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Abstract

In this paper we construct a bivariant Chern character defined on

“families of spectral triples”. Such families should be viewed as a version

of unbounded Kasparov bimodules adapted to the category of bornological

algebras. The Chern character then takes its values in the bivariant entire

cyclic cohomology of Meyer. The basic idea is to work within Quillen’s

algebra cochains formalism, and construct the Chern character from the

exponential of the curvature of a superconnection, leading to a heat kernel

regularization of traces. The obtained formula is a bivariant generalization

of the JLO cocycle.
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1 Introduction

Recall that according to Connes [6], a noncommutative space is described by
a spectral triple (A,H, D), where H is a separable Hilbert space, A an asso-
ciative algebra represented by bounded operators on H, and D is a self-adjoint
unbounded (Dirac) operator with compact resolvent, such that the commutator
[D, a] is densely defined for any a ∈ A and extends to a bounded operator. The
triple (A,H, D) carries a nontrivial homological information as a K-homology
class of A. The major motivation leading Connes to introduce periodic cyclic
cohomology [5] is that the latter is the natural receptacle for a Chern character
defined on finitely summable representatives ofK-homology. This finiteness con-
dition was removed later and replaced by the weaker condition of θ-summability,
i.e. the heat kernel exp(−tD2) associated to the laplacian of the Dirac operator
has to be trace-class for any t > 0 [7]. In that case, the algebra A has to be
endowed with a norm and the Chern character of the spectral triple is expressed
as an infinite-dimensional cocycle in the entire cyclic cohomology HE∗(A). Ex-
cept the original construction of Connes, one of the interesting explicit formulas
for such a Chern character is provided by the so-called JLO cocycle [21]. Here
the heat kernel plays the role of a regulator in the algebra of operators onH, and
the JLO formula incorporates the data of the spectral triple in a rather simple
way. This led Connes and Moscovici to use the powerful machinery of asymp-
totic expansions of the heat kernel, giving rise to local expressions extending the
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classical index theorems of Atiyah-Singer to very interesting non-commutative
situations [9, 10].
In this paper we want to generalize the construction of a Chern character to
families of spectral triples “over a noncommutative space” described by a second
associative algebra B. In the context of C∗-algebras, such objects correspond
to the unbounded version of Kasparov’s bivariant K-theory [4]. In this picture,
an element of the group KK(A,B) is represented by a triple (E , ρ,D), where E
is an Hilbert B-module. D should be viewed as a family of Dirac operators over
B, acting by unbounded endomorphisms on E , and ρ is a representation of A
as bounded endomorphisms of E commuting with D modulo bounded endomor-
phisms. In the particular case B = C, this description just reduces to spectral
triples over A. The construction of a general bivariant Chern character as a
transformation from an algebraic version of KK(A,B) (for A and B not neces-
sarily C∗-algebras) to a bivariant cyclic cohomology has already been considered
by several authors. For example Nistor [25, 26] constructed a bivariant Chern
character for p-summable quasihomomorphisms [12], with values in the Jones-
Kassel bivariant cyclic cohomology groups. Cuntz and Quillen also constructed
a bivariant Chern character under some summability assumptions, with values
in their own description of the bivariant periodic cyclic theory [15, 16]. On the
other hand, Puschnigg constructed a well-behaved cyclic cohomology theory for
C∗-algebras, namely the local cyclic cohomology [29, 30]. Upon generalization of
a previous work of Cuntz [13], the local cyclic theory appears to be the suitable
target for a completely general bivariant Chern character (without summabil-
ity assumptions) defined of Kasparov’s K-theory. However, the existence and
properties of such constructions are often based on excision in cyclic cohomology
and the universal properties of bivariant K-theory. By considering unbounded
bimodules we will follow a different way, involving heat kernel regularization
in the spirit of the JLO cocycle, keeping in mind that we are interested in ex-
plicit formulas for a bivariant Chern character incorporating the data ρ and D.
Our motivation mainly comes from the potential applications to mathematical
physics, especially quantum field theory and string/brane theory, where such
objects arise naturally:

• The heat kernel method admits a functional integral representation. The
quantities under investigation then correspond to expectation values of observ-
ables corresponding to some quantum-mechanical system. This was first used
by Alvarez-Gaumé and Witten in their study of mixed-gravitational anomalies
[1], and led to the asymptotic symbol calculus of Getzler [2].

• The basic idea of introducing a heat kernel regularization of Chern characters
in classical differential geometry is due to Quillen [31]. Bismut then succesfully
applied this method in his approach of the Atiyah-Singer index theorem for
families of elliptic operators on submersions [3]. It is worth mentioning that
Bismut also uses a stochastic representation of the heat kernel.

• The Bismut-Quillen approach is essential for the analytic and topological
understanding of anomalies (both chiral and gravitational) in quantum field
theory [27, 28]. A bivariant Chern character designed in an equivariant setting
may shed some light on the interplay between BRS cohomology and the recently
discovered cyclic cohomology of Hopf algebras [10, 11].

• Twisted K-theory and K-homology recently appeared in the physics literature
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through the classification of D-branes [23, 34]. This also falls into the scope of
a bivariant Chern character.

First we have to consider the right category of algebras. For our purpose,
it turns out that bornological associative algebras are exactly what we need.
These are associative algebras endowed with an additional structure describing
the notion of a bounded subset. Complete bornological algebras provide the
general framework for entire cyclic cohomology. This theory has been developed
in detail by Meyer in [24]. The interesting feature of the bivariant entire cyclic
cohomology is that it contains infinite-dimensional cocycles and thus can be used
as the receptacle of a bivariant Chern character for our families of spectral triples
carrying some properties of θ-summability. Given two complete bornological
algebras A and B, we will consider the Z2-graded semigroup Ψ∗(A,B), ∗ =
0, 1, of unbounded A-B-bimodules. The latter is an adaptation of Kasparov’s
unbounded bimodules to the realm of bornological algebras. In our geometric
picture, such a bimodule represents a family of spectral triples over the non-
commutative space B. Our aim is to construct an explicit formula for a Chern
character defined on the subsemigroup of θ-summable bimodules,

ch : Ψθ
∗(A, B̃)→ HE∗(A,B) , ∗ = 0, 1 , (1)

carrying suitable properties of additivity, differentiable homotopy invariance
and functoriality. Here HE∗(A,B) is the bivariant entire cyclic cohomology

of A and B, and B̃ is the unitalization of B. On the technical side, we will
use both the X-complex description of cyclic cohomology due to Cuntz-Quillen
[15, 16], and the usual (b, B)-complex of Connes. The X-complex is useful for
some conceptual explanations of the abstract properties of cyclic (co)homology.
Given a complete bornological algebra A, its entire cyclic homology is computed
by the supercomplex [24]

X(T A) : T A⇄ Ω1T A♮ , (2)

where T A is the analytic tensor algebra of A, obtained by a certain bornological
completion of the tensor algebra over A, and Ω1T A♮ = Ω1T A/[T A,Ω1T A]
is the commutator quotient space of the universal one-forms over T A. This
means that the entire cyclic homology of A is completely described through
the homological properties of its analytic tensor algebra in dimension 0 and
1. Furthermore, taking the analytic tensor algebra of T A is harmless: indeed
X(T A) and X(T T A) are homotopically equivalent complexes. In other words,
entire cyclic homology does not distinguish between a complete bornological
algebra and its successive nested analytic tensor algebras. This is a particular
case of the analytic version [24] of Goodwillie’s theorem [18]. This result is a
key point of our bivariant Chern character. The construction of (1) will follow
two steps:

a) Using the Goodwillie theorem, we first construct an invertible bivariant class
[γ] ∈ HE0(A, T A) realizing the equivalence between the entire cyclic homologies
of A and T A.

b) We consider a bimodule in Ψ∗(A, B̃). Then under certain θ-summability
conditions, we construct an element [χ] ∈ HE∗(T A,B) involving the expo-
nential of the curvature of a superconnection, which automatically incorporates
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the desired heat kernel regularization. This step uses Quillen’s theory of algebra
cochains as an essential tool [32, 33]. Then the composition [γ]·[χ] ∈ HE∗(A,B)
is the bivariant Chern character (1).

The paper is organized as follows. In sections 2, 3 we recall the basic
definitions and properties of bornological spaces and entire cyclic cohomol-
ogy. In section 4 we present our construction of the Goodwillie equivalence
[γ] ∈ HE0(A, T A). The semigroup of unbounded bimodules Ψ∗(A,B) is intro-
duced in section 5. Sections 6 and 7 are devoted to the fundamental construction
of the element χ ∈ HE∗(T A,B). Finally, we end the paper with an application
of our Chern character to the non-bivariant cases, namely ordinary K-theory
and K-homology in section 8. In particular we check that the composition
product on HE describes correctly the index pairing between idempotents and
spectral triples. Besides, the study of the Bott class allows to normalize the bi-
variant Chern character. The appendix contains a straightforward adaptation,
to bornological algebras, of Quillen’s algebra cochains formalism.

We would like to mention a last point. There is a priori no obvious inter-
section product Ψ(A,B) × Ψ(B, C) → Ψ(A, C) as in Kasparov theory. Also we
will never ask if our construction is compatible with such a product. In fact, it
is possible to show that the bivariant Chern character is compatible with the
Kasparov product on p-summable quasihomomorphisms, but this involves a re-
traction of our entire cocycles onto periodic ones. These matters will be treated
elsewhere.

All algebras are supposed to be based on the ground field C. We work in
the non-unital graded category, i.e. homomorphisms between algebras do not
necessarily preserve units, and all operations like commutators, tensor products,
etc... involving graded objects are automatically graded.

2 Bornology

This section is intended to give a short introduction to bornological vector spaces
[20]. These are vector spaces with an additional structure describing abstractly
the notion of boundedness. Concrete examples of bornological spaces are pro-
vided by normed or locally convex spaces. Bornology is the correct framework
allowing the development of entire cyclic cohomology in full generality; this has
been done by Meyer in [24]. Since this topic is not so familiar to mathematical
physicists, we feel the need to recall the definitions and basic properties. Our
sketch is by no means supposed to give a sufficient knowledge about bornology;
we refer to [20, 24] for details.

Let V be a vector space over C. A subset S ⊂ V is a disk iff it is circled and
convex. Given any subset S, we denote by S3 its circled convex hull: it is the
smallest disk containing S. If S is a disk, its linear span VS is endowed with a
semi-norm || · ||S whose unit ball is the closure of S. S is called completant iff
VS is a Banach space.

Definition 2.1 Let V be a vector space. A (convex) bornology S(V) is a col-
lection of subsets of V verifying the following axioms:
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• {x} ∈ S(V) for any vector x ∈ V.

• S1 + S2 ∈ S(V) for any S1, S2 ∈ S(V).

• If S ∈ S(V), then T ∈ S(V) for any T ⊂ S.

• S3 ∈ S(V) for any S ∈ S(V).

Any S ∈ S(V) is called a small subset of the bornological space V.

The bornology S(V) is called completant iff any small subset S ∈ S(V) is
contained in a completant small disk. In that case, (V ,S(V)) is a complete
bornological vector space.

Example 2.2 If V is a locally convex space, then the bounded bornology
Bound(V) is the collection of subsets S bounded for all seminorms on V . If
V is complete for the locally convex topology, then it is complete as a bornolog-
ical space. Fréchet spaces endowed with the bounded bornology are important
examples of complete bornological spaces.

Example 2.3 If V is any vector space, the fine bornology Fine(V) is the small-
est admissible bornology: a subset is small iff it is contained in the disked hull
of a finite number of points of V . In particular, any small subset is contained in
a finite-dimensional subspace of V . A bornological space with fine bornology is
always complete because finite-dimensional spaces are complete.

Example 2.4 A useful way to construct a bornology on V is to start from
a collection U of subsets not satisfying the axioms of a bornology, and then
to consider the smallest bornology S(V) containing U. We say that S(V) is
generated by U.

Bornological convergence: A sequence {xn}n∈N of points in a bornological
space V is said to converge bornologically to the limit x∞ ∈ V iff there is a small
disk S ∈ S(V) such that xn−x∞ ∈ S for any n and limn→∞ ||xn−x∞||S = 0. A
set is said to be closed for the bornology iff it is sequentially closed for bornolog-
ically convergent sequences. The closed sets for the bornology fulfill the axioms
of a topology, hence a bornological space has also a topology (though in general
not a vector space topology).

Bounded maps: Let V and W be two bornological vector spaces. A linear
map l : V → W is bounded iff l(S) ∈ S(W) for any small S ∈ S(V). An arbi-
trary set {lj}j∈J of linear maps is equibounded iff {lj(x)|j ∈ J, x ∈ S} is a small
subset of W for any S ∈ S(V). We denote by Hom(V ,W) the vector space of
bounded linear maps between V and W . The sets of equibounded maps form a
bornology called the equibounded bornology on Hom(V ,W). It is complete if W
is complete. We will always endow the spaces of bounded linear maps with the
equibounded bornology.

Completions: Let V be a bornological vector space. Its bornological com-
pletion Vc is the complete bornological vector space defined as the solution of
the following universal problem: there is a bounded linear map u : V → Vc
such that, for any complete bornological space W and any bounded linear map
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l : V → W , there is a unique bounded linear map from Vc to W factorizing
l. The completion always exists, and can be explicitly realized as the inductive
limit of a system of Banach spaces (see [20] and the appendix of [24]). It is of
course unique by universality. If V is a normed space endowed with the bounded
bornology, then its bornological completion coincides with its Hausdorff com-
pletion. However, it should be stressed that the universal map V → Vc may fail
to be injective for an arbitrary bornological space V .

Multilinear maps: An n-linear map l : V1× . . .×Vn →W between bornologi-
cal spaces is bounded iff l(S1, . . . , Sn) ∈ S(W) for any small sets Si ∈ S(Vi). If
W is complete, then there is a unique bounded n-linear map Vc1× . . .×Vcn →W
factorizing l.

Completed tensor products: Let V1 and V2 be two bornological vector
spaces. We endow their algebraic tensor product V1 ⊗ V2 with the bornol-
ogy generated by the subsets S1 ⊗ S2, for any Si ∈ S(Vi). The completion of
V1 ⊗ V2 with respect to this bornology is the completed tensor product V1⊗̂V2.
The completed tensor product is associative, whence the definition of the n-fold
tensor product V1⊗̂ . . . ⊗̂Vn of n bornological spaces. The latter is universal for
the bounded n-linear maps V1 × . . .× Vn →W with complete range W .

Algebras: A bornological algebra is a bornological space A endowed with a
bounded bilinear map (product) A × A → A. The algebra A is complete iff
it is complete as a vector space. In this paper we will be concerned only with
associative bornological algebras.

Subspaces, quotients: Let V be a bornological vector space and W ⊂ V a
vector subspace. There is a canonical bornology onW : a subset S ∈ W is small
iff it is small for V . On the other hand, the quotient space V/W has also a
bornology: S ∈ S(V/W) iff there is a small T ∈ S(V) such that S = T modW .
When V is complete, then the subspaceW ⊂ V and quotient V/W are complete
iff W is bornologically closed in V .

Bornological complexes: A bornological space V with a bounded linear map
∂ : V → V satisfying ∂2 = 0 is a bornological complex. Its homology is as usual
the bornological vector space H∗(V) = Ker∂/Im∂.

3 Entire cyclic cohomology

Here we recall the formulation of cyclic (co)homology within the X-complex
framework of Cuntz and Quillen [15]. The analytic adaptation of that theory
presented by Meyer in [24] allows to define elegantly the entire cyclic homology,
cohomology and bivariant cohomology for bornological algebras. There are in
fact two equivalent ways to describe the entire cyclic cohomology of a complete
bornological algebra A. The first one is to use Connes’ (b, B) complex of non-
commutative forms completed with respect to a certain bornology; we call this
completion ΩǫA. The second one is the X-complex of the completed tensor al-
gebra T A. These complexes are homotopy equivalent [24], and give rise to the
definition of entire cyclic cohomology. The construction of the bivariant Chern
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character proposed in our paper uses simultaneously the (b, B)-complex and X-
complex approaches. Also, a third complex will be needed as an intermediate
step; we call it the completed de Rham-Karoubi complex ΩδA♮.

3.1 Non-commutative differential forms

Let A be a complete bornological algebra. The algebra of non-commutative dif-
ferential forms over A is the direct sum ΩA =

⊕
n≥0 ΩnA of the n-dimensional

subspaces ΩnA = Ã⊗̂A⊗̂n for n ≥ 1 and Ω0A = A, where Ã = A ⊕ C is the
unitalization of A. It is customary to use the differential notation a0da1 . . . dan
(resp. da1 . . . dan) for the string a0 ⊗ a1 . . . ⊗ an (resp. 1 ⊗ a1 . . . ⊗ an). The
differential d : ΩnA → Ωn+1A is uniquely specified by d(a0da1 . . . dan) =
da0da1 . . . dan and d2 = 0. The multiplication in ΩA is defined as usual and
fulfills the Leibniz rule d(ω1ω2) = dω1ω2 + (−)|ω1|ω1dω2, where |ω1| is the de-
gree of ω1. Each ΩnA is a complete bornological space by construction, and
we endow ΩA with the direct sum bornology. This turns ΩA into a complete
bornological differential graded (DG) algebra, i.e. the multiplication map and
d are bounded. It is the universal complete bornological DG algebra generated
by A.

On ΩA are defined various operators. First of all, the Hochschild boundary
b : Ωn+1A → ΩnA is b(ωda) = (−)n[ω, a] for ω ∈ ΩnA, and b = 0 on Ω0A = A.
One easily shows that b is bounded and b2 = 0. Then the Karoubi operator
κ : ΩnA → ΩnA is constructed out of b and d:

1− κ = db+ bd . (3)

Therefore κ is bounded and commutes with b and d. The last operator is Connes’
B : ΩnA → Ωn+1A,

B = (1 + κ+ . . .+ κn)d on ΩnA , (4)

which is bounded and verifies B2 = 0 = Bb+ bB and Bκ = κB = B.

We now define three other bornologies on ΩA, leading to the notion of entire
cyclic cohomology:

• The entire bornology Sǫ(ΩA) is generated by the sets

⋃

n≥0

[n/2]! S̃(dS)n , S ∈ S(A) , (5)

where [n/2] = k if n = 2k or n = 2k + 1, and S̃ = S + C. That is, a subset
of ΩA is small iff it is contained in the circled convex hull of a set like (5). We
write ΩǫA for the completion of ΩA with respect to this bornology. ΩǫA will
be the complex of entire chains.

• The analytic bornology San(ΩA) is generated by the sets
⋃
n≥0 S̃(dS)n,

S ∈ S(A). The corresponding completion of ΩA is ΩanA. It is related to the
X-complex description of entire cyclic homology (see below).

7



• The de Rham-Karoubi bornology Sδ(ΩA) is generated by the collection

of sets
⋃
n≥0

1
[n/2]! S̃(dS)n, S ∈ S(A), with completion ΩδA. This will give rise

to the de Rham-Karoubi complex.

The multiplication in ΩA is bounded for the three bornologies above, as
well as all the operators d, b, κ,B. Moreover, the Z2-graduation of ΩA given by
even and odd forms is preserved by the completion process, so that ΩǫA,ΩanA
and ΩδA are Z2-graded differential algebras, endowed with the operators b, κ,B
fulfilling the usual relations. In particular, ΩǫA is called the (b, B)-complex
of entire chains. Note also that the multiplication or division of n-forms by
[n/2]! obviously provide linear bornological isomorphisms between ΩǫA,ΩanA
and ΩδA.

