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Abstract. Let M be a foliated manifold and G a discrete group acting on M by diffeomor-
phisms mapping leaves to leaves. Then G naturally acts by automorphisms on the algebra of
Heisenberg pseudodifferential operators on the foliation. Our main result is an index theorem
for hypoelliptic-type operators which belong to the crossed product of the Heisenberg pseudo-
differential operators with the group G. As a corollary we get an explicit formula, in terms
of characteristic classes of equivariant vector bundles over M, for the Chern-Connes character
associated to the hypoelliptic signature operator constructed by Connes and Moscovici.
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1. Introduction

This paper deals with the index theory of certain equivariant hypoelliptic operators on foliated
manifolds. Our motivation partly comes from the Connes-Moscovici transverse index theorem in
[3]. We let (M,V) be a (possibly non-compact) foliated manifold. To such a foliation is canon-
ically associated the algebra ΨH,c(M) of (compactly-supported) Heisenberg pseudodifferential
operators. The latter is a modification of the classical algebra of pseudodifferential operators, in
which the vector fields tangent to the leaves of the foliation are of order 1, while the transverse
vector fields are of order 6 2. Let G ⊂ Diff(M) denote a discrete group of diffeomorphisms on M
mapping leaves to leaves. Then G naturally acts on the algebra ΨH,c(M) by automorphisms, and
the crossed-product ΨH,c(M)o G is defined. We write any element P ∈ ΨH,c(M)o G as a finite
sum

P =
∑
g∈G

Pg ⊗Ug .

Remark that P is naturally represented as a linear operator
∑
Pg ◦ Ug : C∞c (M) −→ C∞c (M),

where Ug acts as the shift operator Ug(f)(x) = f(x · g), for every f ∈ C∞c (M) and x ∈M. Thus P
is far from being pseudodifferential in general, and belongs to the larger class of Fourier integral
operators. At least at the algebraic level (see however the work of Savin and Sternin [13]), the
index theory of such operators amounts to describe the K-theory/cyclic homology excision maps
associated to the short exact sequence of algebras

0 −→ Ψ−∞
c (M)oG −→ Ψ0H,c(M)oG −→ S0H,c(M)oG −→ 0,

where Ψ−∞
c (M) ⊂ Ψ0H,c(M) is the two-sided ideal of smoothing operators in the algebra of order

6 0 Heisenberg pseudodifferential operators, and S0H,c(M) = Ψ0H,c(M)/Ψ−∞
c (M) is the quotient

algebra of formal Heisenberg symbols. Let Tr[1] be the trace on Ψ−∞
c (M)oG obtained from the

usual trace on Ψ−∞
c (M) by localization at the unit of G :

Tr[1]

∑
g∈G

PgUg

 = Tr(P1)
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We will mainly be interested in the image of Tr[1] under the excision map in periodic cyclic
cohomology ∂ : HP0(Ψ−∞

c (M)oG)→ HP1(SH,c(M)oG).

Theorem 1.1. The boundary of the localized operator trace ∂[Tr[1]] ∈ HP1(SH,c(M)oG)
is represented by the equivariant Radul cocycle

φ(a0,a1) =
∫
−
(
a0[log∆

1/4
H ,a1]

)
[1]

where ∆1/4H is the sub-elliptic sub-laplacian (Example 2.2) associated to M, the subscript
[1] denotes the term localized at the unit, and the integral denotes the Connes-Moscovici
residue over the algebra of formal symbols S0H(M).

We refer to section 2 for a description of the Connes-Moscovici residue. The cocycle φ may be
viewed as a local formula in the sense that it only involves the formal Heisenberg symbol of
pseudodifferential operators, and is given in terms of an integral over the Heisenberg cosphere
bundle S∗HM over M. A variant of this cocycle may also be obtained by taking the boundary of
the localized operator trace under the extension

0 −→ Ψ−1
H,c(M)oG −→ Ψ0H,c(M)oG −→ C∞c (S∗HM)oG −→ 0 ,

leading to a cocycle ∂[τ] ∈ HP1(C∞c (S∗HM)oG) over the algebra of Heisenberg principal symbols,
which may easily be related to φ. The main result of this paper (Theorem 7.3) is a geometric
realization of this cocycle :

Theorem 1.2. Let M be a foliated manifold and G be a discrete group of foliated diffeo-
morphisms. Let EG be the universal bundle over the classifying space BG de G. Let

0 −→ Ψ−1
H,c(M)oG −→ Ψ0H,c(M)oG −→ C∞c (S∗HM)oG −→ 0

be the equivariant Heisenberg pseudodifferential extension. Then, the image of the localized
trace at the unit ∂[τ] ∈ HP1(C∞c (S∗HM)oG) by excision is given by

∂([τ]) = Φ(Td(TM⊗ C))

where Φ : Hev(EG ×G S∗HM) → HP1(C∞c (S∗HM) o G) is Connes’ characteristic map from
equivariant cohomology to cyclic cohomology, and Td(TM⊗C) is the equivariant Todd class
of the complexified tangent bundle of M.

We stress that this result holds for any group of foliated diffeomorphisms G. In particluar, we
do not assume that G preserves a metric or a conformal structure on M. To prove this, the idea
is to give an explicit homotopy between the Radul cocycle and the one above. In the framework
of cyclic cohomology, a recipe to obtain transgression cochains between two representatives of
a given cohomology class is to use a JLO formula [7]. A first observation is that our cocycles
are defined on algebras of formal Heisenberg pseudodifferential symbols. Thus, we have to adapt
the usual ingredients of the JLO cocycle to this context. We find an answer by adapting the
formalism developed in [9] and [10] to the Heisenberg calculus. The constructions are not easy
but really flexible because the use of residues has the consequence that these are purely algebraic.
Besides, this applies to operators which are not of Dirac type, and more generally to cases where
Getzler rescaling does not apply. Though, it should be noted that this Dirac operator is only
an intermediary, contrary to the classical JLO situation where it is the object of study. Another
crucial feature of the formalism in [9, 10] is to be invariant under diffeomorphisms.

These steps being accomplished, we compute the JLO cocycle for two different Dirac operators,
the first one gives the Radul cocycle of the pseudodifferential extension, the second one gives the
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Poincaré dual of the equivariant Todd class. The usual homotopy arguments from the original
JLO formula apply verbatim there, thus giving the theorem.

We then apply Theorem 1.2 to the Connes-Moscovici index problem for transversally hypoelliptic
operators on foliations. After reduction to a complete transversal W, the holonomy groupoid of a
given foliation is Morita equivalent to an étale groupoid W o G where G ⊂ Diff(W) is a discrete
(pseudo)group of diffeomorphisms. The main object of study is therefore the crossed product
algebra C∞c (W) o G where, for notational simplicity, we treat G as a group. A first problem
occuring is that G does not preserve any measure on W in general, and even less a Riemannian
metric, so that G-invariant elliptic differential operators do not exist even at the leading symbol
level. The idea of Connes in [1] is to pass by a Thom isomorphism to the bundle of Riemannian
metrics M over W. This fibration is in particular a foliation, the leaves being the fibers. This
will be the foliation of interest for us. The action of G on W lifts to M, mapping leaves
to leaves. Connes and Moscovici then construct a hypoelliptic signature operator on M almost
invariant under the G-action, in the sense that its Heisenberg leading symbol is G-invariant.
This yields a regular spectral triple over the algebra C∞c (M)oG, whose Chern-Connes character
may be computed by means of the Connes-Moscovici residue formula ([3]). However, this does not
directly provide a characteristic class formula, since the actual calculations give thousands of terms
already for very low-dimensional manifolds W. To overcome this difficulty in higher dimensions,
Connes and Moscovici developed cyclic cohomology for Hopf algebras in [4]. They defined such
an algebra H, which acts like a symmetry group allowing to reorganize the calculations, and built
a characteristic map χ : HP•Hopf(H) 7−→ HP•(C∞c (M)oG). Then they prove

Theorem 1.3. (Connes-Moscovici, [4]) If the lifted action of G on M has no fixed points,
then the Chern-Connes character of the hypoelliptic signature operator lies in the range of
the characteristic map χ.

In some sense, the group HP•Hopf(H) contains the geometric cocycles : Connes and Moscovici
showed that it is isomorphic to the Gel’fand-Fuchs cohomology, which contains e.g characteristic
classes of equivariant vector bundles overM. It then remains to actually compute the preimage of
the Chern-Connes character. Explicit calculations are made in [4] in dimension 1, giving (twice)
the transverse fundamental class of [1]. In dimension 2, the authors show that the coefficient of
the first Pontryagin class does not vanish.

Our Theorem 1.2 allows to short-cut the calculation with Hopf algebras and gives direct answer
to the problem of computing the Chern-Connes character of the hypoelliptic signature operator
in terms of equivariant characteristic classes, for manifolds W of arbitrary dimension.

