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Abstract

Let G be a locally compact group acting smoothly and properly by isometries
on a complete Riemannian manifold M , with compact quotient GnM . There
is an assembly map � W KG� .M/ ! K�.B/ which associates to any G-
equivariant K-homology class on M , an element of the topological K-theory
of a suitable Banach completion B of the convolution algebra of continuous
compactly supported functions on G. The aim of this paper is to calculate
the composition of the assembly map with the Chern character in entire cyclic
homology K�.B/ ! HE�.B/. We prove an index theorem reducing this
computation to a cup-product in bivariant entire cyclic cohomology. As a
consequence we obtain an explicit localization formula which includes, as
particular cases, the equivariant Atiyah-Segal-Singer index theorem when G
is compact, and the Connes-Moscovici index theorem for G-coverings when
G is discrete. The proof is based on the bivariant Chern character introduced
in previous papers.
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1. Introduction

Let M be a smooth complete Riemannian manifold without boundary, on which
a separable locally compact group G acts smoothly and properly by isometries,
with compact quotient GnM . The G-equivariant K-homology of M is the Z2-
graded group KG

i .M/, i D 0;1, of stable homotopy classes of properly supported
and G-invariant pseudodifferential operators [6, 16]. There is an analogue of the
Baum-Connes assembly map [2, 3]

� WKG� .M/!K�.B/ ; (1)

1Most of this work emerged from a one-year postdoctoral stay of the author at the Mathematisches
Institut, Universität Münster, Germany.



2 D. PERROT

from equivariant K-homology to the (topological) K-theory of an admissible Ba-
nach completion B of the convolution algebra of continuous, compactly supported
functions on G. The definition of an admissible completion is given in 2.1: roughly
speaking, the elements of B are locally integrable functions onG with certain decay
properties at infinity. The aim of this paper is to give an explicit formula calculating
the composition of � with the Chern character ch W K�.B/ ! HE�.B/ in entire
cyclic homology [7, 19]. For this purpose we will use the bivariant Chern character
and related techniques developped in [21, 22]. We insist on the fact that the same
methods should in principle apply to more general situations, including for example
locally compact groupoids, although we will only deal with groups and manifolds
in the present work.

In many situations the equivariant K-homology classes ŒD� 2 KG� .M/ of
interest are represented by G-invariant elliptic differential operators of order one,
hereafter denoted by D. Our main result is that the Chern character of �.D/ in the
entire cyclic homology HE�.B/ may be written as a certain composition product
in bivariant cyclic cohomology. We first introduce the crossed-product algebra
A D C1

c .M/ÌG. It is provided with a canonical K-theory element Œe� 2 K0.A/,
which may be constructed via a cut-off function over M as in [16]. From the
operator D, one can build an unbounded A-B-bimodule .E ;�;D/: it is a suitable
smooth version of Kasparov bimodule, according to the construction of [21]. Its
Chern character lies in the bivariant entire cyclic cohomology HE�.A;B/. The
statement of the equivariant index theorem 3.1 is the following:

Theorem 1.1 Let D be a G-invariant elliptic differential operator of order one
representing an equivariant K-homology class ŒD� 2 KG� .M/. Consider the
crossed-product algebra A D C1

c .M/ Ì G and its canonical K-theory class
Œe� 2 K0.A/, and let B be any admissible completion of the convolution algebra
Cc.G/. Then the Chern character of the image of ŒD� under the analytic assembly
map � W KG� .M/ ! K�.B/ is given by the cup-product in bivariant entire cyclic
cohomology

ch ı�.D/D ch.E ;�;D/ � ch.e/ 2HE�.B/ ; (2)

where ch.E ;�;D/ 2 HE�.A;B/ is the bivariant Chern character of the unbounded
bimodule associated to D, and ch.e/ 2HE0.A/ is the Chern character of Œe�.

This theorem should be viewed as the cohomological version of the construction
of the assembly map using bivariant K-theory [3, 6]. The Chern character
ch.E ;�;D/ is defined via an explicit formula of JLO-type [15], involving the heat
operator exp.�t2D2/, t > 0.

Concretely the cyclic homology class ch ı�.D/ 2 HE�.B/ is represented, for
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any choice of parameter t > 0, by an entire cycle

ch.tD/ 2�anB (3)

in the complex �anB of entire chains over B (see [19]). The cycle ch.tD/ is given
by the collection of its components chn.tD/ in the spaces of non-commutative n-
forms �nB, in any degree n 2 N. Since B is an algebra of functions over the group
G, the component chn.tD/ is actually a function over the locally compact space
Gn [ GnC1. In favourable circumstances, for example when D is a Dirac-type
operator acting on the sections of a G-equivariant Clifford module E over M , the
limit t ! 0 of the function chn.tD/ evaluated at a point eg D .g1;:::;gn/ 2 Gn oreg D .g0;:::;gn/ 2 GnC1 may be explicitly computed. This leads to the following
localization formula (Corollary 3.3), involving the submanifolds Mg � M of fixed
points for each element g 2G.

Corollary 1.2 The nth degree component chn.tD/ 2�nB, viewed as a function on
Gn [GnC1, admits a pointwise limit when t ! 0 given by the localization formula

lim
t!0

chn.tD/.eg/D
X
Mg

.�/q=2

.2�i/d=2

Z
Mg

bA.Mg/
ch.E=S;g/
ch.SN ;g/

chn.e/.eg/ ; (4)

where eg 2 Gn [GnC1, g D gn :::g1 2 G (resp. g D gn :::g0) if eg D .g1;:::;gn/

(resp.eg D .g0;:::;gn/), and the sum runs over the fixed manifoldsMg of all possible
dimensions d and codimensions q D dimM � d .

One recognizes the usual ingredients of the Atiyah-Segal-Singer index theorem:
the bA-genus of the fixed submanifolds as well as some equivariant characteristic
classes of vector bundles ch.E=S;g/ and ch.SN ;g/. See section 3 for details.
The last ingredient is a noncommutative Chern character chn.e/ associated to the
canonical K-theory class Œe� 2K0.A/. It is a function on Gn [GnC1 with values in
the space of differential forms with compact support on M , see Definition 3.2.

The above localization formula is a generalization of several known results. For
example, when G is a compact group one recovers the Atiyah-Singer equivariant
index theorem [1]. The noncommutative Chern character chn.e/ is trivial in this
case. See also [17, 18] for a similar approach based on the JLO cocycle in the
case of finite groups. On the other hand, if G is a discrete countable group acting
freely and properly on M , one recovers the Connes-Moscovici index theorem for
G-coverings [8]. In the latter case, �.D/ is paired with periodic cyclic cocycles
arising from group cohomology. Our result is a generalization in two directions.
First, it is valid for general locally compact groups and proper actions, and second,
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it holds in the entire (as opposed to periodic) cyclic homology of certain Banach
completions B of the convolution algebra of G. We believe that these points may be
useful for the study of assembly maps and related conjectures [3].

The paper is organized as follows. Section 2 contains the construction of the
bivariant Chern character associated to a G-invariant elliptic first-order differential
operator. The equivariant index theorem is proved in section 3 together with
the localization formula. Throughout the paper we use freely the techniques of
bornological algebras and entire cyclic cohomology developped by Meyer in [19]
(there entire cyclic cohomology is called analytic cyclic cohomology) and used
repeatedly in [21, 22]. Since it was not desirable to recall this formalism here,
the unfamiliar reader is urged to look at the latter references.

2. Bivariant Chern character

Let G be a locally compact group, and M be a complete Riemannian manifold
without boundary, endowed with a smooth, proper and G-compact action of G
by isometries. Since they are the main examples of interest, we will restrict to
equivariant K-homology classes ŒD� 2 KG� .M/ represented by selfadjoint elliptic
differential operators of order one, acting on the smooth sections of some vector
bundle E ! M . Such an operator D has a unique extension to a selfadjoint
(unbounded) operator on the Hilbert space H D L2.E/, from which we may
obtain various functions like its modulus jDj or the heat operator exp.�sD2/,
s � 0. In this section, we show that D gives rise to an unbounded A-B-bimodule
.E ;�;D/ according to the terminology of [21], where A is the crossed-product
algebra C1

c .M/ÌG and B is any admissible completion of the convolution algebra
Cc.G/ (see definition 2.1 below). The bimodule .E ;�;D/ should be viewed as a
“smooth” representative of a Kasparov bivariant K-theory class [5]. Following the
construction of [21], we show that .E ;�;D/ has a Chern character in bivariant entire
cyclic cohomology

ch.E ;�;D/ 2HE�.A;B/ (5)

based on the existence of the heat operator. This will be the central element of the
equivariant index theorem.

Denote by Cc.G/ be the convolution algebra of continuous, compactly sup-
ported C-valued functions on G. The product is given in terms of a right-invariant
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Haar measure dh:

.b1b2/.g/D
Z

G

dhb1.h/b2.gh
�1/ ; 8 bi 2 Cc.G/ ; g 2G : (6)

We endow Cc.G/ with its natural topology of LF-space. It is the union, over
compact subsets K �G, of the Banach spaces

CK.G/D fb WG ! C continuous j suppb �Kg (7)

gifted with the supremum norm. The multiplication on Cc.G/ is separately
continuous. Cc.G/ is also a complete bornological algebra [19] for the bornology
of bounded subsets: a subset S � Cc.G/ is small iff there is a compact K � G

such that suppb � K for any b 2 S and the supremum norm supg2G jb.g/j is
uniformly bounded over S . The equivariant index theorem requires to complete
the convolution algebra Cc.G/ into a suitable Banach algebra. This will morally be
the convolution algebra of integrable functions on G with respect to an admissible
measure, proportional to the Haar measure according to the following definition:

Definition 2.1 Let G be a locally compact group with right-invariant Haar measure
dg. A measure d� onG is called admissible if there is a real-valued, strictly positive
and continuous function � on G such that

d� D �dg and �.gh/� �.g/�.h/ 8g;h 2G : (8)

It is easy to see that the L1-norm kbk D R
Gd� jb.g/j associated to this measure

is submultiplicative for the convolution product: kb1b2k � kb1kkb2k for any
a;b 2 Cc.G/, and the corresponding Banach algebra B D L1.G;d�/ is called an
admissible completion of the convolution algebra.

Note that the injection of bornological algebras Cc.G/ ,! B is bounded. The
condition “� is continuous” is not essential but in practice interesting examples arise
with this property:

Example 2.2 Let d W G �G ! RC be a right-invariant distance on G (compatible
with the topology), and ˛ 2 RC be an arbitrary positive parameter. The function �
may be chosen to be

�.g/D .1C d.g;1//˛ (9)

hence, it grows as a power of the distance from g to the unit element 1 2 G. The
corresponding algebra B is therefore a subalgebra of L1.G/, whose elements are
integrable functions on G with additional decay conditions at infinity.

Consider the LF-space C1
c .M/ of smooth functions with compact support

on M . It is the union, over compact subsets K � M , of the Fréchet spaces
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C1
K .M/ of smooth fuctions with support contained in K. We provide C1

c .M/

with its bounded bornology. Again, a subset S � C1
c .M/ is small iff all f 2 S

have support contained in a given compact K in M and all the derivatives of
f are uniformly bounded over S . C1

c .M/ is a complete bornological algebra
for the ordinary (pointwise) product of functions. By nuclearity of C1

c .M/, the
completed bornological tensor product (see [19]) of vector spaces Cc.G/ Ő C1

c .M/

is isomorphic to the inductive limit

A D lim�!
K�M

Cc.GIC1
K .M// ; (10)

where Cc.GIC1
K .M// is the space of continuous and compactly supported func-

tions on G with values in C1
K .M/. Endow A with the convolution product

.a1a2/.g;x/D
Z

G

dha1.h;x/a2.gh
�1;hx/ ; 8g 2G ; x 2M ; (11)

for ai 2 A. One checks that this product is bounded, hence turns A into a complete
bornological algebra. We write A as a crossed product

A D C1
c .M/ÌG : (12)

Now let E ! M be a G-equivariant vector bundle endowed with an invariant
hermitean structure, and let D W C1.E/ ! C1.E/ be a G-invariant, selfadjoint
elliptic differential operator of order one (for example a generalized Dirac operator
[4]). If the parity of the K-homology class ŒD� is even, then E D EC ˚ E� is
Z2-graded andD exchanges the sections of EC and E�. Since G acts isometrically
on M , it is represented by unitary operators on the Hilbert space H D L2.E/ of
square-integrable sections of E,

r WG ! U.H/ ; r.g/	 D 	g 8g 2G ; 	 2 H ; (13)

and r.gh/D r.h/r.g/ 8g;h 2G. Remark that the function r is strongly continuous
(i.e. g 7! r.g/	 is continuous 8	 2 H), but not continuous for the operator norm in
L.H/, unless G is discrete. Also, D extends to a self-adjoint unbounded operator
on H. Let B be any admissible completion of the convolution algebra Cc.G/.
The elliptic operator D gives rise to an unbounded A-B-bimodule according to the
following definition (cf. [21]):

Definition 2.3 Let B be any admissible completion of Cc.G/ and A be the crossed-
product C1

c .M/ Ì G. Then any elliptic differential operator of order one D W
C1

c .E/ ! C1
c .E/ representing a K-homology class ŒD� 2 KG� .M/ defines an

unbounded A-B-bimodule .E ;�;D/ as follows:
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� E D H Ő B where H D L2.E/ is the Hilbert space of square-integrable
sections of E. E is isomorphic to the Banach space L1.G;d�IH/ of H-valued
integrable functions on G with respect to the admissible measure d�. It is
endowed with an obvious right B-module structure (dh denotes the right-
invariant Haar measure):

.	b/.g/D
Z

G

dh	.h/b.gh�1/ ; 8	 2 E ; b 2 B ; g 2G ; (14)

and the module map E�B ! E is bounded. We denote by EndB.E/ the algebra
of bounded endomorphisms of E commuting with the action of B.