3.2 The analytic tensor algebra

Let A be a complete bornological algebra, ΩA = Ω+A ⊕ Ω−A the Z2-graded
algebra of differential forms. The even part Ω+A is a trivialy graded subalgebra.
We endow Ω+A with a new associative product, the Fedosov product [15]

ω1 ⊙ ω2 = ω1ω2 − dω1dω2 , ω1,2 ∈ Ω+A . (6)

Associativity is easy to check. In fact the algebra (Ω+A,⊙) is isomorphic to the

non-unital tensor algebra TA =
⊕

n≥1A⊗̂n, under the correspondence

Ω+A ∋ a0da1 . . . da2n ←→ a0 ⊗ ω(a1, a2)⊗ . . .⊗ ω(a2n−1, a2n) ∈ TA , (7)

where ω(ai, aj) := aiaj − ai⊗ aj ∈ A⊕A⊗̂2 is the curvature of (ai, aj). It turns
out that the Fedosov product ⊙ is bounded for the bornology San restricted to
Ω+A [24], and thus extends to the analytic completion Ω+

anA. The complete
bornological algebra (Ω+

anA,⊙) is also denoted by T A and called the analytic
tensor algebra of A in [24].

3.3 X-complex

The X-complex first appeared in Quillen’s work on algebra cochains [32], and
then was used by Cuntz-Quillen in their formulation of cyclic homology [15, 16].
Here we recall the X-complex construction for bornological algebras, following
Meyer [24].
Let A be a complete bornological algebra. The X-complex of A is the Z2-graded
complex

X(A) : A
♮d //

b

oo Ω1A♮ , (8)

where Ω1A♮ is the completion of the commutator quotient space Ω1A/bΩ2A =
Ω1A/[A,Ω1A] endowed with the quotient bornology. The class of the generic el-
ement (a0da1 mod [, ]) ∈ Ω1A♮ is usually denoted by ♮a0da1. The map ♮d : A →
Ω1A♮ thus sends a ∈ A to ♮da. Also, the Hochschild boundary b : Ω1A → A
vanishes on the commutators [A,Ω1A], hence passes to a well-defined map
b : Ω1A♮ → A. Explicitly the image of ♮a0da1 by b is the commutator [a0, a1].
These maps are bounded and satisfy ♮d ◦ b = 0 and b ◦ ♮d = 0, so that X(A)
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indeed defines a complete Z2-graded bornological complex.

We now focus on the X-complex of the analytic tensor algebra T A. In that
case, Ω1T A♮ = Ω1T A/[T A,Ω1T A] is always complete, and as a bornological
vector space X(T A) is canonically isomorphic to the analytic completion ΩanA.
Here we must take care of a notational problem. Since the symbol d is already
used for the differential on ΩA, we always choose the bold print d for the
differential on ΩT A. Then the correspondence between X(T A) and ΩanA goes
as follows [15, 24]: first, one has a T A-bimodule isomorphism

Ω1T A ≃ T̃ A⊗̂A⊗̂T̃ A (9)

xda y ↔ x⊗ a⊗ y for a ∈ A , x, y ∈ T̃ A ,

where T̃ A := C⊕T A is the unitalization of T A. This implies that the bornolog-
ical space Ω1T A♮ is isomorphic to T̃ A⊗̂A, which can further be identified
with the analytic completion of odd forms Ω−

anA, through the correspondence

x⊗a↔ xda, ∀a ∈ A, x ∈ T̃ A. Thus collecting the even partX0(T A) = T A and
the odd part X1(T A) = Ω1T A♮ together, yields a linear bornological isomor-
phism X(T A) ≃ ΩanA. We still denote by (♮d, b) the boundaries induced on
ΩanA through this isomorphism; Cuntz and Quillen explicitly computed them
in terms of the usual operators on differential forms [15]:

b = b− (1 + κ)d on Ω2n+1A , (10)

♮d =
2n∑

i=0

κid−
n−1∑

i=0

κ2ib on Ω2nA .

The crucial result [15, 24] is that the complex (ΩanA, ♮d, b) = X(T A) is
homotopy equivalent to the complex of entire chains ΩǫA endowed with the
differential (b+B). Let us recall briefly the job [15, 24]. The Karoubi operator
κ verifies the polynomial identity (κn − 1)(κn+1 − 1) = 0 on ΩnA, hence κ2

also verifies a polynomial identity. It follows that κ2 has a discrete spectrum σ,
and ΩA decomposes into the direct sum of the generalized eigenspaces Vλ for
any λ ∈ σ. One of the eigenvalues of κ2 is 1, with multiplicity 2. Let P be the
projection of ΩA onto V1, vanishing on the other eigenspaces. Since P and its
orthogonal projection P⊥ commute with all operators commuting with κ, the
subspaces PΩA and P⊥ΩA are stable with respect to d, b and B. One shows [24]
that P, P⊥ are bounded for the bornologies San(ΩA) and Sǫ(ΩA), hence extend
to the completions ΩanA and ΩǫA. Moreover, the subcomplex (P⊥ΩanA, ♮d, b)
is contractible, hence ΩanA retracts on PΩanA for the differential (♮d, b). Also,
(P⊥ΩǫA, b + B) is contractible and ΩǫA retracts on PΩǫA for the differential
(b+B). Let c : ΩanA → ΩǫA be the bornological vector space isomorphism

c(a0da1 . . . dan) = (−)[n/2][n/2]! a0da1 . . . dan ∀n ∈ N . (11)

Then c maps isomorphically PΩanA onto PΩǫA, and under this correspondence,
the boundaries (♮d, b) and b+B coincide: c−1(b+B)c = (♮d, b) on PΩanA. It fol-
lows that the X-complex X(T A) is homotopy equivalent to the (b+B)-complex
of entire chains ΩǫA. This leads to the definition of entire cyclic (co)homology:

Definition 3.1 Let A be a complete bornological algebra.
i) The entire cyclic homology of A is the homology of the X-complex of the
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analytic tensor algebra T A:

HE∗(A) = H∗(X(T A)) , ∗ = 0, 1 , (12)

or equivalently, the (b+B)-homology of the Z2-graded complex of entire chains
ΩǫA.
ii) Let (X(T A))′ be the Z2-graded complex of bounded maps from X(T A) to
C, with differential the transposed of (♮d, b). Then the entire cyclic cohomology
of A is the cohomology of this dual complex:

HE∗(A) = H∗((X(T A))′) , ∗ = 0, 1 . (13)

iii) If A and B are complete bornological algebras, then Hom(X(T A), X(T B))
denotes the space of bounded linear maps from X(T A) to X(T B). It is nat-
urally a complete Z2-graded bornological complex, the differential of a map f
corresponding to the commutator (♮d, b) ◦ f − (−)|f |f ◦ (♮d, b). The bivariant
entire cyclic cohomology of A and B is then the cohomology of this complex:

HE∗(A,B) = H∗(Hom(X(T A), X(T B))) , ∗ = 0, 1 . (14)

In the case A = C, one shows [24] that X(T C) is homotopically equivalent to
X(C) : C ⇄ 0, thus the entire cyclic homology of C is simply HE0(C) = C and
HE1(C) = 0. This implies that for any complete bornological algebra A, we
get the usual isomorphisms HE∗(C,A) ≃ HE∗(A) and HE∗(A,C) ≃ HE∗(A).
Furthermore, since the composition of bounded maps is bounded, there is a
well-defined composition product on bivariant entire cyclic cohomology:

HEi(A,B)×HEj(B, C)→ HEi+j+2Z(A, C) , i, j = 0, 1 (15)

for complete bornological algebras A,B, C. Any bounded homomorphism ρ :
A → B extends to a bounded homomorphism ρ∗ : T A → T B by setting ρ∗(a1⊗
. . .⊗an) = ρ(a1)⊗ . . .⊗ρ(an). The boundedness of ρ∗ becomes obvious once we
rewrite it using the isomorphism T A ≃ (Ω+

anA,⊙), since ρ∗(a0da1 . . . da2n) =
ρ(a1)dρ(a1) . . . dρ(a2n). The homomorphism ρ∗ gives rise to a bounded X-
complex morphism X(ρ∗) : X(T A)→ X(T B):

x 7→ ρ∗(x) (16)

♮xdy 7→ ♮ρ∗(x)dρ∗(y) ∀x, y ∈ T A .

We write ch(ρ) for the class of X(ρ∗) in HE0(A,B). It is the simplest exam-
ple of bivariant Chern character. Last, remark that HE∗(A,A) is a Z2-graded
unital ring, the unit corresponding to the Chern character of the identity ho-
momorphism of A.

3.4 The entire de Rham-Karoubi complex

There is still another complex related to cyclic homology, namely the de Rham-
Karoubi complex [22]. In our context of bornological algebras, we have to
consider its completed version. So let A be a complete bornological algebra.
Recall that the de Rham-Karoubi bornology Sδ on ΩA is generated by the
subsets

⋃
n≥0

1
[n/2]! S̃ ⊗ S⊗n, for any small set S ∈ S(A). The completion of

ΩA with respect to this bornology is ΩδA. Let ΩδA♮ be the completion of
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ΩδA/[ΩδA,ΩδA] with respect to the quotient bornology, and ♮ : ΩδA → ΩδA♮
be the natural bounded map. The composition ♮d : ΩδA → ΩδA♮ is bounded
and vanishes on the commutator subspace [ΩδA,ΩδA], thus it factors through
a well-defined bounded map ♮d : ΩδA♮ → ΩδA♮. One obviously has (♮d)2 = 0,
whence a bornological complex.

Definition 3.2 Let A be a complete bornological algebra. The entire de Rham-
Karoubi cohomology of A is the cohomology of the Z2-graded complex (ΩδA♮, ♮d):

H∗
dR(A) = H∗(ΩδA♮, ♮d) , ∗ = 0, 1 . (17)

There is a direct relation between the entire cyclic homology and the entire
de Rham-Karoubi cohomology. Let c′ : ΩA → ΩA be the linear isomorphism
sending the n-form a0da1 . . . dan to 1

n!a0da1 . . . dan. It is also a bornological iso-
morphism between (ΩA,Sǫ) and (ΩA,Sδ), and thus extends to an isomorphism
of complete bornological spaces c′ : ΩǫA → ΩδA. It is easy to show that the
composition ♮c′ : ΩǫA → ΩδA♮ is a bounded morphism from the (b+B)-complex
of entire chains to the de Rham-Karoubi complex, whence a natural (covariant)
map

HE∗(A)→ H∗
dR(A) , ∗ = 0, 1 . (18)

The entire de Rham-Karoubi complex arises in differential geometry, when char-
acteristic classes of vector bundles are constructed from connections and curva-
tures [22]. If we let A ∈ Ω1A be a one-form with curvature F = dA+A2 ∈ Ω2A,
then the Chern character form (here we omit some irrelevant 2πi factors)

ch(A) = ♮ expF ∈ ΩδA♮ (19)

indeed defines an entire de Rham cocycle whose class lies in H0
dR(A). The

use of exponentials will be crucial in our bivariant Chern character construc-
tion, because it allows to combine heat kernel regularization with characteristic
classes [31, 3]. Also the entire de Rham-Karoubi complex will be an important
intermediate step.

4 A Goodwillie theorem

One of the main properties of cyclic homology is the so-called Goodwillie theo-
rem [18]. Roughly, it asserts that periodic cyclic homology is stable when taking
nilpotent extensions. In other words, if 0 → N → E → A → 0 is an extension
of an algebra A, with N is a nilpotent ideal in E, then A and E have the same
periodic cyclic (co)homology. This has been generalized by Meyer in the con-
text of bornological algebras and entire cyclic homology [24], where algebraic
nilpotence has to be replaced by the notion of analytic nilpotence. However, we
don’t need the whole theory of analytically nilpotent extensions here. Given a
complete bornological algebra A, we will only be concerned with the universal
analytically nilpotent extension

0→ JA → T A → A→ 0 . (20)

Here the bounded projection T A → A is induced by the multiplication map
m : a1 ⊗ . . . ⊗ an 7→ a1 . . . an , and JA is its kernel. Using the identifi-
cation T A ≃ (Ω+

anA,⊙), the multiplication map simply coincides with the

11



projection of an even differential form onto its degree zero component. The
canonical linear embedding σA : A →֒ T A provides a bounded linear split-
ting of the exact sequence (20). The Goodwillie theorem then claims that
the projection homomorphism m : T A → A induces an isomorphism between
HE∗(T A) and HE∗(A). Moreover, the Chern character of m, corresponding
to the class of the chain map X(m∗) : X(T T A) → X(T A) in the entire bi-
variant cyclic cohomology HE0(T A,A), has an inverse in HE0(A, T A). The
latter is constructed as follows [24]. There is a unique bounded homomorphism
vA : T A → T T A such that vA ◦ σA = σT A ◦ σA, and it gives rise to a chain
map X(vA) : X(T A) → X(T T A), whose cohomology class is the inverse of
ch(m), i.e. ch(m) · [X(vA)] = 1 in HE0(T A, T A) and [X(vA)] · ch(m) = 1 in
HE0(A,A).
In this section we shall present a slightly different construction of the inverse of
ch(m). It will be represented by a bounded chain map of degree zero

γ : X(T A)→ ΩǫT A (21)

from the X-complex of T A to the (b + B)-complex of entire chains over T A.
Since (ΩǫT A, b + B) is homotopy equivalent to X(T T A), the map γ indeed
defines a bivariant class [γ] ∈ HE0(A, T A). The explicit expression of γ will
be an important part of the bivarant Chern character. Our aim is to prove
corollaries 4.4 and 4.5 below.

Before proceeding, we need some information about the bornology of ΩǫT A.
The latter is the completion of ΩT A =

⊕
n≥0 ΩnT A for the bornology Sǫ(ΩT A)

generated by the sets
⋃
n≥0[n/2]! T̃ (dT )n for any small T ∈ S(T A), where

T A is already the completion of the algebra TA ≃ (Ω+A,⊙) for the bornol-

ogy San(Ω+A) generated by
⋃
n≥0 S̃(dS)n, S ∈ S(A). We could also ob-

tain ΩǫT A after only one completion of a certain bornological space. Let
ΩTA :=

⊕
n≥0 ΩnTA be the DG algebra of non-commutative differential forms

over the non-complete tensor algebra TA, where ΩnTA = T̃A ⊗ (TA)⊗n in-
volves only algebraic (non-completed) tensor products. Endow ΩTA with the

bornology S(ΩTA) generated by the sets
⋃
n≥0[n/2]! T̃ (dT )n, for any small

T ∈ S(TA) = San(Ω+A).

Lemma 4.1 The completion of the bornological space (ΩTA,S) is canonically
isomorphic to ΩǫT A.

Proof: It is a direct consequence of the universal property of bornological com-
pletions. Let us give some details. The natural map (ΩTA,S) → (ΩT A,Sǫ)
extending the arrow TA→ T A is clearly bounded. Composing with the univer-
sal map (ΩT A,Sǫ)→ ΩǫT A, we get a bounded map (ΩTA,S)→ ΩǫT A. We
thus have to show that ΩǫT A is a solution of the universal problem associated
to the bornological space (ΩTA,S). LetW be any complete bornological space,
and consider a bounded map f : ΩTA → W . Then the universal property of
T A implies that there is a unique bounded map f ′ : ΩT A → W factorizing
f . From f ′ we then get a bounded map f ′′ : ΩǫT A → W , also factorizing
f . Moreover, the universal properties of completions imply that such a f ′′ is
necessarily unique, hence the complete space ΩǫT A identifies canonically to the
bornological completion of (ΩTA,S).

12



The space of non-commutative forms ΩTA endowed with the usual bound-
aries (b, B) is a (non-complete) bornological bicomplex. Consider the following
subcomplex:

Θ = bΩ2TA⊕
⊕

n≥2

ΩnTA , (22)

which is stable by b and B. The quotient ΩTA/Θ corresponds to the Z2-graded
bornological complex

X(TA) : TA
♮d //

b

oo
Ω1TA
bΩ2TA := Ω1TA♮ , (23)

whose completion identifies with X(T A). The projection π : ΩTA → ΩTA/Θ
being bounded, it extends to a bounded chain map

π : ΩǫT A → X(T A) , (24)

representing a bivariant entire cohomology class [π] ∈ HE0(T A,A). It turns
out that [π] has an inverse [γ] ∈ HE0(A, T A), that we are going to construct
as a bounded chain map

γ : X(T A)→ ΩǫT A . (25)

According to the terminology of Cuntz and Quillen [14, 15], the non-completed
tensor algebra TA is algebraically quasi-free. This means that there is a right
connection ∇ : Ω1TA → Ω2TA, i.e. a linear map satisfying

∇(xω) = x∇ω , ∇(ωx) = ∇ωx+ ωdx , ∀x ∈ TA , ω ∈ Ω1TA . (26)

Equivalently, there is a linear map φ : TA→ Ω2TA such that φ(xy) = φ(x)y +
xφ(y) + dxdy for any x, y ∈ TA. One obtains φ from ∇ by setting φ(x) :=
∇(dx). To show that such maps exist, one can use the fact that TA is a free
algebra, and construct φ recursively:

φ(a) := 0 ∀a ∈ A ; φ(a⊗ x) = aφ(x) + dadx ∀a ∈ A , x ∈ TA , (27)

and then ∇(xdy) = xφ(y), ∀x, y ∈ TA. In the remainder of the text we will
always use these definitions of ∇ and φ. Note that any other admissible map φ′

may be obtained from φ by adding a derivation from TA to the TA-bimodule
Ω2TA.
Now extend ∇ to a map ΩnTA → Ωn+1TA for any n ≥ 1 by the recursive
relation

∇(ωdx) = (∇ω)dx , ∀ω ∈ ΩnTA , x ∈ TA , (28)

then put φ = ∇B : ΩnTA → Ωn+2TA for any n ≥ 0. The latter extends the
previous map φ to ΩTA. Explicitly one has

φ(x0dx1 . . .dxn) = ∇(1 + κ+ . . .+ κn)(dx0dx1 . . .dxn)

=

n∑

i=0

(−)niφ(xi)dxi+1 . . .dxi−1 , (29)

for any xj ∈ TA. One can compute the successive powers of φ. It turns out that
given an element x of TA, φk(x) vanishes for k sufficiently large (depending on
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x). Indeed, let x = a1 ⊗ a2 . . . ⊗ an. From the definition (27), one sees that
for k = [n/2], φk(x) contains only terms of the form dai . . .danda1 . . .dai−1 or
aidai+1 . . .dai−1, and φ(ai) = 0 implies φk+1(x) = 0. More generally, φk(ω) = 0
for any ω ∈ ΩTA and k ≫ 0. Consequently, the operator 1− φ is invertible on
ΩTA, because the power series

(1 − φ)−1 =

∞∑

k=0

φk (30)

only takes a finite number of non-zero terms on any ω ∈ ΩTA.

Proposition 4.2 i) For any n ≥ 2, ∇b + b∇ = −Id on ΩnTA. Hence ∇ is
a contracting homotopy for the b-cohomology of the subcomplex Θ = bΩ2TA ⊕⊕

n≥2 ΩnTA of ΩTA.
ii) The map γ : X(TA)→ ΩTA defined by

TA ∋ x 7→ (1− φ)−1(x) (31)

Ω1TA♮ ∋ ♮xdy 7→ (1− φ)−1(xdy + b(xφ(y)))

is a morphism from the X-complex of TA to the (b +B)-complex ΩTA.
iii) Let π : ΩTA → X(TA) be the natural projection. There is a contracting
homotopy h : ΩTA→ ΩTA such that

π ◦ γ = Id on X(TA) , (32)

γ ◦ π = Id + (b+B)h+ h(b+B) on ΩTA . (33)

Proof: i) Let us first show that for any ω ∈ ΩnTA, n ≥ 1, and x ∈ TA one has

∇(xω) = x∇ω , ∇(ωx) = ∇ωx− (−)nωdx .