Theorem 1.4. Let G be a discrete group of orientation-preserving diffeomorphisms on
a manifold W. Let M be the bundle of Riemannian metrics over W. If the lifted action
of G has no fixed points on M, then the Chern-Connes character of the Connes-Moscovici
hypoelliptic signature operator is

π∗ ◦Φ(L ′(M)) ∈ HP1(C∞c (M)oG) ,

where L ′(M) is the modified L-genus, Φ : Hev(EG×G S∗HM)→ HP1(C∞c (S∗HM)oG) is Connes’
characteristic map, and π∗ : HP1(C∞c (S∗HM) o G) → HP1(C∞c (M) o G) is induced by the
canonical projection π : S∗HM→M.

Organization of the paper. Section 2 is a self-contained introduction to the equivariant Heisen-
berg pseudodifferential calculus on foliated manifolds, the pseudodifferential extension, and the
Connes-Moscovici residue. Then Theorem 1.1 is proved.
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In sections 3, 4 and 5 we adapt the formalism of [9] to the Heisenberg calculus. We introduce
various spaces of operators acting on formal Heisenberg symbols, and the universal Dirac operators
which will be used in our algebraic JLO formula.

Section 6 introduces the required objects to carry this formalism to the equivariant setting. In
particular, we recall the point of view we need to construct Connes’ characteristic map from the
equivariant cohomology H•(EG ×GM) to the periodic cyclic cohomology of the crossed product
HP•(C∞(M)oG). From the technical side we use the X-complex of Cuntz and Quillen [5].

Section 7 finally gives the algebraic JLO formula on the algebra of formal (equivariant) Heisenberg
symbols, leading to Theorem 1.2. This is again an adaptation of the formalism developed in [10]
for the non-Heisenberg case.

Section 8 shows how to deduce Theorem 1.4 from Theorem 1.2.

2. Equivariant local index formula

2.1. Heisenberg pseudodifferential calculus on foliations. Let M be a foliated manifold of
dimension n, and let F be the integrable sub-bundle of the tangent bundle TM ofM which defines
the foliation. Denote v the dimension of the leaves and h = n− v their codimension.

The fundamental idea of the Heisenberg calculus is that longitudinal vector fields (with respect
to to the foliation) have order 1, whereas transverse vector fields have order 6 2. We shall now
describe the symbolic calculus allowing to do so, following Connes and Moscovici [3].

Let (x1, . . . , xn) be a foliated local coordinate system of M, i.e, the vector fields ∂
∂x1

, . . . , ∂
∂xv

locally span F, so that ∂
∂xv+1

, . . . , ∂
∂xn

are transverse to the leaves of the foliation. Then, we set

|p| ′ = (p41 + . . .+ p4v + p
2
v+1 + . . .+ p2n)

1/4

〈α〉 = α1 + . . .+ αv + 2αv+1 + . . . 2αn

for every p ∈ Rn, α ∈ Nn.

Definition 2.1. A smooth function σ(x,p) ∈ C∞(Rnx ×Rnp) is a Heisenberg symbol of order
m ∈ R if over any compact subset K ⊂ Rnx and for every multi-index α,β, one has the following
estimate

|∂βx∂
α
pσ(x,p)| 6 CK,α,β(1+ |p| ′)m−〈α〉

We shall focus on the smaller class of classical Heisenberg symbols. For this, we first define the
Heisenberg dilations

λ · (p1, . . . ,pv,pv+1, . . . ,pn) = (λp1, . . . , λpv, λ2pv+1, . . . , λ2pn)

for any non-zero λ ∈ R and non-zero p ∈ Rn.
Then, a Heisenberg pseudodifferential symbol σ of order m is called classical if it has an asymp-
totic expansion when |p| ′ →∞
(2.1) σ(x,p) ∼

∑
j>0

σm−j(x,p)

where σm−j(x,p) are Heisenberg homogeneous functions, that is, for any non zero λ ∈ R,

σm−j(x, λ · p) = λm−jσm−j(x,p)

The Heisenberg principal symbol is the symbol of higher degree in the expansion (2.1).
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To such a symbol σ of order m, one associates its left-quantization as the linear map:

P : C∞c (Rn)→ C∞(Rn), Pf(x) =
1

(2π)n

∫
Rn

eix·pσ(x,p)f̂(p)dp

where f̂ denotes the Fourier transform of the function f. We shall say that P is a classical
Heisenberg pseudodifferential operator of order m. If P is properly supported, then it actually
defines a linear map C∞c (Rn)→ C∞c (Rn). We denote by ΨmH (Rn) the vector space of such properly-
supported operators and by ΨmH,c(Rn) its subspace of compactly supported operators. Since
properly-supported operators can be composed, the unions of all-orders operators

ΨH(Rn) =
⋃
m∈R

ΨmH (Rn) , ΨH,c(Rn) =
⋃
m∈R

ΨmH,c(Rn)

are associative algebras over C. The ideals of regularizing operators

Ψ−∞(Rn) = ⋂
m∈R

ΨmH (Rn) , Ψ−∞
c (Rn) =

⋂
m∈R

ΨmH,c(Rn)

correspond respectively to the algebras of operators with properly- and compactly-supported
smooth Schwartz kernel.

If P1,P2 ∈ ΨH(Rn) are Heisenberg pseudodifferential operators of symbols σ1 and σ2, P1P2 is a
Heisenberg pseudodifferential operator whose symbol σ is given by the star-product of symbols :

(2.2) σ(x,p) = σ1 ? σ2(x,p) ∼
∑
|α|>0

(−i)|α|

α!
∂αpσ1(x,p)∂

α
xσ2(x,p)

Note that the order of each symbol in the sum is decreasing while |α| is increasing.

We define the algebra of Heisenberg formal classical symbols SH(Rn) and its compactly-
supported subalgebra SH,c(Rn) as quotients

SH(Rn) = ΨH(Rn)/Ψ−∞(Rn) , SH,c(Rn) = ΨH,c(Rn)/Ψ−∞
c (Rn)

Their elements are formal sums given in (2.1), and the product is the star product (2.2).

A Heisenberg formal symbol is said Heisenberg elliptic if it is invertible in SH(Rn). This is
equivalent to say that its Heisenberg principal symbol is invertible on Rnx × Rnp r {0}. The
corresponding pseudodifferential operators are in general not elliptic, but only hypoelliptic.

Example 2.2. The sub-elliptic Laplacian is the differential operator

∆H = ∂4x1 + . . .+ ∂4xv − (∂2xv+1
+ . . .+ ∂2xn)

It has Heisenberg principal symbol σ(x,p) = |p| ′4, and is therefore Heisenberg elliptic. However,
its usual principal symbol, as an ordinary differential operator, is (x,p) 7→ ∑v

i=1 p
4
i , so ∆H is

clearly not elliptic.

Heisenberg pseudodifferential operators are compatible with foliated coordinate changes. There-
fore, the Heisenberg calculus can be defined globally on foliations by using a partition of unity.
Then, for a foliated manifold M, we denote by ΨH(M) the algebra of properly-supported Heisen-
berg pseudodifferential operators on M, and by ΨH,c(M) its subalgebra of compactly-supported
operators.

For a (Z2-graded) complex vector bundle E over M, one defines in the same way the algebra
of Heisenberg pseudodifferential operators ΨH(M,E) acting on the smooth compactly-supported
sections C∞c (M,E) of E. One always has an exact sequence

0→ Ψ−∞(M,E)→ ΨH(M,E)→ SH(M,E)→ 0
5



and similarly for the algebra of compactly-supported operators ΨH,c(M,E). Note that for a ∈
SH(M,E), (x,p) ∈ T∗xM, we have a(x,p) ∈ End(Ex). Let PSH(M,E) ⊂ SH(M,E) denote the
subalgebra of polynomial Heisenberg symbols (with respect to the cotangent coordinate p). The
latter is isomorphic to the algebra of differential operators, endowed with the Heisenberg degree.

The vector bundle of interest in this paper will be the exterior algebra E = Λ•(T∗M ⊗ C) of
the complexified cotangent bundle. In a distinguish coordinate system (x1, . . . , xn) over an open
subset U ⊂M, a local basis of the sections of E is given by 1,dxi1 ,dxi1∧dxi2 , . . . ,dxi1∧. . .∧dxin ,
1 6 i1 < . . . < in 6 n. Moreover, the endomorphisms End(Ex) of the fibre Ex are generated by

(2.3) ψi = dxi ∧ ., ψi = ι(∂xi)

for i = 1, . . . ,n, where ι stands for the interior product with a vector field. We have the following
anti-commutation relations rules :

(2.4) [ψi,ψj] = δ
j
i, [ψi,ψj] = [ψi,ψj] = 0

In other words, End(Ex) is the Clifford algebra of TxM⊕ T∗xM, the metric is the duality bracket.
Let us also recall the commutation relations of symbols : in the coordinate system (x,p) over
T∗U, we have :

(2.5) [xi,pj] = −iδij, [xi, xj] = [pi,pj] = 0

Thus, every element a ∈ SH(M,E) is locally a formal series

a(x,p,ψ,ψ) =
∑
j=0

am−j(x,p,ψ,ψ)

where the functions am−j are Heisenberg-homogeneous in p and polynomial in the variables ψ
and ψ.