� � W A ! EndB.E/ is the bounded algebra homomorphism given by

.�.a/	/.g/D
Z

G

dha.h/r.h/ � 	.gh�1/ ; 8a 2 A ; 	 2 E ; g 2G ; (15)

where for any h 2 G, the smooth function a.h/ 2 C1
c .M/ acting on

the sections of E by pointwise multiplication is considered as a bounded
endomorphism of H, and r.h/ 2 U.H/ is the unitary representation of h.
Hence E is a left A-module.

� D W E ! E is the unbounded operator with dense domain

.D	/.g/DD.	.g// ; 8	 2 E ; g 2G ; (16)

commuting with the right action of B. The commutator ŒD;�.a/� extends to
an element of EndB.E/ for any a 2 A.

The last assertion comes from the fact that D, viewed as an operator on H,
commutes with the representation of G by hypothesis, and the commutator ŒD;f �
is bounded for any f 2 C1

c .M/. Also, note that the linear map A ! EndB.E/
induced by a 7! ŒD;�.a/� is bounded. Finally, the triple .E ;�;D/ comes equipped
with the same degree as the K-homology class ŒD�: it is even if E, H and E are
Z2-graded (in which caseD is an odd operator and �.a/ is even for any a 2 A), and
odd if E is trivially graded.

The bimodule .E ;�;D/ has the required properties to apply the construction of
the bivariant Chern character along the lines of [21]. The essential point is the
existence of the heat operator exp.�tD2/ for any t � 0. We will give an explicit
formula of JLO type [15] yielding a bivariant entire cyclic cohomology class

ch.E ;�;D/ 2HE�.A;B/ (17)
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of the same degree as the class ŒD� 2KG� .M/. We first introduce for any p 2 Œ1;1/

the Schatten ideal `p D `p.H/ of p-summable operators on H. It is a Banach
algebra for the norm kxkp D .Trjxjp/1=p, and the injections `p ! `q for p < q are
continuous (bounded). Let us concentrate on the ideal `1 of trace-class operators on
H. Denote by Cc.GI`1/ the LF-space of compactly supported continuous functions
on G with values in `1. Endow it with the convolution product (as usual dh denotes
the right-invariant Haar measure)

.a1a2/.g/D
Z

G

dha1.h/a2.gh
�1/ ; 8ai 2 Cc.GI`1/ : (18)

Then Cc.GI`1/ becomes a complete bornological algebra, and we obtain a bounded
injective homomorphism Cc.GI`1/ ,! EndB.E/ by specifying the action on E :

.a	/.g/D
Z

G

dha.h/ � 	.gh�1/ ; 8a 2 Cc.GI`1/ ; 	 2 E : (19)

As an intermediate algebra between Cc.GI`1/ and EndB.E/, we may consider
the space of `1-valued integrable functions L1.G;d�I`1/ with respect to the
admissible measure d�, endowed with a convolution product and an action on E
also given by equations (18,19). Now remark that this algebra is isomorphic to the
projective tensor product of the Banach algebras `1 and L1.G;d�/D B, which also
corresponds to the bornological tensor product (see [19])

L1.G;d�I`1/D `1 Ő B ; (20)

and a rapid inspection shows that its action on E D H Ő B decomposes as the
representation of `1 on H and the left multiplication of B on itself. We summarise
with the following sequence of inclusions

Cc.GI`1/ ,! `1 Ő B ,! EndB.E/ : (21)

Let us now have a closer look at the homomorphism � W A ! EndB.E/. For any
	 2 E and a 2 A, the left product �.a/	 2 E reads

.�.a/	/.g/D
Z

G

dha.h/r.h/ � 	.gh�1/ ; (22)

where the function h 2 G 7! a.h/r.h/ 2 L.H/ is only strongly continuous (as
h 7! r.h/ is) and not continuous for the operator norm in L.H/. However, the heat
operator exp.�sD2/ is smoothing for s > 0 and a.h/ is a smooth function with
compact support on M for any h. It follows that the product exp.�sD2/a.h/r.h/ 2
L.H/ is actually a trace-class operator when s > 0, and the function

h 2G 7! e�sD2

a.h/r.h/ 2 `1 ; s > 0 (23)
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is continuous with compact support on G, hence yields an element of Cc.GI`1/. It
is not hard to show that the operator exp.�sD2/�.a/ on E precisely corresponds to
this element, hence we can write

e�sD2

�.a/ 2 Cc.GI`1/� EndB.E/ ; 8a 2 A ; s > 0 : (24)

In the same way, one has

e�sD2

ŒD;�.a/� 2 Cc.GI`1/� EndB.E/ 8a 2 A ; s > 0 (25)

since e�sD2

ŒD;�.a/� corresponds to the function h 7! e�sD2

ŒD;a.h/�r.h/ (recall
thatD isG-invariant and therefore commutes with the operator r.h/). Now we fix a
parameter t > 0 and rescale the unbounded operatorD as tD. Let�A be the .b;B/-
bicomplex of noncommutative differential forms ([6]) over A, and X.B/ D B �
�1B\ theX-complex of Cuntz-Quillen ([11]) over B (see [19] for the generalization
to bornological algebras). Following [21], the bimodule .E ;�;tD/ gives rise to a
chain map from �A to X.B/, with components


n.E ;�;tD/ W�nA !X.B/ (26)

defined in any degree n 2 N. To that end, if A1;:::;An are (not necessarily bounded)
operators on H, we introduce the notation

hA1;:::;Anit D
Z

�n

ds1 :::dsne
�s0t2D2

A1e
�s1t2D2

:::Ane
�snt2D2

; (27)

where �n is the standard n-simplex with coordinates si � 0,
P

i si D 1. The
integration over �n is supposed to make sense whenever we use it. For a typical
example, if a0;:::;an denote elements of the algebra A, the preceding discussion
shows that

h�.a0/;ŒD;�.a1/�;:::;ŒD;�.an/�it 2 Cc.GI`1/� EndB.E/ : (28)

The chain map 
.E ;�;tD/ is constructed as follows. Recall that theX-complex of B
splits as the direct sum of B in degree zero and�1B\ in degree one. Each component

n therefore splits into two parts. The first one 
n

0 W�nA ! B is defined whenever
n has the same parity as the bimodule E , and given by its evaluation on a n-form
a0da1 :::dan 2�nA:


n
0.a0da1 :::dan/D .�t /n

nX
iD0

.�/i.n�i/� (29)

�hŒD;�iC1�;:::;ŒD;�n�;�0;ŒD;�1�;:::;ŒD;�i �it ;
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where we use the abbreviation �i D �.ai /. Here � W `1 ! C is the (super)trace
of operators depending on the parity of .E ;�;D/: when the Hilbert space H D
HC ˚H� is Z2-graded (even case), then � D Trs D TrHC

� TrH�
is the supertrace

of operators in `1. When H is trivially graded (odd case), then � D p
2iTr is

proportional to the usual trace. The factor of
p
2i is conventionally introduced for

consistency with Bott periodicity [21]. After taking the trace, the right hand side
of (29) thus yields a continuous scalar-valued function with compact support on G,
viewed as an element of the algebra B via the inclusion Cc.G/ ,! B.

The other components 
nC1
1 W�nC1A !�1B\ are also defined when n has the

same parity as E . We first have to extend slightly the bimodule E by considering the
unitalisation eB D B˚ C of B. Consider the obvious righteB-module

eE D H ŐeB : (30)

Then as a bornological vector space, eE D E ˚H. We want to endow eE with a left
A-module structure. The action of A onto the first summand E is already defined,
so we need to specify its action on the second summand H. For any a 2 A, define
the map �.a/ W H ! E by

.�.a/	/.g/D a.g/r.g/ � 	 ; 8	 2 H ; g 2G : (31)

It is easy to check that �.a/ 2 EndeB.eE/, so that .eE ;�;D/ is an unbounded A-eB-
bimodule as required (the action of D on the summand H is clear). Remark we
have

E DeE ŐeBB (32)

as an A-B-bimodule. Now consider the space �1B of noncommutative one-forms
over B. It can be viewed as a left eB-module and right B-module, together with the
universal derivation d W B !�1B. Then define the following A-B-bimodule

�1E DeE ŐeB�1B : (33)

As a bornological vector space, �1E is isomorphic to the tensor product H Ő �1B.
This shows the existence of a canonical flat connection on E

d W E !�1E (34)

induced by the universal derivation on B. Moreover, any element of `1 Ő �1B acts as
a right B-module map E !�1E in the obvious way. For any a 2 A, the commutator

d�.a/D Œd;�.a/� W E !�1E (35)
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is also a right B-module map, and after multiplication by the heat operator we get

e�sD2

d�.a/ 2 `1 Ő �1B ; s > 0 : (36)

It is possible to give a more precise description of this element. Recall that �1B
is by definition the space eB Ő B D B ˚ B Ő 2, and the first summand of the r.h.s.
corresponds to the image of the derivation d. Since B D L1.G;d�/, the tensor
product B Ő B is isomorphic to the space of integrable functions over G �G with
respect to the product measure d� � d�. Therefore, �1B canonically contains the
subspace of continuous functions with compact support

�1
c.G/ WD Cc.G/˚Cc.G �G/��1B ; (37)

and analogously

�1
c.GI`1/ WD Cc.GI`1/˚Cc.G �GI`1/� `1 Ő �1B : (38)

Then e�sD2 d�.a/ is an element of the first summand Cc.GI`1/. All these notations
being fixed, the component 
nC1

1 W�nC1A !�1B\ is given by


nC1
1 .a0da1 :::danC1/D .�t /n

nC1X
iD1

.�/i.n�iC1/� (39)

\�.hŒD;�iC1�;:::;ŒD;�nC1�;�0;ŒD;�1�;:::;ŒD;�i�1�it d�i / :

Here, the term under � lies in �1
c.GI`1/. Hence taking the trace on `1 yields an

element of �1
c.G/, or �1B, then composing with the projection \ W �1B ! �1B\

gives the desired map. Collecting all the components 
n
0 and 
nC1

1 , we obtain a
linear map from the .b C B/-complex �A to the X-complex of B, whose degree
coincide with the parity of .E ;�;tD/. The algebraic manipulations performed in
[21] show that it is actually a chain map:

˙.b˚ \d/ ı
n D 
n�1 ı bC
nC1 ıB : (40)

The sign in the l.h.s depends on the parity. At first sight this is not very interesting
since the homology of�A is trivial. In order to get a non-trivial map, it is necessary
to complete�A with respect to some entire bornology, yielding to the complex��A
(see [21]). The following proposition is a consequence of the crucial property that
B is a Banach algebra.

Proposition 2.4 Let .E ;�;D/ be an unbounded A-B-bimodule as in Definition 2.3.
Then for any t > 0, the collection of components 
n.E ;�;tD/ W �nA ! X.B/
extends to an entire cyclic cocycle, i.e. a bounded chain map


.E ;�;tD/ W��A !X.B/ (41)
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from the .bCB/-complex of entire chains over A to theX-complex of B. The degree
of 
.E ;�;tD/ in the Z2-graded complex Hom.��A;X.B// coincides with the parity
of .E ;�;D/.
Proof: We first show that the collection of components 
0 D .
n

0/n extends to a
bounded linear map ��A ! B. Recall that ��A is the completion of �A for the
bornology generated by the subsets[

n�0

Œn=2�ŠeS.dS/n ; S 2 S.A/ ;

with eS D f1g [S . Hence we must show that, given a small subset S � A, 
n
0 maps

Œn=2�ŠeS.dS/n to a small subset of B which does not depend on n. So we fix a small
S � A. Since A is the inductive limit, over compact subsets K �M , of the spaces
Cc.GIC1

K .M//, we have the following description of S : there exist two compact
subsets K � M and L � G, such that any function a 2 S has support contained in
L and the values a.g/, g 2 G are smooth functions on M with support in K and
all derivatives bounded. In particular, one can find another compact subset K 0 �M

which contains K and all its images g �K by the diffeomorphisms g 2 L. It follows
that, if f 2 C1

c .M/ is a real-valued function such that f .x/ D 1 for any x 2 K 0
and 0� f .x/� 1 everywhere (we call f a “plateau” function), we have

�.a/D f�.a/D �.a/f in EndB.E/

for any element a 2 S (use �.a/.g/D a.g/r.g/). Note that f viewed as an operator
in L.H/ by pointwise multiplication, is selfadjoint with spectrum contained in the
interval Œ0;1�. The plateau function f will be useful for dealing with the non-
compacity of the manifold M . Now, given nC 1 elements ai 2 S , the function

n

0.a0da1 :::dan/ 2 Cc.G/ is given by Equation (29). We have to evaluate the
supremum norm, over G, of each of the nC 1 terms appearing in the sum of the
r.h.s. Let us consider for example the last term of this sum, up to a sign:

I D tn
Z

�nC1

ds�.e�s0t2D2

�0e
�s1t2D2

ŒD;�1�e
�s2t2D2

:::ŒD;�n�e
�snC1t2D2

/ ;

where �i D �.ai /. The integrand at a point s 2 �nC1 is an element of Cc.G/, and
its evaluation at a point g 2G can be estimated using the trace norm k �k1 on `1.H/
as follows:

j�.e�s0t2D2

�0e
�s1t2D2

ŒD;�1�e
�s2t2D2

:::ŒD;�n�e
�snC1t2D2

/j.g/
�
Z

Gn

dh0 :::dhn�1ke�s0t2D2

�0.h0/e
�s1t2D2

ŒD;�1�.h1/e
�s2t2D2

:::ŒD;�n�.gh
�1
0 :::h�1

n�1/e
�snC1t2D2k1 :
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(When the trace � corresponds to a bimodule of odd degree, we should take care
of an overall factor of

p
2i). Taking into account that �i D f�if and ŒD;�i � D

f ŒD;�i �f , the Hölder inequality implies

ke�s0t2D2

�0.h0/e
�s1t2D2

ŒD;�1�.h1/:::ŒD;�n�.gh
�1
0 :::h�1

n�1/e
�snC1t2D2k1

� k�0.h0/k1kfe�s1t2D2

f ks�1
1

kŒD;�1�.h1/k1kfe�s2t2D2

f ks�1
2
:::