The first relation is trivial. The second one is proved recursively on n. Suppose
the relation is realized for n, then for any ω ∈ ΩnTA and x, y ∈ TA

∇(ωdx y) = ∇(ωd(xy)) −∇(ωxdy) = ∇ω d(xy)−∇(ωx)dy

= ∇ω d(xy)−∇ω xdy + (−)nωdxdy = ∇(ωdx)y + (−)nωdxdy ,

proving the relation for n+ 1. Next, any element of ΩnTA, for n ≥ 2, is a sum
of elements like ωdx with ω ∈ Ωn−1TA, x ∈ TA. Thus

(∇b + b∇)(ωdx) = (−)n−1∇[ω, x] + b(∇ω dx)

= (−)n−1(∇ω x+ (−)nωdx)− (−)n−1x∇ω + (−)n[∇ω, x]
= −ωdx ,

which concludes the proof.
ii) First, the injection xdy 7→ xdy+b(xφ(y)) vanishes on bΩ2TA = [TA,Ω1TA]
(see [15] §7), hence is well-defined on Ω1TA♮. Therefore γ is well-defined. Next,
since φ = ∇B one has φB = 0. Also b∇ + ∇b = −Id on Ωn≥2TA, thus the
relation bφ− φb = b∇B−∇Bb = −(1 +∇b)B−∇Bb = −B holds on Ωn≥1TA.
This implies (1− φ)(b+B) = b+B − φb = b(1− φ), and composing from right
and left by (1− φ)−1 (which preserves the subspace

⊕
n≥1 ΩnTA) yields

(b+B)(1 − φ)−1 = (1 − φ)−1b on Ωn≥1TA . (34)

14



Let x ∈ TA. Using (34) and φB = 0, one has

γ(♮dx) = (1− φ)−1(dx+ bφ(x))

= (

∞∑

n=0

φn)B(x) + (1− φ)−1bφ(x)

= B(x) + (b+B)(1 − φ)−1φ(x) ,

and since b(x) = 0 one deduces γ(♮dx) = (b + B)(1 − φ)−1(x) = (b + B)γ(x).
Now let ♮xdy ∈ Ω1TA♮. One has γ(b♮xdy) = γb(xdy) = (1 − φ)−1b(xdy). On
the other hand,

(b+B)γ(♮xdy) = (b+B)(1 − φ)−1(xdy + b(xφ(y)))

= (1− φ)−1b(xdy)

by using (34). Hence (b+B) ◦ γ = γ ◦ (♮d + b), proving that γ is a chain map.
iii) One obviously has π ◦ γ = Id on X(TA), whence a split exact sequence of
complexes

0 // Θ // ΩTA π
// X(TA)

γ

xx
// 0 .

Let Q := γ ◦ π be the projection of ΩTA onto the image of X(TA). Then
Θ = KerQ, X(TA) ≃ ImQ as complexes and ΩTA ≃ Θ ⊕ X(TA). We now
construct a contracting homotopy for Θ. Let h = (1 − φ)−1∇ on Θ. One has
hΘ ⊂ Θ because the image of h are differential forms of degree ≥ 2. Extend
h to ΩTA by setting h = 0 on X(TA). Then a simple computation using (34)
and ∇b + b∇ = −1 on Ωn≥2TA shows that (b + B)h + h(b + B) = −Id on Θ.
Thus with h = (1− φ)−1∇(1 −Q) on ΩTA, one gets

γ ◦ π = Q = Id + (b+B)h+ h(b+B) ,

and the proposition follows.

Proposition 4.2 shows that γ and π realize inverse homotopy equivalences
between X(TA) and ΩTA. This is not very interesting at first sight, since the
homology of these complexes is in fact trivial! However, these are bornological
complexes and their completions compute the entire cyclic homology of A. The
key point is that all the maps we have constructed are in fact bounded for the
bornology S(ΩTA):

Proposition 4.3 The maps ∇, φ, (1 − φ)−1, h are bounded on ΩTA and thus
extend to bounded linear maps on the completion ΩǫT A. Also, γ is bounded and
extends to a bounded chain map

γ : X(T A)→ ΩǫT A . (35)

Proof: Recall that the bornology S(ΩTA) is generated by the collection of

subsets
⋃
n≥0[n/2]! T̃ (dT )n, for any small T ∈ S(TA) = San(Ω+A). We will

consider a set of generators of San(Ω+A) that will appear complicated at first
sight, but it will simplify drastically the proof of boundedness. For any S ∈
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S(A), we put Tn(S) = S̃ ⊙ (dSdS)n ⊙ S̃, and consider the following subset of
Ω+A:

V (S) = (2S + S2) ∪
⋃

N≥0

N∑

n=0

Tn(S) ⊂ Ω+A = TA .

We claim that San(Ω+A) is generated by {V (S)|S ∈ S(A)}. Indeed, by defini-

tion San(Ω+A) is generated by the set U = {
⋃
n≥0 S̃(dS)2n|S ∈ S(A)}. Then

for any S ∈ S(A),
⋃
n≥0 S̃(dS)2n ⊂ V (S). Conversely, given a small S in A, we

have to show that V (S) is contained in the circled convex hull of elements of U.
Let n ∈ N, one has

S̃ ⊙ (dSdS)n ⊙ S̃ = (S̃(dS)2n)⊙ S̃ ⊂ S̃(dS)2nS̃ + (dS)2n+2

⊂ S̃(dS)2n−1d(SS̃) + S̃(dS)2n−2d(S2)dS + . . .+ (S̃S)(dS)2n + (dS)2n+2 ,

where the latter sum contains 2n+ 2 terms. Let S′ be the disk (SS̃)3, then we
find

N∑

n=0

Tn(S) ⊂
N+1∑

n=0

((n+ 1)S̃′(dS′)2n)3 .

But the rescaling U = 4S′ implies

N∑

n=0

Tn(S) ⊂
N+1∑

n=0

1

22n+1
(Ũ(dU)2n)3 ⊂


⋃

n≥0

Ũ(dU)2n




3

,

because the sum
∑N+1
n=0 1/22n+1 is always less than 1. This shows that V (S)

is contained in the disked hull of
⋃
n≥0 Ũ(dU)2n. Consequently V (S) is small

for the bornology San(TA) as claimed, and {V (S)|S ∈ S(A)} generates the
analytic bornology of TA.
We now show that φ is bounded. For a small S ∈ S(A) let

ã0 ⊙ da1da2 ⊙ . . .⊙ da2n−1da2n ⊙ ã2n+1 ∈ Tn(S) ⊂ Ω+A .

The identity φ(x ⊙ y) = φ(x)y + xφ(y) + dxdy for any x, y ∈ TA, as well as
φ(a) = 0 ∀a ∈ A, imply φ(da1da2) = −da1da2, and more generally

φ(ã0 ⊙ da1da2 ⊙ . . .⊙ da2n−1da2n ⊙ ã2n+1) =

dã0d(da1da2 ⊙ . . .⊙ da2n−1da2n ⊙ ã2n+1)

+

n∑

i=1

(−ã0 ⊙ da1da2 ⊙ . . .da2i−1d(a2i ⊙ . . .⊙ ã2n+1)

+ã0 ⊙ da1da2 ⊙ . . .d(a2i−1a2i)d(da2i+1da2i+2 . . .⊙ ã2n+1)

−ã0 ⊙ da1da2 . . .⊙ a2i−1da2id(da2i+1da2i+2 . . .⊙ ã2n+1)) .

This implies (with Tn := Tn(S) for any n)

φ(Tn) ⊂ dSdTn +

n∑

i=1

(Ti−1d(2S + S2)dTn−i)
3
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and φ(
∑N

n=0 Tn) is contained in the disked hull of the sum dSd(
∑N

n=0 Tn) +

(
∑N

n−0 Tn)d(2S+S2)(
∑N

n=p Tp). Furthermore, φ vanishes on A so that φ(2S+

S2) = 0, and with V = V (S) one gets

φ(V ) ⊂
(

dSd(
⋃

N

N∑

n=0

Tn) + (
⋃

N

N∑

n−0

Tn)d(2S + S2)(
⋃

P

P∑

n=p

Tp)

)3

⊂ (dV dV + V dV dV )3 = (Ṽ dV dV )3 .

Now, the bornology on ΩTA is generated by the sets
⋃
n[n/2]! Ṽ (dV )n, for

V = V (S), S ∈ S(A). One thus has

φ(Ṽ (dV )n) = ∇B(Ṽ (dV )n) ⊂ ∇((n+ 1)(dV )n+1)3

⊂ (n+ 1)(φ(V )(dV )n)3 ⊂ (n+ 1)(Ṽ (dV )n+2)3 .

(n + 1) grows polynomially, so that by rescaling V , one can find a small set

V ′ ∈ San(Ω+A) such that φ(
⋃
n[n/2]! Ṽ (dV )n) is contained in the disked hull

of
⋃
n[1 + n/2]! Ṽ ′(dV ′)n+2. Hence φ is bounded for the bornology of ΩTA.

Next, since ∇(x0dx1 . . .dxn) = x0φ(x1)dx2 . . .dxx for any xi ∈ TA, ∇ is also
bounded. Let us now focus on (1 − φ)−1 =

∑∞
k=0 φ

k. For any V = V (S), one
has

(1 − φ)−1(Ṽ (dV )n) ⊂
∞∑

k=0

(n+ 1)(n+ 3) . . . (n+ 2k + 1)(Ṽ (dV )n+2k)3 .

In fact, this is a finite sum on all elements of Ṽ (dV )n. Elementary estimates on
the function n! show there is a constant number λ such that (n+1)(n+3) . . . (n+

2k + 1) ≤ λn+2k+1 [k+n/2]!
[n/2]! . Hence (1− φ)−1([n/2]!Ṽ (dV )n) is contained in the

disked hull of
∑∞
k=0[k + n/2]!λṼ (λdV )n+2k, and by the rescaling W = 2λV ,

one gets

(1− φ)−1([n/2]!Ṽ (dV )n) ⊂
(
⋃

p

[p/2]! W̃ (dW )p

)3

.

Since W does not depend on n, this shows that (1− φ)−1 is bounded.
It remains to study the morphism γ : X(TA) → ΩTA. By definition, for
any x ∈ X0(TA) = TA, one has γ(x) = (1 − φ)−1(x), hence γ is bounded
on X0(TA). Let now ♮xdy ∈ X1(TA) = Ω1TA♮. One has γ(♮xdy) = (1 −
φ)−1(xdy + b(xφ(y))). If we use the bornological vector space isomorphism

Ω1TA♮ ≃ T̃A⊗A, it is sufficient to evaluate γ on the element ♮xda ∈ T̃A⊗A.
Since φ(a) = 0, one has γ(♮xda) = (1 − φ)−1(xda). We deduce that γ is
bounded, and also Q = γπ and h = (1− φ)−1∇(1−Q).

Corollary 4.4 The chain map γ : X(T A) → ΩǫT A is an homotopy equiva-
lence. Its class [γ] in the bivariant entire cyclic cohomology HE0(A, T A) is the
inverse of [π] ∈ HE0(T A,A).

Proof: By the universal properties of completions and proposition 4.2 iii), one
has π ◦ γ = Id on X(T A) and γ ◦ π = Id + [b+B, h] on ΩǫT A.
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Corollary 4.5 Let m : T A → A be the multiplication map, vA : T A → T T A
the canonical bounded homomorphism, and γ, π as before. Let also c : X(T ·)→
Ωǫ(·) be the bornological isomorphism (11) and P the spectral projection onto
the κ2-invariant forms. Then the following diagram of chain maps commutes
up to homotopy:

X(T T A)
P◦c //

X(m∗)

��

ΩǫT A

Ωǫ(m)

��π
vvmm

m
m
m
m
m
m
m
m
m
m
m

X(T A)

X(vA)

OO

P◦c
//

γ
66

m
m

m
m

m
m

m
m

m
m

m
m

m

ΩǫA

(36)

Moreover, all the arrows are homotopy equivalences.

Proof: Let κ be the Karoubi operator on ΩǫT A. For any x, y ∈ T A one has
κ(x) = x and κ(xdy) = dyx, hence the projection π : ΩǫT A → X(T A) is κ-
invariant: π ◦ κ = π. It follows that π is invariant under the spectral projection
P , and π ◦ P ◦ c = π ◦ c. Consider the composition of linear maps

X(T A)
X(vA)−−−−→ X(T T A)

c−−−−→ ΩǫT A π−−−−→ X(T A) .

A direct computation using the definitions shows that it is the identity on
X(T A), hence π ◦ P ◦ c ◦ X(vA) = IdX(T A). Since π and P ◦ c are homo-
topy equivalences, one deduces that X(vA) is also an homotopy equivalence.

Next, the composition T A vA−→ T T A m∗−→ T A is the identity homomorphism of
T A. Hence X(m∗)◦X(vA) = IdX(T A), and X(m∗) is an homotopy equivalence
inverting X(vA). Since we know that γ is the inverse of π, we are left with the
commutative diagram up to homotopy

X(T T A)
P◦c //

X(m∗)

��

ΩǫT A

π
vvmm

m
m
m
m
m
m
m
m
m
m
m

X(T A)

X(vA)

OO
γ

66
m

m
m

m
m

m
m

m
m

m
m

m
m

The bottom right corner of (36) follows from the functoriality of Ωǫ(·) and
X(T ·), which implies Ωǫ(m) ◦ P ◦ c = P ◦ c ◦X(m∗).

5 Families of spectral triples

5.1 Definition

Let B be a Z2-graded complete bornological algebra. Given a Z2-graded com-
plete bornological vector spaceH, we can consider the (graded) completed tensor
product E = H⊗̂B. Since the multiplication on B is bounded, the obvious right
action of B onH⊗B extends to the completion E . This turns E into a Z2-graded
bornological right B-module, i.e. the following bilinear map is bounded:

E × B → E
(h⊗ b1, b2) 7→ h⊗ b1b2 . (37)

Denote by EndB(E) the Z2-graded algebra of bounded endomorphisms of E ,
commuting with the action of B. We always endow EndB(E) with the bornology
of equibounded endomorphisms, so that it is a complete bornological algebra.
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Definition 5.1 Let A and B be complete bornological algebras. We assume A is
trivially graded and B is Z2-graded. Then a family of spectral triples over B, or
an unbounded A-B-bimodule, is a triple (E , ρ,D) corresponding to the following
data:

• A Z2-graded complete bornological vector space H and the corresponding
right B-module E = H⊗̂B.

• A bounded homomorphism ρ : A → EndB(E) sending A to even degree
endomorphisms of E. Hence E is a bornological left A-module.

• An unbounded endomorphism D : Dom(D) ⊂ E → E of odd degree, defined
on a bornologically dense domain of E and commuting with the right action
of B:

D · (ξb) = (D · ξ)b ∀ξ ∈ E , b ∈ B . (38)

D is also called a Dirac operator.

• The commutator [D, ρ(a)] extends to an element of EndB(E) for any a ∈
A.

• For any t ∈ R+, the heat kernel exp(−tD2) is densely defined and extends
to a bounded endomorphism of E.

We denote by Ψ(A,B) the set of such unbounded bimodules.

It is clear that this definition is an adaptation of the Baaj and Julg picture of
unbounded Kasparov bimodules [4], with C∗-algebras replaced by bornological
algebras. Remark however that we do not require the “resolvent” (1 + D2)−1

to be a compact endomorphism as in Kasparov theory. Instead, we deal with
the heat operator exp(−tD2), and the compactness will be replaced by the so-
called θ-summability condition (see definitions 6.3 and 7.2). Roughly speaking,
θ-summability means that the heat kernel is a trace-class endomorphism for
t > 0, a well-defined notion in bornology.
Before proceeding further, let us mention some simple examples of unbounded
bimodules, in the case of a trivially graded algebra B:

Example 5.2 Homomorphisms: if D = 0 and H = Cn+ ⊕ Cn− is a finite-
dimensional Z2-graded space (with fine bornology), then the triple (E , ρ,D)
reduces to a pair of bounded homomorphisms ρ± : A → Mn±(B). If moreover
A = C, the latter is equivalent to a pair of idempotents e± = ρ±(1) ∈Mn±(B).
The difference “e+ − e−” then describes an algebraic K-theory class of B.

Example 5.3 B = C: then Ψ(A,C) is just the set of triples (H, ρ,D). If H
is an Hilbert space, D a selfadjoint unbounded operator and the heat kernel
exp(−tD2) is trace-class for any t > 0, then (H, ρ,D) is a θ-summable spectral
triple over A.

Example 5.4 A = C and ρ(1) = 1 ∈ EndB(E): the homomorphism C →
EndB(E) completely disappears. We view E = H⊗̂B as the space of sections of
a trivial vector bundle over the non-commutative manifold B, andD represents a
“family of Dirac operators” acting by endomorphisms on E . This also describes
a K-theory element of B. More generally, if ρ(1) = e 6= 1 is any idempotent
in EndB(E), then by virtue of the Serre-Swan theorem, eE is a twisted vector
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bundle over B, and (e,D) represents a twisted family of Dirac operators. Clas-
sically, such examples are provided by longitudinal elliptic operators on fibered
manifolds or foliations [3, 6].

5.2 Higher bimodules and formal Bott periodicity

We shall introduce the higher unbounded bimodules. Let C1 = C ⊕ εC, be
the one-dimensional complex Clifford algebra (with fine bornology). It is a Z2-
graded algebra generated by the unit 1 in degree zero and ε in degree one, with
ε2 = 1. For any n ≥ 1, the n-dimensional complex Clifford algebra is the graded

tensor product Cn = C⊗̂n
1 , and by convention C0 = C. For any trivially graded

complete bornological algebra B, the completed tensor product Cn⊗̂B (which
also coincides with the algebraic tensor product) is thus a Z2-graded complete
bornological algebra.

Definition 5.5 Let A and B be trivially graded complete bornological algebras.
For any n ≥ 0, we set Ψn(A,B) := Ψ(A, Cn⊗̂B).

It is well-known that, due to the formal Bott periodicity Cn+2 ≃M2(Cn), only
the first two cases n = 0 and n = 1 are relevant:

• n = 0: One has Ψ0(A,B) = Ψ(A,B). Let (E , ρ,D) be such a bimodule,
with E = H⊗̂B. The complete bornological space H is Z2-graded, hence it
comes equipped with an involutive operator Γ, Γ2 = 1, which splits H into two
eigenspaces H+ and H− of even and odd vectors respectively. Also the right
B-module E splits into two eigenspaces E± = H±⊗̂B. We adopt the usual 2× 2
matrix notation

E =

(
E+
E−

)
Γ =

(
1 0
0 −1

)
. (39)

The even (resp. odd) part of the Z2-graded algebra EndB(E) is represented by
diagonal (resp. off-diagonal) matrices. By definition the homomorphism ρ →
EndB(E) commutes with Γ, whereas D anticommutes. In matricial notations
one thus has

ρ(a) =

(
ρ+(a) 0

0 ρ−(a)

)
D =

(
0 D−

D+ 0

)
(40)

for any a ∈ A.

• n = 1: Let (E , ρ,D) ∈ Ψ1(A,B) = Ψ(A, C1⊗̂B). One thus has E = H⊗̂C1⊗̂B
for some Z2-graded bornological spaceH = H+⊕H−. We may write the graded
tensor product H⊗̂C1 as the direct sum of its even and odd part:

H⊗̂C1 = (H+ ⊕H−)⊗̂(C⊕ εC) = (H+ ⊕H−ε)⊕ (H+ε⊕H−) = K⊗̂C1 , (41)

where K = H+⊕H−ε is a trivially graded bornological space. Hence the module
E is the direct sum of two copies of K⊗̂B:

E =

(
K⊗̂B
K⊗̂B

)
, (42)

whose right action of C1⊗̂B is such that ε flips the two factors. It follows that
any endomorphism z ∈ EndC1⊗̂B(E) reads

z =

(
x y
y x

)
, (43)
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with x, y ∈ EndB(K⊗̂B). As a consequence, there is a bounded homomorphism
α : A → EndB(K⊗̂B) and an unbounded endomorphism Q : K⊗̂B → K⊗̂B such
that

ρ(a) =

(
α(a) 0

0 α(a)

)
D =

(
0 Q
Q 0

)
. (44)

This is the general matricial form for an element of Ψ1(A,B).

