local divisor density from equation (3.21) (already present

in [45]) and we mention some useful properties.

Definition A.1. For a given system of affine-linear forms Ψ = (ψ1, . . . ,ψt) : Zd → Zt,

positive integers d1, . . . , dt of lcm m, define the local divisor density by

αΨ(d1, . . . , dt) = En∈(Z/mZ)d

t∏

i=1

1ψi(n)≡0 mod di .

The following lemma is borrowed from Matthiesen [68, Lemma 9.3].

Lemma A.2. Let K ⊂ [−B,B]d be a convex body and Ψ a system of affine-linear forms,

and let d1, . . . , dt be integers of lcm m. Then

∑

n∈Zd∩K

∏
1di|ψi(n) = Vol(K)αΨ(d1, . . . , dt) +O(Bd−1m).
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We shall try to bound αΨ(pa1 , . . . , pat). To this aim, we state a version of Hensel’s

lemma in several variables.

Lemma A.3. Let Q ∈ Z[X1, . . . , Xd], p be a prime and k ≥ 1 an integer and x ∈ (Z/pkZ)d

such that Q(x) ≡ 0 mod pk and

∇Q(x) =

(
∂Q

∂x1
, . . . ,

∂Q

∂xd

)
(x) ̸≡ 0 mod p.

Then there exist precisely pd−1 vectors y ∈ (Z/pk+1Z)d such that x ≡ y mod pk and Q(y) ≡
0 mod pk+1.

Proof. Let y ∈ (Z/pk+1Z)d satisfy x ≡ y mod pk; in other words, y = x + pkz for some

uniquely determined z ∈ (Z/pZ)d. Here, by abuse of notation, we replace x ∈ (Z/pkZ)d

by some fixed lift in (Z/pk+1Z)d. We then treat Q(x) as an element of Z/pk+1Z congruent

to 0 mod pk and put Q(x) = pka with a ∈ Z/pZ. Then Taylor’s formula ensures that

Q(y) ≡ Q(x) + pk∇Q(x) · z ≡ pk(a +∇Q(x) · z) mod pk+1.

So Q(y) ≡ 0 mod pk+1 is equivalent to a + ∇Q(x) · z ≡ 0 mod p. As ∇Q(x) is not zero

modulo p, this imposes a nontrivial affine equation on z in the vector space Fd
p, so z is

constrained to lie in a (d − 1)-dimensional affine Fp-subspace, which has pd−1 elements,

hence the conclusion.

As an application, we prove the following statement.

Corollary A.4. Let ψ be an affine-linear form in d variables, and let p be a prime such

that ψ is not the trivial form modulo p. Then for any m ≥ 1

αm = αψ(p
m) = En∈(Z/pmZ)d1pm|ψ(n) = Pn∈(Z/pmZ)d(ψ(n) = 0) ≤ p−m.

Proof. If n ∈ (Z/pmZ)d satisfies ψ(n) ≡ 0 mod pm, then in particular ψ̃(ñ) ≡ 0 mod p,

where ·̃ is the reduction modulo p, which imposes that ñ lies in ker ψ̃ . By assumption,

ψ̃ ̸= 0. If its linear part is 0, then its constant part is nonzero, thus ker ψ̃ = ∅ and αm = 0.

Otherwise, the linear part is nonzero modulo p, and then ker ψ̃ is an affine Fp-hyperplane,

thus has pd−1 elements. Let us prove the proposition by induction on m. For m = 1, we

have just proved the result. Suppose now that αm ≤ p−m for some m ≥ 1. Because of the

assumption above, ∇ψ is a constant vector which is nonzero modulo p. Applying Lemma
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A.3 for k = m, we find that each zero modulo pm of ψ gives rise to exactly pd−1 zeros

modulo pm+1, which proves that αm+1 ≤ p−(m+1). This concludes the induction step and

the proof.

Exploiting this corollary, we can now prove a bound on more general local densities.

Proposition A.5. Let Ψ = (ψ1, . . . ,ψt) be a system of integral affine linear forms in d

variables and p be a prime so that the system reduced modulo p is of finite complexity, i.e.

no two of the forms are affinely related modulo p. Then

α = αΨ(p
a1 , . . . , pat) ≤ p−maxi̸=j(ai+aj).

Proof. If all ai are zero, the result is trivial, so let m = max ai and suppose m ≥ 1; let

i ̸= j be such that ai + aj is maximal (in particular, it is at least m). Suppose first that

either ai or aj is 0. Without loss of generality, suppose ai = 0 and aj ̸= 0. Then for

n ∈ (Z/pmZ)d to satisfy ψk(n) ≡ 0 mod pak for all k = 1, . . . , t, we must have in particular

ψ̃j(ñ) ≡ 0 mod paj , and using Corollary A.4, we find that

α = En∈(Z/pmZ)d
∏

i∈[t]

1pai |φi(n) ≤ En∈(Z/pajZ)d1paj |φj(n) ≤ p−aj = p−maxi̸=j(ai+aj).

Now suppose 1 ≤ ai ≤ aj . Then for n ∈ (Z/pmZ)d to satisfy ψk(n) ≡ 0 mod pak for all

k = 1, . . . , t, we must have in particular ψ̃i(ñ) ≡ ψ̃j(ñ) ≡ 0 mod p. This imposes that ñ

lies in the intersection of two affine Fp-subspaces, namely ker ψ̃i and ker ψ̃j , which are two

nonparallel hyperplanes because these forms are affinely independent by assumption. Now

we use induction on m ≥ 1 to show that

βm = Pn∈(Z/pmZ)d(ψi(n) ≡ ψj(n) ≡ 0 mod pm) = p−2m.

For m = 1, what we have seen above implies that β1 = p−2 (the intersection of two

nonparallel affine hyperplanes of Fd
p is an affine subspace of dimension d−2, so its cardinality

is pd−2), so the statement is true. Suppose now that for some m ≥ 1 we have βm = p−2m.

If x ∈ (Z/pmZ)d satisfies ψi(x) ≡ ψj(x) ≡ 0 mod pm and if y = x + pmz ∈ (Z/pm+1Z)d

for some z ∈ (Z/pZ)d satisfies ψi(y) ≡ ψj(y) ≡ 0 mod pm+1, then following the proof of

Lemma A.3, we infer that z has to satisfy two affine equations

a+∇ψi · z ≡ 0 mod p and a +∇ψj · z ≡ 0 mod p.
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This forces z to lie in the intersection of two nonparallel affine Fp-hyperplanes of Fd
p (they

are nonparallel because we supposed that the gradients were not proportional). Hence for

a fixed x as above, there are pd−2 such y, so finally βm+1 = pd−2βm whence the conclusion.

In particular, putting m = ai, we have that En∈(Z/paiZ)d1φi(n)≡φj(n)≡0 mod pai ≤ p−2ai . It

remains to induct on aj − ai ≥ 0 using Lemma A.3 in order to find that

En∈(Z/pajZ)d1pai |φi(n)1paj |φj(n) ≤ p−(ai+aj),

which implies the desired result.

We prove another statement which is helpful during the proof of the linear forms con-

ditions (Proposition C.1).

Proposition A.6. Let Φ : Zd → Zt be a system of affine-linear forms. Let p be a prime

such that the reduction modulo p of the system is of finite complexity. Let K ⊂ [−B,B]d

be a convex body. Then

∑

n∈K∩Zd

1p2|∏i∈[t] φi(n)
≪t p

−2Vol(K) +Bd−1p2.

Proof. First, we observe that p2 |
∏

i∈[t] φi(n) implies that either there exists i ∈ [t] such

that p2 | φi(n) or there exist i ̸= j such that p | φi(n) and p | φj(n). Hence

∑

n∈K∩Zd

1p2|∏i∈[t] φi(n)
≤
∑

i∈[t]

∑

n∈K∩Zd

1p2|φi(n) +
∑

i ̸=j

∑

n∈K∩Zd

1φi(n)≡φj (n)≡0 mod p.

Now for any i ∈ [t] we apply Lemma A.2 which implies

∑

n∈K∩Zd

1p2|φi(n) = Vol(K)αφi(p
2) +O(Bd−1p2)

and for any i ̸= j

∑

n∈K∩Zd

1φi(n)≡φj(n)≡0 mod p = Vol(K)αφi,φj (p, p) +O(Bd−1p).

But the assumption of finite complexity modulo p means that we may invoke Proposition

A.5, which implies that αφi(p
2) ≤ p−2 and that αφi,φj(p, p) ≤ p−2. The result then follows.
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Appendix B

Analysis of the local factors βp

This appendix deals with the local factors appearing in Chapter 4.5. First, we check that

the limit defining βp in Theorem 4.1 exists. We fix integers d, t, s ≥ 1 and a system of

linear forms Ψ : Zd → Zt+s of finite complexity, and we suppose its linear coefficients are

bounded by L.

We also fix PDBQFs ft+1, . . . , ft+s of discriminants Dt+1, . . . , Dt+s; these notions and

the notation ρfj were defined in the introduction. Let p be a fixed prime and M0 =

maxj vp(Dj). For m ≥ 1 an integer and a ∈ (Z/pmZ)d, let

Pm(a) =
t∏

i=1

ΛZ/pZ(ψi(a))
t+s∏

j=t+1

ρfj ,ψj(a)(p
m)

pm
. (B.1)

Finally, let βp(m) = Ea∈(Z/pmZ)dPm(a). Thus we want to prove that βp(m) is convergent as

m tends to ∞. This is a consequence of the following proposition

Proposition B.1. The sequence (βp(m))m∈N is a Cauchy sequence. More precisely, there

exists M0 = M0(Dt+1, . . . , Dt+s) so that for all integers m0 ≥ M0 and m,n ≥ m0, we have

βp(m)− βp(n) = O(ms
0p

−m0/2).

In particular, this sequence has a limit βp and we have

βp(m) = βp +O(msp−m/2).
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Proof. Let m0 ≥ M0 and m,n ≥ m0. We split (Z/pmZ)d into two parts

A1 = A1(m,m0) = {a ∈ (Z/pmZ)d | ∀j ∈ [[ t+ 1 ; t+ s ]] ψj(a) ̸≡ 0 mod pm0}

and

A2 = A2(m,m0) = {a ∈ (Z/pmZ)d | ∃j ∈ [[ t + 1 ; t+ s ]] ψj(a) ≡ 0 mod pm0}.