:::kŒD;�n�.gh
�1
0 :::h�1

n�1/k1kfe�.snC1Cs0/t2D2

f k.snC1Cs0/�1 ;

where for any i the operator fe�si t2D2

f is an element of the Schatten ideal `s�1
i

with norm k � ks�1
i

, and k � k1 is the operator norm. The compression by the

plateau function f 2 C1
c .M/ is necessary because e�si t2D2

alone is a priori not
a compact operator. Now observe that since the heat operator and f are selfadjoint
and positive, one has

kfe�si t2D2

f ks�1
i

D �
Tr
�
.fe�si t2D2

f /s
�1
i

��si
:

Moreover, the function x 7! xs�1
i being convex for s�1

i � 1, and f D f � � 1,
Proposition 4.6 (ii) of [12] allows to write1

Tr
�
.fe�si t2D2

f /s
�1
i

�� Tr.fe�t2D2

f /

so that kfe�si t2D2

f ks�1
i

� �
Tr.fe�t2D2

f /
�si . Introduce now the following

positive functions over G

b0 D k�0k1 ; bi D kŒD;�i �k1 ; i � 1 :

They are compactly supported and continuous, because b0.g/ D ka0.g/r.g/k1 D
ka0.g/k1 and bi .g/ D kŒD;ai .g/�r.g/k1 D kŒD;ai .g/�k1 (recall that r.g/ 2
U.H/). Also, all the bi ’s are contained in a small subset TS in the bornology of
the LF-space Cc.G/. Remark that TS depends only on S � A. We can write

j�.e�s0t2D2

�0e
�s1t2D2

ŒD;�1�e
�s2t2D2

:::ŒD;�n�e
�snC1t2D2

/j.g/
� Tr.fe�t2D2

f /

Z
Gn

dh0 :::dhn�1b0.h0/b1.h1/:::bn.gh
�1
0 :::h�1

n�1/

� Tr.fe�t2D2

f /.b0 :::bn/.g/ ;

so that taking the integral over the simplex�nC1 brings a factor of 1=.nC1/Š in the
estimate

jI j � tn
Tr.fe�t2D2

f /

.nC 1/Š
b0 :::bn :

1I wish to thank T. Fack for bringing ref. [12] to my attention.
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This is an inequality of continuous, compactly supported functions over G. Since
the inclusionCc.G/! B is bounded, TS is also a small subset of the Banach algebra
B. Let k � k denote the norm of B, and put 
S D kTSk. One has kb0 :::bnk � 
nC1

S ,
so that the above inequality implies

kIk � tn
Tr.fe�t2D2

f /

.nC 1/Š

nC1

S :

The same estimate holds for all the nC 1 terms of the sum (29), therefore

kŒn=2�Š
n
0.a0da1 :::dan/k � Tr.fe�t2D2

f /
Œn=2�Š

nŠ
tn
nC1

S :

The function n 7! Œn=2�Š
nŠ

tn
nC1
S being bounded as n ! 1, the collection 
0 maps

the union
S

n�0Œn=2�Š
eS.dS/n to a bounded subset of B, as required. It follows that


0 is bounded for the entire bornology on�A and extends to a bounded map on the
completion ��A.

Let us now concentrate on the odd components 
nC1
1 W �nC1A ! �1B\. We

will perform the same kind of estimates, with the only difference that now the
target space is the direct sum �1

c.G/ D Cc.G/˚Cc.G �G/. The function of two
variables 
nC1

1 .a0da1 :::danC1/ 2 Cc.G �G/ is given by formula (39), and taking
for example the last term of this sum one gets

J D tn
Z

�nC1

ds�.e�s0t2D2

�0e
�s1t2D2

ŒD;�1�e
�s2t2D2

:::ŒD;�n�e
�snC1t2D2

d�nC1/ ;

with �i D �.ai /, ai 2 S � A. Proceeding as in the previous case, the integrand of J
can be estimated by evaluation on two points g0;g1 2G:

j�.e�s0t2D2

�0e
�s1t2D2

ŒD;�1�e
�s2t2D2

:::ŒD;�n�e
�snC1t2D2

d�nC1/j.g0;g1/

�
Z

Gn

dh0 :::dhn�1ke�s0t2D2

�0.h0/e
�s1t2D2

ŒD;�1�.h1/e
�s2t2D2

:::ŒD;�n�.g0h
�1
0 :::h�1

n�1/e
�snC1t2D2

�nC1.g1/k1

� Tr.fe�t2D2

f /.b0 :::bn/.g0/bnC1.g1/

� Tr.fe�t2D2

f /.b0 :::bndbnC1/.g0;g1/ ;

with b0 D k�0k1, bi D kŒD;�i �k1 for 1 � i � n and bnC1 D k�nC1k1. Again,
all the bi ’s are contained in a small subset TS � Cc.G/ depending only on S . We
denote by k�k Ő 2 the projective norm on the tensor product of Banach spaces B Ő B �
�1B. Its evaluation on the function of two varables b0 :::bndbnC1 2 Cc.G�G/ gives

kb0 :::bndbnC1k Ő 2 D kb0 :::bnk � kbnC1k � 
nC2
S ;
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with 
S D kTSk. Therefore, the norm of J verifies the following bound:

kJ k Ő 2 � tn
Tr.fe�t2D2

f /

.nC 1/Š

nC2

S :

The same estimate holds for all the terms of the sum (39), so that

kŒ.nC 1/=2�Š
nC1
1 .a0da1 :::danC1/k Ő 2 � Tr.fe�t2D2

f /
Œ.nC 1/=2�Š

nŠ
tn
nC2

S ;

which shows that the collection 
1 maps
S

n�0Œn=2�Š
eS.dS/n to a small subset of

�1B\. Consequently, 
 extends to a bounded linear map ��A ! X.B/. The fact
that it is still a cocycle is a consequence of the universal properties of bornological
completions.

The cohomology class of the cocycle 
.E ;�;tD/ enjoys good properties. It is
in particular invariant under suitable “smooth” homotopies of the homomorphism �

and the operator D [21]. For our purpose we need only to establish the invariance
with respect to changes of the parameter t . This is achieved by introducing the
Chern-Simons transgressions csn.E ;�;tD/ W�nA !X.B/ Ő �1R�C. Here �1R�C is
the space of smooth one-forms with respect to t 2 R�C. The transgressions are given
by formulas analogous to (29,39), with insertions of the operator-valued one-form
dtD. In each degree n of parity opposite to .E ;�;D/, the component csn

0 W�nA !
B Ő �1R�C reads

csn
0 .a0da1 :::dan/D .�t /n

X
i;j

.�/i.n�i/�hŒD;�iC1�;:::;ŒD;�j �;dtD;:::

:::;ŒD;�n�;�0;ŒD;�1�;:::;ŒD;�i �it ; (42)

whereas the component csnC1
1 W�nC1A !�1B\ Ő �1R�C is

csnC1
1 .a0da1 :::danC1/D .�t /n

X
i;j

.�/i.n�iC1/\�.hŒD;�iC1�;:::;ŒD;�j �;dtD;

:::;ŒD;�nC1�;�0;ŒD;�1�;:::;ŒD;�i�1�it d�i / :(43)

The Chern-Simons forms define a linear map from the .b C B/-complex �A to
the X-complex X.B/ Ő �1R�C, of degree opposite to the parity of .E ;�;D/. It is
shown in [21] that the derivative of 
.E ;�;tD/ with respect to t is the coboundary
of cs.E ;�;tD/ in the complex Hom.�A;X.B/ Ő �1R�C/:

dt

n D �.b˚ \d/ ı csn ˙ .csn�1 ı bC csnC1 ıB/ : (44)

The sign ˙ depends on the parity of the cochains. Again, the properties of the
Banach completion B ensure that cs.E ;�;tD/ extends to an entire cochain:
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Proposition 2.5 Let .E ;�;D/ be an unbounded A-B-bimodule as in Definition 2.3.
Then for any t > 0, the collection of components csn.E ;�;tD/ W �nA ! X.B/
extends to an entire cochain, i.e. a bounded linear map

cs.E ;�;tD/ W��A !X.B/ Ő �1R�C (45)

whose coboundary in the complex Hom.��A;X.B/ Ő �1R�C/ equals the derivative
of the cocycle 
.E ;�;tD/ with respect to t . Hence, the entire cyclic cohomology
class of 
.E ;�;tD/ is independent of t .

Proof: It follows from the same estimates used with the cocycles 
.E ;�;tD/, the
only difference being the insertion of the operator D in formulas (42, 43) defining
the Chern-Simons transgressions. For example, let us pick up the following term in
the sum (42), where D is at position i :

tn
Z

�nC2

ds�.e�s0t2D2

�0e
�s1t2D2

ŒD;�1�:::De
�si t2D2

:::ŒD;�n�e
�snC2t2D2

/ ;

�j D �.aj / and all the aj ’s belong to a small subset S � A. We estimate the
integrand as follows:

j�.e�s0t2D2

�0e
�s1t2D2

ŒD;�1�:::De
�si t2D2

:::ŒD;�n�e
�snC2t2D2

/j.g/
�
Z

Gn

dh0 :::dhn�1ke�s0t2D2

�0.h0/e
�s1t2D2

ŒD;�1�:::De
�si t2D2

:::ŒD;�n�.gh
�1
0 :::h�1

n�1/e
�snC2t2D2k1 ;

and then, including a plateau function f 2 C1
c .M/, 0 � f � 1 such that �j D

f�jf for any j , one has

ke�s0t2D2

�0.h0/e
�s1t2D2

:::De�si t2D2

:::ŒD;�n�.gh
�1
0 :::h�1

n�1/e
�snC2t2D2k1

� k�0.h0/k1kfe�s1t2D2

f ks�1
1
:::kfDe�.si�1Csi /t2D2

f k.si�1Csi /�1 :::

:::kŒD;�n�.gh
�1
0 :::h�1

n�1/k1kfe�.snC2Cs0/t2D2

f k.snC2Cs0/�1 :

For any j ¤ i and i�1, the estimates of [12] and the fact that the operator e�t2D2=2

has spectrum � 1 show

kfe�sj t2D2

f ks�1
j

� .Trfe�t2D2

f /sj � .Trfe�t2D2=2f /sj

whereas for the factor containing D we write, with s D si�1 C si :

kfDe�st2D2

f ks�1 D 1

t
p
s

kf tpsDe�st2D2

f ks�1

� 1

t
p
s

�
Trf .t

p
sDe�st2D2

/s
�1

f
�s
:
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Then write f .t
p
sDe�st2D2

/s
�1

f D f .t
p
sDe� st2D2

2 /s
�1

e� t2D2

2 f and observe
that the function x 7! xe�x2=2 attains its maximum for x D 1 with value 1=

p
e < 1.

Therefore the spectrum of .t
p
sDe�st2D2=2/s

�1

is contained in Œ0;1� and we have

Tr.f .t
p
sDe�st2D2

/s
�1

f /� Tr.fe�t2D2=2f /

so that finally

kfDe�st2D2

f ks�1 � 1

t
p
s
.Tr.fe�t2D2=2f //s :

Then, by proceeding as in the proof of Proposition 2.4 we introduce the functions
b0 D k�0k1 and bi D kŒD;�i �k1 included in a small subset TS � Cc.G/ depending
only on S , so that

j�.e�s0t2D2

�0e
�s1t2D2

:::De�si t2D2

:::ŒD;�n�e
�snC2t2D2

/j.g/

� Tr.fe�t2D2=2f /

t
p
si�1 C si

.b0 :::bn/.g/

at any point g 2G. Hence taking the integral over �nC2 yields a factorZ
�nC2

ds
1p

si�1 C si
D 1

nŠ

Z 1

0

du0

Z 1

u0

du1

.1�u1/
n

p
u1

� 2

.nC 1/Š
:

The same bound holds for all the .nC1/.nC2/ terms of the sum (42), so that finally
the norm of csn

0 .a0da1 :::dan/ in the Banach algebra B may be estimated as

kcsn
0 .a0da1 :::dan/k � Tr.fe�t2D2=2f /2

.nC 2/

nŠ
tn�1
nC1

S ;

with a parameter 
S D kTSk depending only on S . The end of the argument exactly
follows the proof of Proposition 2.4.

The cocycle 
.E ;�;tD/ cannot represent the bivariant Chern character of the
unbounded bimodule .E ;�;D/, since the X-complex X.B/ does not calculate the
entire cyclic homology of B in general. A satisfactory bivariant Chern character
is built in [21] by a slight modification of the construction above. The point is to
replace A and B by their analytic tensor algebras T A and T B (see [19]), and the
bimodule .E ;�;D/ must be lifted to a suitable bimodule .�C

anE ;��;D/ over tensor
algebras. This yields a bounded chain map


.�C
anE ;��;tD/ W��T A !X.T B/ (46)
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for any t > 0. By the generalized Goodwillie theorem [19, 21], the complex
��T A calculates the entire cyclic homology of A. Since X.T B/ calculates the
entire cyclic homology of B, the cohomology class of 
.�C

anE ;��;tD/, independent
of t , is an element of the bivariant entire cyclic cohomology HE�.A;B/, whose
degree coincides with the parity of .E ;�;D/. This is by definition the bivariant
Chern character.

Let us explain, in our context, how to obtain the lifted bimodule .�C
anE ;��;D/.