2.2. Wodzicki residue on ΨH(M). Let M be a foliated manifold. By choosing a Riemannian
metric on M, one can construct a sub-elliptic sub-laplacian ∆ as in the flat example 2.2. Its
complex powers ∆−z are defined as properly-supported Heisenberg pseudodifferential operators,
using the parametrix (λ− ∆)−1 and an appropriate Cauchy integral

∆−z =
1

2πi

∫
λ−z(λ− ∆)−1 dλ

where the contour is a vertical line pointing downwards.

Theorem 2.3. (Connes - Moscovici, [3]) Let M be a foliated manifold of dimension n,
v be the dimensions of the leaves, h their codimension, and P ∈ ΨmH,c(M) be a compactly-
supported Heisenberg pseudodifferential operator of order m ∈ R. Then, for any sub-elliptic
sub-laplacian ∆, the zeta function

ζP(z) = Tr(P∆−z/4)

is holomorphic on the half-plane Re(z) > m+v+2h, and extends to a meromorphic function
of the whole complex plane, with at most simple poles in the set

{m+ v+ 2h,m+ v+ 2h− 1, . . .}

The meromorphic extension of the zeta function given by this theorem allows the construction of
a Wodzicki-Guillemin trace on SH,c(M) = ΨH,c(M)/Ψ−∞

c (M).

Theorem 2.4. (Connes - Moscovici, [3]) The Wodzicki residue functional∫
− : SH,c(M) −→ C, P 7−→ Resz=0Tr(P∆−z/4)
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is a trace. Moreover we have the following formula, only depending on the formal symbol σ
of P up to finite order:

(2.6)
∫
−P =

1

(2π)n

∫
S∗HM

ιL

(
σ−(v+2h)(x,p)

ωn

n!

)
Here, S∗HM is the Heisenberg cosphere bundle, that is, the sub-bundle

S∗HM = {(x,p) ∈ T∗M ; |p| ′ = 1}

of the cotangent bundle T∗M, ω denotes the standard symplectic form on T∗M, ι stands for the
interior product, and L is the generator of the Heisenberg dilations given by the formula

L =

v∑
i=1

pi∂pi
+ 2

n∑
i=v+1

pi∂pi

All these results still hold for Heisenberg pseudodifferential operators acting on sections of a
vector bundle E over M. In this case, the symbol σ−(v+2n)(x,p) above is at each point (x,p) an
endomorphism acting on the fibre Ex, and (2.6) becomes :∫

−P =
1

(2π)n

∫
S∗HM

ιL

(
tr(σ−(v+2n)(x,p))

ωn

n!

)
where tr denotes the trace of endomorphisms.

2.3. Excision and equivariant residue index formula. Let M be a foliated manifold. Con-
sider a discrete subgroup G ⊂ Diff(M) of diffeomorphisms mapping leaves to leaves. By convention
we suppose that G acts from the right, so, for any g ∈ G the induced linear action Ug on the
space of functions C∞(M) reads

(Ugf)(x) = f(x · g) , ∀f ∈ C∞(M) , x ∈M

Recall that the algebraic crossed product ΨH,c(M) o G is the universal algebra generated by
Heisenberg pseudodifferential operators and group elements, that is,

ΨH,c(M)oG =

∑
g∈G

PgUg ; Pg ∈ ΨH,c(M)


where PgUg is a short-hand notation for the tensor product Pg ⊗Ug, and the sum only contains
a finite number of non-zero terms. The multiplication is given by the rule

PUg ·QUh = P(UgQUg−1)Ugh

To this effect, remark that UgQUg−1 is still a classical Heisenberg pseudodifferential operator, so
that the product makes sense. Note also that in general, the representation of ΨH,c(M) o G as
linear operators on C∞(M) does not yield pseudodifferential operators.

Then, one has an extension

(2.7) 0→ Ψ−∞
c (M)oG→ Ψ0H,c(M)oG→ S0H,c(M)oG→ 0

The usual trace on the algebra of regularizing operators Ψ−∞
c (M), given by

Tr(K) =
∫
M

k(x, x)dvol(x)

where k stands for the kernel of K, extends to a trace Tr[1] on Ψ−∞
c (M) o G by localization at

the unit of G

Tr[1]

∑
g∈G

KgUg

 = Tr(K1)
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That Tr[1] still remains a trace only comes from the invariance of the ordinary operator trace Tr
under conjugation by Ug.

In the same way, the Wodzicki residue on SH,c(M) extends to a trace on SH,c(M) o G by local-
ization at the unit.

The pseudodifferential extension gives rise to the following commutative diagram involving alge-
braic K-theory and periodic cyclic homology ([8])

(2.8)

Kalg1 (S0H,c(M)oG) Ind //

ch1

��

Kalg0 (Ψ−∞
c (M)oG)

ch0

��
HP1(S0H,c(M)oG) ∂ // HP0(Ψ−∞

c (M)oG)

The vertical arrows are respectively the odd and even Chern character.

Denote again ∂ : HP0(Ψ−∞
c (M)oG)→ HP1(S0H,c(M)oG) the induced excision map in cohomol-

ogy. We shall now compute ∂[Tr[1]]. To do this, we lift Tr[1] on Ψ−∞
c (M)oG to a linear map on

Ψ0H,c(M)oG using a zeta function renormalization

Tr ′[1]

∑
g∈G

PgUg

 = Pfz=0Tr
(
P1 · ∆−z/4

)
where ∆ is a sub-elliptic Laplacian, and Pfz=0 is the constant term in the Laurent series expansion
of the zeta-function at z = 0. Then, ∂[Tr[1]] is represented in HP1(S0H(M) o G) by the cyclic 1-
cocycle

(2.9) φ(aUg,bUh) = Tr ′[1]([aUg,bUh])

for all a,b ∈ Ψ0H,c(M) and g,h ∈ G. This expression makes sense as a cocycle over S0H(M) o G
because it vanishes whenever a or b belongs to the smooting ideal Ψ−∞

H,c(M). Then, because the
trace is localized at units, one finds that φ(aUg,bUh) = 0 if gh 6= 1, and

φ(aUg,bUg−1) = Tr ′[1]([aUg,bUg−1 ]) = Pfz=0Tr
(
[aUg,bUg−1 ] · ∆−z/4

)
otherwise. The formula can be made a little more explicit if we gather accurately the relevant
terms. This is the aim of the following proposition.

Proposition 2.5. The cyclic 1-cocycle φ given above is given in terms of the Connes-
Moscovici residue :

φ(aUg,bUg−1) =

∫
−aUg[log∆1/4,bUg−1 ]

Proof. Firstly, remark that

φ(aUg,bUg−1) = Pfz=0Tr
(
[aUg,bUg−1 ] · ∆−z/4

)
= Resz=0

1

z
Tr
(
(aUgbUg−1 − bUg−1)aUg · ∆−z/4

)
Then, work at z ∈ C with Re(z) � 0, so that Tr

(
[aUg,bUg−1 ] · ∆−z/4

)
is well-defined. Then,

the trace property yields

Tr
(
[aUg,bUg−1 ] · ∆−z/4

)
= Tr

(
a(UgbUg−1∆−z/4 −Ug∆

−z/4bUg−1)
)
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Then, write

UgbUg−1∆−z/4 −Ug∆
−z/4bUg−1 = UgbUg−1∆−z/4 −Ugb∆

−z/4Ug−1 −Ug[∆
−z/4,b]Ug−1

= −Ug[∆
−z/4,b]Ug−1 +UgbUg−1 [∆−z/4,Ug]Ug−1

To end the calculations, we need the following lemma, whose proof may be found in [6].

Lemma 2.6. (Connes-Moscovici’s trick, [3, 6]) For every z ∈ C, we have the following
expansion,

[∆−z,b] ∼
∑
k>1

(
−z

k

)
b(k)∆−z−k Ug−1 [∆−z,Ug] ∼

∑
k>1

(
−z

k

)
Ug−1U(k)

g ∆−z−k

where we denote T (k) = ad(∆)k(T), ad(∆) = [∆, . ].