Thus

βp(m) = Ea∈(Z/pmZ)dPm(a)1A1(m,m0)(a) + Ea∈(Z/pmZ)dPm(a)1A2(m,m0)(a). (B.2)

For the first term, we use the lift-invariance property [68, Corollary 6.4] already stated in

Lemma 4.6. It implies that

Ea∈(Z/pmZ)dPm(a)1A1(m,m0) = Ea∈(Z/pm0Z)dPm0(a)1A1(m0,m0)

thus the first term on the right-hand side of (B.2) does not depend on m. For the second

term, we invoke the following general bound from [68] (see Lemma 6.3 and the proof of

Lemma 8.2)
ρfj ,ψj(a)(p

m)

pm
≪

m∑

k=0

1ψj(a)≡0 mod pk .

We also use the trivial bound ΛZ/pZ ≤ 2 to infer the inequalities

Pm(a)1A2(a) ≪ 2t1A2(a)
t+s∏

j=t+1

m∑

k=0

1ψj(a)≡0 mod pk

≪ ms
01A2(a) + 1A2(a)

∑

0≤kt+1,...,kt+s≤m
max ki≥m0

t+s∏

j=t+1

1ψj(a)≡0 mod pkj

≤ (ms
0 + 1)

∑

0≤kt+1,...,kt+s≤m
max ki≥m0

t+s∏

j=t+1

1ψj(a)≡0 mod pkj .

Here the factor ms
0 appears as the number of s-tuples whose entries are all in [[ 0 ; m0− 1 ]];

moreover, the 2t is merged with the implied constant, which crucially remains independent

of m or m0. The third line follows from the fact that if a ∈ A2, then the sum over tuples
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ki whose maximum is at least m0 is at least 1. We then average over a and let

Z = (ζ1, . . . , ζs) = (ψt+1, . . . ,ψt+s) (B.3)

be the system of the last s linear forms of Ψ, obtaining

Ea∈(Z/pmZ)dPm(a)1A2(a) ≪ ms
0

∑

0≤k1,...,ks≤m
M :=maxki≥m0

Ea∈(Z/pMZ)d

s∏

i=1

1pki |ζi. (B.4)

We recognise the local divisor density αZ on the right-hand side, so we put

δp =
∑

0≤k1,...,ks≤m
M :=maxki≥m0

αZ(p
k1 , . . . , pks),

which enables us to rewrite (B.4) as

Ea∈(Z/pmZ)dPm(a)1A2(a) ≪ ms
0δp.

Since the linear coefficients of Z are bounded and none of its forms is the trivial form,

we see that for any i ∈ [s], the maximal k such that ζi is the trivial form modulo pk is

bounded. Write then ψi = pkψ′
i where ψ

′
i is not the trivial form modulo p. Thus applying

Corollary A.4 to the form ψi, we find that αψi(p
ki) ≤ pk−ki ≪ p−ki as ki tends to ∞ while

p and k are bounded. Further,

αZ(p
k1, . . . , pks) ≤ min

j
αψj (p

kj) ≪ p−maxj kj ,

and thus

δp ≪
∑

0≤kt+1,...,kt+s≤m
M :=max ki≥m0

p−M .

Bounding the number of tuples (k1, . . . , ks) satisfying max ki = M crudely by (M + 1)s,
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we conclude that

δp ≪
∑

M≥m0

p−MMs

≪
∑

M≥m0

p−M/2

≪p p−m0/2.

Finally, this means that for m ≥ m0, we have

βp(m) = Ea∈(Z/pm0Z)dP (a)1A1(m0,m0) +O(ms
0p

−m0/2). (B.5)

The same holds for βp(n), hence

βp(m)− βp(n) = O(ms
0p

−m0/2)

and the conclusion follows.

We record a useful byproduct of the above proof.

Lemma B.2. As m ≥ M0 tends to infinity, we have

Ea∈(Z/pmZ)d

t∏

i=1

ΛZ/pZ(ψi(a))
t+s∏

j=t+1

ρfj ,ψj(a)(p
m)

pm
1ψj(a)̸≡0 mod pm = βp +O(p−m/3).

Proof. We simply use equation (B.5) with m = m0 and the bound msp−m/2 ≪ p−m/3,

where the implied constant is independent of m and p. Together with the conclusion of

Proposition B.1 that βp = βp(m) +O(msp−m/2), this yields the desired result.

We now analyse the behaviour of βp as p tends to infinity.

Lemma B.3. For primes p tending to infinity,

βp = 1 +O(p−2).

Thus
∏

p βp is convergent and

∏

p≤w(N)

βp =

(
1 +O

(
1

w(N)

))∏

p

βp.
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Proof. Assume p is large enough so that p does not divide the product Dt+1 · · ·Dt+s of the

(negative) discriminants of our quadratic forms.

Recall the notation Pm(a) from (B.1) and the sets A1 = A1(m,m) and A2 = A2(m,m)

introduced during the proof of Proposition B.1. As m tends to ∞, we have

βp + o(1) = Ea∈(Z/pmZ)dPm(a)

= Ea∈(Z/pmZ)dPm(a)1A1(a) + Ea∈(Z/pmZ)dPm(a)1A2(a)

=
1

pmd

∑

a∈A1

Pm(a) + 2tO(smsp−m).

To get this error term, we used Corollary A.4 and the triangle inequality to bound |A2|,
and the fact that ρfj ,β(p

m)/pm ≪ m [68, Lemma 6.3(c)] to bound Pm(a). This error term

tends to 0 as m tends to infinity, and thus merges with the o(1) of the left-hand side. Let

us now consider the main term. Thanks to the choice of p and the fact that the forms do

not vanish at a mod pm, we can use Lemma 6.3 from [68] which states that if f is a PDBQF

of discriminant D, and if p is a prime which does not divide D, and if β ̸≡ 0 mod pm, then

ρf,β(pm)

pm
= (1− χD(p)p

−1)
m∑

k=0

1pk|mχD(p
k).

Here χD is a real character modulo p, namely the Kronecker symbol [68, Lemma 2.1]. Thus

βp = lim
m→∞

Ea∈(Z/pmZ)d

t∏

i=1

ΛZ/pZ(ψi(a))
t+s∏

j=t+1

(
(1− χDj (p)p

−1)
m∑

k=0

1pk|ψj(a)χDj (p
k)

)

where we have obviously reintegrated the once excluded a ∈ A2, because their sparsity

ensures that they do not affect the limit. For a ∈ (Z/pmZ)d, we then write a = a′ + pb

with b ∈ (Z/pm−1Z)d and a′ ∈ [p]d. Thus the average Ea becomes

t+s∏

j=t+1

(
1− χDj (p)p

−1
)
Ea∈[p]d

t∏

i=1

ΛZ/pZ(ψi(a))Eb∈(Z/pm−1Z)d

t+s∏

j=t+1

m∑

k=0

1pk|ψj(a+pb)χDj (p
k).

(B.6)
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We expand the product of sums as follows

t+s∏

j=t+1

m∑

k=0

1pk|ψj(a+pb)χDj (p
k)

= 1 +
∑

j

m∑

kj=1

1pkj |ψj(a+pb)χDj(p
kj ) +

∑

0≤kt+1,...,kt+s≤m
at least two ki>0

∏
1pkj |ψj(a+pb)χDj (p

kj)

according to whether we take no, one or several nonzero k. The expectation over a from

(B.6) then splits into three terms. The first one is

Ea∈(Z/pZ)d

t∏

i=1

ΛZ/pZ(ψi(a)),

and the second one is

t+s∑

j=t+1

m∑

kj=1

χDj (p
kj)Ea∈[p]d

t∏

i=1

ΛZ/pZ(ψi(a))Eb∈(Z/pm−1Z)d1pkj |ψj(a+pb). (B.7)

Now we decompose ψj(a + pb) = ψj(a) + pψ̇j(b), where ψ̇ is the linear part of ψ. If pkj

is to divide ψj(a) + pψ̇j(b), we need p | ψj(a). Thus we can write, for each such a fixed,

ψj(a + pb) = pψ̃j(b), where ψ̃j is again an affine-linear form whose linear part is ψ̇j . We

then need pkj−1 | ψ̃j(b). Because of Corollary A.4,

Eb∈(Z/pm−1Z)d1pkj−1|ψ̃j(b)
= p−kj+1

so the expression (B.7) equals

t+s∑

j=t+1

m∑

kj=1

χDj(p
kj )p−kjEa∈[p]d

t∏

i=1

ΛZ/pZ(ψi(a))p1p|ψj(a)

To deal with the last term, which is

Ea∈(Z/pmZ)d

t∏

i=1

ΛZ/pZ(ψi(a))
∑

0≤kt+1,...,kt+s≤m
at least two ki>0

t+s∏

j=t+1

1pkj |ψj(a)
χDj(p

kj ), (B.8)

we crudely bound ΛZ/pZ by 2 and χDj by 1. Recall the notation Z from (B.3). Thus as m
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tends to infinity, the expression (B.8) is bounded above by a constant times

O

⎛

⎜⎜⎝
∑

k1,...,ks
at least two ki>0

αZ(p
k1, . . . , pks)

⎞

⎟⎟⎠

To bound this expression, we remember that Z is a system of finite complexity. In par-

ticular, it has finitely many exceptional primes by Lemma 2.2. This implies, thanks to

Proposition A.5, that for p large enough depending on s, d, L, we have

αZ(p
k1, . . . , pks) ≤ p−maxi̸=j(ki+kj) ≤ p−1−max(ki)

whenever at least two ki are nonzero. For any k ≥ 1, there are at most s(k+1)s−1 s-tuples

that satisfy max ki = k. Thus

∑

k1,...,ks
at least two ki>0

αZ(p
k1 , . . . , pks) = O(

∑

k≥1

sks−1p−k−1) = Os(p
−2).