With eB denoting the unitalization of B, we already introduced the A-eB-bimoduleeE D H ŐeB. Following [19], let �anB be the completion of the DG algebra of
noncommutative differential forms �B with respect to the analytic bornology (see
also [21] for the definition). It may be considered as a left eB-module and a right
�anB-module, using the obvious multiplications. Therefore, the space

�anE DeE ŐeB�anB (47)

is an A-�anB-bimodule. �anE is isomorphic to H Ő �anB as a bornological space,
and the splitting of �anB as the direct sum of even/odd forms �ȧnB leads to the
subspaces �ȧnE D H Ő �ȧnB. Finally the differential d on �anB extends to a flat
connection

d W�ȧnE !��
anE : (48)

To make the link with analytic tensor algebras, we shall deform the module
structures using a Fedosov-type product. Recall that the analytic tensor algebra
T B over B is isomorphic to the algebra of even-degree differential forms .�C

anB;ˇ/
endowed with the Fedosov product

!1 ˇ!2 D !1!2 � d!1d!2 ; 8!i 2�C
anB : (49)

Indeed the isomorphism is induced by the correspondence

�C
anB 3 b0db1db2 :::db2k�1db2k $ b0 ˝!.b1;b2/˝ :::˝!.b2k�1;b2k/ 2 T B ;

(50)
with !.b1;b2/ D b1b2 � b1 ˝ b2. One then gets a right T B-module structure on
�C

anE via the Fedosov deformation

ˇ W�C
anE �T B !�C

anE ; 	ˇ! D 	! � d	d! (51)

for any 	 2�C
anE and ! 2�C

anB D T B. Let EndT B.�
C
anE/ be the algebra of bounded

T B-module endomorphisms. We are looking for a homomorphism from the non-
analytically completed tensor algebra over A

�� W TA ! EndT B.�
C
anE/ (52)
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lifting the homomomorphism � W A ! EndB.E/. First, we define a linear map
�� W A ! EndT B.�

C
anE/ via a Fedosov deformation (recall that �anE is a left A-

module):
��.a/	 D �.a/	 � d�.a/d	 ; 8a 2 A ; 	 2�C

anE : (53)

Here d�.a/ means the commutator Œd;�.a/�. This linear map then extends uniquely
to a homomorphism �� on TA by the universal property of the tensor algebra.
However, it is not clear that this homomorphism extends to the analytic tensor
algebra T A. One of the aims of the proposition below is to show that the
construction of the chain map 
.�C

anE ;��;tD/ is indeed compatible with analytic
completions. For the moment, what we obtained is a TA-T B-bimodule �C

anE .
Finally, the action of the unbounded operatorD on H yields an unbounded operator
on �C

anE D H Ő �C
anB commuting with the right action of T B. Note that the

commutator of D with any element x 2 TA is a bounded endomorphism

ŒD;��.x/� 2 EndT B.�
C
anE/ ; (54)

because this property can be checked on the generators a 2 A of TA. Conven-
tionally we assume that D is an operator of odd degree and therefore anticommutes
with the differential d , see [21]. We introduce now some useful subalgebras of
trace-class endomorphisms of �C

anE . Since `1 acts on H and �C
anB acts on itself

(from the left) by Fedosov multiplication, the tensor product of algebras `1 Ő �C
anB

(or `1 Ő T B) clearly acts on �C
anE D H Ő �C

anB by bounded endomorphisms. Also,
remark that in any degree 2n the subspace of 2n-forms�2nB ��C

anB is isomorphic
to

�2nB D B Ő 2n ˚B Ő .2nC1/ D L1.G2n/˚L1.G2nC1/ ; (55)

the L1-spaces being taken with respect to the admissible measure d� on G.
Therefore we define the subspaces of continuous 2n-forms with compact support

�2n
c .G/D Cc.G

2n/˚Cc.G
2nC1/��2nB ; (56)

and the direct sum

�C
c .G/D

M
n�0

�2n
c .G/D Cc.G/

–

�0
c.G/

˚ Cc.G �G/˚Cc.G �G �G/
�

�2
c.G/

˚::: (57)

is a subspace of�C
anB. Moreover, the Fedosov product on�C

anB restricts to a product

ˇ W�C
c .G/��C

c .G/!�C
c .G/ : (58)

In the same way, we note that

`1 Ő �2nB D L1.G2nI`1/˚L1.G2nC1I`1/ ; (59)
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hence the subspaces of continuous 2n-forms with values in `1

�2n
c .GI`1/D Cc.G

2nI`1/˚Cc.G
2nC1I`1/� `1 Ő �2nB (60)

yield a subalgebra �C
c .GI`1/ D L

n�0�
2n
c .GI`1/ of `1 Ő �C

anB. We have thus
obtained a sequence of inclusions

�C
c .GI`1/ ,! `1 Ő �C

anB ,! EndT B.�
C
anE/ : (61)

As a crucial result, the heat operator exp.�sD2/ 2 EndT B.�
C
anE/ acts as a regulator

for s > 0, in the sense that the following endomorphism lies in the smallest possible
algebra:

e�sD2

��.x/ 2�C
c .GI`1/ 8x 2 TA ; s > 0 : (62)

The same is true for e�sD2

ŒD;��.x/�. Indeed, this can be seen by an explicit
computation when x is, say, a 2n-form a0da1 :::da2n 2 �2nA (we use the
identification TA D �CA). The product e�sD2

��.x/ 2 �2n
c .GI`1/ is then a

function in Cc.G
2nC1I`1/, whose evaluation at a point .g0;:::;g2n/ is the trace-class

operator

e�sD2

��.a0da1 :::da2n/.g0;:::;g2n/D e�sD2

a0.g0/r.g0/:::a2n.g2n/r.g2n/ :

(63)
The situation with the triple .�C

anE ;��;D/ is therefore completely analogous to
the previous situation with .E ;�;D/. The chain map 
.�C

anE ;��;tD/ is given by
formulas (29,39), replacing everywhere E , A, B, Cc.G/, � respectively by �C

anE ,
TA, T B, �C

c .G/, ��. Hence, for any t > 0 and any integer n 2 N whose parity
equals the degree of the bimodule, the component 
n

0 W �nTA ! T B evaluated on
a n-form x0dx1 :::dxn 2�nTA (we use the script d for differential forms over the
algebra TA, in order to avoid confusion with differential forms over A) is


n
0.x0dx1 :::dxn/D .�t /n

nX
iD0

.�/i.n�i/� (64)

�hŒD;�iC1� �;:::;ŒD;�n��;�0�;ŒD;�1��;:::;ŒD;�i��it ;

with the abbreviation �i� D ��.xi /. The right-hand-side is actually an element of
the algebra �C

c .G/ � T B. The other components 
n
1 W �nC1TA ! �1T B\ are

obtained along the lines leading to formula (39): one first has to consider the TA-
T B-bimodule �1�C

anE and work with suitable algebras of endomorphisms. Details
are left to the reader. We end up with the formula


nC1
1 .x0dx1 :::dxnC1/D .�t /n

nC1X
iD1

.�/i.n�iC1/� (65)

\�.hŒD;�iC1� �;:::;ŒD;�nC1� �;�0�;ŒD;�1��;:::;ŒD;�i�1� �it d�i�/ :
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Here the right-hand side must be interpreted as an element of the subspace of
continuous forms of odd degree ��

c .G/ � ��
anB Š �1T B\. One thus gets the

components of a chain map 
.�C
anE ;��;tD/ W �TA ! X.T B/, and similarly for

the Chern-Simons transgressions

csn.�C
anE ;��;tD/ W�nTA !X.T B/ Ő �1R�C : (66)

The delicate point is that these maps extend to the space of entire forms over the
analytic tensor algebra T A.

Proposition 2.6 Let .E ;�;D/ be an unbounded A-B-bimodule as in Definition 2.3.
Then for any t > 0, the collection of components 
n.�C

anE ;��;tD/ extends to an
entire cyclic cocycle, i.e. a bounded chain map


.�C
anE ;��;tD/ W��T A !X.T B/ ; (67)

and similarly the Chern-Simons transgression extends to a bounded linear map
cs.�C

anE ;��;tD/, whose coboundary is dt
.�
C
anE ;��;tD/. The bivariant Chern

character ch.E ;�;D/ is the class of the cocycle 
.�C
anE ;��;tD/ in the bivariant

entire cyclic cohomology HE�.A;B/, independent of t > 0. The degree of the
Chern character coincides with the parity of the unbounded bimodule.

Proof: We shall only show that the components landing to the even degree
subspace of the X-complex 
n

0 W �nTA ! T B extend to an entire cochain. The
odd case is treated similarly, as well as the Chern-Simons transgressions.

Recall that the tensor algebra TA is isomorphic to the algebra of differential
forms of even degree �CA endowed with the Fedosov product

x1 ˇ x2 D x1x2 � dx1dx2 :

A small subset of the analytic bornology on �CA is contained in the convex
hull of

S
k�0

eS.dS/2k for some small S � A, and the analytic tensor algebra
T A is the completion of TA with respect to this bornology. Also, ��T A is the
completion of �T A with respect to the entire bornology, generated by the subsetsS

n�0Œn=2�Š
eU .dU /n, for all small U � T A. As already mentioned, d denotes the

differential of forms over T A, to avoid confusion with the differential d of forms
over A. It is possible to obtain ��T A directly from one completion of the space
�TA, by taking the bornology generated by the subsets [21][

n�0

Œn=2�ŠeU .dU /n ; with U D
[
k�0

eS.dS/2k ;

for all small S � A. So we fix S and consider nC 1 elements x0;:::xn contained
in the small subset

S
k�0

eS.dS/2k � T A, so that we can write without loss of
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generality
xi D ai

0da
i
1 :::da

i
2ki

2�2kiA ; 8i 2 f0;:::;ng
for some elements ai

j 2 S . Therefore, we must show that the element


n
0.x0dx1 :::dxn/ 2�C

c .G/

lies in a small subset of �C
anB D T B, depending only on S . We will use the

following notation. If b0;:::;b2k are 2kC1 elements in Cc.G/D�0
c.G/, we denote

by b0db1 :::db2k the corresponding differential form in �C
c .G/: it is a function in

Cc.G
2kC1/ whose evaluation at a point .g0;:::;g2k/ reads

b0db1 :::db2k.g0;:::;g2k/D b0.g0/b1.g1/:::b2k.g2k/ :

Also, an exact form db1 :::db2k is an element of Cc.G
2k/:

db1 :::db2k.g1;:::;g2k/D b1.g1/:::b2k.g2k/ :

Then the product on �C
c .G/ induced by the inclusion �C

c .G/ � �C
anB is of course

of Fedosov type. The differential form 
n
0.x0dx1 :::dxn/ is given by the sum (64).

Let us isolate for example the last term,

I D tn
Z

�nC1

ds�.e�s0t2D2

�0�e�s1t2D2 ˇ ŒD;�1��e�s2t2D2

:::ˇ ŒD;�n��e�snC1t2D2

/ ;

with the notation �i� WD ��.xi / D �.ai
0/d�.a

i
1/:::d�.a

i
2ki
/. The products between

the �i�’s and ŒD;�i��’s are again of Fedosov type. To become familiar with these
notations, let us calculate a little example where nD 1 and

x0 D a0da1da2 2�2A ; x1 D a3 2�0A :

We abbreviate �.ai /D �i . Thus one wants to estimate the supremum norm of

I D t

Z
�2

ds�.e�s0t2D2

.�0d�1d�2/e
�s1t2D2 ˇ ŒD;�3�e

�s2t2D2

/ :

It is an element of �2
c.G/˚�4

c.G/. The operator under the trace is computed as
follows:

e�s0t2D2

.�0d�1d�2/e
�s1t2D2 ˇ ŒD;�3�e

�s2t2D2

D e�s0t2D2

�0d�1d.�2e
�s1t2D2

ŒD;�3�/e
�s2t2D2

�e�s0t2D2

�0d.�1�2/e
�s1t2D2

dŒD;�3�e
�s2t2D2

Ce�s0t2D2

�0�1d�2e
�s1t2D2

dŒD;�3�e
�s2t2D2

�e�s0t2D2

d�0d�1d�2e
�s1t2D2

dŒD;�3�e
�s2t2D2

:
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The first three terms of the r.h.s. lie in the summand Cc.G
3I`1/ of the two-form

space �2
c.GI`1/, whereas the last term is in the summand Cc.G

4I`1/ of the four-
form space �4

c.GI`1/. Therefore, we can evaluate the integrand of I either on three
points:

j�.e�s0t2D2

.�0d�1d�2/e
�s1t2D2 ˇ ŒD;�3�e

�s2t2D2

/j.g0;g1;g2/

�
Z

G

dhke�s0t2D2

�0.g0/�1.g1/�2.h/e
�s1t2D2

ŒD;�3�.g2h
�1/e�s2t2D2

�e�s0t2D2

�0.g0/�1.h/�2.g1h
�1/e�s1t2D2

ŒD;�3�.g2/e
�s2t2D2

Ce�s0t2D2

�0.h/�1.g0h
�1/�2.g1/e

�s1t2D2

ŒD;�3�.g2/e
�s2t2D2k1

� Tr.fe�t2D2

f /

Z
G

dh.b0.g0/b1.g1/b2.h/b3.g2h
�1/

Cb0.g0/b1.h/b2.g1h
�1/b3.g2/

Cb0.h/b1.g0h
�1/b2.g1/b3.g2//

� Tr.fe�t2D2

f /.b0db1d.b2b3/C b0d.b1b2/db3 C b0b1db2db3/.g0;g1;g2/ ;

or on four points:

j�.e�s0t2D2

.�0d�1d�2/e
�s1t2D2 ˇ ŒD;�3�e

�s2t2D2

/j.g0;g1;g2;g3/

� ke�s0t2D2

�0.g0/�1.g1/�2.g2/e
�s1t2D2

ŒD;�3�.g3/e
�s2t2D2k1

� Tr.fe�t2D2

f /b0.g0/b1.g1/b2.g2/b3.g3/

� Tr.fe�t2D2

f /.db0db1db2db3/.g0;g1;g2;g3/ :

We have adopted the notations and method of the proof of Proposition 2.4: bi 2
Cc.G/ is the positive function k�ik1 for i D 0;1;2, b3 D kŒD;�3�k1, and f 2
C1

c .M/, 0 � f � 1 is a plateau function verifying �i D f�if . All the bi ’s belong
to a small subset TS in the bornology of the LF-space Cc.G/, depending only on S .
We estimate the component of I in �2

c.G/ as follows. Consider it as an element of
the subspace B Ő B Ő B ��2B. Denote by k�k Ő 3 the projective norm on the Banach
space B Ő 3 coming from the L1-norm k�k of B. If p2m W�C

c .G/!�2m
c .G/ denotes

the projection onto 2m-forms, we have

kp2Ik Ő 3 � t

2
Tr.fe�t2D2

f /kb0db1d.b2b3/C b0d.b1b2/db3 C b0b1db2db3k Ő 3 ;

where the factor 1=2 comes from the integration over �2. Each of the three terms
in the r.h.s can be controlled, for instance

kb0db1d.b2b3/k Ő 3 D kb0kkb1kkb2b3k � 
4
S
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with the parameter 
S D kTSk depending only on S . Consequently,

kp2Ik Ő 3 � t

2
Tr.fe�t2D2

f /3
4
S :