Moreover, note that for every integer k > 1, b(k) and Ug−1U
(k)
g are classical Heisenberg pseudo-

differential operators whose order stricly decrease as k grows. Hence, evaluating the expression
under the trace, Theorem 2.3 may be used. We deduce that on the one hand, the sums

Resz=0
1

z

∑
k>1

Tr
(
a

(
Ug

(
−z/4

k

)
b(k)∆−z/4−kUg−1

))

Resz=0
1

z

∑
k>1

Tr
(
a

(
Ug−1

(
−z/4

k

)
U(k)
g ∆−z/4−k

))
are finite, since the zeta function is holomorphic on a half-plane Re(z) � 0. On the other hand,
as the poles of the zeta function are simple, the terms carrying a power of z2 vanish under the
residue, and we are respectively left with

−Resz=0
∑
k>1

Tr
(
a

(
Ug

(−1)k−1

4k
b(k)∆−z/4−kUg−1

))

−Resz=0
∑
k>1

Tr
(
a

(
Ug−1

(−1)k−1

4k
U(k)
g ∆−z/4−k

))
We then recognize the commutator with the logarithm of ∆1/4 (cf. [12]), and we finally obtain

φ(aUg,bUg−1) =

∫
−a

(
Ug[log∆1/4,b]Ug−1 −UgbUg−1 [log∆1/4,Ug]Ug−1

)
=

∫
−aUg[log∆1/4,bUg−1 ]

This ends the proof of the proposition. �

The pseudodifferential extension (2.7) is closely related to another extension. Indeed the quo-
tient of Ψ0H,c(M) by its two-sided ideal Ψ−1

H,c(M) of operators of order 6 −1 is G-equivariantly
isomorphic to the commutative algebra of leading symbols C∞c (S∗HM). The natural inclusion of
smoothing operators in Ψ−1

H,c(M) and the leading symbol map thus yield a morphism of extensions

(2.10)

0 // Ψ−∞
c (M)oG //

��

Ψ0H,c(M)oG // S0H,c(M)oG //

��

0

0 // Ψ−1
H,c(M)oG // Ψ0H,c(M)oG // C∞c (S∗HM)oG // 0

The cyclic cohomology class of the operator trace Tr[1] localized at unit extends in a straightfor-
ward manner to a cyclic cohomology class [τ] ∈ HP0(Ψ−1

H,c(M)oG). The latter is represented, for
9



any choice of even integer k > v+ 2h, by the cyclic k-cocycle τk defined as follows:

(2.11) τk(a0, . . . ,ak) = Tr[1](a0 . . .ak)

for all ai ∈ Ψ−1
H,c(M) o G. By naturality of excision, the class ∂[Tr[1]] ∈ HP1(S0H,c(M) o G) is

the pullback of ∂[τ] ∈ HP1(C∞c (S∗HM) o G) under the leading symbol homomorphism. Now the
computation of ∂[τ] is fairly analogous to the above computation of ∂[Tr[1]]. We use the generalized
Goodwillie theorem of Cuntz and Quillen [5], which states that the periodic cyclic cohomology of
an associative algebra A is isomorphic to the periodic cyclic cohomology of its completed tensor
algebra

(2.12) T̂A = lim←−
n

TA/(JA)n ,

where the two-sided ideal JA ⊂ TA is the kernel of the multiplication homomorphism TA → A,
a1 ⊗ . . . ⊗ an 7→ a1 . . .an. We let A = C∞c (S∗HM) o G and choose any linear splitting σ :

A → Ψ0H,c(M) o G of the leading symbol homomorphism. σ is multiplicative up to the ideal
Ψ−1
H,c(M) o G. By the universal property of the tensor algebra, σ extends to an homomorphism
σ∗ : TA→ Ψ0H(M)oG respecting the ideals, whence a morphism of extensions

0 // JA //

σ∗

��

TA //

σ∗

��

A //

σvv

0

0 // Ψ−1
H,c(M)oG // Ψ0H,c(M)oG // C∞c (S∗HM)oG // 0

Observe that the cocycle φ, viewed as a cyclic 1-cocycle over Ψ0H,c(M)oG, vanishes on the large
powers of the ideal Ψ−1

H,c(M) o G because it involves the Connes-Moscovici residue. Hence the
composite φ ◦ σ∗, which is a bilinear form on TA, extends to a cyclic 1-cocycle over T̂A. By [9]
Corollary 2.6, this cocycle is precisely a representative of the periodic cyclic cohomology class
∂[τ] ∈ HP1(C∞c (S∗HM)oG). Therefore we obtain

Proposition 2.7. Let 0 → Ψ−1
H (M) o G → Ψ0H(M) o G → C∞(S∗HM) o G → 0 be the

fundamental extension in the Heisenberg pseudodifferential calculus. Then the image ∂[τ]
of the canonical trace localized at units under the excision map ∂ : HP0(Ψ−1

H,c(M) o G) →
HP1(C∞c (S∗HM) o G) is represented by a cyclic 1-cocycle over the completed tensor algebra
of A = C∞c (S∗HM)oG,

(2.13) (φ ◦ σ∗)(â0, â1) =
∫
−
(
σ(â0)[log∆1/4,σ(â1)]

)
[1]

, ∀ â0, â1 ∈ T̂A ,

for any choice of sub-Laplacian ∆ and linear splitting σ : A→ Ψ0H,c(M)oG.

We have so far obtained a local index formula for a G-Heisenberg elliptic operator, in the sense
that it is not sensitive under perturbations by elements in Ψ−∞

c (M)oG. However, the formula is
really hard to compute explicitely, because we have to calculate the term of degree −v− 2h in the
expansion of the symbol aUg[log∆1/4,bUg−1 ], and adding the fact that the symbolic calculus is
not commutative, the task is even more difficult.

The general strategy to handle this problem is the construction of a cohomologous (b,B)-cocycle,
in which the leading symbol is exactly of degree −v − 2h. Then, we will just have to take the
principal symbol to obtain a formula as an integral over the Heisenberg cosphere bundle. This will
be possible through an "algebraic JLO formula" whose entries are formal (Heisenberg) symbols.
This construction includes the following main steps:

• An algebra of operators acting on symbols,
• A related notion of "heat kernel",

10



• A related notion of trace,
• A related notion of "Dirac operator" D, in the sense that for a symbol a ∈ SH,c(M), [D,a]
is (up to some lower order terms) the differential da of the symbol a,

• Carrying all this to the equivariant setting.

The constructions required are more tedious than the original JLO setting, however, it is much
more flexible and has many advantages. As we will see, the constructions are purely algebraic,
and we do not need to appeal to analytic properties of the heat equation, so that we can deal
with much more general operators that Dirac type operators. In the same vein, we do not need
to consider entire (b,B)-cochains. Thus, what we develop here holds in cases where Getzler’s
rescaling does not apply.

3. Bimodule of Heisenberg formal symbols

We adapt the framework developed in [9] to Heisenberg calculus on foliations. When the proof of
a result is deferred to this paper, this means that it applies verbatim in our case. We shall mainly
focus on the changes which occur in the Heisenberg setting.

Let (M,F) be a foliated manifold of dimension n, where F ⊂ TM is the sub-bundle of rank v
defining the foliation, and let h denote the codimension of the foliation. We consider the Z2-
graded algebra of formal Heisenberg symbols SH(M,E), with E = Λ•(T∗M ⊗ C). We view it as
a left SH(M,E)-module and right PSH(M,E)-module : the left action of a ∈ SH(M,E), and the
right action b ∈ PSH(M,E) on ξ ∈ SH(M,E) are given by

aL · ξ = aξ, bR · ξ = ±ξb

Here, the sign ± depends on the parity of b and ξ : it is − when both are odd and + otherwise.
This action defines a Z2-graded subalgebra of End(SH(M,E))

L(M) = span{aLbL ; a ∈ SH(M,E),b ∈ PSH(M,E)}

Now, let us have a closer look on the operators contained in this algebra. Let (x1, . . . , xn) be a
foliated coordinate system over an open subset U ⊂M. The function xi is a symbol of order 0, so
that xiL, x

i
R may be viewed as elements of L(M). The conjugate coordinate pi is a symbol of order

1 if i = 1, . . . , v, but of order 2 when i = v+ 1, . . . ,n. As before, this defines elements piL,piR of
L(M). Now, observe that :

(xiL − x
i
R) = i∂pi

, (piL − piR) = −i∂xi(3.1)

The same holds for the odd coordinates ψi and ψi :

(ψiL −ψ
i
R) = ∂ψi

, (ψiL −ψiR) = ∂ψi(3.2)

Hence, L(M) contains all the "elementary operations" on (Heisenberg) symbols.

Little calculations shows that a generic element aLbR ∈ L(M) reads over U as a series

(3.3) aLbR =

k∑
|α|=1

∞∑
|β|=1

n∑
|η|=1

n∑
|θ|=1

(sα,β,η,θ)L(ψ
ηψ

θ
)R∂

α
x∂
β
p

where sα,β,η,θ ∈ SH(U,E) and k ∈ N. It is not necessarily true that a series of that form comes
from an element of L(M).