Putting these three terms together and letting m tend to infinity, we get

βp =
t+s∏

j=t+1

(
1− χDj(p)p

−1
)
(

Ea∈[p]d

t∏

i=1

ΛZ/pZ(ψi(a))

+
t+s∑

j=t+1

Ea∈[p]dp1ψj(a)=0

t∏

i=1

ΛZ/pZ(ψi(a))
+∞∑

k=1

χDj(p
k)p−k

)
+Os,t(p

−2). (B.9)

Lemma 2.3 proved that Ea∈[p]d
∏t

i=1 ΛZ/pZ(ψi(a)) = 1 + Od,t(p−2). Similarly, for any j ∈
[[ t + 1 ; t + s ]], we have

Ea∈[p]dp1p|ψj(a)

t∏

i=1

ΛZ/pZ(ψi(a)) = p

(
p

p− 1

)t

P((
t∏

i=1

ψi(a), p) = 1 and p | ψj(a))

= 1 +O(p−2)

because the probability is p−1(1− t/p+O(p−2)) by linear independence. Moreover,

t+s∏

j=t+1

(
1− χDj (p)p

−1
)
⎛

⎝1 +
t+s∑

j=t+1

∑

kj>0

χDj(p
kj )p−kj

⎞

⎠ = 1 +Os(p
−2)
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so that finally, plugging these estimates in (B.9), we obtain

βp =
t+s∏

j=t+1

(
1− χDj(p)p

−1
)
⎛

⎝1 +
t+s∑

j=t+1

∑

kj>0

χDj (p
kj)p−kj +Os,t(p

−2)

⎞

⎠ = 1 +O(p−2).

Here the implied constant depends on t, d, s, L and the discriminants only. This last equa-

tion is exactly the claimed result.
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Appendix C

Verification of the linear forms

condition

This appendix is dedicated to the lengthy and technical proof of Proposition 4.12 and

Proposition 2.13; observe that the former does not exactly imply the latter, because the

latter allows unbounded coefficients, which the former does not. We actually prove the

following proposition, which proves both aforementioned propositions.

Proposition C.1. Let Ψ = (ψ1, . . . ,ψt+s) be a system of affine-linear forms on Zd. Let

D1, . . . , Ds be some discriminants of PDBQFs. Let cGT(χ) be the constant appearing in

Proposition 2.9. Let Ŵ be divisible by W and every exceptional prime for the system Ψ.

For i ∈ [t], let νi = νGT,Ŵ ,bi
and for i ∈ [[ t + 1 ; t + s ]], let νi = νMatt,Ŵ ,bi,Di

. Suppose that

K ⊂ [0, N ]d satisfies Ψ(K) ⊂ Rt
+. Let (b1, . . . , bt+s) ∈ [Ŵ ]t+s be such that for any prime

p, we have (bi,W ) = 1 for any i ∈ [t] and bj ̸≡ 0 mod pvp(Ŵ ) for any j ∈ [t+ 1, . . . , t+ s].

Suppose that no exceptional prime larger than w for Ψ divides any of the integers bi.

Further, suppose that

En∈[N ]νi(n) = 1 + o(1) (C.1)

for any i ∈ [t+ s]. Then

En∈K∩Zd

∏

i∈[t+s]

νi(ψi(n)) = 1 +O

(
Nd−1+O(γ)

Vol(K)

)
+ o(1). (C.2)

Observe that if rad(Ŵ ) = O(logO(1)N), hypothesis (C.1) is satisfied for any i ∈ [t] by

Proposition 2.11, so Proposition C.1 does imply Proposition 2.13. Further, if Ŵ = W ,

hypothesis (C.1) is satisfied for any i ∈ [t+ s], so Proposition C.1 does imply Proposition
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4.12 as well.

We loosely follow Matthiesen’s proof in [68], taking inspiration from the more recent

paper [17]. However, there is some flaw there, as the author overlooked the possibility that

u and dm2ϵ may not be coprime; we provide, based on the earlier paper [66], a corrected

version of these computations.

Compared to Matthiesens’s articles, the presence of the majorant for the von Mangoldt

function introduces factors of logR which will be cancelled out during the Fourier trans-

formation step. It also introduces factors of ϕ(W )
W which remain untouched throughout the

proof. And in the core of the calculation, it adds to the variables d,m, e, u another variable

ℓ also ranging among the integers whose prime factors are all greater than w(N), which

shall interact nicely with the other ones. The aim of the game is to dissociate the factors,

that is, to transform the average of the product into the product of averages. This way,

we will reduce the problem to the case where t = 1, s = 0, that is, Proposition 2.11, and

the case where t = 0, s = 1, which corresponds to Lemma 4.10.

Notational conventions for the proof. In order to somewhat lighten the formidable

notation, we will not always specify the range on sums, products or integrals. In principle,

the name of the variable alone should tell the reader what its range is. We list a few

important conventions.

• The integer vector n will always range in Zd ∩K.

• We put φj(n) = Ŵψj(n) + bj , for j ∈ [t + s]. Let Φ = (φ1, . . . ,φt+s).

• For i = 1, . . . , t and k = 1, 2, the variable ℓi,k is a positive integer. Because it will

always be a divisor of φi(n) which satisfies φi(n) ≡ bi mod W and (bi,W ) = 1 by

definition of B, the prime factors of ℓi,k are all greater than w(N).

• For j = t + 1, . . . , t + s and k = 1, 2, the variable ej,k is a positive integer in ⟨Qj⟩,
where Qj = QDj . All its prime factors are greater than w(N).

• For j = t + 1, . . . , t + s, the variable sj will range from 2/γ to (log logN)3 and ij

from log2 s − 2 to 6 log log logN , while uj ranges in U(sj , ij). The sj should not be

confused with s, the number of factors of the form νMatt,b. Notice that i is also the

standard name of the index ranging in [t] but this should not cause any ambiguity.

• Occasionally we may want to write ej for ej,1 and e′j = ej,2 ; similarly ℓi = ℓi,1 and

ℓ′i = ℓi,2. Moreover ϵj will be the least common multiple (lcm) of ej and e′j , while λi

will be the lcm of ℓi and ℓ′i.
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• For j = t+ 1, . . . , t+ s, the integer dj only has prime factors greater than w(N) and

lying in Pj where Pj = PDj .

• For j = t+1, . . . , t+ s, the integer mj only has prime factors greater than w(N) and

lying in Qj .

• A bold character denotes a vector; thus e = (ej,k)j∈[[ t+1 ; t+s ]]
k=1,2

and again the range of

such indices i, k will frequently be omitted.

• For i ∈ [t], let ci = c(χ) be the constant appearing in Proposition 2.11, and for

j ∈ [t+ 1, t+ s], let cj = c(Dt+j ,χ) be the constant appearing in Lemma 4.10.

With these conventions, recalling the definitions (2.10) of Λχ,R and (4.16) of rD,γ, we expand

the left-hand side of (4.19) as

Ω = HΩ′

where

Ω′ = En∈Zd∩K
∏

i∈[t]

∑

ℓi,ℓ′i

µ(ℓi)µ(ℓ
′
i)χ

(
log ℓi
logR

)
χ

(
log ℓ′i
logR

)
1λi|φi(n)

t+s∏

j=t+1

∑

sj ,ij ,uj

2sj1uj |φj(n)
∑

dj ,mj ,ej ,e′j

1djm2
j ϵj |φj(n)µ(ej)µ(e

′
j)χ

(
log ej
logR

)
χ

(
log e′j
logR

)
χ

(
log dj
logR

)
χ

(
logmj

logR

)
.

(C.3)

and H is defined by

H =

(
logR

ϕ(Ŵ )

Ŵ

)t t+s∏

j=1

c−1
j .

To prove Proposition 4.12, we have to prove that

Ω = 1 +O

(
Nd−1+O(γ)

Vol(K)

)
+ o(1).

Notice that H = O((logR)t) = O((logN)t). We now work on Ω′. It is an average over

n of t + s products, and we aim at transforming it into a product of t + s averages. We

will remember to multiply the error terms obtained for Ω′ during the transformation of

this average by (logN)t to obtain error terms for Ω.

We observe that when uj, dj, mj , ej, e′j divide φj(n) and uj satisfies gcd(uj,φj(n)/uj) = 1,
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there exists, for x equal to any of the symbols e, e′, d,m, a unique decomposition

xj = x(1)
j vj,x with gcd(x(1)

j , uj) = 1 and vj,x | uj. (C.4)

We would very much like to perform this decomposition, but not every term satisfies the

required coprimality condition. However, the following claim shows that we can pretend it

does at a small cost. In fact it shows more.

Claim 1. The summands in (C.3) satisfying gcd(uj,φj(n)/uj) > 1 for some j or gcd(uj,φi(n)) > 1

for some i ̸= j contribute only O(N−(log logN)−3/8) to Ω.

Proof. Bounding µ and χ by 1, we find that the contribution S of these summands to Ω′

satisfies

|S| ≤
∑

i,s

(
t+s∏

j=t+1

2sj

)

Enan,

where

an = an,i,s =
∑

u

1 ∃j|gcd(uj ,φj(n)/uj)>1
or ∃i ̸=j|gcd(uj ,φi(n))>1

∑
d,m,e,ℓ

∏t
i=1 1λi|φi(n)

∏t+s
j=t+1 1∆j |φj(n)

with the notation ∆j = lcm(uj, djm2
jϵj). To bound Enan, we apply the simple rule, based

on Cauchy-Schwarz, that

(En∈Zd∩Kan)
2 ≤ Pn(an ̸= 0)Ena

2
n.

Now if an ̸= 0 then either the value of one of the last s linear forms φi(n) has a repeated

prime factor, or the values of two of the t + s linear forms have a common prime factor.

Such a prime p is a factor of some ui, which, by Definition 4.3, only has prime factors

larger than N1/(log logN)3 and satisfies ui ≤ Nγ (see [66, Proposition 4.2]). Thus p certainly

lies between N1/(log logN)3 and Nγ . Using the triangle inequality, we get

Pn(an ̸= 0) ≤
∑

N1/(log logN)3≤p≤Nγ

Pn(p
2 |

t+s∏

i=1

φi(n)).

Let N1/(log logN)3 ≤ p ≤ Nγ be a prime. In particular, we have p > w(N). We use the

hypothesis of Proposition C.1 regarding exceptional primes. If p | Ŵ , then for any i ∈ [t+s],

the form φi mod p is constantly equal to the nonzero residue bi. So Pn(p2 |
∏t+s

i=1 φi(n)) = 0.