In the same way, the component of I in �4B may be estimated by the projective
norm k � k Ő 4 on B Ő 4. One has kdb0db1db2db3k Ő 4 D kb0kkb1kkb2kkb3k, so that

kp4Ik Ő 4 � t

2
Tr.fe�t2D2

f /
4
S :

Note that we could control not only the Banach norm of I as a L1 function over
G3 and G4, but also its supremum norm as a continuous function with compact
support. Although we do not need it for the moment, this estimate will be useful
for proving Corollary 3.3. Let us look for example at the supremum norm of the
sum b0db1d.b2b3/ C b0d.b1b2/db3 C b0b1db2db3 2 �2

c.G/, as a function over
G3. We know that the bi ’s belong to a small subset TS � Cc.G/, hence there is a
compact subset KS �G and a number �S such that bi has support contained in KS

and supg2KS
jbi .g/j � �S . Moreover, the norm of a product bibj may be controlled

as follows:

sup
g2G

j.bibj /.g/j � sup
g2G

Z
G

dhjbi .h/bj .gh
�1/j � �2

S

Z
KS

dhD �2
S jKS j ;

where jKS j denotes the volume of KS with respect to the Haar measure dh.
Therefore, we deduce the following bound for the supremum norm of p2I over
G3:

sup
G3

jp2I j � t

2
Tr.fe�t2D2

f /3jKS j�4
S :

Now turn back to the general case. The last term of the sum (64),

I D tn
Z

�nC1

ds�.e�s0t2D2

�0�e�s1t2D2 ˇ ŒD;�1��e�s2t2D2

:::ˇ ŒD;�n��e�snC1t2D2

/ ;

with �i� D �.ai
0/d�.a

i
1/:::d�.a

i
2ki
/, is a differential form in �C

c .G/ of degree � 2k,
for k DPn

iD0ki . First, remark that the commutator ŒD;�i�� is a differential form of
degree 2ki (recall D is odd):

ŒD;�i��D ŒD;�.ai
0/�d�.a

i
1/:::d�.a

i
2ki
/

C
2kiX
j D1

.�/j�.ai
0/d�.a

i
1/:::d ŒD;�.a

i
j /�:::d�.a

i
2ki
/ :
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It is a sum of 2ki C 1 terms, so that I may actually be written as a sum of .2k1 C
1/:::.2kn C1/ terms. Let us concentrate on one of these. If we neglect the presence
of the heat operators for a while, we are led to calculate the Fedosov product

��.a0
0da

0
1 :::da

0
2k0
/ˇ ��.a1

0da
1
1 :::da

1
2k1
/ˇ :::ˇ ��.an

0da
n
1 :::da

n
2kn
/

D ��.a0
0da

0
1 :::da

0
2k0
a1

0da
1
1 :::da

1
2k1
:::an

0da
n
1 :::da

n
2kn
/

C terms of degree > 2k,

where some �.ai
j /’s may be replaced by the commutator ŒD;�.ai

j /� as well. We
find an upper bound for this quantity via the introduction of the functions bi

j D
k�.ai

j /k1 or kŒD;�.ai
j /�k1 over G, as in the above little example. All the bi

j ’s are
contained in a small subset TS � Cc.G/ depending only on S . It is not difficult
to see, using the Leibniz rule, that the term of degree 2k in the r.h.s. of the above
equality is bounded by a sum of .2k0 C 1/:::.2kn�1 C 1/ terms (in the example, it
corresponds to 3 terms b0db1d.b2b3/C b0d.b1b2/db3 C b0b1db2db3). Therefore,
by proceeding as before, the component of I belonging to the Banach subspace
B Ő .2kC1/ ��2kB may be estimated by the projective norm k � k Ő .2kC1/ as follows:

kp2kIk Ő .2kC1/� tn

.nC 1/Š
Tr.fe�t2D2

f /.2k0 C 1/

 
n�1Y
iD1

.2ki C 1/2

!
.2kn C 1/
2kCnC1

S :

The same estimate holds for all the .nC1/ terms of the sum (64), so that finally the
component of 
n

0.x0dx1 :::dxn/ in �2kB verifies the inequality

kp2k

n
0.x0dx1 :::dxn/k Ő .2kC1/

� tn

nŠ
Tr.fe�t2D2

f /.2k0 C 1/

 
n�1Y
iD1

.2ki C 1/2

!
.2kn C 1/
2kCnC1

S :

Next, the components of I of degree 2m > 2k arise from the Fedosov products
between the �i�’s, and the number of terms of a given degree is strictly less
than .2k0 C 1/:::.2kn�1 C 1/ (in the little example appeared the only term
db0db1db2db3). Thus when 2m > 2k one has the same bound for the projective
norms k � k Ő 2m or k � k Ő .2mC1/ on �2mB:

kp2m

n
0.x0dx1 :::dxn/k Ő .2m;2mC1/

� tn

nŠ
Tr.fe�t2D2

f /.2k0 C 1/

 
n�1Y
iD1

.2ki C 1/2

!
.2kn C 1/
2kCnC1

S :

Suppose now 
S � 1 (if it is less than 1, the following discussion is trivial), so
that 
2m

S � 
2k
S wheneverm� k. Since the number .2k0 C1/.2k1 C1/2 :::.2kn�1 C
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1/2.2knC1/ is always bounded by 16k , the component of the form 
n
0.x0dx1 :::dxn/

in any of the subspaces �2mB, m 2 N, can be estimated as

kp2m

n
0.x0dx1 :::dxn/k Ő .2m;2mC1/ � tn

nŠ
Tr.fe�t2D2

f /16k
2kCnC1
S

� Tr.fe�t2D2

f /
.t
S /

n

nŠ
.4
S /

2mC1 :

Finally, remark that we may also estimate as in the little example the supremum
norm of p2m


n
0.x0dx1 :::dxn/ 2 �2m

c .G/ as a continuous function with compact
support on G2m [G2mC1. Indeed, for any elements b0;:::;bk contained in the small
subset TS � Cc.G/, one has by induction on k

sup
g2G

j.b0 :::bk/.g/j � �kC1
S jKS jk ;

where the numbers �S and jKS j depend only on S . Therefore

sup
G2m[G2mC1

jp2m

n
0.x0dx1 :::dxn/j � Tr.fe�t2D2

f /
.t�S jKS j/n

nŠ
.4�S /

2mC1 :

We are ready to conclude. The function n 7! .t
S /
nŒn=2�Š=nŠ being bounded, the

element
Œn=2�Š
n

0.x0dx1 :::dxn/ 2�C
anB

is a finite sum of differential forms whose norm in each subspace �2mB is bounded
by a constant times 
2mC1

S , uniformly in n. By the very definition of the analytic
bornology on�C

anB, this shows that the collection of components 
0 sends the small
subset of �TA [

n�0

Œn=2�ŠeU .dU /n ; with U D
[
k�0

eS.dS/2k ;

to a small subset of the analytic tensor algebra �C
anB Š T B. Hence 
0 extends to a

bounded map��T A ! T B. One proceeds in the same manner with 
1 W��T A !
�1T B\ and the Chern-Simons transgressions.

The cocycle 
.�C
anE ;��;tD/ is a lift of the cocycle 
.E ;�;tD/ in the sense that

the diagram

��T A
�.�C

an E;��;tD/���������! X.T B/

�
??y ??y

��A
�.E;�;tD/������! X.B/

(68)
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commutes. The vertical arrows are induced by the (bounded) multiplication
homomorphisms T A ! A and T B ! B. The left vertical arrow is an homotopy
equivalence by virtue of the Goodwillie theorem. Since the entire cyclic homology
of A is also computed by the X-complex X.T A/, one can construct an explicit
chain map � W X.T A/ ! ��T A realizing this equivalence [21]. The bivariant
Chern character is thus represented by the composition

ch.E ;�;D/D 
.�C
anE ;��;tD/ ı � WX.T A/!X.T B/ : (69)

3. Index theorem

In this section we will state the main result of this paper, namely, an index theorem
in entire cyclic cohomology. Given a locally compact group G acting properly on
a manifold M , and B any admissible completion of the convolution algebra Cc.G/,
our aim is to compute the composition of the assembly map with the Chern character
in entire cyclic homology

ch ı� WKG� .M/!K�.B/!HE�.B/ : (70)

Actually, for practical purposes we are only interested in the K-homology classes
ŒD� 2 KG� .M/ represented by Dirac-type operators D on M . The computation of
chı�.D/will be related to the bivariant Chern character introduced in section 2. As
a corollary, we find a localization formula generalizing the results of Atiyah-Singer
[1], Connes-Moscovici [8], or Mishchenko-Fomenko [20].

Hence letM be a completeG-compact Riemannian manifold without boundary,
on which G acts properly by isometries. Let A be the crossed-product algebra
C1

c .M/ Ì G (section 2). It is an LF-algebra and its topological K-theory group
K0.A/, in the sense of bornological algebras [19], is provided with a canonical
element Œe�. Indeed, since M is proper and G-compact, we can find a cut-off
function c 2 C1

c .M/. This is a smooth, compactly supported and non-negative
function c such that Z

G

dgc.gx/2 D 1 8x 2M : (71)

Then the following formula defines an idempotent e in the crossed product algebra
A:

e.g;x/D c.x/c.gx/ 8g 2G ; x 2M ; e2 D e : (72)

TheK-theory class of e does not depend on the choice of cut-off function, two such
functions being related via a smooth homotopy. The Chern character ch.e/ in the
entire cyclic homology of even degreeHE0.A/ is represented by a cycle in the even
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part of the X-complex of the analytic tensor algebra T A. By [11, 19], it is given by
the following idempotent Oe 2 T A:

Oe D eC
X
k�1

.2k/Š

.kŠ/2
.e� 1

2
/˝ .e� e˝ e/˝k : (73)

Now let D be a G-invariant elliptic differential operator of order one representing a
class ŒD� 2 KG� .M/. In section 2 we attached to D an unbounded A-B-bimodule
.E ;�;D/ and obtained its Chern character as a bivariant entire cyclic cohomology
class

ch.E ;�;D/ 2HE�.A;B/ : (74)

The latter is represented by a chain map X.T A/ ! X.T B/, composite of the
homotopy equivalence � W X.T A/ ��! ��T A with the character 
.�C

an;��;tD/ W
��T A ! X.T B/ of proposition 2.6. Therefore the cup-product of the class
ch.e/ 2HE0.A/ with the bivariant Chern character of .E ;�;D/

ch.E ;�;D/ � ch.e/ 2HE�.B/ (75)

may be explicitly computed as an entire cyclic homology class of the admissible
completion B, of degree equal to the parity of the K-homology class ŒD�. Firstly,
the image of the idempotent Oe 2 T A under the homotopy equivalence � is given by
the following .bCB/-cycle in ��T A (see [21]):

�. Oe/D OeC
X
n�1

.�/n .2n/Š
nŠ

. Oe� 1

2
/.d Oed Oe/n ; (76)

where d is the differential of forms over T A. When the parity of ŒD� is even,
the product ch.E ;�;D/ � ch.e/ lies in HE0.B/ and is represented by the entire cycle

0.�

C
an;��;tD/ı�. Oe/ 2 T B. When the parity is odd, the product ch.E ;�;D/�ch.e/ is

an element ofHE1.B/ represented by the one-form 
1.�
C
an;��;tD/ı�. Oe/ 2�1T B\.

We will use these formulas to establish the local form of the equivariant index
theorem. Our main result is the following:

Theorem 3.1 Let D be a G-invariant elliptic differential operator of order one
representing an equivariant K-homology class ŒD� 2 KG� .M/. Consider the
crossed-product algebra A D C1

c .M/ Ì G and its canonical K-theory class
Œe� 2 K0.A/, and let B be any admissible completion of the convolution algebra
Cc.G/. Then the Chern character of the image of ŒD� under the analytic assembly
map � W KG� .M/ ! K�.B/ is given by the cup-product in bivariant entire cyclic
cohomology

ch ı�.D/D ch.E ;�;D/ � ch.e/ 2HE�.B/ ; (77)
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where ch.E ;�;D/ 2 HE�.A;B/ is the bivariant Chern character of the unbounded
bimodule associated to D by definition 2.3.