• n ≥ 2: The study of an element (E , ρ,D) ∈ Ψn(A,B) = Ψ(A, Cn⊗̂B) is
analogous to the previous one for Ψ1(A,B). We can reduce E to a prod-
uct K⊗̂Cn⊗̂B for a certain trivially graded vector space K, and consequently
EndCn⊗̂B(E) = EndB(K⊗̂B)⊗̂Cn.
If n = 2k is even, then Cn = M2(M2k−1(C)) as a Z2-graded algebra, with stan-
dard even/odd grading corresponding respectively to the diagonal/off-diagonal

2×2 block matrices. It follows that EndCn⊗̂B(E) = M2(EndB(K⊗̂C2k−1⊗̂B)) in
2 × 2 matrix notation. The homomorphism ρ and the Dirac operator thus de-
compose as in (40). This shows that up to stabilization by matrices of arbitrary
size, the elements of Ψ2k(A,B) correspond exactly to the elements of Ψ0(A,B).
If n = 2k + 1 is odd, one has Cn = M2k(C)⊗̂C1 as a Z2-graded algebra, where
M2k(C) is trivially graded and C1 has its natural graduation. Consequently,

EndCn⊗̂B(E) = EndB(K⊗̂C2k⊗̂B)⊗̂C1. The homomorphism ρ and the Dirac
operator thus decompose as in (44); hence up to stabilization by matrices,
Ψ2k+1(A,B) corresponds to Ψ1(A,B).

All in all, due to formal Bott periodicity there are only two different sets
of bimodules, the even ones Ψ0(A,B), and the odd ones Ψ1(A,B). In both
cases, a Z2-graded module splits into the direct sum E = E+⊕E−, according to
which the homomorphism ρ has a diagonal form, and the Dirac operator D is
off-diagonal.

5.3 Properties

LetA and B be trivially graded complete bornological algebras. It is readily seen
that Ψ∗(A,B), ∗ = 0, 1, is a semigroup under direct orthogonal sum: (E , ρ,D)+
(E ′, ρ′, D′) = (E ⊕ E ′, ρ ⊕ ρ′, D ⊕ D′). Since we don’t deal with C∗-algebras,
there is a priori no reason to find an interesting composition product Ψ(A,B)×
Ψ(B, C) → Ψ(A, C) as in the case of Kasparov’s theory. Nevertheless, Ψ is a
bimodule over the category of bornological algebras in the following sense. If
we let Mor(A,B) ⊂ Ψ0(A,B) be the set of bounded homomorphisms from A to
B, then there is a well-defined left product Mor(A,B) × Ψ∗(B, C) → Ψ∗(A, C)
given by

ϕ · (E , ρ,D) = (E , ρ ◦ ϕ,D) , (45)

with E = H⊗̂C. For the right product we must consider the unitalizations B̃
and C̃. Let (E , ρ,D) ∈ Ψ∗(A, B̃) with E = H⊗̂B̃, and consider a unital bounded

homomorphism ϕ : B̃ → C̃. Then the right product Ψ∗(A, B̃) ×Mor(B̃, C̃) →
Ψ∗(A, C̃) reads

(E , ρ,D) · ϕ = (E⊗̂ϕC̃, ρ⊗ Id, D ⊗ Id) (46)

where E⊗̂ϕC̃ is canonically isomorphic to H⊗̂C̃. Our aim is to construct a Chern
character map

ch : Ψθ
∗(A, B̃)→ HE∗(A,B) , ∗ = 0, 1 , (47)
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with domain the strongly θ-summable unbounded A-B̃-bimodules (see defini-
tions 6.3 and 7.2), and range the bivariant entire cyclic cohomology of A and
B. This Chern character has to be additive, invariant under differentiable ho-
motopies (definition 6.6) and functorial with respect to A and B, which means
that the following diagram commutes:

Mor(A,B)× Ψθ
∗(B, C̃) −−−−→ Ψθ

∗(A, C̃)ych

ych

ych

HE0(A,B)×HE∗(B, C) −−−−→ HE∗(A, C)

(48)

and similarly for the right product (46).

6 Algebra cochains and superconnections

Let A and B be trivially graded complete bornological algebras, and B̃ the
unitalization of B. To any unbounded bimodule (E , ρ,D) ∈ Ψ∗(A, B̃) verify-
ing suitable θ-summability conditions, we will associate a bounded chain map
χ(E , ρ,D) from the (b + B)-complex of entire chains ΩǫA to the X-complex
X(B). This morphism, playing a central role in the bivariant Chern character,
is obtained from the exponential of the curvature of a superconnection, as in the
Bismut-Quillen approach to the family’s index theorem [3, 31]. To do this, we
adapt the theory of algebra cochains developed by Quillen [32] to the bornolog-
ical framework. For convenience, we postponed in appendix a self-contained
account of Quillen’s formalism.

6.1 Bar construction

LetA be a complete bornological algebra, ΩA =
⊕

n≥0 ΩnA the (b, B)-bicomplex

of noncommutative forms overA, with ΩnA = Ã⊗̂A⊗̂n. We use the bar complex

B(A) =
⊕

n≥0

Bn(A) , (49)

where Bn(A) = A⊗̂n and B0(A) = C. Recall (appendix) that B(A) is a graded
coassociative coalgebra. The coproduct ∆ : B(A)→ B(A)⊗̂B(A) is given by

∆(a1 ⊗ . . .⊗ an) =
n∑

i=0

(a1 ⊗ . . .⊗ ai)⊗ (ai+1 ⊗ . . .⊗ an) , (50)

for any aj ∈ A. Furthermore, one has a boundary map b′ : B(A) → B(A) of
degree −1:

b′(a1 ⊗ . . .⊗ an) =

n−1∑

i=1

(−)i+1a1 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an (51)

verifying b′
2

= 0 and ∆b′ = (b′⊗Id+Id⊗b′)∆. Thus B(A) is a graded differential
coalgebra. There is an associated free bicomodule Ω1B(A) = B(A)⊗̂A⊗̂B(A),
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with left and right bicomodule maps

∆l = ∆⊗ Id⊗ Id : Ω1B(A)→ B(A)⊗̂Ω1B(A) ,

∆r = Id⊗ Id⊗∆ : Ω1B(A)→ Ω1B(A)⊗̂B(A) . (52)

Ω1B(A) is endowed with a differential b′′ : Ω1B(A) → Ω1B(A), b′′
2

= 0,
compatible with the bicomodule structure and b′ (see appendix). There is also
a projection ∂ : Ω1B(A)→ B(A) defined by

∂(a1 ⊗ . . .⊗ ai−1)⊗ ai ⊗ (ai+1 ⊗ . . .⊗ an) = a1 ⊗ . . .⊗ an . (53)

It is a coderivation (∆∂ = (Id⊗∂)∆l+(∂⊗Id)∆r) and a morphism of complexes

(∂b′′ = b′∂). The last operator we need is the injection ♮ : ΩA → Ω1B(Ã):

♮(ã0da1 . . . dan) =

n∑

i=0

(−)n(i+1)(ai+1 ⊗ . . .⊗ an)⊗ ã0 ⊗ (a1 ⊗ . . .⊗ ai) , (54)

for any ã0 in the unitalization Ã = C⊕A and aj ∈ A. Then ♮ is a cotrace, see
appendix.

We now endow the bar complex and its associated bicomodule with new
bornologies satisfying the entire growth condition. Let Sǫ(B(A)) be the bornol-
ogy generated by the sets

⋃
n≥0[n/2]!S⊗n for any S ∈ S(A). We denote

by Bǫ(A) the completion of B(A) with respect to this bornology. Also, let
Sǫ(Ω1B(A)) be the bornology generated by

⋃
n,p≥0[(n + p)/2]! (S⊗n) ⊗ S ⊗

(S⊗p), S ∈ S(A). The corresponding completion Ω1Bǫ(A) identifies with
Bǫ(A)⊗̂A⊗̂Bǫ(A).

Lemma 6.1 All the maps ∆,∆l,r, b
′, b′′, ∂, ♮ are bounded for the entire bornol-

ogy and thus extend to the completions Bǫ(A), Ω1Bǫ(A) and ΩǫA.

Proof: It is a direct consequence of the definitions. Let us for example check the
boundedness of the coproduct ∆ on B(A). For any small S ∈ S(A) one has

∆([n/2]!S⊗n) ⊂ [n/2]!

n∑

i=0

(S⊗i)⊗ (S⊗(n−i))

⊂
n∑

i=0

[n/2]!

[i/2]![(n− i)/2]!

(
([i/2]!S⊗i)⊗ ([(n− i)/2]!S⊗(n−i))

)3

.

But there is a constant λ such that [n/2]!
[i/2]![(n−i)/2]! ≤ λn for any n and i ≤ n, so

that ∆([n/2]!S⊗n) is contained in

λn(n+ 1)

(
n∑

i=0

1

n+ 1
([i/2]!S⊗i)⊗ ([(n− i)/2]!S⊗(n−i))

)3

.

The sum over i lies in the circled convex hull of the set (
⋃
m[m/2]!S⊗m) ⊗

(
⋃
p[p/2]!S⊗p), hence by rescaling appropriately S, one can find a small T ∈

S(A) such that

∆(
⋃

n

[n/2]!S⊗n) ⊂
(

(
⋃

m

[m/2]!T⊗m)⊗ (
⋃

p

[p/2]!T⊗p)

)3

, (55)
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and the conclusion follows. The other operators are treated similarly.

In particular, the completed bar complex is a Z2-graded differential coal-
gebra, and Ω1Bǫ(A) is a Bǫ(A)-bicomodule. All the results of the appendix
extend also to these completions.

6.2 The bimodule ΩδE
Let A and B be complete bornological algebras, B̃ the unitalization of B, and
consider an unbounded bimodule (E , ρ,D) ∈ Ψ∗(A, B̃). One thus has E = H⊗̂B̃
for some complete Z2-graded bornological space H; ρ is a bounded homomor-
phism from A to the even part of End eB(E) and D : E → E is an unbounded

endomorphism with dense domain. Let Ω̃δB be the unitalization of the complete
DG algebra ΩδB. Recall that the latter is the completion of ΩB with respect to
the de Rham-Karoubi bornology. By definition the unit 1 ∈ Ω̃δB verifies d1 = 0.
Since E is a bornological right B̃-module and Ω̃δB a left B̃-module, we can form
the completed tensor product over B̃:

ΩδE := E⊗̂ eBΩ̃δB . (56)

Since B̃ is unital, ΩδE identifies with H⊗̂Ω̃δB. The space ΩδE is naturally a
Z2-graded complete bornological right Ω̃δB-module, endowed with a (bounded)

differential d induced by d(h⊗ω) := (−)|h|h⊗dω for any h⊗ω ∈ H⊗̂Ω̃δB. Here
|h| is the degree of the homogeneous element h ∈ H.

Let L = EndeΩδB
(ΩδE) be the Z2-graded complete bornological algebra of

bounded endomorphisms of ΩδE . It has a differential induced by the differential
on ΩδE : for any x ∈ L, one has dx = d ◦ x − (−)|x|x ◦ d. L has a unit 1L
corresponding to the identity endomorphism of ΩδE , satisfying d1L = 0; hence
L is a complete unital DG algebra.
Any endomorphism y ∈ End eB(E) gives rise to an endomorphism of ΩδE by

y · (ξ ⊗ ω) = (y · ξ)⊗ ω ∀ξ ⊗ ω ∈ E⊗̂ eBΩ̃δB , (57)

whence a bounded homomorphism End eB(E)→ L. Composing ρ with this map
yields a bounded representation of A into L, hence ΩδE becomes a complete
bornological A-Ω̃δB-bimodule. In the subsequent constructions we will need
to extend the homomorphism ρ : A → L to the unitalization Ã by setting
ρ(1 eA) = 1L.
Next, the endomorphism D : E → E being unbounded, it may fail to extend to
the completion of E ⊗ eB Ω̃δB. Therefore we have to assume that D is a densely

defined unbounded operator on ΩδE , commuting with the right action of Ω̃δB.

6.3 Trace-class endomorphisms

Let E = H⊗̂B̃ be a Z2-graded right B̃-module, and consider the complete
bornological space E ′ consisting of bounded right B̃-module maps E → B̃.
In other words, the action of E ′ on E is given by a bounded bilinear braket
〈 , 〉 : E ′ × E → B̃ satisfying

〈v, ξb〉 = 〈v, ξ〉b ∀v ∈ E ′ , ξ ∈ E , b ∈ B̃ . (58)

24



Then E ′ is naturally a left B̃-module: for any v ∈ E ′ and b ∈ B̃, the product
bv ∈ E ′ is defined by 〈bv, ξ〉 = b〈v, ξ〉, ∀ξ ∈ E .

Definition 6.2 The algebra of trace-class endomorphisms of E is the Z2-graded
complete bornological algebra ℓ1(E) = E⊗̂ eBE ′.

The product on ℓ1(E) is induced by the braket:

(ξ1 ⊗ v1) · (ξ2 ⊗ v2) = ξ1〈v1, ξ2〉 ⊗ v2 ∀ξi ∈ E , vi ∈ E ′ . (59)

Also, ℓ1(E) acts on E by bounded endomorphisms: one has a bounded bilinear
map ℓ1(E) × E → E sending (ξ1 ⊗ v, ξ2) to ξ1〈v, ξ2〉, compatible with the right

action of B̃, whence a canonical bounded homomorphism ℓ1(E) → End eB(E).
This map may fail to be injective in general. Finally, ℓ1(E) is a End eB(E)-
bimodule, the left multiplication End eB(E) × ℓ1(E)→ ℓ1(E) corresponding to

(x, ξ ⊗ v) 7→ x(ξ)⊗ v (60)

for any x ∈ End eB(E) , ξ ∈ E , v ∈ E ′, and the right multiplication ℓ1(E) ×
End eB(E)→ ℓ1(E) sends (ξ ⊗ v, x) to ξ ⊗ (v ◦ x).

Let us now turn to partial supertraces. We first define a map Tr : E ⊗E ′ → B̃
by

Tr((h⊗ b)⊗ v) = (−)|h||v|b〈v, h⊗ 1 eB〉 ∀ h⊗ b ∈ E , v ∈ E ′ . (61)

Note the sign appearing in the r.h.s depending on the degrees of the graded
elements h ∈ H and v ∈ E ′. Moreover this map is well-defined on E ⊗ eB E ′ and
bounded, hence it extends to a bounded map on the completion

Tr : ℓ1(E)→ B̃ . (62)

Tr is a partial supertrace on ℓ1(E) viewed as a End eB(E)-bimodule. This means

that, if we compose by the universal trace ♮ : B̃ → B̃♮ = (B̃/[ , ])completed (see

appendix), the resulting bounded map ♮Tr : ℓ1(E) → B̃♮ vanishes on the super-
commutators [ℓ1(E),End eB(E)].

The same discussion holds for the right Ω̃δB-module ΩδE , with some im-
provements due to the presence of the differential d. Here the space (ΩδE)′
of bounded right Ω̃δB-module maps from ΩδE to Ω̃δB is a graded (complete)

left Ω̃δB-module, also with a differential: for v ∈ (ΩδE)′, one puts dv =
d◦v−(−)|v|v◦d. Consequently the set of trace-class endomorphisms ℓ1(ΩδE) :=
ΩδE⊗̂eΩδB

(ΩδE)′ is a DG algebra (in general non-unital), the differential corre-
sponding to

d(ξ ⊗ v) = dξ ⊗ v + (−)|ξ|ξ ⊗ dv ∀ξ ∈ ΩδE , v ∈ (ΩδE)′ , (63)

and it is well-defined on ℓ1(ΩδE) because d(ξ⊗ωv) = d(ξω⊗v) for any ω ∈ Ω̃δB.
It is also easy to show that the natural bounded map ℓ1(ΩδE)→ EndeΩδB

(ΩδE) =
L is a DG algebra (and L-bimodule) morphism, and that the partial supertrace

Tr : ℓ1(ΩδE)→ Ω̃δB commutes with d.
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6.4 Superconnections

We are ready now to introduce the fondamental chain map χ. Let (E , ρ,D) ∈
Ψ∗(A, B̃) be an unbounded bimodule. As above, Bǫ(Ã) denotes the com-

pleted bar coalgebra of the unitalization of A, with coproduct ∆ : Bǫ(Ã) →
Bǫ(Ã)⊗̂Bǫ(Ã), and L = EndeΩδB

(ΩδE) is the unital DG algebra of bounded

endomorphisms on ΩδE , with product m : L⊗̂L → L. The space of bounded
linear maps

R = Hom(Bǫ(Ã),L) (64)

is a Z2-graded complete bornological algebra for the convolution product fg =
m ◦ (f ⊗ g) ◦∆, ∀f, g ∈ R. The differentials d on L and b′ on Bǫ(Ã) induce two
anticommuting differentials on R,

df = d ◦ f , δf = −(−)|f |f ◦ b′ , ∀f ∈ R , (65)

which moreover satisfy the Leibniz rule for the convolution product. Associated
to the Bǫ(Ã)-bicomodule Ω1Bǫ(Ã) is the Z2-gradedR-bimodule (see appendix)

M = Hom(Ω1Bǫ(Ã),L) , (66)

the left and right multiplication maps being respectively given by fγ = m◦ (f⊗
γ)◦∆l and γf = m◦(γ⊗f)◦∆r, for any f ∈ R, γ ∈M. M is also endowed with
two anticommuting differentials dγ = d ◦ γ and δγ = −(−)|γ|γ ◦ b′′, compatible
with the R-bimodule maps. Last but not least, the transposed of the canonical
coderivation ∂ : Ω1Bǫ(Ã) → Bǫ(Ã) yields a bounded derivation ∂ : R → M,
commuting with d and δ.

Let us now consider the bounded homomorphism ρ : A → End eB(E). We
know that it gives rise to a bounded homomorphism from A to L, and we
extend it to Ã by imposing ρ(1 eA) = 1L. Next, since the projection B(Ã) →
B1(Ã) = Ã is clearly bounded for the entire bornology, it extends to a bounded

map Bǫ(Ã) → Ã. Then composing with ρ : Ã → L, we obtain a linear map of
degree 1, which we also denote by ρ:

ρ ∈ Hom(Bǫ(Ã),L) = R , |ρ| = 1 . (67)

We go back to the right Ω̃δB-module ΩδE . The action of the algebra of endo-
morphisms L = EndeΩδB

(ΩδE) yields a bounded map m′ : L⊗̂ΩδE → ΩδE . We
form the left R-module

F = Hom(Bǫ(Ã),ΩδE) . (68)

The module map R × F → F comes from the convolution product f · ξ =
m′ ◦ (f ⊗ ξ) ◦ ∆, ∀f ∈ R, ξ ∈ F . It is immediate to check the compatibil-

ity of this action with the product on R: the coassociativity of Bǫ(Ã) implies

f · (g · ξ) = (fg) · ξ. The differentials d on ΩδE and b′ on Bǫ(Ã) imply as above
that F is a bidifferential R-bimodule: one has dξ = d ◦ ξ and δξ = −(−)|ξ|ξ ◦ b′
for any ξ ∈ F , and these differentials are compatible with the ones on R, i.e.
d(f · ξ) = df · ξ + (−)|f |f · dξ and δ(f · ξ) = δf · ξ + (−)|f |f · δξ for any f ∈ R.
The last ingredient we have is the Dirac operator D acting on ΩδE as an un-
bounded endomorphism of odd degree. We assume the induced unbounded
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linear map D : F → F has dense domain. Remark that if D were bounded, it
could be considered as a bounded homomorphism from C = B0(Ã) to L and
thus would define an element of R. The map D : F → F would correpond to
the left action of this element. The unboundedness of D however prevents us
to consider it as an element of R.

We now introduce a superconnection D : F → F

D = δ − d+ ρ+D , (69)

where ρ is the odd element ofR induced by the unital homomorphism ρ : Ã → L
and D is the odd unbounded operator on F . For any ã1, ã2 ∈ Ã one has
δρ(ã1, ã2) = ρb′(ã1, ã2) = ρ(ã1ã2) and ρ2(ã1, ã2) = −ρ(ã1)ρ(ã2). Since ρ is an
homomorphism, it follows that δρ + ρ2 = 0. Furthermore D can be viewed as
a 0-cochain on the bar complex, hence δD = D ◦ b′ = 0. This implies that the
curvature of D reads

D2 = (δ − d)(ρ+D) + (ρ+D)2

= −d(ρ+D) + [D, ρ] +D2 . (70)

Because of the terms D2 and dD, the curvature is an unbounded operator of
even degree acting on F . In the following, we want the heat kernel exp(−tD2)
to be a bounded operator on F , hence defining an element ofR. We first have to
precise the meaning of the heat kernel of D2. Using a Duhamel-type expansion,
we write for any t ∈ R+

exp(−tD2) =
∑

n≥0

(−t)n
∫

∆n

ds1 . . . dsn e
−ts0D

2

Θe−ts1D
2

. . .Θe−tsnD
2

, (71)

where ∆n is the n-simplex {(s0, . . . , sn) ∈ [0, 1]n+1|∑i si = 1}, and Θ = −d(ρ+
D) + [D, ρ]. By hypothesis (definition 5.1), the heat kernel exp(−uD2) is a
bounded endomorphism of E for any u ∈ R+, hence defines an even element of
R. Also, the commutator [D, ρ] takes its values in End eB(E) and thus lies in R.
However Θ may not be inR because dD is not necessarily a bounded operator on
F . Therefore, we must impose exp(−uD2) to be a regulator, so that each term
of the Duhamel expansion is bounded (hence in R), and that the series itself
converges bornologically. This is part of the content of the following definition.