154
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Otherwise, p is not exceptional for Ψ nor Φ, whence

Pn(p
2 |
∏

i

φi(n)) ≪ p−2 +O

(
p2

N ′d−1

Vol(K)

)
= p−2 +O

(
p2

Nd−1

Vol(K)

)
,

according to Proposition A.6 and Lemma A.1, i.e. the fact1 that |K∩Zd| ∼ Vol(K). Hence

P(an ̸= 0) ≤
∑

N1/(log logN)3≤p≤Nγ

P(p2 |
∏

i

φi(n))

≪
∑

p≥N1/(log logN)3

p−2 +
Nd−1

Vol(K)

∑

p≤Nγ

p2

≪ N−1/(log logN)3 +
N3γ+d−1

Vol(K)
.

Assuming that γ is small enough (less than 1/3), the second term is O(N−c) with c > 0 so

it is negligible with respect to the first one.

We then bound Ena2n quite crudely as follows

Ena
2
n ≤ En

(
∑

d,m,e,ℓ,u

t∏

i=1

1λi|φi(n)

t+s∏

j=t+1

1∆j |φj(n)

)2

≪
t∏

i=1

⎛

⎜⎝En

⎛

⎝
∑

ℓi,ℓ′i

1λi|φi(n)

⎞

⎠
2(t+s)

⎞

⎟⎠

1/(t+s)
t+s∏

j=t+1

⎛

⎜⎝En

⎛

⎝
∑

dj ,mj ,ej ,e′j ,uj

1∆j |φj(n)

⎞

⎠
2(t+s)

⎞

⎟⎠

1/(t+s)

≪ (logN)Ot,s(1).

The second inequality is Hölder’s. The last one follows from bounds of Matthiesen [66,

Lemma 3.1] on moments of the divisor function, and the observation that for instance
∑

ℓi,ℓ′i
1λi|φi(n) ≤ τ(φi(n))2. Thus |Enan| ≪ N−(log logN)−3/4. Summing now over i, s and

multiplying by H , we get H|S| ≤ N−(log logN)−3/8 as desired. This concludes the proof of

Claim 1.

Thus to evaluate (C.3), we shall pretend all summands satisfy the coprimality condition,

transform them under this hypothesis, and then reintegrate the formerly excluded terms,

which generates an error term of size O(N−(log logN)−3/8). So from now on, the vectors

1Here, we assume that Vol(K) ≫ N ′d or at least that N ′d−1 = o(Vol(K)). Indeed, in the statement of
the main theorem, we could also add the assumption that Vol(K) ≫ Nd because otherwise the error term
is not smaller than the main term.
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d, e,m will be assumed to be entrywise coprime to the vector u. Under this convention,

and up to an error term of size O(N−(log logN)−3/8), the expression Ω′ of equation (C.3) is

equal to

∑

i,s

′∑

u

En

∏

i∈[t],k=1,2

⎛

⎝
∑

ℓi,k

µ(ℓi,k)χ

(
log ℓi,k
logR

)
1λi|φi(n)

⎞

⎠
t+s∏

j=t+1

2sj
∑

dj ,ej ,e′j ,mj coprime to uj

∑

vj,d,vj,m,vj,e,vj,e′
divisors of uj

∏

xj∈{dj ,ej ,e′j ,mj}

χ

(
log xjvj,x
logR

)
µ(ejvj,e)µ(e

′
jvj,e′)1ujdjϵjm2

j |φj(n) (C.5)

where the dashed sum indicates a sum over vectors whose entries are coprime.

By the coprimality condition, we can perform the decomposition (C.4). The vector v

stands for (vj,x)x∈{d,e,e′,m},j∈[[ t+1 ; t+s ]] where we impose for every j the conditions vj,x | uj

and vj,d ∈ ⟨Pj⟩ , vj,m ∈ ⟨Qj⟩ , vj,e ∈ ⟨Qj⟩. Furthermore, we shall use the notation

qj =

{
λj if j ∈ [t]

djϵjm2
j if j ∈ [[ t + 1 ; t+ s ]].

Claim 2. The main term of (C.5) is equal to

∑

i,s

∑

u

∑

d,e,m,ℓ

α(q1, . . . , qt+s)

∑

v

∏

i∈[t],k=1,2

µ(ℓi,k)χ

(
log ℓi,k
logR

) ∏

j∈[[ t+1 ; t+s ]]

2sj

uj
µ(e′jvj,e′)µ(ejvj,e)

∏

xj∈{dj ,ej,e′j ,mj}

χ

(
log xjvj,x
logR

)

(C.6)

up to an error of size O
(
Nd−1+O(γ)/Vol(K)

)
.

We note that this error term, after multiplication by the initial factor H = O((logN)t),

is still of the same magnitude.

Proof. First, we apply Lemma A.2

En∈Zd∩K

t∏

i=1

1λi|φi(n)

t+s∏

j=t+1

1ujdjm2
j ϵj |φj(n) = α((qi)i∈[t], (ujqj)j∈[[ t+1 ; t+s ]])+O(Nd−1+O(γ)/Vol(K)).

To explain the error term, observe that for any set of tuples bringing a nonzero contribution,
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for any j ∈ [t + s], we have uj ≤ Nγ and qj = NO(γ) because dj, mj , ej, e′j, ℓj , ℓ
′
j ≤ Nγ .

To bound the contribution of this error term to the sum defining the main term of (C.5),

we simply notice that the number of terms is NO(γ) anyway, that the µ and χ factors are

1-bounded, and that 2sj is always o(Nγ) because sj ≤ (log logN)3.

Notice that we can also exclude summands for which gcd(λi, uj) > 1 for some i ∈ [t]

and j ∈ [[ t + 1 ; t + s ]] because of Claim 1. For summands satisfying on the contrary

gcd(λi, uj) = 1, by multiplicativity of α and because of the other implicit coprimality

conditions, we can write

α((qi)i∈[t], (ujqj)j∈[[ t+1 ; t+s ]]) =
α(q1, . . . , qt+s)∏

j uj
.

This concludes the proof of this claim with a dashed sum on u instead of the normal sum,

and a sum on ℓ restricted to tuples satisfying gcd(λi, uj) = 1 for all i and j. We can

reintegrate now the formerly excluded terms because they have a negligible contribution

anyway, so Claim 2 is proven.

From now on, we fix vectors i, s in their usual ranges, and consider the individual terms

∑

u

∑

d,e,m,ℓ

α(q1, . . . , qt+s)
∏

i∈[t],k=1,2

µ(ℓi,k)χ

(
log ℓi,k
logR

)

∑

v

∏

j∈[[ t+1 ; t+s ]]

2sj

uj
µ(ejvj,e)µ(e

′
jvj,e′)

∏

xj∈{dj ,ej ,e′j ,mj}

χ

(
log xjvj,x
logR

)
. (C.7)

Recall that we introduced the Fourier transform θ of the function x /→ exχ(x) during the

proof of Proposition 2.11. When plugging the Fourier transforms into our sum, we need

4s+2t real variables ξj,k with k = 1, . . . , 4 for j = t+1, . . . , t+s and k = 1, 2 for j = 1, . . . , t.

Collectively, they form the vector Ξ. Furthermore, we write zj,k = (1 + iξj,k)/(logR). We

sometimes allow, for a function f , the slight abuse of notation

∏

j,k

f(ξj,k) =
∏

i∈[t],k∈[2]

f(ξi,k)
∏

j∈[t+s]\[t],k∈[4]

f(ξj,k),

and write

θ(Ξ) =
∏

j,k

θ(ξj,k).
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We introduce the notation x̃j = xjvj,x for x equal to any of the symbols e, e′, d,m, and

vi = (vi,d, vi,e, vi,e′, vi,m). For any fixed values of the tuples s, i,u,v,d,m, e, ℓ we write

M =
∏

i∈[t],k=1,2

µ(ℓi,k)
∏

j∈[[ t+1 ; t+s ]]

2sj

uj
µ(ejvj,e)µ(e

′
jvj,e′).

Observe that µ(ejvj,e) = µ(ej)µ(vj,e) by coprimality, and the same with e′. Finally, we

introduce

Fd,m,e,ℓ(Ξ) = F (Ξ) = θ(Ξ)
∏

j>t

ẽ
−zj,1
j,1 ẽ

−zj,2
j,2 d̃

−zj,3
j m̃

−zj,4
j

∏

i∈[t]

ℓ
−zi,1
i,1 ℓ

−zi,2
i,2 . (C.8)

We now insert (2.16) into the expression (C.7) to get

∑

d,m,e,ℓ

α(q1, . . . , qt+s)
∑

u,v

M
( ∫

I4s+2t

F (Ξ)dΞ+O((logR)−A(
∏

i,j,k

ẽj,kℓi,kd̃jm̃j)
−1/ logR)

)
.

Above we abused notation slightly and wrote

∏

i,j,k

ẽj,kℓi,kd̃jm̃j =
∏

i∈[t],k=1,2

ℓi,k
∏

j>t,k′=1,2

ẽj,k′m̃j d̃j.

We shall use this notation again in the sequel.

Now the term arising from the big oh will not matter too much, thanks to the following

claim.

Claim 3. For A > 0 large enough,

H
∑

s,i

∑

u,v

∑

d,m,e,ℓ

α(q1, . . . , qt+s)|M | log−AR

(
∏

i,j,k

ẽj,kℓi,kd̃jm̃j

)−1/ logR

= o(1).

Proof. Matthiesen [66, Proposition 4.2] showed that

∑

s,i

t+s∏

j=t+1

∑

uj∈U(sj ,ij)

2sj

uj
= O(1).

On the other hand, we can suppress the sum over v by reintegrating into the sum over

d,m, e the summands not termwise coprime to u. We can then drop the ·̃ on the variables.
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We put q′j = ℓjℓ′j for j ∈ [t] and q′j = eje′jdjmj for j ∈ [t + s] \ [t]. By multiplicativity,

∑

d,m,e,ℓ

α(q1, . . . , qt+s)

(
∏

i,j,k

ej,kℓi,kdjmj

)− 1
logR

=
∑

d,m,e,ℓ

∏

pai∥qi

α(pa1 , . . . , pat+s)
∏

j∈[t+s]

p
a′j∥q′j

p−
a′j

logR

≤
∑

d,m,e,ℓ

∏

pai∥qi

p−max ai(1+(2 logR)−1)

≤
∏

p

(1− p−(1+(2 logR)−1))−O(t+s)

≪ logO(t+s)N.