Now, consider the Z2-graded algebra S(M) = L(M)[[ε]] of formal power series with coefficients
L(M), and indeterminate ε, which comes with a trivial grading. S is filtered by the subalgebras
Sk(M) = S(M)εk, for every k ∈ N. This k counts the minimal power of ε appearing in an element
of S(M). We now define an important subalgebra of S(M).

11



Definition 3.1. The subspace Dm(M) ⊂ S(M) consists of elements s =
∑
skε

k such that in
any distinguished local chart U ∈M, we have

(3.4) sk =

k∑
|α|=1

∞∑
|β|=1

n∑
|η|=1

n∑
|θ|=1

(smk,α,β,η,θ)L(ψ
ηψ

θ
)R∂

α
x∂
β
p

where smk,α,β,η,θ ∈ SH(U,E) has Heisenberg order 6 m + (k + |β| − 3|α|)/2. We also denote
Dmk (M) = Dm(M) ∩ Sk(M). We set

D(M) =
⋃
m∈R

Dm(M)

The space D(M) is a bi-filtered subalgebra of S(M), that is Dmk (M) · Dm′k′ (M) ⊂ Dm+m′

k+k′ (M),
for m,m ′ ∈ R and k,k ′ ∈ N ([9], Lemma 3.1). Using symbols with compact supports, we define
analogously the subalgebra Dc(M) ⊂ D(M).

Definition 3.2. A generalized Laplacian is an operator ∆ ∈ D
1/2
1 of even parity, which can

be written, in any local coordinate system over a local distinguished chart U ∈M :

(3.5) ∆ = iε∂xi∂pi
mod D01(U)

Throughout the paper, we shall use Einstein summation notation for repeated indices.

That such an operator exists is not obvious, cf. [9], Lemma 3.3. We will see some important
examples in the section concerning generalized Dirac operators .

A generalized Laplacian ∆ will be our first point of departure towards the construction of a JLO
formula on Heisenberg symbols. In this type of formula, one needs to know how to deal with an
exponential of such an operator in order to have a "heat kernel". As a formal power series in ε
this indeed defines an element of S(M) :

(3.6) exp(t∆) =
∞∑
k=0

tk

k!
∆k, ∀t ∈ R

This operator does not belong to D(M). We define a one parameter group of automorphisms
(σt∆)t∈R of the algebra S(M) as follows :

(3.7) σt∆(s) = exp(t∆)s exp(−t∆), ∀s ∈ D(M)

Lemma 3.3. For every generalized Laplacian ∆, (σt∆)t∈R is actually a one parameter
group of automorphisms of D(M). More precisely, one has, for every m ∈ R, k ∈ N :

[∆,Dmk ] ⊂ Dmk+1, σt∆(D
m
k ) ⊂ Dmk

Proposition 3.4. (Duhamel formula) Let ∆+s be a perturbation of a generalized Lapla-
cian ∆, where s ∈ D01(M). Then,

(3.8) exp(∆+ s) =

∞∑
k=0

∫
∆k

exp(t0∆)s exp(t1∆) . . . s exp(tk∆)dt

where ∆k is the standard k-simplex, and dt = dt1 . . .dtk. Equivalently,

(3.9) exp(∆+ s) =

∞∑
k=0

∫
∆k

σt0∆ (s)σt0+t1∆ (s) . . .σt0+...tk−1

∆ (s) exp(∆)dt

Definition 3.5. Let ∆ be a generalized Laplacian. The bimodule of trace class operators
is the subspace T(M) = Dc(M) exp(∆) of S(M).

12



Remark 3.6. T(M) is aD(M)-bimodule, and does not depend on the choice of the generalized
Laplacian ([9], Proposition 3.6). However, this is not a subalgebra of S(M).

The terminology will be explained in the next section. Finally note that if G ⊂ Diff(M) is a group
of foliated diffeomorphisms, the algebra D(M) and the bimodule T(M) carry natural G-actions
by automorphisms.

4. Canonical trace on the bimodule T

4.1. Construction of the trace. Let (Mn,F) be a foliated manifold of codimension h, and let
v denote the dimension of the leaves, so that n = v+ h, and take E = Λ•(T∗M⊗ C). The aim of
this section is to construct a canonical trace on T(M) from the Wodzicki residue 2.4.

First, we work locally. Let U ⊂ M be a distinguished local chart of M . Recall that T(U) is a
bimodule over D(U). A trace on T(U) is in this sense a linear map T(U) → C vanishing on the
subspace [T(U),D(U)] of graded commutators. Choose a coordinate system (x,p) on T∗U adapted
to the foliation, and let ∆ be the "flat" (generalized) Laplacian

∆ = iε∂xi∂pi

For every multi-indices α and β, we define a bracket operation

(4.1) 〈∂αx∂βp exp∆〉 = ∂αx∂βp exp
(
i
ε
(pi − qi)(x

i − yi)

)∣∣∣∣
x=y,p=q

Remark that this vanishes unless |α| = |β|.

Example 4.1. One has

〈exp∆〉 = 1, 〈∂xi exp∆〉 = 〈∂pi
exp∆〉 = 0, 〈∂xi∂pj

exp∆〉 = i
ε
δji

where δji denotes the Kronecker symbol. More generally, the formula with a polynomial ∂αx∂
β
p

involves all the possible contractions between ∂xi and ∂pj
. For example,

〈∂xi∂xj∂pk
∂pl

exp∆〉 =
(
i
ε

)2
(δki δ

l
j + δ

l
iδ
k
j )

We also define a contraction map for the odd variables : for every multi-indices η and θ, we set

(4.2) 〈(ψηψθ)R〉 = (−1)ntrs(ψηψ
θ
)

In particular, from the normalization we chose for trs, we have 〈(ψ1 . . .ψnψ1 . . .ψn)R〉 = 1
From this, we construct a linear map

(4.3) 〈〈 . 〉〉 : T(M)→ SH(U,E)[[ε]]

as follows. Let s exp(∆) ∈ T(M) be a generic element, where s =
∑
k>0 skε

k ∈ Dm(U). The
symbol sk may be written

sk =

k∑
|α|=1

∞∑
|β|=1

n∑
|η|=1

n∑
|θ|=1

(sk,α,β,η,θ)L(ψ
ηψ

θ
)R∂

α
x∂
β
p

where sk,α,β,η,θ ∈ SH(U,E) has Heisenberg order 6 m+ (k+ |β|− 3|α|)/2. Then, we set

〈〈sk exp∆〉〉 =
k∑

|α|=1

∞∑
|β|=1

n∑
|η|=1

n∑
|θ|=1

sk,α,β,η,θ〈(ψηψ
θ
)R〉〈∂αx∂βp exp∆〉
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This sum is finite by definition of the even contraction, and is consequently a polynomial of degree
at most k in the variable ε−1. Then, 〈〈sk exp∆〉〉εk is a polynomial of degree at most k in ε. Then,
we finally define

(4.4) 〈〈s exp∆〉〉 =
∑
k>0

〈〈sk exp∆〉〉εk

which is an element of SH(U,E)[[ε]] (this is not totally obvious, refer to [9], Lemma 4.1).
We can now pass to the definition of the trace on T(M).

Definition 4.2. Let U ∈ M be a distinguished local chart, and denote by 〈〈s exp∆〉〉[n] ∈
SH(U,E) the coefficient of εn in the formal series 〈〈s exp∆〉〉. Then, we define the following graded
trace

(4.5) TrUs : T(U)→ C, TrUs (s exp∆) =
∫
−TrUs 〈〈s exp∆〉〉[n]

This map does not depend on the choice of distinguished coordinates (x,p) on T∗U, so that these
maps may be glued together to give a canonical graded trace :

(4.6) Trs : T(M)→ C

on the D(M)-bimodule of trace class operators.

The proof that this is a trace is the same as that of [9], Lemma 4.2. That we can glue these
quantities to get a global functional on the whole foliationM is Proposition 4.3 of the same paper.
For the same reason, Trs is invariant under the action of any group G of foliated diffeomorphisms
on T(M).

4.2. An algebraic Mehler formula. In this section, we show how the "Todd series" can be
recovered from the contractions we defined in the previous paragraph. The formula may be seen
as a pseudodifferential analogue of the Mehler formula for the harmonic oscillator, and will be
crucial for obtaining the index theorem. We keep the notations of the previous subsection and
work in the distinguished local chart U.

For a N×N matrix R with coefficients in C[[ε]], which has no degree zero term in ε, we can define
the following formal power series in MN(C[[ε]]) and in C[[ε]]

(4.7)
R

eR − 1
= 1−

1

2
R+

1

12
R2 + . . . , Td(R) = det

(
R

eR − 1

)
We call Td(R) the Todd series of R.