Definition 6.3 (Weak θ-summability) Let A and B be complete bornolog-

ical algebras. An unbounded bimodule (E , ρ,D) ∈ Ψ∗(A, B̃) is called weakly
θ-summable iff the following conditions hold:
i) Boundedness condition: the heat kernel exp(−tD2), given by the power series

(71), converges bornologically to an element of R = Hom(Bǫ(Ã),L) for any
t ∈ R+.
ii) Trace-class condition: the natural homomorphism ℓ1(ΩδE)→ L is injective,

and for any t > 0, the heat kernel lies in Hom(Bǫ(Ã), ℓ1(ΩδE)).
Recall there is a derivation of degree zero ∂ : R→M. Thus for ρ ∈ R, ∂ρ ∈

M is odd. Assuming the θ-summability condition 6.3, we form the following
odd element ofM:

µ =

∫ 1

0

dt e−tD
2

∂ρ e(t−1)D2

: Ω1Bǫ(Ã)→ ℓ1(ΩδE) . (72)
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Then composing µ by the cotrace ♮ : ΩǫA → Ω1Bǫ(Ã) yields an entire cochain
on the (b +B)-complex of A, namely µ♮ ∈ Hom(ΩǫA, ℓ1(ΩδE)).

Proposition 6.4 The bounded map µ♮ : ΩǫA → ℓ1(ΩδE) satisfies the Bianchi
identity

µ♮(b +B) + [µ, ρ+D]♮ = dµ♮ . (73)

Proof: One has ∂(D2) = ∂DD +D∂D = [D, ∂ρ], thus

[D, µ] =

∫ 1

0

dt e−tD
2

[D, ∂ρ] e(t−1)D2

=

∫ 1

0

dt e−tD
2

∂(D2) e(t−1)D2

= −∂e−D2

,

which is equivalent to (δ − d)µ + [ρ +D,µ] = −∂ exp(−D2). Thus composing
with the cotrace ♮, one gets (recall µ is odd)

δµ♮+ ∂e−D2

♮+ [µ, ρ+D]♮ = dµ♮ .

Now from lemma A.1 one has δµ♮ = µ♮b. Moreover, exp(−tD2) is an even

element of R. It vanishes if one of its arguments is equal to the unit 1 ∈ Ã,
because it involves the commutator [D, ρ] and the differential dρ. Thus lemma
A.2 implies

µ♮B =

∫ 1

0

dt e−tD
2

∂ρ e(t−1)D2

♮B = ∂e−D2

♮ ,

and the conclusion follows.

The next step is to compose µ♮ with a partial supertrace τ on the superal-
gebra ℓ1(ΩδE). Of course we have the canonical map Tr : ℓ1(ΩδE)→ Ω̃δB, but
what we need is a little bit more complicated, depending on the parity of the
unbounded bimodule (E , ρ,D) ∈ Ψ∗(A, B̃):

a) (E , ρ,D) ∈ Ψ0(A, B̃): we have E = H⊗̂B̃ for a certain Z2-graded complete

bornological vector space H = H+⊕H−, and ΩδE = H⊗̂Ω̃δB is given its natural
Z2-graduation. We simply take τ as the even partial supertrace Tr:

τ = Tr : ℓ1(ΩδE)→ Ω̃δB
(h⊗ ω)⊗ v 7→ ±ω〈v, h⊗ 1eΩδB

〉 (74)

for any h ∈ H, ω ∈ Ω̃δB, and v ∈ (ΩδE)′. The sign ± depends on the parity

of |h|(|ω| + |v|). The bounded map τµ♮ : ΩǫA → Ω̃δB is thus an even entire
cochain, i.e. it sends an even (resp. odd) entire chain on A to an even (resp.
odd) chain in the de Rham-Karoubi completion of forms over B.

b) (E , ρ,D) ∈ Ψ1(A, B̃): in this case, E = K⊗̂C1⊗̂B̃ for a trivially graded

bornological space K, and ΩδE = K⊗̂C1⊗̂Ω̃δB. The operators ρ and D, acting
by endomorphisms on ΩδE , commute with the right action of the Clifford alge-
bra C1. Since the map µ♮ : ΩǫA → ℓ1(ΩδE) is made out of ρ and D, its range
must lie in the trace-class endomorphisms of ΩδE commuting with C1. This
subalgebra of ℓ1(ΩδE) identifies with ℓ1(K⊗̂Ω̃δB)⊗̂C1. Therefore, we choose

the partial supertrace τ : ℓ1(K⊗̂Ω̃δB)⊗̂C1 → Ω̃δB to be the tensor product of

the canonical (even) partial supertrace Tr : ℓ1(K⊗̂Ω̃δB) → Ω̃δB with an odd
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supertrace ζ : C1 → C. The latter is unique up to a multiplication factor,
because the universal supercommutator quotient space C1♮ := C1/[C1, C1] is
one-dimensional. This normalization factor can be fixed uniquely by imposing
the compatibility of the bivariant Chern character with suspension an Bott pe-
riodicity. This is done in section 8.2. One finds ζ(ε) =

√
2i and ζ(1) = 0. Thus

the partial supertrace τ is odd and reads

τ = Tr⊗ ζ : ℓ1(K⊗̂Ω̃δB)⊗̂C1 → Ω̃δB (75)

x+ εy 7→
√

2iTr(y) ∀x, y ∈ ℓ1(K⊗̂Ω̃δB) .

The bounded map τµ♮ : ΩǫA → Ω̃δB is then an odd entire cochain, i.e. it sends
an even (resp. odd) entire chain on A to an odd (resp. even) chain on B.

For any n ≥ 0, let pn : ΩB → ΩnB be the natural projection. It is bounded
for the de Rham-Karoubi bornology Sδ(ΩB), hence extends to a bounded map

on the (unital) completion pn : Ω̃δB → ΩnB. We denote by Ω1B♮ the completion
of the commutator quotient space Ω1B/[B,Ω1B], and by ♮ : Ω1B → Ω1B♮ the
bounded map induced by projection. We set χ0 = p0τµ♮ : ΩǫA → B and
χ1 = ♮p1τµ♮ : ΩǫA → Ω1B♮. These are the components of a bounded map from
the space of entire chains on A to the X-complex of B:

χ(E , ρ,D) ∈ Hom(ΩǫA, X(B)) . (76)

χ has the same parity as the unbounded bimodule (E , ρ,D). The components

χ0 and χ1 can be expressed explicitly through the map µ0 : Ω1Bǫ(Ã)→ ℓ1(ΩδE)
defined by

µ0 =

∫ 1

0

dt e−tθ∂ρ e(t−1)θ , (77)

with θ = D2 + [D, ρ]. The exponentials of θ have a Duhamel expansion

e−tθ =
∑

n≥0

(−t)n
∫

∆n

ds1 . . . dsne
−s0tD

2

[D, ρ]e−s1tD
2

. . . [D, ρ]e−sntD
2

. (78)

The map τµ0♮ is valued in B̃ and χ0 is its projection onto B. On the other hand,
the composition ♮p1τ : ℓ1(ΩδE)→ Ω1B♮ is a trace, which implies that ♮p1τ · ♮ is
a trace on the R-bimodule M (see appendix A4). One thus has

♮p1τµ♮ = ♮p1τ

∫ 1

0

dt e−tD
2

∂ρ e(t−1)D2

♮ = ♮p1τ∂ρe
−D2

♮ , (79)

hence

χ1 = ♮τ∂ρ

∫ 1

0

dt e−tθd(ρ+D) e(t−1)θ♮ = ♮τµ0d(ρ+D)♮ . (80)

Proposition 6.5 χ is a morphism from the (b+B)-complex of entire chains on
A to the X-complex of B, i.e. χ0 ◦ (b+B) = ±b◦χ1 and χ1 ◦ (b+B) = ±♮d◦χ0,
the sign ± depending on the parity of χ.

Proof: i) χ0(b +B) = ±bχ1: Composing eq. (73) with the trace τ : ℓ1(ΩδE)→
Ω̃δB yields the equality of linear maps τµ♮(b + B) + τ [µ, ρ + D]♮ = τdµ♮, and

projecting the range of these maps onto B̃, one gets

τµ0♮(b +B) + τ [µ0, ρ+D]♮ = 0 .
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We shall use the left and right bicomodule maps

∆l : Ω1Bǫ(A)→ Bǫ(A)⊗̂Ω1Bǫ(A) ,

∆r : Ω1Bǫ(A)→ Ω1Bǫ(A)⊗̂Bǫ(A) ,

as well as the graded flip σ : Ω1Bǫ(A)⊗̂Bǫ(A) ⇄ Bǫ(A)⊗̂Ω1Bǫ(A) exchanging

the two factors (with signs). The bounded map ♮ : ΩǫA → Ω1Bǫ(Ã) is a
cotrace, which means σ∆r♮ = ∆l♮ and σ∆l♮ = ∆r♮. Let m : L⊗̂L → L denote
the multiplication and σ′ : L ⊗ L ⇄ L ⊗ L the graded flip. Then if we treat
formally dD as an element of L, we can write

χ1 = ♮τµ0d(ρ+D)♮ = ♮τm(µ0 ⊗ d(ρ+D))∆r♮ .

Now let x ∈ ℓ1(E) and y ∈ End eB(E). The tracial properties of τ imply

b♮τ(xdy) = (−)|τ |+|x|τ([x, y]) or equivalently

b♮τ(xdy) = (−)|τ |+|x|τm(x ⊗ y − σ′(x⊗ y)) .

So we have

bχ1 = −(−)|τ |τm(µ0 ⊗ (ρ+D)− σ′(µ0 ⊗ (ρ+D)))∆r♮

= −(−)|τ |τµ0(ρ+D)♮+ (−)|τ |τmσ′(µ0 ⊗ (ρ+D))σ2∆r♮

because σ2 = Id, and since σ′(µ0 ⊗ (ρ+D))σ = −(ρ+D)⊗ µ0, one gets

bχ1 = −(−)|τ |τµ0(ρ+D)♮− (−)|τ |τm((ρ +D)⊗ µ0)∆l♮

= −(−)|τ |τ [µ0, ρ+D]♮ = (−)|τ |τµ0♮(b +B) .

But the range of b lies in B ⊂ B̃, so that τµ0♮(b+B) takes its values in B, hence
τµ0♮(b +B) = χ0(b+B), whence the result.
ii) χ1(b + B) = ±♮dχ0: Projecting the range of eq. (73) onto Ω1B♮ yields
♮τµ0d(ρ + D)♮(b + B) = ♮τdµ0♮ because ♮τ · ♮ is a trace on M. Furthermore,
we know that the canonical supertrace Tr on ℓ1(ΩδE) commutes with the dif-
ferential d, hence dτ = (−)|τ |τd and ♮τdµ0♮ = (−)|τ |♮dτµ0♮. The fact that ♮d

vanishes on the unit 1 ∈ B̃ yields χ1(b+B) = (−)|τ |♮dχ0 as required.

The space of bounded linear maps Hom(ΩǫA, X(B)) is a Z2-graded complete
bornological complex, the differential of a map ϕ corresponding to the graded
commutator (♮d, b)◦ϕ−(−)|ϕ|ϕ◦(b+B). Hence the cocycles of Hom(ΩǫA, X(B))
are the bounded chain maps between ΩǫA and X(B), and χ(E , ρ,D) is a cocycle
whose degree coincides with the parity of the θ-summable unbounded bimodule
(E , ρ,D) ∈ Ψ∗(A, B̃).

6.5 Homotopy invariance

We have to show that the cohomology class of the cocycle χ ∈ Hom(ΩǫA, X(B))
is invariant under suitable homotopies on the set of θ-summable unbounded
bimodules. From the construction above, it is clear that the correct notion of
homotopy is obtained by suspension. Let C∞[0, 1] be the algebra of smooth
complex-valued functions on [0, 1], such that all derivatives of order ≥ 1 vanish
at the endpoints, while the functions themselves take arbitrary values at 0 and
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1. We endow this algebra with the usual Fréchet topology, generated by the
countable family of norms

||f ||n =

n∑

i=0

1

i!
sup
x∈[0,1]

|f (i)(x)| ∀f ∈ C∞[0, 1] , n ∈ N . (81)

The Fréchet topology generates the bounded bornology Bound(C∞[0, 1]), a sub-
set being small iff it is bounded for all norms. This turns C∞[0, 1] into a com-
plete bornological algebra. Given any complete bornological space V , we define
its suspension as the completed tensor product

V [0, 1] := V⊗̂C∞[0, 1] . (82)

For any t ∈ [0, 1], there is a bounded evaluation map evt : C∞[0, 1]→ C sending
a function f to its value f(t). This extends for any complete bornological space
V to a bounded evaluation map evt = Id⊗̂ evt : V [0, 1]→ V .

Let (E , ρ,D) ∈ Ψ∗(A, B̃), with E = H⊗̂B̃. The suspension E [0, 1] is a right

module over the complete algebra B̃[0, 1], for the product

(ξ ⊗ f) · (b⊗ g) = ξb⊗ fg ∀ ξ ∈ E , b ∈ B̃ , f, g ∈ C∞[0, 1] . (83)

Consider the canonical bounded map ι : E → E [0, 1] given by ι(ξ) = ξ ⊗ 1 for
any ξ ∈ E , where 1 stands for the constant function 1 ∈ C∞[0, 1]. Given any
(possibly unbounded) endomorphism Q : E [0, 1] → E [0, 1] commuting with the

right action of B̃[0, 1], we define the evaluation of Q at t as the endomorphism
evt(Q) of E corresponding to the composition

evt(Q) : E ι→ E [0, 1]
Q−→ E [0, 1]

evt−→ E . (84)

Definition 6.6 Let A and B be complete bornological algebras. Two unbounded
bimodules (E0, ρ0, D0) and (E1, ρ1, D1) in Ψ∗(A, B̃) are differentiably homotopic

iff E0 = E1 = H⊗̂B̃ and there is an unbounded bimodule (E , ρ,D) ∈ Ψ∗(A, B̃[0, 1])

such that E = H⊗̂B̃[0, 1] and evt(ρ) = ρt, evt(D) = Dt for t = 0, 1. Differ-
entiable homotopy is an equivalence relation. A similar definition holds for
θ-summable bimodules, where the interpolating bimodule (E , ρ,D) has also to be
θ-summable.

Proposition 6.7 Let (E , ρ,D) ∈ Ψ∗(A, B̃) be a θ-summable bimodule. The
cohomology class of the cocycle χ(E , ρ,D) in H∗(Hom(ΩǫA, X(B))) is invariant
with respect to differentiable homotopies of θ-summable bimodules.

Proof: Let (E0, ρ0, D0) and (E1, ρ1, D1) be homotopic θ-summable unbounded

A-B̃-modules. By definition there is an interpolating bimodule (E , ρ,D) ∈
Ψ∗(A, B̃[0, 1]). One thus has E = H⊗̂B̃[0, 1] for a given complete bornologi-
cal space H. Let Ω∗[0, 1] be the (graded) commutative differential algebra of
de Rham forms on [0, 1] with its Fréchet topology. We endow Ω∗[0, 1] with the
bounded bornology, and note dt the (bounded) de Rham coboundary. Consider

the unital complete bornological DG algebra Ω̃δB⊗̂Ω∗[0, 1], endowed with the
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total differential d+ dt. We shall mimic the construction of the map χ before,
with the right Ω̃δB⊗̂Ω∗[0, 1]-module

ΩδE := H⊗̂Ω̃δB⊗̂Ω∗[0, 1] .

Then ρ and D lift to endomorphisms of ΩδE as before, and we consider the
superconnection D = δ− (d+ dt) + ρ+D acting on F = Hom(Bǫ(Ã),ΩδE). In
this way, one gets a bounded map

µ =

∫ 1

0

dt e−tD
2

∂ρ e(t−1)D2

: Ω1Bǫ(Ã)→ ℓ1(ΩδE) .

With the cotrace ♮ : ΩǫA → Ω1Bǫ(Ã) and the partial trace τ : ℓ1(ΩδE) →
Ω̃δB⊗̂Ω∗[0, 1], the analogue of proposition 6.4 yields

τµ♮(b +B) + τ [µ, ρ +D]♮ = (−)|τ |(d+ dt)τµ♮ . (85)

For any n ∈ N and k = 0, 1, we let pn,k be the natural bounded map from

Ω̃δB⊗̂Ω∗[0, 1] to the tensor product ΩnB⊗̂Ωk[0, 1]. Composing equation (85)
with p0,k implies

p0,kτµ♮(b +B) + p0,kτ [µ, ρ+D]♮ = (−)|τ |p0,k(d+ dt)τµ♮ = (−)|τ |dtp0,k−1τµ♮ .

Next, the bounded map ♮ : Ω1B⊗̂Ωk[0, 1] → Ω1B♮⊗̂Ωk[0, 1] is a trace because
the algebra Ω∗[0, 1] is graded commutative. Thus composing (85) with ♮p1,k

yields

♮p1,kτµ♮(b+B) = (−)|τ |♮p1,k(d+dt)τµ♮ = (−)|τ |♮dp0,kτµ♮+(−)|τ |♮dtp1,k−1τµ♮ .

Moreover, since Ω∗[0, 1] is graded commutative, the same computation as in the
proof of proposition 6.5 shows that p0,kτ [µ, ρ +D]♮ = −(−)|τ |b♮p1,kτµ♮, hence
we get a couple of equations

{
p0,kτµ♮(b +B)− (−)|τ |b♮p1,kτµ♮ = (−)|τ |dtp0,k−1τµ♮ ,

♮p1,kτµ♮(b +B)− (−)|τ |♮dp0,kτµ♮ = (−)|τ |♮dtp1,k−1τµ♮ .

For k = 0, we introduce the notations χ0 = p0,0τµ♮ and χ1 = ♮p1,0τµ♮. They
are the components of a bounded map χ : ΩǫA → X(B)⊗̂C∞[0, 1], and the
above equations yield the cocycle condition

{
χ0(b+B)− (−)|τ |bχ1 = 0 ,

χ1(b+B)− (−)|τ |♮dχ0 = 0 .

If we compose χ with the evaluation map evt : X(B)⊗̂C∞[0, 1] → X(B), we
recover χ(E0, ρ0, D0) for t = 0 and χ(E1, ρ1, D1) for t = 1. Next, for k = 1,
define the Chern-Simons transgressions cs0 = p0,1τµ♮ and cs1 = ♮p1,1τµ♮. They
form the components of a bounded map cs : ΩǫA → X(B)⊗̂Ω1[0, 1], satisfying

{
cs0(b+B)− (−)|τ |b cs1 = (−)|τ |dtχ0 ,
cs1(b+B)− (−)|τ |♮d cs0 = (−)|τ |dtχ1 .

(86)

Now, remark that the integration map of one-forms
∫

: Ω1[0, 1]→ C is bounded
and extends to an integration map

∫
: X(B)⊗̂Ω1[0, 1] → X(B). Furthermore,

for any x ∈ X(B)⊗̂C∞[0, 1], one has
∫
dtx = ev1(x)− ev0(x) ∈ X(B) .
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Thus integrating (86) shows that the difference χ(E0, ρ0, D0) − χ(E1, ρ1, D1) is
the coboundary of

∫
cs in the complex Hom(ΩǫA, X(B)), whence the result.