Proof: We will prove the theorem using the results of [22]. The point is that the
unbounded bimodule .E ;�;D/ is finitely summable. As a consequence, its bivariant
Chern character in entire cyclic cohomology retracts on a finite-dimensional cocycle
directly related to the assembly map. We first observe that becauseD is a differential
operator of order one on the manifold M , the triple .E ;�;D/ is p-summable for any
real number p > dimM , in the sense that

.1CD2/�1=2�.a/ 2 `p.H/ Ő B 8a 2 A :

As before H denotes the Hilbert space of square-integrable sections of the vector
bundle E !M on whichD acts. This property allows to show that the entire chain
map 
.�C

anE ;��;tD/ W ��T A ! X.T B/ is cohomologous to a chain map of finite
degree, i.e. vanishing on �nT A for n sufficiently large. This retraction property
was explained at a formal level in [22], and we only have to check that it actually
works in our present case. For convenience, let us sketch the main steps of this
process. It is a bivariant generalization of the retraction presented in [9] for finite-
dimensionalK-cycles over an algebra A. Recall that in the proof of Proposition 2.6,
we established the following estimate for the component 
n

0 W �nTA ! TB of the
chain map 
.�C

anE ;��;tD/. For any small subset S � A and nC 1 elements of the
(non completed) tensor algebra x0;:::;xn 2 TA D�CA given by

xi D ai
0da

i
1 :::da

i
2ki

ai
j 2 S ;

we can find a constant 
S depending only on S , such that the component of the
non-commutative form 
n

0.x0dx1 :::dxn/ in �2mB is bounded in norm by

kp2m

n
0.x0dx1 :::dxn/k Ő .2m;2mC1/ � Tr.fe�t2D2

f /
.t
S /

n

nŠ
.4
S /

2mC1

for any m 2 N. Recall that f 2 C1
c .M/ is a plateau function, 0 � f � 1, which

also depends on S . The odd components 
nC1
1 W �nC1TA ! �1TB\ verify the

same kind of bound, also with the factor Tr.fe�t2D2

f /tn. Moreover, proceeding as
in the proof of Proposition 2.5, one shows the following bound for the component
of the Chern-Simons form csn

0 W�nTA ! TB Ő �1R�C,

kp2mcs
n
0 .x0dx1 :::dxn/k Ő .2m;2mC1/�Tr.fe�t2D2=2f /2

.nC 2/

nŠ

.t
S /
n

t
.4
S /

2mC1

and similarly for the odd components csnC1
1 W �nC1TA ! �1TB\ Ő �1R�C. Now,

p-summability implies that the operator .1CD2/�p=2f is trace-class for any p >
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dimM . Hence

Tr.fe�t2D2

f /� kf .1CD2/p=2e�t2D2

.1CD2/�p=2f k1

� k.1CD2/p=2e�t2D2k1k.1CD2/�p=2f k1

� C

tp
k.1CD2/�p=2f k1

for small values of t , where the constant C is the maximum of the function x !
.1Cx/p=2e�x over Œ0;1�. Consequently, the components 
n

0 and 
nC1
1 behave like

tn�p when t ! 0, whereas the Chern-Simons components csn
0 and csnC1

1 behave
like tn�p�1. Therefore, if n is sufficiently large, one has limt!0


n.�C
anE ;��;tD/D

0, and the one-form csn.�C
anE ;��;tD/ is integrable over any interval Œ0;t0� w.r.t.

the parameter t . Then following exactly the proof of [22] Proposition 4.2, for any
choice t0 > 0 we can cut the tail of the cocycle 
.�C

anE ;��;t0D/ by adding an entire
coboundary, which yields for any integer n large enough the following chain map
��T A !X.T B/:

b
n
t0
.�C

anE ;��;D/ WD
nC1X
kD0


k.�C
anE ;��;t0D/

C
Z tDt0

tD0

�
.b˚ \d/csnC1.tD/� .�/i .csnC1.tD/C csnC2.tD// ıB� ;

where i D 0;1 is the parity of the bimodule, and csn.tD/ D csn.�C
anE ;��;tD/.

The property of this new cocycle is that it vanishes on �kT A for k > nC 1. Its
cohomology class in the complex Hom.��T A;X.T B// does not depend on n nor
t0, and coincides with the Chern character of .E ;�;D/. The next step is then to take
the limit t0 ! 1 of the above cocycle. This requires to modify slightly the triple
.E ;�;D/ so that the operator D becomes invertible. Consider the C-C-bimodule
of even degree .C2;˛;Hm/ where C2 is given its natural Z2-graduation, and the
homomorphism ˛ W C !M2.C/ and the Fredholm operator Hm read

˛.1/D
�
1 0

0 0

�
; Hm D

�
0 m

m 0

�
;

for a given mass term m 2 R. Then the graded tensor product of bimodules
.E 0;�0;D0/D .E ;�;D/ Ő .C2;˛;Hm/ defined by

E 0 D E Ő C2 ; �0 D � Ő ˛ ; D0 DD˝ 1C 1˝Hm ;

is an A-B-bimodule homotopic to .E ;�;D/, modulo addition of a degenerate
bimodule (i.e. for which the homomorphism � is zero). Therefore, the homotopy
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invariance of the bivariant Chern character with respect to the parameter m shows
that the chain map 
.�C

anE ;��;tD/ is cohomologous to 
.�C
anE 0;�0�;tD0/ for any

choice of m 2 R. Furthermore, for m ¤ 0, the operator D0 is invertible since
D02 D D2 Cm2. Using the estimates established in the proof of Proposition 2.6, it
is not hard to show that limt0!1
k.�C

anE 0;�0�;t0D0/D 0 for any k, and the limit

b
n1.�C
anE 0;�0�;D0/D

Z 1

0

�
.b˚\d/csnC1.tD0/�.�/i .csnC1.tD0/CcsnC2.tD//ıB�

is a well-defined chain map ��T A ! X.T B/ representing the bivariant Chern
character of .E ;�;D/, provided n is large enough. As expected, the cohomology
class of b
n1.�C

anE 0;�0�;D0/ enjoys good invariance properties, in particular with
respect to suitable homotopies of the operator D0. For any u 2 .0;1� the negative
powers of the selfadjoint operator jD0j can be defined as

jD0j�u D C.u/

Z 1

0

d


�u=2


C jD0j2 ;

where C.u/ is a normalization factor, and for u D 0 we set jD0j0 D 1. For u 2
Œ0;1�, define the one-parameter family of operators D0

u D D0jD0j�u. It connects
homotopically the operator D0 for uD 0, to its phase F 0 WDD0=jD0j for uD 1. The
operator F 0 is bounded on the Hilbert space H Ő C2 and verifies the p-summability
condition

ŒF 0;�0.a/� 2 `p.H Ő C2/ Ő B
for any a 2 A and p > dim M . Here `p is the Schatten p-class on the Hilbert space
H Ő C2. The homotopy of operators D0

u and Proposition 4.4 of [22] imply that D0
can be replaced by its phase F 0 in the formula of the cocycle b
n1.�C

anE 0;�0�;D0/
without changing the cohomology class. This invariance property is based on a
double transgression formula involving the derivative d

du
D0

u D �lnjD0jD0
u. This

yields new cocycles

b
n1.�C
anE 0;�0�;F 0/ W��T A !X.T B/

in any degree n sufficiently large (it actually suffices to choose n > p � 1 where
p is the summability degree). They all are cohomologous in bivariant entire cyclic
cohomology and represent the Chern character of the p-summable Fredholm A-
B-bimodule .E 0;�0;F 0/ (the bounded version of .E ;�;D/). Proposition 4.6 of [22]
gives an explicit formula for the cocycle b
n1.�C

anE 0;�0�;F 0/, when the degree n is
chosen with the same parity as the bimodule. It vanishes on �kT A if k is different
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from n or nC 1, and for any elements x0;:::;xnC1 2 T A one has

b
n1.�C
anE 0;�0�;F 0/.x0dx1 :::dxn/D

.�/n�.1C n
2
/

.nC 1/Š

1

2

X
�2SnC1

".
/�.F 0ŒF 0;��.0/�:::ŒF
0;��.n/�/

as an element of T B, and

b
n1.�C
anE ;�0�;F 0/.x0dx1 :::dxnC1/D
.�/n�.1C n

2
/

.nC 1/Š

1

2
\�
�

d.�0F
0ŒF 0;�1�:::ŒF

0;�nC1�/

C
X

�2SnC2

".
/F 0ŒF 0;��.0/�:::ŒF
0;��.n/�d��.nC1/

�
as an element of �1T B\. Here, SnC1 denotes the group of cyclic permutations on
nC 1 elements, and we have adopted the notation �i D �0�.xi /. It is instructive to
look at the commutators. One sees that if x 2�CA D TA is an element of the non-
completed tensor algebra, the commutator ŒF 0;�.x/� is an endomorphism of �C

anE 0
which belongs to the subalgebra of p-summable operators

`p.H Ő C2/ Ő �CB � EndT B.�
C
anE 0/ :

Because n > p�1, the product of commutators ŒF;�i � in the above cocycle yields a
trace-class endomorphism (recall by the way that the product on �CB is Fedosov),

ŒF 0;��.0/�:::ŒF
0;��.n/� 2 `1.H Ő C2/ Ő �CB ;

so that taking the (super)trace � of operators on H Ő C2 is well-defined. One
shows that b
n1.�C

anE 0;�0�;F 0/ extends to a cocycle on the analytic tensor algebra
T A using the Hölder inequality and the kinds of estimates established in the
proof of Proposition 2.6. The bivariant cyclic cohomology class of the cocyclesb
n1.�C

anE 0;�0�;F 0/ also enjoys an invariance property with respect to p-summable
homotopies of the homomorphism �0 and the operator F 0, see [22] for details.

We now restrict to the case where the parity of the bimodule is even. Then the
Hilbert space H D L2.E/ is Z2-graded, and in usual 2� 2 matrix notation we have

E D
�

EC
E�

�
; �.a/D

�
�C.a/ 0

0 ��.a/

�
; D D

�
0 D�
DC 0

�
:

The “massive amplification” .E 0;�0;D0/ is also a Z2-graded bimodule given in 2�2
matrix notation by

E 0 D
�

E
E

�
; �0.a/D

�
�0C.a/ 0

0 �0�.a/

�
; D0 D

�
0 Dm

Dm 0

�
;
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with �0C D
�
�C 0

0 0

�
, �0� D

�
0 0

0 ��

�
, Dm D DCm� and � D

�
1 0

0 �1
�

.

The phase of D0 is therefore

F 0 D
�

0 Fm

Fm 0

�
; with Fm DDm=jDmj ; F 2

m D 1 :

Now, remark that the cocycle b
n1.�C
anE 0;�0�;F 0/ is clearly equal to the cocycleb
n1.�C

anE 0;�00�;F / associated to the following bounded A-B-bimodule .E 0;�00;F /,
where the Fredholm operator F is put into a canonical form:

�00.a/D
�
Fm�

0C.a/Fm 0

0 �0�.a/

�
; F D

�
0 1

1 0

�
:

We are now ready to evaluate these cocycles on the Chern character of the canonical
K-theory class Œe� 2 K0.A/. Let e 2 A be the idempotent obtained via a cut-off
function c 2 C1

c .M/,
e.g;x/D c.x/c.gx/ :

The image of e under the homomorphism � W A ! EndB.E/ is the following
idempotent operator

.�.e/	/.g/D
Z

G

dhcr.h/c � 	.gh�1/ ; 8	 2 E ; g 2G ;

where the cut-off function c acting on the sections of the vector bundle E by
pointwise multiplication, is viewed as an element of L.H/, and r.h/ 2 U.H/ is
the unitary representation of the group. The idempotent �.e/ is related to the
construction of the analytic assembly map [6]. To see this, let P be the algebra
of properly supported, G-invariant pseudodifferential operators [14, 16] acting on
C1

c .E/, P0 � P the subalgebra of operators of order � 0, and J � P the ideal of
smoothing operators. We regard P0 and J as subalgebras of L.H/. One obtains an
algebra homomorphism

� W J ! Cc.GIK/ ;
by setting �.T /.g/ D cT r.g/c for any T 2 J . K � L.H/ denotes the (nuclear)
Fréchet algebra of “smooth compact operators” [19] and Cc.GIK/ Š K Ő Cc.G/ is
the convolution algebra of K-valued continuous functions with compact support on
G. In fact Cc.GIK/ is a subalgebra of the endomorphisms EndB.E/, and we can
extend � to an homomorphism on the algebra of all pseudodifferential operators of
order � 0

� W P0 ! EndB.E/
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by setting

.�.T /	/.g/D
Z

G

dhcT r.h/c � 	.gh�1/ 8 T 2 P0 ; 	 2 E :

Since P0 has a unit (the identity operator on C1
c .E/), a direct computation shows

the equality
�.1/D �.e/

of idempotents in EndB.E/. Introduce the matrices

eC D
�
1 0

0 0

�
; e� D

�
0 0

0 1

�
2 L.H/ ;

and let us split the idempotent �.1/D �.e/ into two parts �.eC/;�.e�/ according to
the Z2-grading of EndB.E/:

�.eC/D �0C.e/D
�
�C.e/ 0

0 0

�
; �.e�/D �0�.e/D

�
0 0

0 ��.e/

�
:

Consider now the bounded C-B-bimodule .E 0;e0;F / defined by

E 0 D
�

E
E

�
; e0 D �00.e/D

�
Fm�.eC/Fm 0

0 �.e�/

�
; F D

�
0 1

1 0

�
:

The idempotent e0 is viewed as an homomorphism C ! EndB.E 0/. The char-
acter b
n1.�C

anE 0;e0�;F / of this bounded bimodule is a cocycle in the complex
Hom.��T C;X.T B//, that is, taking into account the homotopy equivalence
��T C 	 C, a cycle in X.T B/. By definition the Chern character of Œe� 2K0.A/ is
represented by the entire cycle �. Oe/ 2 ��T A, and because e0 D �00.e/ one has the
equality of entire cycles over B:

b
n1.�C
anE 0;�00�;F / � �. Oe/Db
n1.�C

anE 0;e0�;F / 2 T B ;

for any even integer n > p � 1. The invariance of b
n1 with respect to smooth
homotopies allows to deform .E 0;e0;F / into a bimodule representing �.D/. First,
remark that the operator Fm is G-invariant but not properly supported; hence Fm …
P0. However, we can find a small deformation of Fm which lies in P0. Indeed, let
Q W C1

c .EC/! C1
c .E�/ be the pseudodifferential operator of order 0 defined by

QDDC � ı1 ;

where ı1 is the elliptic operator with symbol �.x;p/ D .m2 C kpk2/�1=2, where
kpk2 is the symbol of D2. One can find a properly supported and G-invariant
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parametrix P W C1
c .E�/ ! C1

c .EC/ for Q. Then PQ � 1 and QP � 1 are
smoothing operators. We introduce the invertible operator T 2 P0

T D
�

1�PQ P

2Q�QPQ QP � 1
�
; T D T �1 :

Then T is a small deformation of Fm, in the sense that the operators .T � Fm/f

and f .T � Fm/ are in `p.H/ for any compactly supported function f 2 C1
c .M/.

We want to show that, upon stabilization by 2 � 2 matrices, the idempotent e0 is
p-summably homotopic to

e00 D
�
�.T �1eCT / 0

0 �.e�/

�
:

To this end, let us replace e0 by its stabilization defined on its diagonal elements as
follows

Fm�.eC/Fm !
�
Fm�.eC/Fm 0

0 0

�
; �.e�/!