Here we used a′j ≥ aj/2, Corollary A.4 and a crude bound kO(t+s) for the number of tuples

ai satisfying maxi ai = k. The last inequality follows from a well-known estimate for the

Riemann zeta function near 1, namely

ζ(x) = O

(
1

x− 1

)
.

Given that H = O(logtN), the claim follows for A large enough depending on t and s

only.

We are left to deal with

∑

d,m,e,ℓ

α(q1, . . . , qt+s)
∑

u,v

M

∫

I4s+2t

F (Ξ)dΞ. (C.9)

We now swap the summation
∑

d,m,e,ℓ and the integration over the compact set I4s+2t,

using Fubini’s theorem. This causes no problem because the sum is absolutely convergent;

this absolute convergence is a byproduct of the proof of Claim 3.

We also continue swapping summation and multiplication, by enforcing at little cost

an extra coprimality condition: we show we can restrict to tuples where (qi, qj) = 1 for all

i ̸= j. We need another, more subtle argument to impose this coprimality compared to the

coprimality condition involving the variables uj in Claim 1, because a crucial ingredient of

the proof of that claim was that the prime factors involved were all at least N (log logN)−3
,

an assumption we do not have for d,m, e.

Claim 4. Let s, i,u,v be fixed vectors of integers satisfying the usual conditions. Then
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we have

∑

d,m,e,ℓ

α(q1, . . . , qt+s)F (Ξ)
∏

i,j

µ(ℓi,1)µ(ℓi,2)µ(ẽj,1)µ(ẽj,2)

= (1 +O(w(N)−1/2))
′∑

d,m,e,ℓ

α(q1, . . . , qt+s)F (Ξ)
∏

i,j

µ(ℓi,1)µ(ℓi,2)µ(ẽj,1)µ(ẽj,2),

where the dashed sum is restricted to tuples satisfying (qi, qj) = 1 for all i ̸= j.

Proof. The goal is to bound the contribution of the entries failing the coprimality con-

ditions. To achieve this, we observe that each summand is a product of θ(Ξ), a term

depending only on the fixed tuple v and a term T (d,m, e, ℓ) of the form

α(q1, . . . , qt+s)
t∏

i=1

ℓ
−zi,1
i,1 ℓ

−zi,2
i,2 µ(ℓi,1)µ(ℓi,2)

t+s∏

j=t+1

e
−zj,1
j,1 e

−zj,2
j,2 d

−zj,3
j m

−zj,4
j µ(ej,1)µ(ej,2), (C.10)

whose multiplicativity we will exploit, in order to write it as a product over primes; only

primes greater than w(N) need be considered, as smaller ones have no chance of divid-

ing any of the parameters. We can even partition the primes p into two classes C1 and

C2, according to whether p divides a single qj or at least two of them. Thus, the term

T (d,m, e, ℓ) can be written as

∏

p∈C1

α((pvp(qj))j)Ap(d,m, e, ℓ))
∏

p∈C2

α((pvp(qj))j)Ap(d,m, e, ℓ)

where Ap is a complex number of modulus at most one and vp is the p-adic valuation. For

any given tuples d,m, e, ℓ and j ∈ [s+ t], we write κj =
∏

p∈C2
pvp(qj). Thus

p | κi ⇒ p |
∏

j ̸=i

κj .

We now arrange the terms T (d,m, e, ℓ) according to their tuples (κ1, . . . , κt+s). Let us fix

such a tuple (κ1, . . . , κt+s). Let κ be the radical of κ1 . . .κt+s, that is, the product of its

prime factors. Thus a number n is coprime to
∏

i κi if and only if it is coprime to κ. The
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sum of terms T corresponding to this tuple is equal to

Sκ1,...,κt+s = Eκ

∑

d,m,e,ℓ
∀j qj=κj

T (d,m, e, ℓ), (C.11)

where

Eκ =
′∑

d,m,e,ℓ
∀j (qj ,κ)=1

T (d,m, e, ℓ)

is absolutely convergent, as a subsum of the unrestricted sum which was shown during

the proof of Claim 3 to be convergent and less than logO(t+s)N . The second sum in the

right-hand side of equation (C.11) is a finite sum. Note that the coprimality condition

denoted by the dashed sum defining Eκ implies that α(q1, . . . , qt+s) = (q1 · · · qt+s)−1. Now

we write

E =
′∑

d,m,e,ℓ

T (d,m, e, ℓ) =
∑

δ|κ

′∑

d,m,e,ℓ
(
∏

j qj ,κ)=δ

T (d,m, e, ℓ). (C.12)

Fix a divisor δ of κ. By the coprimality condition, for δ = p1 · · · pr with p1, . . . , pr pairwise

distinct primes, we have

′∑

d,m,e,ℓ
(κ,

∏
j qj)=δ

T (d,m, e, ℓ) =
∑

f :[r]→[t+s]

′∑

d,m,e,ℓ
∀i (qi,κ)=

∏
f(j)=i pj

T (d,m, e, ℓ).

Fix a map f : [r] → [t + s] (there are (t + s)r choices) and write Ai = f−1({i}) and

δi =
∏

j∈Ai
pj , thus δ =

∏
i δi and the δi are pairwise coprime. For i ∈ [t], we have

(qi, κ) = δi if and only if there is a (unique) pair of sets Ai,1, Ai,2 such that Ai = Ai,1 ∪Ai,2

satisfying (ℓi,k, κ) =
∏

j∈Ai,k
pj = δi,k. For i > t we similarly need four sets with Ai,1 ∪

Ai,2 ∪ Ai,3 ∪ Ai,4 = Ai satisfying (ei,k, κ) =
∏

j∈Ai,k
pj and (di, κ) =

∏
j∈Ai,3

pj as well as

(mi, κ) =
∏

j∈Ai,4
pj . We shall use the obvious notation δi,k =

∏
j∈Ai,k

pj. Fix now sets

Ai,k as described and consider the sum of the terms T (d,m, e, ℓ) over tuples d,m, e, ℓ

satisfying the gcd conditions corresponding to these sets Ai,k (as well as the coprimality

conditions). This sum equals

Eκ

∏

i∈[t+s]

δ−1
i

∏

k=1,2

δ
−zi,k
i,k (−1)|Ai,k|

∏

j>t

δ
−zj,3
j,3 δ

−zj,4
j,4
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where the factor after Eκ has modulus at most δ−1. Now the number of choices for the

collection of sets Ai,j is exp(O(r)). Thus equation (C.12) can be rewritten as

E = Eκ

∏

p|κ

(1 +O(p−1)),

an equation we can invert to get

Eκ = E
∏

p|κ

(1 +O(p−1)).

Plugging the last line into equation (C.11), we obtain

Sκ1,...,κt+s = ES ′
κ1,...,κt+s

where

S ′
κ1,...,κt+s

=
∑

d,m,e,ℓ
∀j qj=κj

T (d,m, e, ℓ)
∏

p|
∏

j κj

(1 +O(p−1)). (C.13)

What is left to do is to bound

S =
∑

κ1,...,κt+s
∃j κj>1

S ′
κ1,...,κt+s

.

We observe that in equation (C.13), we have |T (d,m, e, ℓ)| ≤ α(κ1, . . . , κt+s). Using

multiplicativity, we can then crudely bound S by

∏

p>w(N)

⎛

⎜⎝1 +
∑

a1,...,at+s
at least two ai>0

O(a21 + · · ·+ a2t + a4t+1 + · · ·+ a4t+s)α((p
ai))(1 +O(p−1))

⎞

⎟⎠− 1

where we have used the simple bound τk(pai) ≪ ak−1
i for k = 3 (because of λi = λi/ℓi ·λi/ℓ′i ·

ℓiℓ′i/λi, hence the number of occurrences of λi is bounded by the number of decompositions

of it into three factors) and for k = 5 (because of djm2
jϵj = dj ·m2

j · ϵj/ej · ϵj/e′j · eje′j/ϵj).
The requirement that at least two ai be positive comes from the very definition of κi.

Notice that the −1 is here to remove the 1 arising from α(1, . . . , 1). To further bound

this expression, we first bound a2i by a4i and recall that the number of tuples (a1, . . . , at+s)

satisfying max ai = k is at most t′(k + 1)t
′−1 (with t′ = t + s). For such tuples, we have
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∑
i a

4
i ≤ t′k4 and because of the hypothesis on primes larger than w and the fact that at

least two ai are nonzero, α((pai)i∈[t+s]) ≤ p−k−1 according to Proposition A.5. Thus

∑

a1,...,at+s
at least two ai>0

O(a21 + · · ·+ a2t + a4t+1 + · · ·+ a4t+s)α((p
ai))(1 +O(p−1))

is bounded by ∑

k≥1

p−k−1t′2kt′+3 ≪
∑

k≥1

p−3k/4−1 ≪ p−3/2

the first inequality being provided by obvious growth comparisons valid for large p (we

may assume N to be large enough for p > w(N) to satisfy automatically this condition).

Since ∏

p>w(N)

(1 + p−3/2)− 1 ≤
∑

n>w(N)

n−3/2 ≪ w(N)−1/2,

Claim 4 follows.

The extra coprimality condition that Claim 4 allows us to assume enables us to write

α as the product of the reciprocals of its arguments, resulting in

′∑

d,m,e,ℓ

α(q1, . . . , qt+s)
t+s∏

j=t+1

µ(ej)µ(e
′
j)e

−zj,1
j,1 e

−zj,2
j,2 d

−zj,3
j m

−zj,4
j

t∏

i=1

µ(ℓi)µ(ℓ
′
i)ℓ

−zi,1
i,1 ℓ

−zi,2
i,2

=
′∑

d,m,e,ℓ

t+s∏

j=t+1

µ(ej)µ(e′j)

ϵj
e
−zj,1
j,1 e

−zj,2
j,2 d

−1−zj,3
j m

−2−zj,4
j

t∏

i=1

µ(ℓi)µ(ℓ′i)

λi
ℓ
−zi,1
i,1 ℓ

−zi,2
i,2 .