Let us speak about functoriality. We know that for any complete bornologi-
cal algebras A1,A2,B1,B2, there is a left product Mor(A1,A2)×Ψ∗(A2, B̃1)→
Ψ∗(A1, B̃1) given by ϕ ·(E , ρ,D) = (E , ρ◦ϕ,D) for any bounded homomorphism

ϕ : A1 → A2, and a right product Ψ∗(A2, B̃1) × Mor(B̃1, B̃2) → Ψ∗(A2, B̃2)

given by (E , ρ,D) · ψ = (E⊗̂ψB̃2, ρ⊗ Id, D ⊗ Id) where ψ : B̃1 → B̃2 is a unital
bounded homomorphism. Using the explicit construction of χ in terms of ρ and
D, one sees that it is functorial, i.e. the following diagram commutes:

ΩǫA1

χ(ϕ·(E,ρ,D)) //

Ωǫ(ϕ)

��

X(B1)

X(ψ)

��
ΩǫA2

χ((E,ρ,D)·ψ)
//

χ(E,ρ,D)
n

n
n

n
n

66
n

n
n

n
n

X(B2)

(87)

We collect the preceding results in a theorem:

Theorem 6.8 Let A and B be complete bornological algebras. To any un-
bounded θ-summable bimodule (E , ρ,D) ∈ Ψ∗(A, B̃), we associate a bounded
chain map χ(E , ρ,D) : ΩǫA → X(B) of the same parity. Its associated coho-
mology class in H∗(ΩǫA, X(B)) is invariant under differentiable homotopies and
functorial in A and B.

Remark 6.9 In particular if D = 0 then µ0 = ∂ρ and the two components
of χ(E , ρ, 0) reduce to χ0 = pτ∂ρ♮, where p is the projection B̃ → B, and
χ1 = ♮τ∂ρdρ♮. One sees that χ0 and χ1 are respectively a zero-cochain and a
one-cochain on the (b +B)-complex of entire chains over A, explicitly

χ0(a) = pτρ(a) , χ1(a0da1) = ♮τρ(a0)dρ(a1) , (88)

for any a, a0, a1 ∈ A.

Remark 6.10 For any θ-summable unbounded bimodule, the composition of
τµ♮ by the universal trace ♮ : Ω̃δB → Ω̃δB♮, yields a bounded map from the
(b + B)-complex of entire chains over A, to the (unitalized) entire de Rham-
Karoubi complex of B:

♮τµ♮ ∈ Hom(ΩǫA, Ω̃δB♮) . (89)

Proposition 6.4 implies that it is in fact a cocycle: ♮τµ♮(b+B)−(−)|τ |♮dτµ♮ = 0.
This cocycle was considered in a dual context for example in [19] (without su-
perconnection and in periodic theory rather than in entire cyclic theory), and we
know that it can be adapted to compute the action of unbounded representatives
of KK(A,B) classes on cyclic cocycles over B (see [6] p. 434).

Remark 6.11 In fact the construction of χ works as well if ρ : A → End eB(E)
is simply a bounded linear map and not necessarily an homomorphism. In that
case, the curvature δρ+ ρ2 of ρ does not vanish and has to be included in for-
mula (70). One thus obtains some generalisations of the cocycles constructed
by Quillen in [32, 33]. In the sequel we will always consider that ρ is an homo-
morphism.
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7 The bivariant Chern character

We are ready to construct a bivariant Chern character for unbounded bimodules
satisfying some strong θ-summability conditions. Given two complete bornolog-
ical algebras A and B, our goal is to lift an element (E , ρ,D) ∈ Ψ∗(A, B̃)

to a T A-T̃ B-bimodule and construct the corresponding bounded chain map
χ : ΩǫT A → X(T B). Then composing χ with the homotopy equivalence
γ : X(T A) → ΩǫT A given by the Goodwillie theorem, we obtain a bounded
chain map χγ ∈ Hom(X(T A), X(T B)) whose class in the bivariant entire cyclic
cohomology HE∗(A,B) is the bivariant Chern character of (E , ρ,D).

So we fix an unbounded bimodule (E , ρ,D) ∈ Ψ∗(A, B̃), E = H⊗̂B̃. Recall
that ΩanB is the completion of ΩB for the analytic bornology San(ΩB) generated

by the sets
⋃
n≥0 S̃(dS)n, for any S ∈ S(B). It is a complete bornological DG

algebra for the product of forms and the differential d. We let Ω̃anB be its
unitalization, with d1 = 0. Since the latter is a left B̃-module, we can introduce
the analytic right Ω̃anB-module and its even/odd form part:

ΩanE := E⊗̂ eBΩ̃anB , Ω±
anE := E⊗̂ eBΩ̃±

anB . (90)

As a complete Z2-graded bornological vector space, ΩanE is isomorphic to
H⊗̂Ω̃anB, and has naturally a bounded differential induced by d. Now endow
the subspace Ω̃+

anB of even forms with the (bounded) Fedosov product

ω1 ⊙ ω2 = ω1ω2 − dω1dω2 ∀ω1, ω2 ∈ Ω̃+
anB . (91)

The unit 1 ∈ Ω̃+
anB is also the unit for the Fedosov product, and the corre-

spondence (7) shows that the associative algebra (Ω̃+
anB,⊙) is isomorphic to the

unitalized analytic tensor algebra T̃ B. Then, we can endow the Z2-graded space
Ω+

anE = H⊗̂Ω̃+
anB with a right action of this Fedosov algebra (Ω̃+

anB,⊙) ≃ T̃ B:

⊙ : Ω+
anE × Ω̃+

anB → Ω+
anE (92)

(ξ, ω) 7→ ξ ⊙ ω := ξω − (−)|ξ|dξdω ,

where dξ ∈ Ω−
anE and dω ∈ Ω−

anB. It is easy to check that Ω+
anE is a right

T̃ B-module: (ξ ⊙ω1)⊙ω2 = ξ ⊙ (ω1⊙ω2) for any ω1, ω2 ∈ Ω̃+
anB = T̃ B, and as

such it is isomorphic to the tensor product H⊗̂T̃ B. Hence we have just lifted
the B̃-module E to a T̃ B-module.

Let EndeT B(Ω+
anE) be the complete bornological algebra of bounded endo-

morphisms of Ω+
anE commuting with T̃ B. From the left representation ρ :

A → End eB(E), we want to construct a bounded homomorphism ρ∗ : T A →
EndeT B(Ω+

anE). First, we have a bounded linear map (not an homomorphism)
ρ∗ : A → EndeT B(Ω+

anE) given by a Fedosov-type action:

ρ∗(a)⊙ ξ := ρ(a)ξ − dρ(a)dξ , ∀a ∈ A , ξ ∈ Ω+
anE , (93)

where ρ(a) and dρ(a) are viewed as elements of the DG algebra EndeΩanB
(ΩanE),

while ξ, dξ are elements of ΩanE . One has ρ∗(a) ⊙ (ξ ⊙ ω) = (ρ∗(a) ⊙ ξ) ⊙ ω
for any ω ∈ T̃ B, hence ρ∗(a) is indeed an endomorphism of Ω+

anE . This induces
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a representation (=homomorphism) of the non-completed tensor algebra ρ∗ :
TA→ EndeT B(Ω+

anE) by

ρ∗(a1⊗. . .⊗an)⊙ξ = ρ∗(a1)⊙. . .⊙ρ∗(an)⊙ξ , ∀a1⊗. . .⊗an ∈ TA , ξ ∈ Ω+
anE .
(94)

Under the identification TA ≃ (Ω+A,⊙), the above action reads

ρ∗(a0da1 . . . da2n)⊙ ξ = (ρ(a0)dρ(a1) . . . dρ(a2n))⊙ ξ (95)

= ρ(a0)dρ(a1) . . . dρ(a2n)ξ − dρ(a0)dρ(a1) . . . dρ(a2n)dξ

for any a0da1 . . . da2n ∈ Ω+A, where ρ(a0)dρ(a1) . . . dρ(a2n) is viewed as an
element of the DG algebra EndeΩanB(ΩanE). In general, we don’t know if the
representation ρ∗ is bounded for the analytic bornology on TA. This is true,
for example, when H is a Banach space endowed with the bounded bornology.
In the following, we always assume that ρ∗ is bounded (this will be part of
the strong θ-summability assumption below), and consequently extends to the
desired bounded representation of the completion T A in EndeT B(Ω+

anE).

Let us now deal with the Dirac operator D. It is an odd, unbounded endo-
morphism of E , an extends to an unbounded endomorphism (with dense domain)

of the right T̃ B-module ΩanE . Once again, we deform its restriction on Ω+
anE

into a Fedosov-type action:

D ⊙ ξ := Dξ + dDdξ , ∀ξ ∈ Ω+
anE , (96)

so that D⊙ (ξ ⊙ ω) = (D⊙ ξ)⊙ ω for any ω ∈ Ω̃+
anB. In this way, D defines an

unbounded endomorphism of the right T̃ B-module Ω+
anE . Note that the sign +

in front of dD in eq. (96) is due to the odd degree of D.

What we have obtained so far is the following. Starting from a bimodule
(E , ρ,D) ∈ Ψ∗(A, B̃), with E = H⊗̂B̃, we constructed the right T̃ B-module

Ω+
anE = H⊗̂T̃ B, endowed with a bounded left representation ρ∗ : T A →

EndeT B(Ω+
anE), and with an odd, unbounded Dirac endomorphism D. It is

natural to wonder if this lifted bimodule defines an element of Ψ∗(T A, T̃ B). In
general this may be false, because of the following reasons:
a) For any x ∈ T A, the commutator for the Fedosov action [D, ρ∗(x)]⊙ :=
D ⊙ ρ∗(x)− ρ∗(x) ⊙D may not act by a bounded endomorphism on Ω+

anE .
b) The heat kernel for the Fedosov product, given by the formal power series

exp⊙(−tD⊙2) :=
∑

n≥0

(−t)n
n!

(D⊙2)⊙n (97)

may not be a bounded endomorphism of Ω+
anE . In order to understand what we

mean exactly by this exponential, we state the following lemma:

Lemma 7.1 Let H be any (possibly unbounded) even endomorphism of Ω+
anE

acting by a Fedosov-type deformation. Then the formal power series
∑

n
1
n!H

⊙n

may be rewritten as a Duhamel-type expansion

exp⊙H =
∑

n≥0

(−)n
∫

∆n

ds1 . . . dsn e
s0HdHd(es1H)dH . . . d(esn−1H)dHd(esnH) ,

(98)
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where esiH is the exponential for the usual product of endomorphisms. We call
exp⊙H the Fedosov exponential of H.

Proof: We establish a first-order differential equation for the Fedosov exponen-
tial. For any t ∈ [0, 1] and ξ ∈ Ω+

anE , one has

d

dt
(exp⊙(tH)⊙ ξ) = H ⊙ exp⊙(tH)⊙ ξ = (H exp⊙(tH)− dHd exp⊙(tH))⊙ ξ .

Thus d
dt exp⊙(tH) = H exp⊙(tH)− dHd exp⊙(tH). A well-known trick of per-

turbative quantum mechanics is to introduce the interaction scheme I(t) :=
e−tH exp⊙(tH), for which the evolution equation reads

d

dt
I(t) = −e−tHdHd exp⊙(tH) .

Using the fact that I(0) = 1, the solution is expressed in integral form

I(t) = 1−
∫ t

0

ds e−sHdHd exp⊙(sH) ,

or equivalently

exp⊙(tH) = etH −
∫ t

0

ds e(t−s)HdHd exp⊙(sH) .

The perturbative resolution of this equation gives rise to the result.

Substituting H by −tD⊙2 = −t(D2 + dDdD) in (98) gives a power series of
differential forms involving the heat operator exp(−sD2), which by hypothesis
is a bounded endomorphism of E playing the role of a regulator, together with
some derivatives d exp(−uD2), d(D2) and dDdD. The obtained formula is really
the definition of exp⊙(−tD⊙2). The bornological convergence of this series in
EndeT B(Ω+

anE) is part of the strong θ-summability assumption below. This being

understood, we can perform the construction of the previous section with A, B̃,
E replaced by T A, T̃ B, Ω+

anE respectively, and get a bounded chain map

χ(Ω+
anE , ρ∗, D) : ΩǫT A → X(T B) . (99)

Let us recall briefly the main steps. We first form the right Ω̃δT B-module
ΩδΩ

+
anE , and denote by (L,d) the DG algebra EndeΩδT B(ΩδΩ

+
anE). Then, using

the completed bar complex Bǫ(T̃ A) and its associated bicomodule Ω1Bǫ(T̃ A),

we consider the algebra R = Hom(Bǫ(T̃ A),L) and its associated R-bimodule

M = Hom(Ω1Bǫ(T̃ A),L); then the left R-module F = Hom(Bǫ(T̃ A),ΩδΩ
+
anE)

endowed with two differentials d, δ; and finally the superconnection D = δ −
d + ρ∗ + D : F → F . Since we want the heat operator exp(−tD2) to define

a trace-class element of R, the lifted T A-T̃ B-bimodule (Ω+
anE , ρ∗, D) must be

weakly θ-summable. This leads to the strong version of θ-summability:

Definition 7.2 (Strong θ-summability) Let A and B be complete bornolog-

ical algebras. An unbounded bimodule (E , ρ,D) ∈ Ψ∗(A, B̃) is called strongly
θ-summable iff the following conditions hold:
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i) The homomorphism ρ∗ : TA → EndeT B(Ω+
anE) is bounded for the analytic

bornology on TA, and thus extends to a bounded representation of T A into
EndeT B(Ω+

anE). This turns the lift (Ω+
anE , ρ∗, D) into a T A-T̃ B-bimodule.

ii) The thus obtained lift (Ω+
anE , ρ∗, D), though not necessarily in Ψ∗(T A, T̃ B),

nevertheless verifies the weak θ-summability condition as stated in definition
6.3.
We denote by Ψθ

∗(A, B̃) the abelian semigroup of strongly θ-summable bimodules.
Two strongly θ-summable bimodules are homotopic iff their lifts are homotopic.

If the strong θ-summability conditions are satisfied, then from the odd element
ofM

µ =

∫ 1

0

dt e−tD
2

∂ρe(t−1)D2 ∈ Hom(Ω1Bǫ(T̃ A), ℓ1(ΩδΩ
+
anE)) , (100)

one gets the two components χ0 = p0τµ♮ and χ1 = ♮p1τµ♮ of the cocycle
χ(Ω+

anE , ρ∗, D) ∈ Hom(ΩǫT A, X(T B)). Then composing χ with the Goodwillie
equivalence γ ∈ Hom(X(T A),ΩǫT A) of section 4 yields a bivariant entire cyclic
cohomology class [χ ◦ γ] ∈ HE∗(A,B). This is the bivariant Chern character of
(E , ρ,D). Thus we are led to the following theorem:

Theorem 7.3 Let A and B be complete bornological algebras. There is a bi-
variant Chern character map

ch : Ψθ
∗(A, B̃)→ HE∗(A,B) , ∗ = 0, 1 , (101)

sending a strongly θ-summable bimodule (E , ρ,D) to the bivariant entire cyclic
cohomology class ch(E , ρ,D) := [χ(Ω+

anE , ρ∗, D) ◦ γ]. The Chern character is

additive, invariant for differentiable homotopies inside Ψθ
∗(A, B̃), and functorial

in both variables.

Proof: This is a consequence of theorem 6.8 applied to the lifted bimodule
(Ω+

anE , ρ∗, D) and the fact that the Goodwillie map γ is obviously functorial
with respect to A.

Remark 7.4 The strong θ-summability condition 7.2 should not be taken too
seriously. In concrete applications, it is sufficient to verify a posteriori that the
composition map χ◦γ : X(T A)→ X(T B) is bounded. On the other hand, when
dealing with commutative algebras, one can replace the universal DG algebra of
noncommutative forms ΩB by the smaller (graded) commutative algebra of de
Rham forms over B, and similarly for the module ΩE . In these circumstances,
the θ-summability conditions are much less restrictive, and give rise to a bivari-
ant Chern character in ordinary de Rham cohomology, which is satisfactory in
many concrete geometrical examples. Also, in some situations it is not necessary
to unitalize the algebra B, and the construction of the Chern character can be
performed on Ψθ

∗(A,B). The following section provides commutative examples
illustrating these particular cases with the study of Bott elements.

8 Examples

Let us have a look at some examples related to K-theory. It will illustrate our
bivariant Chern character on the two extremal cases Ψ∗(C,A) and Ψ∗(A,C), de-
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scribing respectively the K-theory and K-homology of a complete bornological
algebra A.

8.1 Index pairing and the JLO cocycle

Let A and B be complete bornological algebras. First of all, a bounded homo-
morphism ρ : A → B ⊂ B̃ must be considered as the fundamental example of
even A-B̃-bimodule. In this case one chooses E = B̃ with trivial graduation,
and the Dirac operator is equal to zero, hence we get an unbounded bimodule
(B̃, ρ, 0) ∈ Ψ0(A, B̃).

Proposition 8.1 For any bounded homomorphism ρ : A → B, the bivariant
Chern character of (B̃, ρ, 0) ∈ Ψ0(A, B̃) is equal to the class ch(ρ) ∈ HE0(A,B)
of the chain map

X(ρ∗) : X(T A)→ X(T B) (102)

induced by the bounded homomorphism ρ∗ : T A → T B.

Proof: ch(B̃, ρ, 0) is the cohomology class of the composition of chain maps

X(T A)
γ→ ΩǫT A

χ→ X(T B), where χ is constructed as follows. With E = B̃
one has Ω+

anE = B̃⊗̂ eBΩ̃+
anB ≃ T̃ B. Furthermore, the homomorphism ρ∗ : T A →

EndeT B(Ω+
anE) ≃ T̃ B is simply given by ρ∗(a1 ⊗ . . .⊗ an) = ρ(a1)⊗ . . .⊗ ρ(an).

Hence the lift of (B̃, ρ, 0) corresponds to the T A-T̃ B-bimodule (T̃ B, ρ∗, 0). Thus
by remark 6.9, the two components of the morphism χ : ΩǫT A → X(T B) are
respectively a 0-cochain and a 1-cochain on the (b + B)-complex of universal
forms over T A:

χ0(x) = ρ∗(x) , ∀x ∈ T A , χ1(xdy) = ♮ρ∗(x)dρ∗(y) , ∀xdy ∈ Ω1T A .

Hence χ vanishes on any differential form over T A of degree ≥ 2. From the
explicit expression of the Goodwillie equivalence γ, we can compute easily the
composition χγ : X(T A)→ X(T B):

x
γ7−→ x+ degree ≥ 2

χ07−→ ρ∗(x) ,

♮xdy
γ7−→ xdy + b(xφ(y)) + degree ≥ 3

χ17−→ ♮ρ∗(x)dρ∗(y) ,

for any x, y ∈ T A. This is precisely the morphism of complexes X(ρ∗).

We focus on the algebra C. One knows [24] that X(T C) is homotopic to
X(C) : C ⇄ 0. The generator of HE0(C) = C is represented by the following
even cycle ê ∈ X0(T C) ≃ Ω+

anC. Denoting by e the unit of C, then

ê := e+
∑

n≥1

(2n)!