Now, consider the operator

s = pL · R · ∂p = piL · Rij · ∂pj

and the perturbation of the flat Laplacian ∆ + s, which is not a generalized Laplacian. However,
by the Duhamel formula, Proposition 3.4, exp(∆+ s) still defines an element of T(U).

Proposition 4.3. For every multi-indices α and β, we have

(4.8) 〈∂αx∂βp exp(∆+ s)〉 = Td(R)s(R,p)

where the symbol s(R,p) is polynomial in p and given by the following formula :

s(R,p) = ∂αx∂
β
p exp

(
i
ε
q · R · (x− y) + i

ε
(p− q) · R

1− e−R
· (x− y)

)∣∣∣∣
x=y,p=q
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Example 4.4. We give some particular cases of the formula which will be useful in the sequel.
We have

〈exp(∆+ pL · R · ∂p)〉 = Td(R)(4.9)

〈(iε∂x + pL · R)α exp(∆+ pL · R · ∂p)〉 = 0(4.10)

where α is any multi-index.

5. Dirac operators

5.1. Generalities. The algebra of differential forms Ω•(M) onM and the Lie algebra Vect(M) of
vector fields may be seen as elements of the space PS0H(M,E) of polynomials Heisenberg symbols
of degree 0 via the following maps :

µ : dxi1 ∧ . . .∧ dxik ∈ Ω•(M) 7→ ψi1 . . .ψik ∈ PS0H(M,E),

ι : ∂xi ∈ Vect(M) 7→ ι(∂xi) ∈ PS0H(M,E)

Then, we shall be interested in various subspaces of L(M) = SH(M,E)LPSH(M,E)R, which are
needed to see where lie the generalized Dirac operators.

Let SPS1H(M,E) ⊂ PS1H(M,E) be the space of differential operators a of order 1, with scalar
Heisenberg principal symbol, whose local expression reads

a(x,p) = ai(x)pi + aij(x)ψ
jψi + b(x)

where the coefficients depending on x are smooth functions. Remark that SPS1H(M,E) is a Lie al-
gebra. We also consider the subspaces SPS1H(M,E)LΩ1(M)R ⊂ D10(M) and Ω0(M)LVect(M)R ⊂
D00(M), respectively spanned by elements which are locally given by the series

s =
∑
|α|>0

(skαi(x)pk + s
k
αij(x)ψ

iψk + sαi(x))Lψ
i
R∂
α
p

r =
∑
|α|>0

(riα)LψiR∂
α
p

The coefficients depending on x are again smooth functions.

Definition 5.1. A generalized Dirac operator D is an element of D(M) which writes

D = iε∇+∇ ∈ D11(M) +D
−1/2
0 (M)

where ∇ and ∇ are such that

∇ ≡ ψiR∂xi mod SPS1H(M,E)LΩ1(M)R,

∇ ≡ ψiR∂pi
mod Ω0(M)LVect(M)R ∩D−1

0 (M)

Remark that if G is a group of foliated diffeomorphisms on M, it transforms Dirac operators into
Dirac operators. The terminology lies in the following important proposition.

Proposition 5.2. Let D be a generalized Dirac operator. Then, −D2 is a generalized
Laplacian.

The rest of the paragraph gives the two crucial examples of generalized Dirac operators.
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5.2. De Rham - Dirac operators. The exterior differentiation d acting on the space of difffer-
ential forms Ω•(M) defines an element of PS1(M,E). Its right action on the bimodule of formal
Heisenberg symbols SH(M,E) gives an element of odd degree dR ∈ L(M). Locally,

(5.1) dR = i(piψi)R = iψiRpiR = −ψiR∂xi + ipiLψiR

As ipiLψiR ∈ SPS1(M,E), we have a generalized Dirac operator

(5.2) D = −iεdR +∇

for any choice of ∇ as in Definition 5.1. Such generalized Dirac operators will be called of de
Rham - Dirac type.

Proposition 5.3. Let D = −iεdR + ∇ be a de Rham - Dirac operator. Locally, the
associated generalized Laplacian is given by the following formula :

(5.3) −D2 = iε

∂xi∂pi
+
∑
|α|>2

(aiα)L∂xi∂
α
p

+ ε

piL∂pi
+
∑
|α|>2

(aiαpi)L∂
α
p


+ ε

(ψiψi)R +
∑
|α|>1

(biαj)L(ψ
jψi)R∂

α
p


where the coefficients aiα,biαj are smooth functions.

The formula seems to be tough at first sight. Nevertheless, one should retain that in the final
calculations, the sums over |α| > . . . will be killed for reasons of order.

5.3. Dirac operators associated to affine connections. Let Γ be an affine connection without
torsion onM, characterized by its Christoffel symbols Γkij in a local coordinate system (x1, . . . , xn)
over U. Then, we define a "covariant derivative" operator on SH(U,E) given by

(5.4) ∇Γi = ∂xi + Γ
k
ij(x)

(
pkL∂pj

+ [ψkψ
j, . ]

)
This is not properly speaking a covariant derivative, since the coordinates x and p do not commute.
However, the action of ∇Γi on the generators x,p,ψ,ψ are what we expect from a covariant
derivative :

∇Γi (xk) = δki , ∇Γi (pj) = Γkijpk, ∇Γi (ψk) = −Γkijψ
j, ∇Γi (ψj) = Γkijψk(5.5)

A generalized Dirac operator D = iε∇ +∇ is called affiliated to the affine connection Γ on M
if locally over U we have

(5.6) ∇ = ψiR(∇Γi + s)

with s ∈ SPS1H(M,E)LΩ1(M)R ∩D00(M).

Proposition 5.4. For such a Dirac operator D, one has the following analogue of the
Lichnerowicz formula :

(5.7) −D2 = iε
(
∂xi∂pi

+ (Γkij)L(ψ
iψk)R∂pj

+ u+ v
)

+ ε2
(
1

2
(ψiψj)RR

k
lij(pkL∂pl

+ (ψkψ
l)L) +w

)
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where Rklij = ∂xiΓ
k
jl − ∂xjΓ

k
il + Γ

k
imΓ

m
jl − ΓkjmΓ

m
il are the components of the curvature tensor of

Γ , and

u =
∑
|α|>2

(
(uαi)L∂xi + (ukαpk)L + (ukαi)L(ψ

iψk)R + (uα)L
)
∂αp

v =
∑
|α|>1

(vkαiψkψ
i)L∂

α
p

w = (ψiψj)R

∑
|α|>2

(wkαijpk)L∂
α
p +

∑
|α|>1

(wkαlijψkψ
l +wαij)L∂

α
p


where the coefficients are smooth functions on M.

As in the de Rham - Dirac case, the terms u, v,w will be killed in the final calculations.

6. Equivariant cohomology

Let G be a discrete group acting by orientation-preserving diffeomorphisms on a smooth oriented
manifoldM. Following [10], we shall explain an alternative construction of Connes’ characteristic
map from the G-equivariant cohomology of M to the periodic cyclic cohomology of the crossed
product algebra C∞c (M)oG which differs slightly from the original construction given by Connes
in [1], but is particularly well-adapted to the proof of the equivariant index theorem.

6.1. Classifying spaces. We recall that the nerve of a discrete group G is the simplicial set
NG• with NGn = Gn for all n > 0. The face maps δi : NGn → NGn−1 and degeneracy maps
σi : NGn → NGn+1 are given by

(6.1) δ0(g1, . . . ,gn) = (g2, . . . ,gn)

δi(g1, . . . ,gn) = (g1, . . . ,gigi+1, . . . ,gn) 1 6 i 6 n− 1

δn(g1, . . . ,gn) = (g1, . . . ,gn−1)

σi(g1, . . . ,gn) = (g1, . . . ,gi, 1,gi+1, . . . ,gn) 0 6 i 6 n .