Notice that the above is an equation without tildes. We will in the sequel avoid them,

observing that for any fixed u, we have

′∑

d,m,e,v,ℓ

t+s∏

j=t+1

µ(ẽj)µ(ẽj
′)

ϵj
ẽ
−zj,1
j,1 ẽ

−zj,2
j,2 d̃

−1−zj,3
j m̃

−2−zj,4
j

t∏

i=1

µ(ℓi)µ(ℓ′i)

λi
ℓ
−zi,1
i,1 ℓ

−zi,2
i,2

=
′∑

d,m,e,ℓ

t+s∏

j=t+1

µ(ej)µ(e′j)

ϵj
e
−zj,1
j,1 e

−zj,2
j,2 d

−1−zj,3
j m

−2−zj,4
j

t∏

i=1

µ(ℓi)µ(ℓ′i)

λi
ℓ
−zi,1
i,1 ℓ

−zi,2
i,2

×
∑

v

µ(vj,e)µ(vj,e′)v
−zj,1
j,e v

−zj,2
j,e′ v

−zj,3
j,d v

−zj,4
j,m ,

where the sum over v is as usual over vectors (vj,x) where vj,x | uj and vj,x satisfies the

same condition on its prime factors as x (all in Pj for d and e, all in Qj for m).
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Next we claim that we can remove the dash on the sum.

Claim 5. The following equality holds, for any choice of the family ξj,k in I = [−
√
logR,

√
logR].

′∑

d,m,e,ℓ

t+s∏

j=t+1

µ(ej)µ(e′j)

ϵj
e
−zj,1
j,1 e

−zj,2
j,2 d

−1−zj,3
j m

−2−zj,4
j

t∏

i=1

µ(ℓi)µ(ℓ′i)

λi
ℓ
−zi,1
i ℓ

′−zi,2
i

(1+O(w(N))−1/2)
∑

d,m,e,ℓ

t+s∏

j=t+1

µ(ej)µ(e′j)

ϵj
e
−zj,1
j,1 e

−zj,2
j,2 d

−1−zj,3
j m

−2−zj,4
j ×

∏

i∈[t]

µ(ℓi)µ(ℓ′i)

λi
ℓ
−zi,1
i,1 ℓ

−zi,2
i,2 .

Proof. The justification is basically the same as for Claim 4, because the claim simply

consists in replacing the dashed sum by a complete sum, at the same small cost.

Let us introduce for any i ∈ [t] and ℓ,Ξ the notation

Vi = Vi(ℓ,Ξ) =
µ(ℓi)µ(ℓ′i)

λi
ℓ
−zi,1
i ℓ

′−zi,2
i

and

V (ℓ,Ξ) =
∏

i∈[t]

Vi(ℓ,Ξ).

Similarly, for any j ∈ [[ t+ s ; t+ s ]] and tuples u,v,d,m, e we define

Sj(u,v,Ξ) =
2sj

uj
µ(vj,e)µ(vj,e′)v

−zj,1
j,e v

−zj,2
j,e′ v

−zj,3
j,d v

−zj,4
j,m

Tj(d,m, e,Ξ) =
µ(ej)µ(e′j)

ϵj
e
−zj,1
j e

′−zj,2
j d

−1−zj,3
j m

−2−zj,4
j .

Finally we put

S(u,v,Ξ) =
t+s∏

j=t+1

Sj and T (d,m, e,Ξ) =
t+s∏

j=t+1

Tj .

With this notation, one can rewrite (C.9) as

(1 +O(w−1/2))

∫

I4s+2t

θ(Ξ)
∑

u,v

S(u,v,Ξ)
∑

d,m,e

T (d,m, e,Ξ)
∑

ℓ

V (ℓ,Ξ)dΞ. (C.14)

Now we show that the error arising from the O(w−1/2) term in (C.14) is indeed negligible:
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we must ensure that

w−1/2H
∑

s,i

∫

I4s+2t

θ(Ξ)
∑

u,v

S(u,v,Ξ)
∑

d,m,e

T (d,m, e,Ξ)
∑

ℓ

V (ℓ,Ξ)dΞ = o(1). (C.15)

This follows because on the one hand
∣∣∣∣∣∣

∑

vj

µ(vj,e)µ(vj,e′)v
−zj,1
j,e v

−zj,2
j,e′ v

−zj,3
j,d v

−zj,4
j,m

∣∣∣∣∣∣
≤ τ(uj)

4

and
∑

s,i,u

t+s∏

j=t+1

2sjτ(uj)4

uj
= O(1)

by similar calculations2 to the ones of Matthiesen [66, Proof of Proposition 4.2]. And on

the other hand, the next claim provides a fitting bound.

Claim 6. We have

∫ ∣∣∣∣∣θ(Ξ)
∑

d,m,e

T (d,m, e,Ξ)
∑

ℓ

V (ℓ,Ξ)

∣∣∣∣∣ dΞ = O(1/(logR)t), (C.16)

where the integral is over I4s+2t.

Given that H = O(logR)t, the bound (C.15) follows from this claim.

Proof. We first replace the sum over ℓi, ℓ′i, for any i ∈ [t], by a product over primes, using

multiplicativity, to get

∑

ℓi,ℓ′i

Vi =
∑

ℓi,ℓ′i

µ(ℓi)µ(ℓ′i)

λj
ℓ
−zi,1
i ℓ

′−zi,2
i =

∏

s∈P

(1− s−1−zi,1 − s−1−zi,2 + s−1−zi,1−zi,2).

Then we notice that for large primes s and complex numbers z, z′ of positive real part

1− s−1−z − s−1−z′ + s−1−z−z′ =
(1− s−1−z)(1− s−1−z′)

1− s−1−z−z′
+O(s−2),

2The main ingredients are the easy observation that any u ∈ U(i, s) has 2m0(i,s) divisors and the bound∑
u∈U(i,s) u

−1 ≤ (
∑

p∈Ii
p−1)m0 ≪ (log 2)m0 , where Ii = [N2−i−1

, N2−i
].
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so that

∏

s∈P

(1− s−1−zj,1 − s−1−zj,2 + s−1−zj,1−zj,2) ≪
∏

s∈P

(1− s−1−z)(1− s−1−z′)

1− s−1−z−z′
.

Finally we recall that the Riemann zeta function is defined for ℜz > 1 by

ζ(z) =
∑

n≥1

n−z =
∏

p

(1− p−z)−1

and satisfies

ζ(z) =
1

z − 1
+O(1)

for values of z near 1. From this fact, a quick computation yields

∏

s∈P

(1− s−1−z)(1− s−1−z′)

1− s−1−z−z′
≪ zz′

z + z′
,

whence the bound

∏

s∈P

(1− s−1−zi,1 − s−1−zi,2 + s−1−zi,1−zi,2) ≪ zi,1zi,2
zi,1 + zi,2

. (C.17)

for any i ∈ [t] and ξi,k ∈ I (for k = 1, 2) and the corresponding zi,k. Similarly, for any

j ∈ {t+ 1, . . . , t + s}

∑

dj ,mj ,ej ,e′j

µ(ej)µ(e′j)

ϵj
e
−zj,1
j e

′−zj,2
j d

−1−zj,3
j m

−2−zj,4
j =

∏

q∈Qj

(1−q−1−zj,1−q−1−zj,2+q−1−zj,1−zj,2)

∏

r∈Qj

(1− r−2−zj,4)−1
∏

p∈Pj

(1− p−1−zj,3)−1. (C.18)

Notice that the product in r is a convergent product, bounded by a constant when zj,4

varies in the permitted range.

Given that Pj and Qj each have density 1/2 among the primes, we can write3

∑

q∈Pj

q−1−z =
1

2
log

1

z
+O(1)

3This amounts to saying that if a set of primes has a natural density, it has a Dirichlet density which
is equal to its natural density.
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for ℜz > 0. This provides a bound for the product (C.18), similar to the one in (C.17),

namely

∏
q∈Qj

(1− q−1−zj,1 − q−1−zj,2 + q−1−zj,1−zj,2)
∏

r∈Qj

(1− r−2−zj,4)−1
∏

p∈Pj

(1− p−1−zj,3)−1

≪ |zj,1|1/2|zj,2|1/2|zj,1 + zj,2|−1/2|zj,3|−1/2.

Recall that zj,k = (1+ξj,k)(logR)−1, thus |zj,k| ≤ (1+ |ξj,k|)(logR)−1 by triangle inequality,

and |zj,1 + zj,2|−1 ≤ logR for any j ∈ [t + s]. Moreover, (2.15) yields

θ(Ξ) = OA

(
∏

j,k

(1 + |ξj,k|)−A

)
.

Multiplying all these bounds, we find that the integrand in (C.16) is bounded by

∏t
i=1 |zi,2||zi,1||zi,1 + zi,2|−1

t+s∏

j=t+1

|zj,1|1/2|zj,2|1/2|zj,1 + zj,2|−1/2|zj,3|−1/2
∏

j,k

(1 + |ξj,k|)−A

≪ (logR)−t

(
t∏

i=1

(1 + |ξi,1|)(1 + |ξi,2|)
)1−A( t+s∏

j=t+1

(1 + |ξj,1|)(1 + |ξj,2|)
)1/2−A

≪ (logR)−t
∏

j,k

(1 + |ξj,k|)−A/2

when A is large enough (for the last step). This last product is certainly integrable as soon

as A > 2, so the final expression is O((logR)−t) as claimed.

We now study the main term of (C.14). We can again swap summation and integration

using Fubini’s theorem. Using separation of variables, we transform the main term of

(C.14) into

∑

u,v,d,e,m,ℓ

t∏

i=1

∫

I2
Viθ(ξi,1)θ(ξi,2)dξi,1dξi,2

t+s∏

j=t+1

∫

I4
SjTj

∏

k∈[4]

θ(ξj,k)dξj,k. (C.19)

It is now time to undo the truncation to I in these integrals, in order to be able to

collapse them into factors of χ. The error term arising from the removal of this truncation

is the same as the one introduced by the truncation, so it can be subsumed into the o(1)

of (4.19). Thus, up to an error term Ei,s satisfying (logR)t
∑

i,sEi,s = o(1), the expression
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(C.19) is equal to

∑

u,v,d,e,m,ℓ

t∏

i=1

µ(ℓi,1)µ(ℓi,2)

λi

∏

k=1,2

χ

(
log ℓi,k
logR

)

t+s∏

j=t+1

2sjτ(uj)

uj

µ(ejvj,e)µ(e′jvj,e′)

djm2
jϵj

χ

(
log djvj,d
logR

)
χ

(
logmjvj,m

logR

) ∏

k=1,2

χ

(
log ej,kvj,ek

logR

)
.