(n!)2
(e− 1

2
)(dede)n ∈ Ω+

anC = T C (103)

is an idempotent: ê2 = ê in T C, which implies ♮dê = 0. Thus ê indeed defines
an even cycle of X(T C).
Now let A be a complete bornological algebra, and fix an integer N ∈ N. Let
H = H+ ⊕H− be the Z2-graded complete bornological space such that H+ =

H− = CN , an consider the right Ã-module E = H⊗̂Ã. The algebra of endo-

morphisms End eA(E) identifies with the Z2-graded matrix algebra M2(MN (Ã)),
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the graduation corresponding to the decomposition into diagonal/off-diagonal

matrices as usual. Any pair of idempotents e± = 1 + u± ∈ MN (Ã), with u± ∈
MN (A), is described by an even bounded homomorphism ρ =

(
ρ+ 0
0 ρ−

)

from C to M2(MN (Ã)), with ρ±(e) = e±, e ∈ C. This gives rise to a bimodule

(E , ρ, 0) ∈ Ψ0(C, Ã). The pair e± is called degenerate if e+ = e−. The set of
(differentiable) homotopy classes of such bimodules modulo degenerates is the
K-theory group K0(A). The bivariant Chern character yields a well-defined
additive map K0(A) → HE0(C,A) ≃ HE0(A) which coincides with the usual
Chern character on K-theory [15]:

Proposition 8.2 Let A be a complete bornological algebra, e± = 1 + u± a
pair of idempotents with u± ∈MN(A), and (E , ρ, 0) the corresponding bimodule

in Ψ0(C, Ã) representing the K-theory element [e+] − [e−] ∈ K0(A). Then
the Chern character ch(E , ρ, 0) ∈ HE0(A) is represented by the entire chain
ch(e+)− ch(e−) ∈ T A, with

ch(e±) = tr(e±) +
∑

n≥1

(2n)!

(n!)2
tr((e± −

1

2
)(de±de±)n) ∈ Ω+

anA = T A , (104)

where tr is the usual trace on N ×N matrices. The difference ch(e+)− ch(e−)
is well-defined on K0(A) because it vanishes on degenerates and the bivariant
Chern character is homotopy invariant.

Proof: One has E = H⊗̂Ã with H = CN ⊕ CN . Thus Ω+
anE is equal to H⊗̂T̃ A

and the homomorphism ρ : C→ End eA(E) = M2N(Ã) lifts to an homomorphism

ρ∗ : T C → EndeT A(Ω+
anE) = M2N(T̃ A). Then by remark 6.9, ch(E , ρ, 0) is the

image of the generator ê ∈ T C under the composition of bounded maps

T C
ρ∗−→M2N (T̃ A)

trs−→ T̃ A p−→ T A ,

where trs is the usual supertrace on supersymmetric 2N × 2N matrices, and p
is the projection. Since e± = 1 + u± with u± ∈ MN (A), we have trs(ρ(e)) =
tr(e+)− tr(e−) = tr(u+)− tr(u−) ∈ A, hence

ch(E , ρ, 0) = trs(ρ(e)) +
∑

n≥1

(2n)!

(n!)2
trs((ρ(e)−

1

2
)(dρ(e)dρ(e))n)

= ch(e+)− ch(e−) ∈ T A

as claimed.

Let Idem(A) be the set of idempotents in the inductive limit of matrix al-

gebras M∞(A) = lim
−→

MN (A). Then we have a pairing Idem(A) ×Ψ∗(A, B̃)→
Ψ∗(C, B̃) given by left composition with the homomorphisms C→MN (A) cor-
responding to the idempotents. The functorial properties of the Chern character

Idem(A)× Ψθ
∗(A, B̃) −−−−→ Ψθ

∗(C, B̃)
ych

ych

ych

HE0(A)×HE∗(A, B̃) −−−−→ HE∗(B̃)

(105)
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show that we can compute in homology the pairing between K-theory and bi-
variant modules. In particular when B = C, the unbounded A-C-bimodules
essentially describe the spectral triples over A. Recall that a spectral triple
is given by a Z2-graded Hilbert space, a representation ρ of A into the alge-
bra End(H) of bounded operators, and an unbounded selfadjoint odd operator

D. Extending the left actions of ρ and D to E := H⊗̂C̃, we get a bimodule
(E , ρ,D) ∈ Ψ∗(A, C̃) describing the above spectral triple. Its bivariant Chern
character is an entire cyclic cohomology class in HE∗(A,C) ≃ HE∗(A). Our
construction represents ch(E , ρ,D) as a bounded cocycle on X(T A). Exploiting
the homotopy equivalence between X(T A) and ΩǫA, we may also represent the
Chern character as an entire cocycle on the (b+B)-complex of A. When doing
this, we recover exactly the JLO cocycle [21]:

Proposition 8.3 Let A be a complete bornological algebra, and (E , ρ,D) ∈
Ψ∗(A, C̃) a θ-summable spectral triple, with E = H⊗̂C̃. Then the Chern char-
acter of (E , ρ,D) is represented by the entire cocycle χ(E , ρ,D) : ΩǫA → C on
the (b+B)-complex of A, corresponding to the JLO formula:

i) In the even case H = H+ ⊕H−, ρ =

(
ρ+ 0
0 ρ−

)
and D =

(
0 D−

D+ 0

)
.

Then χ is the even entire cochain

χ(E , ρ,D)(a0da1 . . . da2n) =

∫

∆2n

ds1 . . . ds2n× (106)

×Trs(ρ(a0)e
−s0D

2

[D, ρ(a1)]e
−s1D

2

. . . [D, ρ(a2n)]e
−s2nD

2

) ,

for any n ∈ N and ai ∈ A, where Trs is the supertrace of operators on the
Z2-graded Hilbert space H.
ii) In the odd case H is the sum of two copies of a trivially graded Hilbert space K.

One has ρ =

(
α 0
0 α

)
for a given bounded homomorphism α : A → End(K),

and D =

(
0 Q
Q 0

)
for an unbounded operator Q. Then χ is the odd entire

cochain

χ(E , ρ,D)(a0da1 . . . da2n+1) = −
√

2i

∫

∆2n+1

ds1 . . . ds2n+1× (107)

×Tr(ρ(a0)e
−s0Q

2

[Q, ρ(a1)]e
−s1Q

2

. . . [Q, ρ(a2n+1)]e
−s2n+1Q

2

) ,

for any n ∈ N and ai ∈ A, where Tr is the trace of operators on K.

Proof: The isomorphism HE∗(A,C) ≃ HE∗(A) is obtained as follows. Given a
bounded chain map f : X(T A)→ X(T C) representing a bivariant entire cyclic
cohomology class, we associate the bounded cocycle X(m) ◦ f : X(T A) →
X(C) ≃ C obtained after composition with the projection morphism X(m) :
X(T C) → X(C) coming from the multiplication map m : T C → C. The
functoriality of the construction χ (theorem 6.8) yields a commutative square

ΩǫT A
χ(Ω+

anE,ρ∗,D) //

Ωǫ(m)

��

X(T C)

X(m)

��
ΩǫA

χ(E,ρ,D) // C
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Combining this square with the commutative diagram (36) of corollary 4.5 shows
that under the homotopy equivalence P ◦ c : X(T A)

∼−→ ΩǫA, the Chern char-
acter of the spectral triple ch(E , ρ,D) ∈ HE∗(A) indeed corresponds to the class
of the (b+B)-cocycle χ(E , ρ,D). Since X1(C) = 0, the only remaining compo-
nent of χ is χ0 = τµ0♮, where τ is the even/odd supertrace of endomorphisms
on H, depending on the parity of the spectral triple. Since τ ·♮ is a (super)trace,
one has

χ0 = τ

∫ 1

0

dt e−tθ∂ρe(t−1)θ♮ = τ∂ρe−θ♮ ,

with θ = D2 + [D, ρ]. As usual exp(−θ) is given by a Duhamel expansion

e−θ =
∑

n≥0

(−)n
∫

∆n

ds1 . . . dsn e
−s0D

2

[D, ρ]e−s1D
2

. . . [D, ρ]e−snD
2

.

i) Even case: Then H = H+ ⊕ H− and τ = Trs. Also, ρ is a diagonal matrix
whereas D is off-diagonal, so that τ selects only even powers of D, and therefore
χ0 is an even entire cocycle on ΩǫA. Equation (106) follows.

ii) Odd case: H = K ⊕ K and D = εQ, with ε =

(
0 1
1 0

)
. For any

x, y ∈ End(K), one has τ(x + εy) =
√

2iTr(y), hence τ selects only odd powers
of D; χ0 is thus an odd entire cocycle over A, whence (107).

This shows in particular that for any idempotent e ∈ Idem(A), and any
θ-summable even spectral triple (E , ρ,D), the coupling of the Chern characters
calculates the index pairing between K-theory and K-homology:

Proposition 8.4 Let A be a complete bornological algebra, e ∈ M∞(A) an
idempotent and (E , ρ,D) a θ-summable even spectral triple over A. Then the
composition of the Chern characters by the map HE0(A)×HE0(A)→ C com-
putes the index pairing

〈ch(e), ch(E , ρ,D)〉 = index(eDe) (108)

Proof: One has e ∈ MN (A), and E = H⊗̂C̃ for a certain Hilbert space H. The
proposition is easily proved by exploiting the homotopy invariance of the Chern
character with respect to D. For notational simplicity we still denote by e the
idempotent ρ(e) ∈ End(H⊗̂CN ). For t ∈ [0, 1] the operator

Dt = D + t([D, e]e− e[D, e])

is a bounded perturbation of D, connecting homotopically D to D1. One has
[D1, e] = 0, which shows that we can reduce to the situation where D commutes
with e. The Chern character of e in the (b + B)-complex of entire chains over
A is obtained from the X-complex cycle ê by means of the rescaling factor of
equation (11):

ch(e) = tr(e) +
∑

n≥1

(−)n
(2n)!

n!
tr((e− 1

2
)(dede)n) .

Since we assume [D, e] = 0, equation (106) implies that χ(E , ρ,D) vanishes on
any term involving a (strictly) positive power of dede, hence

χ(E , ρ,D)(ch(e)) = Trs(e e
−D2

) .
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This is the McKean-Singer formula computing the index of D relative to e,
whose proof involves spectral theory in a simple way [17].

8.2 The Bott class

We now examine the generators of the K-theory and K-homology of the n-
dimensional real vector space. This will illustrate some features of commutative
algebras, and explain the role of the somewhat mysterious Fedosov exponential
(lemma 7.1). Let S(Rn) be the commutative algebra of smooth rapidly de-
creasing functions on Rn. We denote by {x1, . . . , xn} the canonical coordinate
system, giving to R

n its canonical orientation. S(Rn) is a Fréchet algebra for
the locally convex topology given by the countable family of seminorms

||a||α,δ = sup
x∈Rn

|xα∂δa(x)| ∀a ∈ S(Rn) , (109)

where α = (α1, . . . , αn) and δ = (δ1, . . . , δn) are collections of positive integers
such that xα = (x1)

α1 . . . (xn)αn and ∂δ is the partial differentiation operator
∂|δ|

∂x1
δ1 ...∂xn

δn
. We endow S(Rn) with the bounded bornology.

For any n ∈ N, we shall first construct a spectral triple over S(Rn). It comes
from the Dirac operator acting on sections of the trivial spinor bundle over Rn.
So let Cn be the n-dimensional complex Clifford algebra. It is generated by a ba-
sis γ1, . . . , γn of Cn, subject to the anticommutation relations {γµ, γν} = 2δµν .
We let Sn be the complex spinor representation of Cn endowed with the fine
bornology. Then the fundamental class of Rn in K-homology is represented
by the following bornological spectral triple: Hn := Sn⊗̂S(Rn) is the complete
bornological space consisting of rapidly decreasing sections of the trivial spinor
bundle; the representation ρ : S(Rn) → End(Hn) is given by (left) multiplica-
tion; and for any real parameter t > 0, the usual Dirac operator Dt = i

√
tγµ ∂

∂xµ

acts as an unbounded endomorphism of Hn. If En denotes the right C̃-module
Hn⊗̂C̃, then (En, ρ,Dt) ∈ Ψ∗(S(Rn), C̃) is a θ-summable spectral triple with

parity equal to n mod 2 (for n odd, replace En by two copies of Hn⊗̂C̃, ρ by
Id2 ⊗ ρ and Dt by εDt).
In the subsequent calculations we will need some explicit properties of the ma-
trix representation of the Clifford algebra into Sn. This depends on the parity
of n:
i) n = 2k: Then the spinor representation Sn is a 2k-dimensional Z2-graded
space. The generators γµ are odd operators represented by hermitian matrices.
The grading operator is the element of highest degree in Cn:

Γ = (−i)kγ1 . . . γn , (Γ)2 = 1 . (110)

The supertrace of linear operators on Sn is trs = tr(Γ·). Then for any j < n
one has trs(γ

1 . . . γj) = 0, while trs(γ
1 . . . γn) = (2i)k.

ii) n = 2k+1: Then Sn is a trivially graded 2k-dimensional space. We represent
also the generators γµ by hermitian matrices. Then for any j < n one has
tr(γ1 . . . γj) = 0, and tr(γ1 . . . γn) = (2i)k.

Proposition 8.5 Let n be a positive integer. The Chern character of the funda-
mental class (En, ρ,Dt) ∈ Ψn+2Z(S(Rn), C̃) in HEn+2Z(S(Rn)) retracts, when
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t→ 0, to an n-dimensional (b + B)-cocycle χn : ΩnS(Rn)→ C. It corresponds
to the fundamental class of Rn in cyclic cohomology:

χn(a0da1 . . . dan) =
1

n!(2πi)n/2

∫

Rn

a0da1 ∧ . . . ∧ dan , (111)

for any ai ∈ S(Rn).

Proof: It is a well-known fact that when the Dirac operator acts on the sections
of a spinor bundle on a manifold M , the JLO cocycle retracts on local expres-
sions involving the Â-genus of M at the limit t→ 0 [8]. In our case, Rn is a flat
manifold so that the computation is particularly simple, and can be performed
by means of the asymptotic symbol calculus for example as in [9]. We don’t
give the details here because it is a classical result.

In fact the retracted (b + B)-cocycle χn is also a cyclic n-cocycle, that is,
a closed graded trace of degree n on the DG algebra ΩS(Rn). It follows that
χn is invariant under the Karoubi operator κ on ΩǫS(Rn), thus it vanishes
on the contractible subspace P⊥ΩǫS(Rn) (see section 3.3). It follows that χn

is also a cocycle on the X-complex X(T S(Rn)) ≃ (ΩanS(Rn), ♮d, b). Taking
into account the rescaling factor (−)n[n/2]! of equation (11) when passing from
ΩanS(Rn) to ΩǫS(Rn), we deduce the expression of the fundamental class as an
X-complex cocycle:

Corollary 8.6 Let n ∈ N, and (En, ρ,Dt) be the fundamental K-homology class
of Rn.
i) If n is even, then the Chern character of (En, ρ,Dt) in HE0(S(Rn)) is rep-
resented by the following trace on the algebra T S(Rn) ≃ (Ω+

anS(Rn),⊙):

ch(En, ρ,Dt)(a0da1 . . . dan) =
[n/2]!

n!(2πi)n/2

∫

Rn

a0da1 ∧ . . . ∧ dan (112)

for any ai ∈ S(Rn).
ii) If n is odd, then the Chern character of (En, ρ,Dt) in HE1(S(Rn)) is repre-
sented by the following one-cocycle on Ω1T S(Rn)♮ ≃ Ω−

anS(Rn):

ch(En, ρ,Dt)(♮a0da1 . . . dan−1dan) = − [n/2]!

n!(2πi)n/2

∫

Rn

a0da1 ∧ . . .∧ dan−1 ∧ dan
(113)

for any ai ∈ S(Rn).

One sees that there is a simplification here, due to the fact that S(Rn) is a com-
mutative algebra: the cocycle factors through de Rham cohomology. Hence we
can deal with the ordinary exterior algebra of differential forms Ω∗(Rn) instead
of the universal DG algebra of non-commutative forms ΩS(Rn). We endow
Ω∗(Rn) with its usual Fréchet topology and the associated bounded bornol-
ogy. Then the universal property of ΩS(Rn) implies that there is a unique
bounded DG algebra morphism ΩS(Rn)→ Ω∗(Rn) extending the identity map
S(Rn)→ S(Rn). The image of a0da1 . . . dak is equal to a0da1∧. . .∧dak if k ≤ n
and zero otherwise. As a consequence, this DG morphism is also bounded for
the analytic bornology on ΩS(Rn) and thus extends to a bounded DG mor-
phism ΩanS(Rn)→ Ω∗(Rn). We endow the even part Ω+(Rn) with the Fedosov
product

ω1 ⊙ ω2 := ω1ω2 − dω1 ∧ dω2 ∀ω1, ω2 ∈ Ω+(Rn) . (114)
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Then Tn := (Ω+(Rn),⊙) is an associative (non-commutative!) complete bornolog-
ical algebra, and we get a canonical bounded homomorphism (Ω+

anS(Rn),⊙)→
(Ω+(Rn),⊙), or equivalently T S(Rn)→ Tn. This yields a bounded chain map
X(T S(Rn))→ X(Tn). Now, the fundamental class of Rn gives rise to a bounded
cocycle [Rn] : X(Tn)→ C:

[Rn](x) =

∫

Rn

x , [Rn](xdy) =

∫

Rn

x ∧ dy , ∀x, y ∈ Tn . (115)

It is easily checked that [Rn] vanishes on the commutators [Tn,Ω
1Tn], hence

is well-defined on Ω1Tn♮ = X1(Tn). Consequently, the Chern character of

(En, ρ,D) ∈ Ψn+2Z(S(Rn), C̃) factors through X(Tn):

ch(En, ρ,Dt) : X(T S(Rn))→ X(Tn)
χ̂n

−→ C , (116)

where χ̂n is the cocycle (−)n [n/2]!

n!(2πi)n/2 [Rn].

We now construct the Bott generator of the K-theory of Rn. It will be
represented by a bimodule βn ∈ Ψn+2Z(C,S(Rn)). Since we deal with the
exterior algebra of ordinary differential forms and its Fedosov deformation Tn,
we don’t need to consider the unitalization of S(Rn). This property also is a
advantage of the commutative case. Let again Hn = Sn⊗̂S(Rn) be the space
of rapidly decreasing sections of the trivial spinor bundle over Rn, considered
this time as a right S(Rn)-module. There is an ovious homomorphism α : C→
EndS(Rn)(Hn), sending the unit e ∈ C to the identity endomorphism. For any
real parameter λ > 0, we introduce an unbounded Dirac operator Qλ acting on
Hn by Clifford multiplication with respect to the vector x:

(Qλξ)(x) =
√
λxµγ

µ · ξ(x) ∀ξ ∈ Hn , x ∈ R
n . (117)

Note that Qλ is the Fourier transform of the previous Dirac operator Dλ−1 .
Then the unbounded C-S(Rn)-bimodule βn = (Hn, α,Qλ) represents the Bott
generator of Rn. Its Chern character ch(βn) ∈ HEn+2Z(S(Rn)) is represented
by entire chains over S(Rn). We want to evaluate ch(βn) on the fundamental
class of Rn, so that only its image in X(Tn) is important. All the construction
of the bivariant Chern character then transpose immediately to the situation
where the universal DG algebra ΩS(Rn) is replaced by Ω∗(Rn).

Proposition 8.7 For any n ∈ N, let βn = (Hn, α,Qλ) ∈ Ψn+2Z(C,S(Rn)) be
the Bott generator. Its Chern character is represented by the following cycle in
the X-complex of the Fedosov algebra Tn = (Ω+(Rn),⊙):
i) n even:

ch(βn) =
n!

(n/2)!
(2iλ)n/2e−λx

2

dx1 ∧ . . . ∧ dxn ∈ Tn . (118)

ii) n = 2k + 1:

ch(βn) = − (2k)!

k!
(2iλ)n/2

n∑

j=1

♮e−λx
2

dxj+1 ∧ . . . ∧ dxj−1dxj ∈ Ω1Tn♮ . (119)

These are top-degree differential forms with gaussian shape over Rn.
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Proof: For n even we set En = Hn, D = Qλ and ρ = α. For n odd we set

En = Hn ⊕ Hn, D = εQλ and ρ = Id2 ⊗ α, where ε =

(
0 1
1 0

)
is the

odd generator of the one-dimensional Clifford algebra C1. Then for any n, the
unbounded bimodule (En, ρ,D) ∈ Ψn+2Z(C,S(Rn)) represents the Bott element,
and ch(βn) is the image of the generator ê ∈ HE0(C) under the composition of
chain maps

X(T C)
γ−→ ΩǫT C

χ−→ X(T S(Rn))→ X(Tn) ,

where γ is the Goodwillie equivalence and χ = χ(Ω+
anEn, ρ∗, D) is the core

of the bivariant Chern character. We know that the generator of HE0(C) is
represented by the idempotent

ê = e+
∑

k≥1

(2k)!