Let ∆n = {(s0, . . . , sn) ∈ [0, 1]n+1 | s0 + . . . + sn = 1} be the standard n-simplex in Rn+1,
with δi : ∆n → ∆n+1, (s0, . . . , sn) 7→ (s0, . . . , si−1, 0, si, . . . , sn) the inclusion of the i-th face,
and σi : ∆n → ∆n−1, (s0, . . . , sn) 7→ (s0, . . . , si + si+1, . . . , sn) the collapse of the i-th edge. The
classifying space of G is the geometric realization of the simplicial set NG•, defined as the quotient

(6.2) BG =
( ⋃
n>0

NGn × ∆n
)
/ ∼

where the equivalence relation ∼ identifies a point (g, δis) ∈ NGn×∆n (resp. (g,σis) ∈ NGn×∆n)
with the point (δig, s) ∈ NGn−1 × ∆n−1 (resp. (σig, s) ∈ NGn+1 × ∆n+1). Let Ω(∆n) denote
the DG algebra of (complex) smooth differential forms over ∆n which are extendable over the
hyperplane {(s0, . . . , sn) ∈ Rn+1 | s0+ . . .+ sn = 1}. Let Ω(NGm×∆n) be the space of functions
from the discrete set NGm to Ω(∆n). This is naturally a DG algebra. A differential form ω of
degree k over BG is a collection of k-forms ωn ∈ Ωk(NGn×∆n), n ∈ N, subject to the constraints

(Id× δi)∗ωn = (δi × Id)∗ωn−1 , (Id× σi)∗ωn = (σi × Id)∗ωn+1 ,

for all i = 0, . . . ,n and n > 0. The space Ω(BG) of differential forms over BG is a DG algebra.
The de Rham cohomology of BG, which is the cohomology of the complex Ω(BG) endowed with
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the exterior differential d, is known to be canonically isomorphic to the group cohomology of G
with complex coefficients:

(6.3) H•(BG) ∼= H•(G,C) .

The universal G-bundle over the nerve NG• is the simplicial set NG• with NGn = Gn+1 for all
n, and the face and degeneracy maps are

(6.4) δi(g0, . . . ,gn) = (g0, . . . , ǧi, . . . ,gn) 0 6 i 6 n

σi(g0, . . . ,gn) = (g0, . . . ,gi,gi, . . . ,gn) 0 6 i 6 n ,

where the symbol ˇ denotes omission. The projection NG• → NG• defined by (g0, . . . ,gn) 7→
(g0g

−1
1 ,g1g−12 , . . . ,gn−1g−1n ) is a simplicial map. Its fibers are in one to one correspondence with

the orbits of the (free) G-action (g0, . . . ,gn) · g = (g0g, . . . ,gng), which is also a simplicial map
for all g ∈ G. The geometric realization

(6.5) EG =
( ⋃
n>0

NGn × ∆n
)
/ ∼

is therefore a G-bundle over BG. The DG algebra of differential forms Ω(EG) defined as above
carries a natural action of G. By pullback, Ω(BG) is isomorphic to the DG subalgebra of Ω(EG)

consisting of G-invariant differential forms. Hence H•(BG) is also the cohomology of the complex
of G-invariant differential forms on EG.

Now let G ⊂ Diff(M) be a discrete group of diffeomorphisms on a smooth manifold M. The
product EG×M, endowed with the diagonal G-action, is a G-bundle over the quotient EG×GM.
The DG algebraΩ(EG×M), defined as the collection of differential forms over the manifoldNGn×
∆n×M with gluing constraints as above, inherits an action of G by pullback. The DG subalgebra
of G-invariant differential forms is isomorphic to Ω(EG ×G M). We define the G-equivariant
cohomology ofM (with complex coefficients) as the corresponding de Rham cohomologyH•(EG×G
M).

The Chern-Weil theory of characteristic classes for vector bundles carries easily to the equivariant
case. Let V be a G-equivariant (complex) vector bundle over M, and choose a connection ∇0 on
V. Of course ∇0 is not G-invariant in general, and we denote by Adg(∇0) its image under the
adjoint action of an element g ∈ G. The set of all connections being an affine space, at any point
(g0, . . . ,gn)(s0, . . . , sn) ∈ NGn × ∆n we can build a new connection ∇ on V by means of the
barycentric formula

(6.6) ∇(g0, . . . ,gn)(s0, . . . , sn) =
n∑
i=0

siAd−1gi
(∇0) .

Let W = EG× V be the pullback of the vector bundle V over EG×M. If d denotes the exterior
differential over EG, then d+∇ is a connection on W, whose curvature 2-form R = [d,∇] +∇2 ∈
Ω2(EG×M, End(W)) reads

R(g0, . . . ,gn)(s0, . . . , sn) =
n∑
i=0

dsiAd−1gi
(∇0) +

∑
i,j

sisjAd−1gi
(∇0)Ad−1gj

(∇0) .

Observe that R is always the sum of a form of bidegree (1, 1) and a form of bidegree (0, 2) with
respect to the product manifold EG ×M. Since R is G-equivariant by construction, any Ad-
invariant polynomial in the curvature yields a closed G-invariant differential form on EG×M. In
particular the Chern character ch(V) and the Todd class Td(V) are represented by

(6.7) ch(iR/2π) = tr(exp(iR/2π)) , Td(iR/2π) = det
(

iR/2π
eiR/2π − 1

)
,
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and a classical homotopy argument shows that their respective cohomology classes inH•(EG×GM)

do not depend on the particular choice of connection ∇0 on V.

6.2. Characteristic map. We now explain our construction of Connes’ characteristic map from
the G-equivariant cohomology of M to the periodic cyclic cohomology of A = C∞c (M) o G. The
idea is to twist the universal tensor extension of the group ring CG

0→ JCG→ TCG→ CG→ 0

by the DG algebra of smooth differential forms on EG ×M. Indeed G acts on both manifolds
EG and M (from the right), and the induced action (from the left) by pullback on the graded-
commutative algebra of differential forms Ω(EG ×M) commutes with the de Rham differential
d. Let Ωp(EG×M) be the subalgebra of differential forms α ∈ Ω(EG×M) which have compact
M-support at any point of EG. The crossed product

(6.8) G = Ωp(EG×M)oG

is naturally a (non-commutative) DG algebra. The product of two elements reads

(α⊗Ug1
)(β⊗Ug2

) = α∧Ug1
(β)⊗Ug1g2

for all α,β ∈ Ωp(EG×M) and gi ∈ G, where Ug1
(β) is the pullback of β by the diffeomorphism

g1. The differential reads d(α ⊗ Ug) = dα ⊗ Ug. An algebra extension of G is defined as the
vector space

(6.9) H = Ωp(EG×M)⊗ TCG ,

graded by the differential form degree (TCG is trivially graded), and endowed with the twisted
product

(α⊗Ug1
⊗ . . .⊗Ugn

)(β⊗Ugn+1
⊗ . . .⊗Ugn+m

) = α∧Ug1...gn
(β)⊗Ug1

⊗ . . .⊗Ugn+m
.

Also the de Rham differential is extended to H by d(α⊗Ug1
⊗ . . .⊗Ugn

) = dα⊗Ug1
⊗ . . .⊗Ugn

.
Clearly the obvious multiplication map H→ G, α⊗Ug1

⊗ . . .⊗Ugn
7→ α⊗Ug1...gn

is a morphism
of DG algebras, hence its kernel I = Ωp(EG ×M) ⊗ JCG is a two-sided DG ideal. We define a
completion of H as

(6.10) Ĥ =
⊕
k>0

lim←−
n

(
Ωkp(EG×M)⊗ TCG/(JCG)n

)
.

The product and differential on H extend in an obvious way to Ĥ. If EG were a finite-dimensional
manifold, the sum over the form degree k would be finite and Ĥ = lim←−nΩp(EG×M)⊗TCG/(JCG)n
would coincide with the I-adic completion of H as in [10]. This does not hold for our construction
of EG and (6.10) is a strictly smaller algebra.

Now we view C∞c (M) ⊂ Ω0p(EG×M) as the subalgebra of scalar functions which are constant in
the direction EG. This identification is G-equivariant, hence extends to a morphism of algebras
ρ : A→ G. The universal property of the tensor algebra thus yields an homomorphism ρ∗ : TA→
H explicitly given by

ρ∗(f1Ug1
⊗ f2Ug2

. . .⊗ fnUgn
) = f1Ug1

(f2) . . .Ug1...gn−1
(fn)⊗Ug1

⊗Ug2
⊗ . . .⊗Ugn

on any n-tensor, fi ∈ C∞c (M), gi ∈ G. One easily checks that ρ∗ carries the ideal (JA)n to
Ω0p(EG×M)⊗ (JCG)n for all n, hence extends to an homomorphism of completed algebras

(6.11) ρ∗ : T̂A→ Ĥ .