�
�.e�/ 0

0 0

�
:

For any parameter t 2 Œ0;1�, introduce the invertible matrix

Ut DR�1
t

�
Fm 0

0 �.T /C 1� �.1/
�
Rt ;

where Rt is the rotation matrix

Rt D
�

cos.�t=2/ �sin.�t=2/
sin.�t=2/ cos.�t=2/

�
:

We next observe that the operators �.T /�Fm�.1/ and �.T /��.1/Fm belong to the
subalgebra of p-summable endomorphisms `p.H/ Ő B. Indeed by evaluation on a
point g 2G,

.�.T /�Fm�.1//.g/D cT r.g/c �Fmcr.g/c D �ŒFm;c�r.g/cC c.T �Fm/r.g/c

is a p-summable operator on H, and similarly with �.T /� �.1/Fm. This property
allows to show by a direct computation that the difference of idempotents

U�1
t

�
�.eC/ 0

0 0

�
Ut �

�
�.e�/ 0

0 0

�
lies in the subalgebra `p.H/ Ő M2.C/ Ő B for any t 2 Œ0;1�. This shows that after
stabilization, the idempotent e0 corresponding to the value t D 0 is smoothly and
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p-summably homotopic to the idempotent e00 corresponding to t D 1. Hence
homotopy invariance implies that the cocycleb
n1.�C

anE 0;e0�;F / is cohomologous tob
n1.�C
anE 0;e00�;F /. Finally, it remains to observe that the K-theory class represented

by the C-B-bimodule .E 0;e00;F / is by definition the image of ŒD� 2 KG
0 .M/ under

the assembly map. Indeed, the idempotents �.T �1eCT / and �.e�/ lie in the
subalgebra of endomorphisms Cc.GIK/ � K Ő B (augmented by adjoining units
to the diagonal blocks), and one has by definition

�.D/D Œ�.T �1eCT /�� Œ�.e�/� 2K0.K Ő B/ŠK0.B/ :

We already know that the product ch.E ;�;D/ � ch.e/ 2 HE0.B/ is represented by
the entire cycleb
n1.�C

anE 0;e00�;F / for any even integer n > p� 1. We claim that the
latter also represents the Chern character of �.D/. In effect, since the difference
�.T �1eCT / � �.e�/ lies in a subalgebra of trace-class operators K Ő Cc.G/ �
`1.H/ Ő B, the cyclesb
n1.�CE 0;e00�;F / are well-defined and cohomologous for any
even degree n, including the smallest possible value nD 0. One has

b
01.�CE 0;e00�;F /D 1

2
Trs.F ŒF;e

00��/D Tr.�.T �1eCT /� � �.e�/�/D ch.�.D// ;

where more precisely �.T �1eCT /� and �.e�/� are idempotents of the algebra
`1 Ő T B (augmented by adjoining units to the diagonal blocks), lifting the idem-
potents �.T �1eCT / and �.e�/ of `1 Ő B (augmented). This proves the theorem in
the even case.

In odd degree, the Bott class ˇ 2 KZ
1 .R/ is defined as the K-homology class

of the Dirac operator of the real line R provided with the canonical action of the
group Z by translations. The image of any odd class ŒD� 2 KG

1 .M/ under the
analytic assembly map is obtained by first taking the external product with the
Bott class which yields an element of the K-homology KZ�G

0 .R �M/, and then
composing with the assembly map in even degree. One thus obtains an element of
K0.C

1.S1/ Ő B/ which may further be sent to the groupK1.B/D Coker.K0.B/!
K0.C

1.S1/ Ő B//. Hence the equality ch.�.D// D ch.E ;�;D/ � ch.e/ in the odd
case stems from the above study of the even case together with the compatibility of
the Chern character with Bott periodicity [21].

Theorem 3.1 enables to find a local index formula, after taking the limit t ! 0

of the cocycles 
.�C
anE ;��;tD/. This formula involves some classical equivariant

Chern classes for the various bundles defined over the manifold M , and a kind
of “noncommutative” Chern character form associated to the canonical K-theory
element Œe� 2K0.A/. We first have to define the crossed-product algebra C1

c .M/Ì
TB. Recall that the non-completed tensor algebra TB is the direct sum

TB D B˚B Ő B˚B Ő B Ő B ˚ ::: (78)
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Since an n-fold tensor product B Ő n is isomorphic, as a bornological vector space,
to the space of integrable functions L1.Gn;d�n/ with respect to the admissible
measure d�, we see that the product of two homogeneous tensors x 2 B Ő n and
y 2 B Ő m is a function of nCm points on G:

.xy/.g1;:::;gnCm/D x.g1;:::;gn/y.gnC1;:::;gnCm/ : (79)

We form the crossed product C1
c .M/Ì TB as follows. As a vector space, it is the

completed tensor product

C1
c .M/ Ő TB D

M
n�1

C1
c .M/ Ő B Ő n D

M
n�1

lim�!
K

L1.GnIC1
K .M// ; (80)

where the inductive limit is taken over the compact subsets K �M and C1
K .M/ is

the space of smooth functions with support inK. The multiplication of two elements
x 2 L1.GnIC1

K1
.M// and y 2 L1.GmIC1

K2
.M// is defined by

.xy/.g1;:::;gnCm/D x.g1;:::;gn/y.gnC1;:::;gnCm/
gn:::g1 ; (81)

where the superscript gn:::g1 denotes the pullback of the smooth function with
compact support y.gnC1;:::;gnCm/ 2 C1

c .M/ by the diffeomorphism gn :::g1 2G.
We obtain an algebra homomorphism  W TA ! C1

c .M/ÌTB by setting

 .a1 ˝ :::˝ an/.g1;:::;gn/D a1.g1/a2.g2/
g1 :::an.gn/

gn�1:::g1 : (82)

Alternatively, we may describe this homomorphism in terms of the Fedosov
algebras of differential forms .�CA;ˇ/ D TA and .�CB;ˇ/ D TB. Observe
that restricted to the 2k-forms over A,  yields a linear map

 W�2kA ! C1
c .M/ Ő �2kB : (83)

Moreover, the space �2kB D B Ő 2k ˚ B Ő .2kC1/ may be identified with a space of
functions over the locally compact space G2k [G2kC1, and one has

 .a0da1 :::da2k/.g0;:::;g2k/D a0.g0/a1.g1/
g0 :::a2k.g2k/

g2k�1:::g0 (84)

at any point .g0;:::;g2k/ 2G2kC1, and similarly

 .da1 :::da2k/.g1;:::;g2k/D a1.g1/a2.g2/
g1 :::a2k.g2k/

g2k�1:::g1 (85)

at any point .g1;:::;g2k/ 2 G2k . Next, let �c.M/ denote the differential graded
(DG) algebra of smooth differential forms with compact support on M . The
supremum norm of a differential form and all its derivatives over compact subsets is
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defined with the help of the Riemannian metric. Hence �c.M/ is an LF-algebra as
a union of Fréchet spaces, and we gift it with the corresponding bounded bornology.
Denote by ı the de Rham coboundary on �c.M/. Replacing C1

c .M/ by �c.M/

in the above construction, we define the crossed product algebra �c.M/ÌTB. The
multiplication of two elements is given by a formula analogous to (81), involving
the pullback of differential forms by diffeomorphisms. Moreover, the de Rham
coboundary induces a differential

ı W�n
c .M/ Ő TB !�nC1

c .M/ Ő TB (86)

by acting only on the first factor, which turns �c.M/ Ì TB into a DG algebra.
C1

c .M/Ì TB is of course its subalgebra of degree zero forms. Consider now the
space of noncommutative one-forms �1TB. It is a bimodule over TB, isomorphic
to eTB Ő B Ő eTB (see [19], eTB is the unitalization of TB). Now it is clear how
to endow the tensor product �c.M/ Ő �1TB with a bimodule structure over the
algebra �c.M/Ì TB: the left and right module maps are given again by formulas
like (81); the elements of �c.M/ are pulled-back by diffeomorphisms whenever
they cross a tensor product B Ő n. Finally, there is a derivation

d W�c.M/ÌTB !�c.M/ Ő �1TB (87)

induced by the universal derivation d W TB ! �1TB acting only on the second
factor (one has nevertheless to put a minus sign when d crosses a differential form
of odd degree in�c.M/). We will use the DG algebra�c.M/ÌTB and its bimodule
�c.M/ Ő �1TB to construct a linear map

‰ W�TA !�c.M/ Ő X.TB/ ; (88)

where �TA is the DG algebra of noncommutative forms over the tensor algebra
TA. Here we ignore the various boundary maps on the complexes�TA,�c.M/ or
X.TB/, because ‰ will not exactly be a chain map. For any n-form x0dx1 :::dxn 2
�nTA, set

‰.x0dx1 :::dxn/D 1

nŠ
 .x0/ı .x1/:::ı .xn/ (89)

C 1

nŠ

nX
iD1

\ .x0/ı .x1/:::d .xi /:::ı .xn/ :

The first term of the r.h.s. is an element of �n
c .M/ Ő TB, whereas the second

lies in �n�1
c .M/ Ő �1TB\. Next, using the identification of X.TB/ with the
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space of noncommutative forms �B, the map ‰ W �TA ! �c.M/ Ő �B may be
decomposed into components of any degree n 2 N:

‰n W�TA !�c.M/ Ő �nB : (90)

The important remark is that each map ‰n immediately extends to the completed
space ��T A. This is due to the fact that the degree of differential forms in �c.M/

and �nB cannot exceed a given number (respectively, dim M and n). This leads to
the following definition.

Definition 3.2 Let e 2 A be an idempotent, Oe 2 T A its idempotent lift and �. Oe/ 2
��T A its Chern character in the complex of entire forms over T A. For any n 2 N,
we define the mixed differential form

chn.e/ WD‰n.�. Oe// 2�c.M/ Ő �nB : (91)

The isomorphism �nB D B Ő n ˚B Ő .nC1/ shows that chn.e/ may be identified with
a continuous and compactly supported function on the locally compact space Gn [
GnC1, with values in �c.M/.

The other ingredients of the local index formula are well-known. They already
appear in the Atiyah-Segal-Singer index theorem [1] or the Lefschetz fixed point
theorem [13]. Let us just recall below some definitions, refering to [4] for a
comprehensive review.

For simplicity, we will restrict ourselves to K-homology classes ŒD� 2KG� .M/

of Dirac type. This means that M must be an oriented manifold, G acts on M
by orientation-preserving diffeomorphisms, the vector bundle E is a G-equivariant
Clifford module withG-invariant connection, andD is a generalized Dirac operator
associated to this connection. Now choose an element g 2G. The set of fixed points
for the diffeomorphism g 2 Diff.M/ is an union of isolated submanifoldsMg �M ,
which may be of different dimensions. The centralizer Zg �G of g is the subgroup

Zg D fz 2Gjzg D gzg : (92)

It leaves the fixed point set globally invariant and acts by diffeomorphisms on
each fixed manifold Mg of a given dimension. The restriction of the Riemannian
curvature R to Mg may therefore be considered as a Zg-invariant section of the
vector bundle ƒ2T �Mg ˝ End.T �M/ over Mg . Using the Riemannian metric on
M , we may identify the tangent and cotangent bundles TM and T �M . Let N be
the normal bundle over Mg , i.e. the orthogonal complement of the tangent bundle
of Mg in TM . Then the curvature R, as an antisymmetric matrix with two-form
coefficients, splits according to the decomposition TMg ˚N as

RD
�
R0 0

0 R1

�
; (93)
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where R0 2 ƒ2T �Mg ˝ End.TMg/ is the curvature of the Levi-Civita connection
of the submanifold Mg , and R1 2 ƒ2T �Mg ˝ End.N / is the curvature of the
normal bundle N . The Atiyah-Hirzebruch genus of Mg is the closed Zg -invariant
differential form over Mg

bA.Mg/D det1=2

�
R0=2

sinh.R0=2/

�
: (94)

Next, let us choose locally a spinor bundle S over M , and decompose the vector
bundle E as a tensor product E D S ˝E=S . This decomposition is global if M
admits a spin structure. Because any point x 2 Mg is fixed by the action of g,
the fibers of S and E=S at x carry linear representations rS .g/x and rE=S .g/x of g.
There are choices of signs to be made here, see [4]. The equivariant Chern character
of the relative bundle E=S is defined as the closed differential form

ch.E=S;g/D trs

�
rE=S .g/exp.�FE=S /

�
; (95)

where trs is the (super)trace of endomorphisms of E=S . In the same way, the
equivariant Chern character of the (locally defined) normal spinor bundle SN over
Mg is the closed differential form

ch.SN ;g/D trs

�
rS .gexp.�R1//

�
; (96)

where trs is the (super)trace of endomorphisms of SN (an orientation of the fibers
of N is chosen). ch.SN ;g/ can be expressed directly in terms of the representations
of g and R1 on the normal bundle N :

ch.SN ;g/D iq=2det1=2.1�gN exp.�R1// : (97)

In particular, the degree zero component of this differential form is the locally
constant function iq=2det1=2.1 � gN /. It never vanishes because by definition, g
has no fixed point in the normal bundle N except the zero section. Hence ch.SN ;g/

is invertible. Although these constructions are only locally defined onMg , choosing
consistently the signs implies that the cap-product

C DbA.Mg/
ch.E=S;g/
ch.SN ;g/

\ ŒMg � (98)

is a globally well-defined de Rham current over M . Indeed, the local sign
ambiguities in defining ch.E=S;g/, ch.SN ;g/ and the fundamental class ŒMg � are
killed when they are multiplied altogether. Actually C is closed and Zg-invariant.
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From theorem 3.1, we know that the image of the K-homology class ŒD� 2
KG� .M/ under the assembly map has a Chern character ch ı �.D/ 2 HE0.B/
represented by the entire cycle

ch.tD/ WD 
.�C
anE ;��;tD/ ı �. Oe/ 2X.T B/Š�anB (99)

for any parameter t > 0, and Oe 2 T A is the idempotent lift (73). We let
chn.tD/ 2�nB be the nth degree component of this cycle. Using the decomposition
�nB D B Ő n ˚ B Ő .nC1/, we see that chn.tD/ is a function on Gn [ GnC1. The
corollary below expresses the pointwise limit as t ! 0 of this function, in terms
of the (classical) equivariant characteristic classes and the noncommutative Chern
character of definition 3.2.