(C.20)

Interchanging summation and multiplication, we find that, up to error terms of the desired

magnitude (OD

(
Nd−1+OD(γ)

Vol(K)

)
in Claims 1 and 2, various o(1) throughout the proof), Ω

equals

t+s∏

j=t+1

C−1
Dj ,γ

∑
sj ,ij ,uj ,vj

∑
dj ,mj ,ej ,e′j

2sj

uj

µ(ejvj,e)µ(e′jvj,e′ )

djm2
j ϵj

∏
x∈{d,m,e,e′} χ

(
log xjvj,x

logR

)

×
∏

i∈[t]

(
logRϕ(Ŵ )

Ŵ

∑
ℓi,ℓ′i

µ(ℓi)µ(ℓ′i)
λ

∏
x∈{ℓi,ℓ′i}

χ
(

logx
logR

))
,

which is a product of t+s factors, independent of the system of linear forms. It follows that

the jth factor, for j ∈ [t+s], is also the main term of the average of the jth pseudorandom

majorant for the one-variable system Ψ : Z → Z, n /→ n. Now because of the hypothesis

(C.1) on Ŵ , each of these averages is 1 + o(1), whence the result.
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Appendix D

Digression on the Type I sum and

sums of spaces of multiples

In this appendix, which pertains to Chapter 7, we give a treatment of the Type I sum

which is valid for k as large as n/2. As a result, in order to prove Theorem 7.3, it would

be enough to understand the Type II sum for k in a shortened range such as [n/4 −
o(n), 3n/4 + o(n)]. We thought constraining k to this range might enable us to find an

alternative, unconditional argument for the Type II sum, but we were not successful so

far. Nevertheless, we present this method, because of its independent interest and of its

potential use. The argument is much deeper than the one we used for k ≤ n/9 in Section

7.6.

We present the statement we will prove in this section. The hypothesis is essentially

the result we get when the Type I sum is large in Proposition 7.11.

Theorem D.1. Let c > 0 be some arbitrarily small constant. Let P be a quadratic form

on Gn. Let n/9 ≤ k ≤ n/2(1− c)− 1. Suppose that there is a set X ⊂ Ak of size at least

q(1−ϵ)k such that for any d ∈ X, the rank of the quadratic form w /→ P (dw) is at most ϵn

on Gn−k. Then the rank of P is O((n
√
ϵ/c)).

Observe that the form w /→ P (dw) on Gn−k is equivalent to the restriction P |(d)n of the

form P to the subspace (d)n = dGn−k ≤ Gn of multiples of d, because the map w /→ dw is

a linear isomorphism Gn−k → (d)n. So if d ∈ X , we know that the restriction P |(d) is of
small rank. Let B the symmetric bilinear form underlying P . Thus for any x ∈ (d)n, the

bilinear form B has small rank on (d)n × (dn), that is, the rank of the restriction of B to

(d)n × (dn) is small. And if d′ is any other element of X , the bilinear form B has rank at
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most 2ϵn on ((d)n ∩ (d′)n) × ((d)n + (d′)n). Note that because k < n/2, the intersection

(d)n ∩ (d′)n = (lcm(d, d′))n ⊃ (dd′)n is not empty, its codimension being at most 2k.

We see here that spaces of multiples and their sums will play a crucial role for the

discussion. Because of Bézout’s theorem, if gcd(d, d′) = 1, then the sum of the two ideals

(d) and (d′) in Fq[t] equals the whole algebra Fq[t], that is, (d) + (d′) = Fq[t], but when we

replace (d) by (d)n = (d) ∩ Gn, the situation may change. If deg d = deg d′ = k > n/2,

one cannot have (d)n + (d′)n = Gn because dim(d)n = dim(d′)n = n − k < n/2. On the

contrary, if k ≤ n/2, one has

dim
(
(d)n + (d′)n

)
= 2(n− k)− dim

(
(d)n ∩ (d′)n

)
= 2(n− k)− dim(lcm(d, d′))n = n

so that (d)n+(d′)n = Gn. The same argument shows that if d and d′ are “almost coprime”

in the sense that (d, d′) has degree at most γ, then (d)n + (d′)n almost equals Gn in the

sense that it has codimension at most γ in Gn.

We now prove Theorem D.1. We first claim that for at least |X|2(1 − O(q−ϵk)) pairs

(a, b) ∈ X2, we have deg gcd(a, b) ≤ 3ϵk. Indeed, for a given m ∈ (3ϵk, k) and a polynomial

d ∈ Am, there exist at most q2(k−m) pairs of monic polynomials of degree k divisible by d.

As a result, the number of pairs of monic polynomials of degree k whose gcd has degree

more than 3ϵk is bounded by
∑

3ϵk<m≤k q
mq2k−2m = O(q2k−3ϵk), which proves the claim.

Let D = {(d, d′) ∈ X2 | deg gcd(d, d′) ≤ 3ϵk}. By the above, we have |D| ≫ q2(1−ϵ)k.

Consider E = {dd′ | (d, d′) ∈ D}. The Cauchy-Schwarz inequality and a bound on the

second moment of the divisor function (Lemma E.2) shows that |E| ≥ D4/(q2kk3) ≥
q2k(1−2ϵ). Besides for any e = dd′ in E (with (d, d′) ∈ X), the form B has rank at most 2ϵn

on (e)n × ((d)n + (d′)n), and hence at most ≤ 5ϵn on (e)n ×Gn.

The next proposition shows that because of the size of E ⊂ A2k (where 2k is bounded

away from n), for t sufficiently large, for most t-tuples (e1, . . . , et) from Et, the sum
∑t

i=1(ei)n covers almost all the space Gn. In the next lemma, for any d ∈ Gℓ, we ab-

breviate (d)n = dGn−ℓ into (d). With this convention, (d) is a subspace of Gn−1 and thus

of Gn.

Proposition D.2. Let c > 0 and ℓ ≤ n(1 − c). Suppose E ⊂ Gℓ contains at least q(1−η)ℓ

elements. Let η < η′ < 1 be another constant. Then there exists t = O(1/(cη′)) and

(e1, . . . , et) ∈ Et such that codimGn

∑t
i=1(ei) = O(η′n).

The sumspace is in fact inside Gn−1, so we could consider codimGn−1 instead of codimGn ,

but they differ by 1 only.
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Proof. Note that if ℓ ≤ n/2, the arguments at the beginning of the section yield the

conclusion, taking t = 2 and e1, e2 approximately coprime. So we suppose instead that

ℓ > n/2. Let (e1, . . . , et) ∈ Et, for some t to be determined later. Let S =
∑t

i=1(ei),

where (ei) is a shortcut for (ei)n = eiGn−ℓ. We introduce the functions fi = 1(ei) and the

convolution

g(x) = f1 ∗ · · · ∗ ft(x) = Ex=
∑

i yi

t∏

i=1

fi(yi).

Thus

qt(n−ℓ)g(x) = |{(c1, . . . , ct) ∈ Gt
n−ℓ | x =

t∑

i=1

ciei}|.

The aim is to bound the codimension of the subspace S in Gn. Observe that for any

x ∈ S, we have g(x) = g(0). Besides, the solutions (c1, . . . , ct) ∈ Gt
n−ℓ to the equation

∑t
i=1 ciei = 0 form a linear subspace, so that g(0) = q−s for some s ∈ N. Thus |S|q−s = 1

and so we need to show that s = n−O(η′n).

We then use the circle method, which basically consists in the identity

1x=∑t
i=1 xi

=

∫

α

e(α(x−
t∑

i=1

xi))dα

where the integral is with respect to the Haar measure on T. Thus

g(x) =

∫

α

e(−αx)
∑

(c1,...,ct)∈Gt
n−ℓ

t∏

i=1

e(αciei)dα.

We need to pause to introduce some notation. Let β =
∑m

i=−∞ βiti ∈ Fq((t−1)) for some

m ∈ Z. We write {β} =
∑min(m,−1)

i=−∞ ∈ T for the fractional part of β, so that β−{β} ∈ Fq[t],

and ∥β∥ = |{β}| ≤ q−1 for the distance of β to the closest polynomial. Now we observe

that ∑

c∈Gm

e(βc) = 1∥β∥<q−m

for any m ∈ N and β ∈ Fq((1/t)). As a result,

g(0) =

∫

α

t∏

i=1

1|{αei}|<q−n+ℓ dα.

Observe that this integral is at least q−n, because the integrand is constantly 1 on the set
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t−n T ⊂ T whose measure is q−n. Our aim is to show that on average over (e1, . . . , et), the

integral is not much larger, that is, at most q−n+O(η′n). So we now consider

E(e1,...,et)∈Gt
ℓ
g(0) = E(e1,...,et)∈Gt

ℓ

∫

α

t∏

i=1

1|{αei}|<q−n+ℓ dα =

∫ (
Ee∈Gℓ

1|{αe}|<q−n+ℓ

)t
dα.

Fix α =
∑−1

i=−∞ αiti. The map e /→ {αe} is linear, and for β =
∑m

i=−∞ βiti, the condition

|β| < q−m is linear. Consequently, we note that Ee∈Gℓ
1|{αe}|<q−n+ℓ = q−rkMα, where Mα is

the rectangular (n− ℓ)× ℓ Hankel matrix

Mα =

⎛

⎜⎜⎜⎜⎝

α−1 · · · α−ℓ

α−2 · · · α−ℓ−1

...
...

...

α−n+ℓ · · · α−n+1

⎞

⎟⎟⎟⎟⎠
.

Now we aim at showing that this matrix is “almost surely” (in the sense of the Haar

probability measure) of large rank. To do that, we provide a characterisation of the rank

of Hankel matrices.