(k!)2
(e− 1

2
)(dede)k ∈ Ω+

anC = T C ,

where e is the unit of C. We claim that its image γ(ê) in ΩǫT C has the same
homology class as the (b +B) entire cycle

f̂ = ê+
∑

k≥1

(−)k
(2k)!

k!
(ê− 1

2
)(dêdê)k ∈ ΩǫT C .

Indeed, the projection π : ΩǫT C→ X(T C) maps f̂ to ê, and corollary 4.4 shows
that π and γ are inverse homotopy equivalences. Thus ch(βn) is the image of

f̂ under χ(Ω+
anEn, ρ∗, D) projected to X(Tn). The construction of the bivariant

Chern character carries over to the situation where the universal DG algebra
ΩS(Rn) is replaced by Ω∗(Rn). We thus consider the right Tn-module Ω+En :=
Sn⊗̂Tn. There is a unique bounded homomorphism ρ∗ : T C → EndTn(Ω+En)
extending ρ : C → EndS(Rn)(En). By definition one has ρ(e) = 1 and d1 = 0,

so that ρ∗(e(dede)
k) = 1(d1d1)k = 0 whenever k ≥ 1, and ρ∗(ê) = 1. Next,

the chain map χ(Ω+En, ρ∗, D) : ΩǫT C → X(Tn) has two components: the
Tn-valued χ0 = τµ0♮, and the Ω1Tn♮-valued χ1 = ♮τµ0d(D + ρ∗)♮, with

µ0 =

∫ 1

0

dt exp⊙(−tθ)∂ρ∗ exp⊙((t− 1)θ) , θ = D⊙2 + [D, ρ∗]⊙ ,

and τ : EndTn(Ω+En)→ Tn is the supertrace. Recall that the exponentials and
commutators are taken with respect to the Fedosov product on (Ω+(Rn),⊙) =
Tn. Since ρ∗(ê) = 1, the Fedosov commutator [D, ρ∗(ê)]⊙ vanishes, and we
simply have

τµ0♮(f̂) =

∫ 1

0

dt τe−tD
⊙2

⊙ ∂ρ∗e
(t−1)D⊙2

⊙ ♮(ê) = τe−D
⊙2

⊙ ,

♮τµ0d(D + ρ∗)♮(f̂ ) =

∫ 1

0

dt♮τe−tD
⊙2

⊙ ∂ρ∗e
(t−1)D⊙2

⊙ d(D + ρ∗)♮(f̂)

= ♮τe−D
⊙2

⊙ dD .

Let us now compute the Fedosov exponential exp⊙(−D⊙2) in terms of differ-
ential forms. One has D⊙2 = D2 + dDdD, where the laplacian D2 is a scalar
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function of x ∈ Rn: indeed if n is even, the matrices γµ are odd for the Z2-
graduation of Sn and

D2 = Q2
λ = λxµγ

µxνγ
ν =

1

2
λxµxν{γµ, γν} = λx2 .

If n is odd, then Sn is trivially graded, and the product εγµ is odd:

D2 = (εQλ)
2 = λεxµγ

µεxνγ
ν =

ε2

2
xµxν{γµ, γν} = λx2 .

Next, with H = −D⊙2, lemma 7.1 implies that the Fedosov exponential is the
following differential form on Rn:

exp⊙H =
∑

k≥0

(−)k
∫

∆k

ds1 . . . dsk e
s0HdHdes1HdH . . . desk−1HdHdeskH .

But dH = −d(D2) = −λd(x2) and d exp(sH) = sdH exp(sH), hence d(x2)
always appears by pairs in the expression above. This means that all the terms
corresponding to k ≥ 1 vanish, and

exp⊙H = eH = e−D
2−dDdD = e−D

2
∑

k≥0

(−)k

k!
(dDdD)k ,

because the scalar D2 commutes (for the ordinary product of differential forms)
with dDdD. For n even one has dDdD = λdxµγ

µdxνγ
ν = −λdxµdxνγµγν

because γµ and dxν are odd, and for n odd dDdD = λdxµεγ
µdxνεγ

ν =
−λdxµdxνγµγν . Thus in any case, the Fedosov exponential reads

exp⊙(−D⊙2) = e−λx
2
∑

k≥0

λk

k!
dxµ1

. . . dxµ2k
γµ1 . . . γµ2k .

Let us now compute the Chern character of the Bott element:
i) n even: then τ is equal to the supertrace trs on the Z2-graded spinor repre-
sentation Sn, and ch(βn) = trs exp⊙(−D⊙2). Thus

ch(βn) = e−λx
2
∑

k≥0

λk

k!
dxµ1

. . . dxµ2k
trs(γ

µ1 . . . γµ2k) .

However, if 2k < n, then the supertrace over the γ-matrices vanishes, and if
2k > n, the differential form dxµ1

. . . dxµ2k
is identically zero. Hence only the

term 2k = n remains:

ch(βn) =
λn/2

(n/2)!
e−λx

2

dxµ1
. . . dxµntrs(γ

µ1 . . . γµn)

=
λn/2

(n/2)!
n!e−λx

2

dx1 . . . dxntrs(γ
1 . . . γn)

=
n!

(n/2)!
(2iλ)n/2e−λx

2

dx1 . . . dxn .

ii) n odd: then D = εQλ and τ(x+ εy) =
√

2i tr(y) for any endomorphisms x, y
of the trivially graded spinor representation Sn. Thus

ch(βn) = ♮τe−D
⊙2

⊙ dD = ♮τe−D
⊙2

⊙ d(εQλ) = −
√

2i ♮tr(e−D
⊙2

⊙ dQλ) ,
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because ε anticommutes with d. One has

ch(βn) = −
√

2i ♮tr(e−λx
2
∑

k≥0

λk

k!
dxµ1

. . . dxµ2k
γµ1 . . . γµ2kd(

√
λxνγ

ν))

= −
√

2i
∑

k≥0

λn/2

k!
tr(γµ1 . . . γµ2kγν) ♮e−λx

2

dxµ1
. . . dxµ2k

dxν .

With the same argument as in the even case, only the term 2k+ 1 = n remains
and

ch(βn) = −
√

2i
λn/2

k!
tr(γµ1 . . . γµn) ♮e−λx

2

dxµ1
. . . dxµn−1

dxµn

= −
√

2i
λn/2

k!
(2k)!tr(γ1 . . . γn)

n∑

j=1

♮e−λx
2

dxj+1 . . . dxj−1dxj

= − (2k)!

k!
(2iλ)n/2

n∑

j=1

♮e−λx
2

dxj+1 . . . dxj−1dxj .

The proof is complete.

Corollary 8.8 Let n ∈ N. Then the pairing between the Chern characters of the
Bott element βn ∈ Ψn+2Z(C,S(Rn)) and the Dirac spectral triple (En, ρ,Dt) ∈
Ψn+2Z(S(Rn), C̃) is normalized:

〈ch(βn), ch(E , ρ,Dt)〉 = 1 . (120)

Proof: It is a consequence of corollary 8.6 and proposition 8.7.

This explains the normalization factor
√

2i appearing in the definition (75)
of the canonical trace τ for the Chern character on Ψ1. It is interesting also to
note that this factor is the only one compatible with the external product on
K-homology KK(A,C)×KK(B,C)→ KK(A⊗̂B,C), see [6] p.295.

A Appendix

In this appendix we adapt Quillen’s formalism of algebra cochains [32] to the
bornological framework. All the results presented here are straightforwardly ob-
tained from Quillen’s paper by replacing arbitrary algebras by complete bornolog-
ical algebras, tensor products by completed tensor products and linear maps by
bounded linear maps.

A.1 Bar construction

Let A be an associative complete bornological algebra. The bar construction of
A is the graded space

B(A) =
⊕

n≥0

Bn(A) , (A.121)

where Bn(A) = A⊗̂n is localized in degree n. B(A) endowed with the direct
sum bornology is a complete bornological space. The decomposable element
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a1⊗ ...⊗an of A⊗̂n will be written (a1, ..., an). B(A) is naturally a bornological
coassociative coalgebra, with bounded coproduct ∆ : B(A) → B(A)⊗̂B(A)
given by

∆(a1, ..., an) =

n∑

i=0

(a1, ..., ai)⊗ (ai+1, ..., an) (A.122)

and counit η : B(A) → C corresponding to the projection onto A⊗̂0 = C. On
B(A) is defined a bounded differential b′ of degree −1:

b′(a1, ..., an) =

n−1∑

i=1

(−)i−1(a1, ..., aiai+1, ..., an) , (A.123)

with b′ = 0 for n = 0, 1. One readily verifies that b′
2

= 0 and that the coproduct
and counit are morphisms of (graded) complexes, i.e. ∆b′ = (b′ ⊗ 1 + 1 ⊗ b′)∆
and ηb′ = b′η = 0, taking care of the signs occuring when graded symbols are
permuted, for instance

(1⊗ b′)((a1, ..., ai)⊗ (ai+1, ..., an)) = (−)i(a1, ..., ai)⊗ b′(ai+1, ..., an)

according to the respective degrees of (a1, ..., ai) and b′. This turns B(A) into
a differential graded (DG) complete bornological coalgebra.

Next we consider the free bicomodule over B(A) = B

Ω1B = B⊗̂A⊗̂B . (A.124)

The generic element (a1, ..., ai−1) ⊗ ai ⊗ (ai+1, ..., an) of Ω1B will be written
(a1, ..., ai−1|ai|ai+1, ..., an). The left and right comodule maps ∆l : Ω1B →
B⊗̂Ω1B and ∆r : Ω1B → Ω1B⊗̂B are bounded and given by

∆l(a1, ..., ai−1|ai|ai+1, ..., an) =
i−1∑

j=0

(a1, ..., aj)⊗ (aj+1, ..., ai−1|ai|ai+1, ..., an) , (A.125)

and similarly for ∆r. Ω1B also has a grading over the integers,

(Ω1B)n =

n⊕

i=1

Bi−1⊗̂A⊗̂Bn−i for n ≥ 1 , (Ω1B)0 = 0 , (A.126)

just counting the number of arguments in A. There is a bounded differential b′′

of degree −1

b′′(a1, ..., ai−1|ai|ai+1, ..., an) = (b′(a1, ..., ai−1)|ai|ai+1, ..., an)

+(−)i(a1, ..., ai−2|ai−1ai|ai+1, ..., an) + (−)i+1(a1, ..., ai−1|aiai+1|ai+2, ..., an)

+(−)i(a1, ..., ai−1|ai|b′(ai+1, ..., an)) . (A.127)

One has b′′
2

= 0, and ∆l,r are morphisms of (graded) complexes, i.e. ∆lb
′′ =

(b′ ⊗ 1 + 1 ⊗ b′′)∆l and similarly for ∆r. The last operator we will consider is
the obvious bounded map ∂ : Ω1B → B induced by

∂(a1, ..., ai−1|ai|ai+1, ..., an) = (a1, ..., an) . (A.128)

It is a coderivation: ∆∂ = (1⊗∂)∆l+(∂⊗1)∆r, and a morphism of complexes:
∂b′′ = b′∂, of degree zero with respect to gradings.
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A.2 Algebra cochains

Let L be a complete bornological Z2-graded algebra with unit 1 and differential
d. The space of bounded linear maps

R = Hom(B(A),L) (A.129)

endowed with the bornology of equibounded maps is complete, and splits into
the even/odd subspaces coming from the Z2-gradings of B and L. We denote
by |f | the degree of an homogeneous element f ∈ R. Since B(A) is a coalgebra
(coproduct ∆), and L is an algebra (product m : L⊗̂L → L), R is naturally
endowed with a complete bornological algebra structure given by the convolution
product fg = m(f ⊗ g)∆, ∀f, g ∈ R. Explicitly on a n-chain one has

(fg)(a1, ..., an) =

n∑

i=0

(−)|g|if(a1, ..., ai)g(ai+1, ..., an) . (A.130)

Note the sign (−)|g|i occuring when the chain (a1, ..., ai) crosses g. The differ-
entials b′ and d induce two bounded differentials of odd degree on R:

df = d ◦ f , δf = −(−)|f |f ◦ b′ , dδ + δd = δ2 = d2 = 0 . (A.131)

d and δ are derivations with respect to the convolution product. ThusR is a bid-
ifferential Z2-graded (complete bornological) algebra, with unit 1η : B(A)→ L.

To the bicomodule Ω1B(A) it corresponds by duality a graded R-bimodule

M = Hom(Ω1B(A),L) (A.132)

with the bounded left multiplication R⊗̂M → M given by fγ = m(f ⊗ γ)∆l,
∀f ∈ R, γ ∈ M, and similarly the bounded right multiplication reads γf =
m(γ ⊗ f)∆r. Explicitly, the product evaluated on an element of Ω1B(A) is

(fγ)(a1, ..., ai−1|ai|ai+1, ..., an) =
i−1∑

j=0

(−)|γ|jf(a1, ..., aj)γ(aj+1, ..., ai−1|ai|ai+1, ..., an) . (A.133)

As before b′′ induces by duality a bounded differential of odd degree onM,

δγ = −(−)|γ|γ ◦ b′′ , (A.134)

compatible with the R-bimodule structure:

δ(fγ) = δfγ + (−)|f |fδγ , δ(γf) = δγf + (−)|γ|γδf . (A.135)

This differential together with d implies thatM is a bidifferential graded (com-
plete bornological) bimodule. Last but not least, transposing the operator
(A.128) yields a bounded derivation ∂ : R→M commuting with δ and d.
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A.3 Noncommutative differential forms

Let Ã = A ⊕ C be the complete bornological algebra obtained from A by
adjoining a unit 1 (even if A is already unital). The space of noncommutative

forms is the complete bornological space ΩA =
⊕

n≥0 ΩnA with ΩnA = Ã⊗̂A⊗̂n

for n ≥ 1 and Ω0A = A. The element a0⊗ ...⊗an ∈ ΩnA (resp. 1⊗a1...⊗an) is
denoted by a0da1...dan (resp. da1...dan). Then ΩA is a (non-unital) complete
bornological DG algebra when specifying the differential

d(a0da1...dan) = da0da1...dan , d(da1...dan) = 0 , d2 = 0 , (A.136)

verifying the Leibniz rule with respect to the ordinary product on differential
forms. The Hochschild operator b : ΩnA → Ωn−1A is the bounded map defined
by b(ωda) = (−)|ω|[ω, a] for any ω ∈ ΩA and a ∈ A, and b(a) = 0. From
this one gets the Karoubi operator κ = 1 − (bd + db) and Connes’ boundary
B = (1+κ+ ...+κn)d on ΩnA, both bounded, verifying B2 = b2 = bB+Bb = 0
and Bκ = κB = B. Thus (ΩA, b, B) becomes a complete bornological bicom-
plex.

We now can use the bar construction for Ã in order to get cochains on the
bicomplex ΩA. First consider the bounded injection ♮ : ΩnA → (Ω1B(Ã))n+1

♮(ã0da1...dan) =

n∑

i=0

(−)n(i+1)(ai+1, ..., an|ã0|a1, ..., ai) . (A.137)

Then by direct computation one checks that ♮b = b′′♮. Let L be a unital com-
plete bornological Z2-graded algebra, and consider the associated algebra and
bimodule R = Hom(B(Ã),L) and M = Hom(Ω1B(Ã),L). Then composing
♮ with an element γ of M we get a bounded cochain γ♮ ∈ Hom(ΩA,L). The
following lemma relates the Hochschild operator b on ΩA with the differential
δ onM.

Lemma A.1 For any γ ∈ M one has δγ♮ = −(−)|γ|γ♮b in Hom(ΩA,L).

Proof: By direct computation one checks that ♮b = b′′♮, and then immediately
δγ♮ = −(−)|γ|γb′′♮ = −(−)|γ|γ♮b.

It remains to relate the operator B to the derivation ∂ : R → M. For this
we have to consider a bounded linear map ρ : Ã → L0 with values in the even
part of L, and preserving the unit: ρ(1) = 1. We view it as an element of

Hom(B1(Ã),L) ⊂ R of degree |ρ| = 1. Then the following lemma holds:

Lemma A.2 Let ρ : Ã → L0 be a bounded unital linear map (not necessarily
an homomorphism), and let f, g be two elements of R vanishing if one of their

arguments is equal to 1 ∈ Ã. Then one has

∂(fg)♮ = (−)|g|f ∂ρ g♮B (A.138)

in Hom(ΩA,L).

Proof: We may suppose f ∈ Hom(Bp(Ã),L) and g ∈ Hom(Bq(Ã),L) with
p+ q = n+ 1. One has

f∂ρg♮B(ã0da1...dan) =
n∑

i=0

(−)n(i+1)f∂ρg♮(dai+1...danda0...dai) ,
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with ã0 ∈ Ã and a0 its projection on A. We compute

f∂ρg♮(da0...dan) =
n+1∑

i=0

(−)(n+1)(i+1)(f∂ρg)(ai, ..., an|1|a0, ..., ai−1)

= (−)(n+1)(q+1)(f∂ρg)(aq, ..., an|1|a0, ..., aq−1)

= (−)(n+1)(q+1)(−)|g|+p(fg)(aq, ..., an, a0, ..., aq−1)

= (−)|g|+nq(fg)(aq, ..., an, a0, ..., aq−1)

where we retained only the term corresponding to i = q and used the fact that
ρ(1) = 1. Similarly for any 0 ≤ i ≤ n one has

f∂ρg♮(dai+1...danda0...dai) = (−)|g|+nq(fg)(ai+q+1, ..., ai, ai+1, ..., ai+q) ,

where the indices of the a’s are defined modulo n+ 1. Thus

f∂ρg♮B(ã0da1...dan) =

n∑

i=0

(−)n(i+1+q)+|g|(fg)(ai+q+1, ..., ai+q)

= (−)|g|
n∑

i=0

(−)n(i+1)(fg)(ai+1, ..., an, a0, ..., ai)

by reindexing i+ q → i. On the other hand

∂(fg)♮(ã0da1...dan) =

n∑

i=0

(−)n(i+1)∂(fg)(ai+1, ..., an|ã0|a1, ..., ai)

=

n∑

i=0

(−)n(i+1)(fg)(ai+1, ..., an, ã0, a1, ..., ai)

=

n∑

i=0

(−)n(i+1)(fg)(ai+1, ..., an, a0, a1, ..., ai)

since f, g are supposed to vanish on 1, and the conclusion follows.

A.4 Traces

Let L, A be as above. Let V be a complete bornological vector space and
τ : L → V a bounded trace, i.e. a bounded linear map vanishing on the graded
commutators [L,L]. Another way to specify this is to consider the permutation
map σ : L⊗̂L → L⊗̂L which flips the two factors:

σ(x ⊗ y) = (−)|x||y|y ⊗ x (A.139)

according to their respective degrees. Then τ is a trace if and only if τmσ = τm,
where m : L⊗̂L → L is the multiplication map. An essential example is the
universal trace

♮ : L → L♮ = (L/[L,L])completed . (A.140)

Its universal property stems from the fact that any trace τ factors through ♮.
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At the dual level, the injection ♮ : ΩA → Ω1B(Ã) is a bounded cotrace. In-

deed if we introduce the map σ : Ω1B(Ã)⊗̂B(Ã) ⇄ B(Ã)⊗̂Ω1B(Ã) which per-
mutes the two factors (with signs), then one has ∆l♮ = σ∆r♮ and σ∆l♮ = ∆r♮.

We now put traces and cotraces together. For any bounded trace τ on L,
the map from M = Hom(Ω1B(Ã),L) to Hom(ΩA,V) which sends γ to τγ♮ is
a trace on the R-bimodule M, that is, it vanishes on the graded commutators
[R,M]. Indeed for any f ∈ R and γ ∈ M, one has τ(γf)♮ = τm(γ ⊗ f)∆r♮ =
(−)|γ||f |τmσ(f ⊗ γ)σ∆r♮ = (−)|γ||f |τm(f ⊗ γ)∆l♮ = (−)|γ||f |τ(fγ)♮.
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