Corollary 3.3 Let D W C1
c .E/ ! C1

c .E/ be a G-invariant generalized Dirac
operator representing a K-homology class of Dirac type ŒD� 2 KG� .M/, and let
e 2 C1

c .M/ÌG be an idempotent representing the canonical K-theory class. For
any admissible completion B of the convolution algebraCc.G/, the Chern character
of �.D/ 2 K�.B/ is represented by the entire cycle ch.tD/ 2 �anB, t > 0. Its n-th
degree component chn.tD/ 2 �nB is a function over Gn [GnC1 whose pointwise
limit as t ! 0 is given by the localization formula

lim
t!0

chn.tD/.eg/D
X
Mg

.�/q=2

.2�i/d=2

Z
Mg

bA.Mg/
ch.E=S;g/
ch.SN ;g/

chn.e/.eg/ ; (100)

where eg 2 Gn [ GnC1, and g 2 G is the concatenation product gn :::g1 (resp.
gn :::g0) if eg D .g1;:::;gn/ (resp. eg D .g0;:::;gn/). The sum runs over the fixed
manifolds Mg of all possible dimensions d and codimensions q D dimM � d .
Finally the Chern character chn.e/ of definition 3.2 is viewed as a function on
Gn [GnC1 with values in �c.M/.

Proof: Recall that the idempotent Oe 2 T A is the analytic differential form (73):

Oe D eC
X
k�1

.2k/Š

.kŠ/2
.e� 1

2
/.dede/k 2�C

anA D T A ;

whereas its image �. Oe/ in the .bCB/-complex of entire chains ��T A is the entire
cycle

�. Oe/D OeC
X
n�1

.�/n .2n/Š
nŠ

. Oe� 1

2
/.d Oed Oe/n

with d the differential of noncommutative forms over T A. When the parity of ŒD�
is even, the composite ch.tD/D 
.�C

anE ;��;tD/ ı �. Oe/ is a cycle of even degree in
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the X-complex X.T B/ given by the series

ch.tD/D 
0
0. Oe/C

X
n�1

.�/n .2n/Š
nŠ


2n
0 .. Oe� 1

2
/.d Oed Oe/n/ 2 T B ;

whereas in the odd case,

ch.tD/D 
0
1. Oe/C

X
n�1

.�/n .2n/Š
nŠ


2n
1 .. Oe� 1

2
/.d Oed Oe/n/ 2�1T B\ :

Recall that the components 
n
0 W�nT A !�C

anB Š T B and 
n
1 W�nT A !��

anB Š
�1T B\ are defined by equations (64) and (65). We will concentrate only on the even
case since the formulas are simpler (the odd case is similar). One wishes to calculate
the limit t ! 0 of the components of the cycle ch.tD/ 2�C

anB in all degrees. Let us
denote by p2m the projection of �C

anB onto the subspace of 2m-forms �2mB. Then
one has

ch2m.tD/D p2m

0
0. Oe/C

X
n�1

.�/n .2n/Š
nŠ

p2m

2n
0 .. Oe� 1

2
/.d Oed Oe/n/ ; (101)

and each term of the series over n is actually an element the subspace of continuous,
compactly supported forms �2m

c .G/��2mB (see section 2) given by a finite sum

p2m

2n
0 .. Oe� 1

2
/.d Oed Oe/n/D

X
i0;:::;i2n

p2m

2n
0 .xi0

dxi1
:::dxi2n

/ :

Here the xi ’s are chosen amongst the components .e� 1
2
/.dede/k of the idempotent

lift Oe in degree � 2m. Hence, all the xi ’s lie in the non-completed tensor algebra
�CA D TA. Using the estimates established in the proof of Proposition 2.6, it is
possible to control the supremum norm of p2m


2n
0 .. Oe� 1

2
/.d Oed Oe/n/ as a continuous

function with compact support on G2m [G2mC1. Indeed, we know that if S � A is
a small subset, and xi D ai

0da
i
1 :::da

i
2ki

2�2kiA are such that all ai
j ’s are contained

in S , then there is a compact subset KS � G and a constant �S depending only on
S , such that

sup
G2m[G2mC1

jp2m

2n
0 .x0dx1 :::dx2n/j � Tr.fe�t2D2

f /
.t�S jKS j/2n

.2n/Š
.4�S /

2mC1 ;

for some plateau function f 2 C1
c .M/. Let us now use p-summability. From the

proof of Theorem 3.1, one knows that for small values of t ,

Tr.fe�t2D2

f /	 1

tp
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for any real number p > dim M . Consequently, the supremum of 
2n
0 is of order

t2n�p, and the tail of the series (101), for 2n > dimM , vanishes at the limit t ! 0.
We will show now that in any degree 2n 2 Œ0;dimM�, the pointwise limit of the
function p2m


2n
0 .. Oe� 1

2
/.d Oed Oe/n/ 2�2m

c .G/ leads to a local expression when t !
0. Recall the explicit formula (64)


2n
0 .x0dx1 :::dx2n/D t2n

2nX
iD0

.�/i
Z

�2nC1

ds�.e�s0t2D2

ŒD;�iC1� �e�s1t2D2

:::

:::ŒD;�2n� �e�s2n�i t2D2

�0�e�s2n�iC1t2D2

ŒD;�1��:::ŒD;�i��e�s2nC1t2D2

/ ;

for any elements x1;:::;x2n 2 TA, where �i� WD ��.xi / is the image of xi by the
homomorphism �� W TA ! EndT B.�

C
anE/. We perform the computation for the last

term (i D 2n). The element under the trace � lies in the subalgebra of trace-class
endomorphisms �C

c .GI`1/� EndT B.�
C
anE/ (see section 2),

e�s0t2D2

�0�e�s1t2D2

ŒD;�1��:::ŒD;�2n� �e�s2nC1t2D2 2�C
c .GI`1/ ;

where the products are of Fedosov type. Explicitly, if x D a0da1 :::da2k then
e�sD2

��.x/ is an element of �2k
c .GI`1/ whose evaluation on a point .g0;:::;g2k/ 2

G2kC1 is a trace-class operator on the Hilbert space H D L2.E/:

e�sD2

��.x/.g0;:::;g2k/D e�sD2

a0.g0/r.g0/:::a2k.g2k/r.g2k/ :

We recall that ai .gi / 2 C1
c .M/ is viewed as a bounded operator on H, and r WG !

U.H/ is the representation of G by pullback on the sections of E. One has

a0.g0/r.g0/:::a2k.g2k/r.g2k/D a0.g0/a1.g1/
g0 :::a2k.g2k/

g2k�1:::g0r.g2k :::g0/ ;

which shows the following equality:

e�sD2

��.x/.g0;:::;g2k/D e�sD2

 .x/.g0;:::;g2k/r.g2k :::g0/ ;

where  W TA ! C1
c .M/ Ì TB is the homomorphism (82), given in terms of

differential forms by (84, 85), and  .x/ 2 C1
c .M/ Ő �2kB is viewed as a function

onG2kC1 with values in the algebra C1
c .M/ represented in L.H/. In the same way,

the fact that D commutes with the group representation r implies

e�sD2

ŒD;��.x/�.g0;:::;g2k/D e�sD2

ŒD; .x/.g0;:::;g2k/�r.g2k :::g0/ ;

and more generally, the evaluation of the 2m-form

p2m�.e
�s0t2D2

�0�e�s1t2D2

ŒD;�1��:::ŒD;�2n� �e�s2nC1t2D2

/ 2�2m
c .G/
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on a pointeg 2G2m [G2mC1 yields

p2m�
�
e�s0t2D2

 0e
�s1t2D2

ŒD; 1�:::ŒD; 2n�e
�s2nC1t2D2

r.g/
�
.eg/

where  i D  .xi /, and g 2G is the concatenation product ofeg. The same formula
holds for all the terms of the sum (64), modulo cyclic permutations of  0, ŒD; 1�, ...
, ŒD; 2n�. Now, the computation of the kernel of the heat operator times r.g/ at the
limit t ! 0 is done in [4], chapter 6, using Getzler’s asymptotic symbol calculus. If
f0;:::;f2n 2 C1

c .M/ are smooth functions with compact support on M and g 2G,
one finds

lim
t!0

t2n�
�
e�s0t2D2

f0e
�s1t2D2

ŒD;f1�:::ŒD;f2n�e
�s2nC1t2D2

r.g/
�DX

Mg

.�/q=2

.2�i/d=2

Z
Mg

bA.Mg/
ch.E=S;g/
ch.SN ;g/

^f0ıf1 :::ıf2n ;

where the sum runs over the submanifolds Mg of fixed points of dimension d and
codimension q, and ı is the de Rham coboundary. A similar formula holds with
the cyclic permutations of f0, ŒD;f1�, ... , ŒD;f2n�. Finally, taking into account the
integration over the simplex�2nC1 which yields a factor of 1=.2nC1/Š, we are able
to evaluate the function p2m


2n
0 .x0dx1 :::dx2n/ 2�2m

c .G/ on a pointeg at the limit
t ! 0:

lim
t!0

p2m

2n
0 .x0dx1 :::dx2n/.eg/D

X
Mg

.�/q=2

.2�i/d=2.2nC 1/Š
�

Z
Mg

bA.Mg/
ch.E=S;g/
ch.SN ;g/

^
2nX

iD0

.�/ip2m

�
ı iC1 :::ı 2n 0ı 1 :::ı i

�
.eg/

where the element p2m.ı iC1 :::ı 2n 0ı 1 :::ı i / 2 �2n
c .M/ Ő �2mB is viewed

as a function on G2m [ G2mC1 with values in �2n
c .M/, and g 2 G is the

concatenation product of eg. It is therefore just a matter of simple algebraic
manipulations, using the idempotent properties of Oe 2 T A, to show that

lim
t!0

ch2m.tD/.eg/D
X
Mg

.�/q=2

.2�i/d=2

Z
Mg

bA.Mg/
ch.E=S;g/
ch.SN ;g/

ch2m.e/.eg/
as wanted. The odd case is obtained in the same way.

Remark 3.4 It must be noted that since the action of G is proper, an element g 2G
can have fixed points onM only if it is contained in a compact subgroup of G. This
implies that the function limt!0chn.tD/ is non-zero only when the concatenation g
of the pointeg belongs to a compact subgroup.
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Example 3.5 Suppose G is compact and B D L1.G;dg/ is the algebra of integrable
functions with respect to the Haar measure dg. For a compact group the only
interesting cyclic cocycles over L1.G/ are just given by bounded traces ' W
L1.G/! C, or equivalently by cyclic cocycles of degree zero. One can write

'.b/D
Z

G

dg�.g/b.g/ 8b 2 L1.G/ ; (102)

with � 2 L1.G;dg/. ' is a trace iff the function � is constant along the adjoint
orbits in G. Since ' is a cyclic cocycle of degree zero, its pairing with the Chern
character of �.D/ only involves the degree zero component ch0.tD/ 2 B. Hence
all the information we need is concentrated in degree zero. Next, we note that the
manifold M is necessarily compact, and the idempotent representing the canonical
K-theory class Œe� 2 K0.A/ may be built out of a constant cut-off function c D 1

over M , provided the Haar measure dg is normalized so that
R

Gdg D 1. Therefore

e.g;x/D 1 8g 2G ; x 2M : (103)

This particular choice of cut-off function simplifies drastically the computation of
the Chern character ch�.e/, whose degree zero component is a constant function on
G with values in �c.M/:

ch0.e/.g/D 1 8g 2G : (104)

The localization formula of corollary 3.3 then gives

lim
t!0

ch0.tD/.g/D
X
Mg

.�/q=2

.2�i/d=2

Z
Mg

bA.Mg/
ch.E=S;g/
ch.SN ;g/

(105)

for any g 2G. One recovers the Atiyah-Segal-Singer equivariant index theorem for
compact groups [1, 4].

Example 3.6 The Connes-Moscovici index theorem for coverings [8] is also a
consequence of 3.3. Indeed, let G be a countable discrete group acting freely and
properly onM , with X DGnM a compact manifold of dimension d . We may view
M as a G-principal bundle over X , with G acting by deck transformations. Any
complex vector bundle E over X can be lifted to a G-equivariant vector bundle eE
over M , and if D W C1.E/ ! C1.E/ is a generalized Dirac operator, its lift eD is
a G-invariant operator over M .
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Since G is discrete, the convolution algebra Cc.G/ is isomorphic to the group
ring CG. Let v 2Zn.G/ be a group n-cocycle,

v.g2;:::;gnC1/C
nX

iD1

.�/iv.g1;:::;gigiC1;:::;gnC1/C:::C.�/nC1v.g1;:::;gn/D 0 ;

(106)
assumed to be normalized in the sense that v.g1;:::;gn/ D 0 whenever one of the
gi ’s is equal to 1 or g1 :::gn D 1. Following [8], we associate to v a cyclic n-cocycle
'v W�nCc.G/! C over the convolution algebra, defined by the formula

'v.b0db1 :::dbn/D
X

g1;:::;gn2G

v.gn;:::;g1/b0..gn :::g1/
�1/b1.g1/:::bn.gn/ ;

(107)
and 'v.db1 :::dbn/ D 0 for any bi 2 Cc.G/. Now assume that v has polynomial
growth with respect to a right-invariant distance function on G, and choose an
admissible completion B of Cc.G/ as in example 2.2. If the parameter ˛ defining
the norm on B is large enough, then 'v extends to a cyclic n-cocycle over B. We
obtain a higher index of D by pairing the Chern character of �.eD/ 2 K�.B/ with
'v. The localization formula 3.3 gives

h'v;�.eD/i D 1

.2�i/d=2

Z
X

bA.X/ch.E=S/f �.v/ ; (108)

where f �.v/ is the pullback of the cohomology class v 2H�.G/ŠH�.BG/ with
respect to the classifying map f W X ! BG associated to the G-principal bundle

M
G�! X . In this case, the G-invariant bA-genus and Chern character ch.E=S/ are

considered as closed differential forms over X .
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