Lemma D.3. If rkMα = r < n− ℓ, then there exists a decomposition r = i+ h such that

the first i rows are independent, the next n − ℓ − r rows are a linear combination of the

first i rows, and the minor formed of the first i and last h rows and columns is nonzero.

This statement is an easy consequence of Lemma 2 and Theorem 23 from [31, Chapter

X, Paragraph 10]. We provide a further characterisation of the rank based on Diophantine

properties of α.

Lemma D.4. If rkMα = r < n− ℓ, then there exist a decomposition r = i+ h and d ∈ Ai

such that

∥dα∥ < q−n+1+h.

Proof. Let L1, . . . , Ln−ℓ be the rows of Mα. We invoke Lemma D.3. Let r = i + h be the

decomposition in its conclusion. In particular, we have i < n − ℓ. For any m ∈ [n − ℓ],

write Lm = (L′
m, am) where am is the last coefficient of Lm and L′

m the row of the first

ℓ−1 coefficients. By Lemma D.3, we have a relation Li+1 =
∑i

m=1 cmLm. In fact, we shall
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show that for any j = 0, . . . , n− r − ℓ− 1, we have

Li+1+j =
i∑

m=1

cmLm+j . (D.1)

This equation holds for j = 0. So we argue by induction and assume equation (D.1) holds

for any j′ ≤ j for some j < n−r−ℓ−1 and prove it for j+1. To start with, equation (D.1)

implies that L′
i+1+j+1 =

i∑

m=1

cmL
′
m+j+1. Applying the induction hypothesis iteratively, we

find coefficients c(k)m for m = 1, . . . , i and k ≤ j + 1 such that

Li+1+k =
i∑

m=1

c(k)m Lm

and

L′
i+1+j+1 =

i∑

m=1

c(j+1)
m L′

m. (D.2)

These coefficients satisfy the initial condition c(0)m = cm and the recurrence relations c(k+1)
m =

c(k)m−1 + cic
(k)
m for m > 1 and c(k)1 = ckhc1.

On the other hand, we know that there exist coefficients d1, . . . , di such that

Li+1+j+1 =
i∑

m=1

dmLm. (D.3)

Comparing equations (D.3) and (D.2), and using the linear independence of the first i

rows, we find that dm = c(j+1)
m .

Thus ai+1+j+1 =
∑i

m=1 c
(j+1)
m am. But

∑i
m=1 cmam+j+1 =

∑i
m=1 c

(j+1)
m am by definition

of the coefficients c(k)m . We infer that ai+1+j+1 =
∑i

m=1 cmam+j+1, which concludes the

inductive argument.

To see the connexion with Diophantine properties of α, notice that Li is the row of the

first n coefficients of {ti−1α}. Thus the validity of the identity (D.1) for all j = 0, . . . , n−
r − ℓ− 1 implies that {tiα} = {

∑i
m=1 cmt

m−1α} + β where β ∈ T satisfies |β| < q−n+1+h.

That is, using the polynomial P = ti −
∑i

m=1 cmt
m−1, we find that ∥Pα∥ < q−n+1+h. This

concludes the proof of the lemma.

Now we want to infer from Lemma D.4 that Hankel matrices of low rank are very
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rare. Suppose rkMα ≤ r and let i, h be as in the conclusion of the lemma. Let d ∈ Ai

be such that ∥dα∥ < q−n+1+h. We note that the map α /→ {dα} is linear. As a result,

for ∥dα∥ < q−m to hold, the vector −→α = (α−1, . . . ,α−i−m) has to be in the kernel of the

m× (m+ i) matrix

Ld =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

d0 · · · di−1 1 0 · · · · · · 0

0 d0 · · · di−1 1 0 · · · 0
. . .

. . .

. . .
. . .

0 d0 · · · di−1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

whose rank is m. Applying this observation with m = n−1−h, we see that the probability

that α lies in the kernel of Ld is q−n+h+1. The map α /→ −→α being a measure preserving

operation from T to Fm+i
q , the probability for α ∈ T to satisfy ∥αd∥ < q−n+1+h is q−n+h+1.

By the triangle inequality, the probability that α satisfies ∥αd∥ < q−n+1+h for at least

one d ∈ Ai is at most q−n+1+r. But then the probability that rkMα ≤ r is bounded by

r2q−n+1+r. On other other hand, when rkMα ≥ r, we have Ee∈Gℓ
1|{αe}|<q−n+ℓ ≤ q−r. All in

all, this implies that

∫ (
Ee∈Gℓ

1|{αe}|<q−n+ℓ

)t
dα ≤ r2q−n+1+r + q−tr. (D.4)

We take r of the form r = η′(n− ℓ)/4 ≥ cη′n/4, and t = 4/(cη′). This way, both terms are

O(q−(1−η′)n). So we use Markov’s identity to infer that

Pe1,...,et∈Gℓ

(∫

α

∏

i

1∥αei∥<q−n+ℓdα > q−n+2η′n

)

= O(q−η
′n).

In other words,

Pe1,...,et∈Gℓ

(∫

α

∏

i

1∥αei∥<q−n+ℓdα ≤ q−n+2η′n

)

> 1− O(q−η
′n).

Because η < η′, one can ensure that there exists (e1, . . . , et) ∈ Et such that

g(0) =

∫

α

∏

i

1∥αei∥<q−n+ℓdα ≤ q−n+2η′n.
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Finally, g(0) = qn−O(η′n), which concludes the proof of Proposition D.2.

We finish the proof of Theorem D.1. Write ℓ = 2k+1 ≤ (1−2c)n. The observations at

the beginning of this section imply that there exists a set E ⊂ Gℓ of cardinality q(1−2ϵ)ℓ−1

such that for any e ∈ E, the rank of B is at most 5ϵn on (e) × Gn. We then apply

Proposition D.2 for some value of η′ > 2ϵ to determine later, which provides us with t

elements e1, . . . , et of E such that codimGn

∑t
i=1(ei) = O(η′n). In particular, we infer that

the total rank of B is at most (5tϵ+O(η′))n. Besides, we have t = O((η′c)−1), so selecting

η′ =
√
ϵ+ 2ϵ, we conclude that the rank of B is O(

√
ϵn/c), which concludes the proof.
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Appendix E

Divisor bounds

We list some facts regarding the divisor function in Fq[t] which we will need in the sequel.

Let τ(f) denote the number of monic divisors of f ∈ Fq[t]. We first give a pointwise bound.

Lemma E.1 ([60, Lemma 8]). If deg f = n > 1, then

τ(f) ≤ exp

(
Oq

(
n

log n

))
.

Consequently, the number of monic irreducible factors of f is Oq

(
n

logn

)
.

The next result is a bound for the second moment of τ .

Lemma E.2. We have

Edeg d=nτ(d)
2 ≤ 4n3.

Proof. We observe that for any irreducible P and any integer k, we have τ(P k)2 = (k+1)2.

Thus the Dirichlet series D =
∑+∞

n=0

∑
f∈An

τ(f)2

|f |s of the function τ 2 can be written as an

Euler product as

D =
∏

P

+∞∑

k=0

(k + 1)2|P |−ks. (E.1)

Next we note the following relations between formal power series

+∞∑

k=0

(k + 1)2xk =
+∞∑

k=0

(k + 2)(k + 1)xk −
+∞∑

k=0

(k + 1)xk = 2(1− x)−3 − (1− x)−2 =
1 + x

(1− x)3
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so finally
+∞∑

k=0

(k + 1)2xk =
1− x2

(1− x)4
. (E.2)

Combining equations (E.1) and (E.2) yields

D =
∏

P

1− |P |−2s

(1− |P |−s)4
.

We can then express this Euler product in terms of the zeta function of Fq[t]. Letting

u = q−s we obtain

D = ζ(s)4/ζ(2s) = (1− q1−2s)(1− q1−s)−4 = (1− qu2)(1− qu)−4.

This is a power series S(u) in u, and S(u) =
∑

n anu
n =

∑
n

S(n)(0)
n! un where an =

∑
deg d=n τ(d)

2. Now for n ≥ 3, deriving n times using Leibniz’ formula, we find that

S(n)(u) = (1− qu2)qn(4× · · ·× (n+ 3))(1− qu)−4−n

− 2qunqn−1(4× · · ·× (n + 2))(1− qu)−3−n

− 2q

(
n

2

)
qn−2(4× · · ·× (n + 1))(1− qu)−2−n

Evaluating in u = 0 gives

S(n)(0)

qnn!
= (n+ 3)(n+ 2)(n+ 1)/6− q−1n(n+ 1)2/6 ≤ 4n3,

where the left-hand side is exactly Edeg d=nτ(d)2.
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[61] T. H. Lê and Y.-R. Liu. On sets of polynomials whose difference set contains no

squares. Acta Arith., 161(2):127–143, 2013.

[62] T.H. Lê and J. Wolf. Polynomial configurations in the primes. Int. Math. Res. Not.,

(23):6448–6473, 2014.

[63] Ju. V. Linnik. The dispersion method in binary additive problems. Translated by S.

Schuur. American Mathematical Society, Providence, R.I., 1963.

[64] Y.-R. Liu and T. D. Wooley. Waring’s problem in function fields. J. Reine Angew.

Math., 638:1–67, 2010.

183



[65] S. Lovett. An Exposition of Sanders’ Quasi-Polynomial Freiman-Ruzsa Theorem.

Theory of Computing Library. Graduate surveys 6, 1–14, 2015.

[66] L. Matthiesen. Correlations of the divisor function. Proc. Lond. Math. Soc. (3),

104(4):827–858, 2012.

[67] L. Matthiesen. Linear correlations of multiplicative functions. arXiv:1606.04482.

[68] L. Matthiesen. Linear correlations amongst numbers represented by positive definite

binary quadratic forms. Acta Arith., 154(3):235–306, 2012.

[69] J. Maynard. Almost-prime k-tuples. Mathematika, 60(1):108–138, 2014.

[70] R. Meshulam. On subsets of finite abelian groups with no 3-term arithmetic progres-

sions. J. Combin. Theory Ser. A, 71(1):168–172, 1995.

[71] L. Mirsky. The number of representations of an integer as the sum of a prime and a

k-free integer. Amer. Math. Monthly, 56:17–19, 1949.

[72] S. Porritt. A note on exponential-Möbius sums over Fq[t]. arXiv:1711.08729.
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