We recall that the (completed) space of non-commutative differential forms Ω̂T̂A =
∏∞
n=0Ω

nT̂A

endowed with the total differential (b+ B) computes the periodic cyclic homology of A.
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The next step is a slight generalization of the Cuntz-Quillen X-complex [5] to the DG algebra
setting. Indeed the de Rham differential d on Ĥ extends in a unique way to the Ĥ-bimodule of
universal 1-forms Ω1Ĥ by

d(ĥ0dĥ1) = (dĥ0)dĥ1 + (−1)|ĥ0|+1ĥ0d(dĥ1) , ∀ ĥ0dĥ1 ∈ Ω1Ĥ ,

where |ĥ0| denotes the degree of ĥ0. Then d is a differential of odd degree on Ω1Ĥ endowed with
its total grading, compatible with the bimodule structure, and commutes in the graded sense with
the universal differential d. We define the X-complex of the DG algebra (Ĥ,d) as the Z2-graded
supercomplex

(6.12) X(Ĥ,d) : Ĥ� Ω1Ĥ\ ,

whereΩ1Ĥ\ = Ω
1Ĥ/[Ĥ,Ω1Ĥ] is the quotient of the bimodule of universal 1-forms by its subspace

of graded commutators. We denote by \ĥ0dĥ1 the class of ĥ0dĥ1. The map \d : Ĥ → Ω1Ĥ\ is
simply ĥ 7→ \dĥ, while b : Ω1Ĥ\ → Ĥ descends from the graded Hochschild boundary operator
ĥ0dĥ1 7→ (−1)|ĥ0|[ĥ0, ĥ1]. One has \d◦b = 0, b◦\d = 0, and the odd differential \d⊕b commutes
in the graded sense with d, so that X(Ĥ,d) endowed with the total differential (\d ⊕ b) + d is a
Z2-graded complex. The proof of the following lemma is a straightforward computation.

Lemma 6.1. The linear map of even degree χ(ρ∗,d) from Ω̂T̂A to X(Ĥ,d) given by

χ(ρ∗,d)(â0dâ1 . . .dân) =(6.13)

1

(n+ 1)!

n∑
i=0

(−1)i(n−i)dρ∗(âi+1) . . .dρ∗(ân) ρ∗(â0)dρ∗(â1) . . .dρ∗(âi)

+
1

n!

n∑
i=1

\
(
ρ∗(â0)dρ∗(â1) . . .dρ∗(âi) . . .dρ∗(ân)

)
for all âi ∈ T̂A, is a cocycle in the Hom-complex Hom(Ω̂T̂A,X(Ĥ,d)).

Note that a differential form dρ∗(â) ∈ Ĥ has always degree 0 in the direction EG and degree 1 in
the directionM, so that χ(ρ∗,d) vanishes on ΩnT̂A whenever n > dimM and thus extends to the
direct product Ω̂T̂A =

∏∞
n=0Ω

nT̂A. This would not be the case if the image of A in G consisted
in non-constant functions in the direction EG.

The last step associates a cocycle λ ′ω ∈ Hom(X(Ĥ,d),C) to any closed G-invariant differential
form ω ∈ Ω(EG×M). To that purpose we define the X-complex localized at units as the vector
space

(6.14) X(Ĥ,d)[EG×M] =
⊕
k>0

lim←−
n

(
Ωkp(EG×M)⊗ΩnCG[1]

)
,

where ΩnCG[1] is the space of completed universal n-forms localized at the unit 1 ∈ G:

Ug0
dUg1

. . .dUgn
∈ ΩnCG[1] ⇔ g0g1 . . .gn = 1 ,

dUg1
. . .dUgn

∈ ΩnCG[1] ⇔ g1 . . .gn = 1 .

X(Ĥ,d)[EG×M] is a quotient of X(Ĥ,d). Indeed a projection c : H→ Ωp(EG×M)⊗Ω+CG[1] is
defined by

c(α⊗Ug0
⊗ (Ug1g2

−Ug1
Ug2

)⊗ . . .⊗ (Ug2n−1g2n
−Ug2n−1

Ug2n
))

= (−1)nn!α ⊗ Ug0
dUg1

dUg2
. . .dUg2n−1

dUg2n
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if g0g1 . . .gn = 1, and

c(α⊗ (Ug1g2
−Ug1

Ug2
)⊗ . . .⊗ (Ug2n−1g2n

−Ug2n−1
Ug2n

))

= (−1)nn!α ⊗ dUg1
dUg2

. . .dUg2n−1
dUg2n

if g1 . . .gn = 1, and c vanishes on all other tensors for which the localization condition fails. On
the other hand, c : Ω1H\ → Ωp(EG×M)⊗Ω−CG[1] is uniquely specified by

c(\(α⊗Ug0
⊗ (Ug1g2

−Ug1
Ug2

)⊗ . . .⊗ (Ug2n−1g2n
−Ug2n−1

Ug2n
))d(β⊗Ug2n+1

))

= (−1)n+|β|n!α∧Ug0...g2n
(β)⊗Ug0

dUg1
dUg2

. . .dUg2n−1
dUg2n

dUg2n+1

and

c(\(α⊗ (Ug1g2
−Ug1

Ug2
)⊗ . . .⊗ (Ug2n−1g2n

−Ug2n−1
Ug2n

))d(β⊗Ug2n+1
))

= (−1)n+|β|n!α∧Ug1...g2n
(β)⊗ dUg1

dUg2
. . .dUg2n−1

dUg2n
dUg2n+1

if the localization condition holds, and |β| is the degree of the differential form β. The map c
extends to a well-defined projection X(Ĥ,d)→ X(Ĥ,d)[EG×M], and the boundary operators \d, b
and d descend to boundary operators on the quotient. Then for any G-invariant differential form
ω ∈ Ω(EG×M) we define a cochain λω ∈ Hom(X(Ĥ,d)[EG×M],C) by

(6.15) λω(α⊗Ug0
dUg1

. . .dUgn
) =

∫
∆̃(g1,...,gn)×M

α∧ω

where ∆̃(g1, . . . ,gn) ⊂ EG denotes the n-simplex with vertices g1 . . .gn, g2 . . .gn, . . ., gn, 1,
and λω(α ⊗ dUg1

. . .dUgn
) = 0. Remark that the integral above is well-defined, because α has

compact M-support at any point of EG. Also, by the definition of the completion Ĥ, the degree
k of the differential form α is fixed while n can be arbitrarily large. This causes no trouble since
the r.h.s. of (6.15) vanishes for large n. A direct computation involving Stokes theorem yields

Lemma 6.2. The map sending any G-invariant differential form ω ∈ Ω(EG×M) to the
cochain λ ′ω = λω ◦ c ∈ Hom(X(Ĥ,d),C) is a morphism of complexes.

Recall that the Hom-complex Hom(Ω̂T̂A,C) computes the periodic cyclic cohomology of A. Col-
lecting Lemmas 6.1 and 6.2 one thus gets

Proposition 6.3. Let G be a discrete group acting by orientation-preserving diffeomor-
phisms on a smooth oriented manifold M, and A = C∞c (M) o G. The map sending any
G-invariant differential form ω ∈ Ω(EG×M) to the cochain λ ′ω ◦ χ(ρ∗,d) ∈ Hom(Ω̂T̂A,C) is
a morphism of complexes. We denote by

(6.16) Φ : H•(EG×GM)→ HP•(A)

the corresponding map in cohomology.

7. Algebraic JLO formula

We come back to the situation of section 2, where M is a foliated manifold and G ⊂ Diff(M) is a
discrete group of foliated diffeomorphisms. We first define some useful algebras. Let EG be the
universal G-bundle over the classifying space BG. We take EG as the geometric realization of the
simplicial set NG• and consider the induced action of G on the DG algebra of smooth differential
forms (Ω(EG),d). The crossed product

(7.1) G = Ω(EG)oG
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is a particular case of the DG algebra constructed in section 6, where the manifold M is reduced
to a point. Hence considering twisted tensor products with the tensor algebra of CG, one gets the
DG algebra extension of G and its completion:

(7.2) H = Ω(EG)⊗ TCG , Ĥ =
⊕
k>0

lim←−
n

(
Ωk(EG)⊗ TCG/(JCG)n

)
.

Now let S(M) = L(M)[[ε]] be the G-algebra of formal power series constructed in section 3,
together with its subalgebras D(M), Dc(M), and the corresponding D(M)-bimodule of trace-
class operators T(M). The space Ω(EG, S(M)) of smooth differential forms on EG with values in
S(M) is a DG algebra, for the pointwise product of differential forms and de Rham differential d
on EG. We endow Ω(EG, S(M)) with the G-action which combines the actions of G on EG and
S(M) respectively. The crossed product

(7.3) U = Ω(EG, S(M))oG

is therefore a DG algebra, with differential d(α ⊗ Ug) = dα ⊗ Ug for all α ∈ Ω(EG, S(M)) and
g ∈ G. Considering twisted tensor products with the tensor algebra of CG, a DG algebra extension
of U is defined as above:

(7.4) V = Ω(EG, S(M))⊗ TCG , V̂ =
⊕
k>0

lim←−
n

(
Ωk(EG, S(M))⊗ TCG/(JCG)n

)
.

The next step is the construction of an homomorphism from the JA-adic completion T̂A of the
tensor algebra over A = C∞c (S∗HM)oG, to V̂. To this end, choose any linear splitting C∞c (S∗HM)→
SH,c(M) of the leading symbol homomorphism SH,c(M) → C∞c (S∗HM). Since the trivial line
bundle M × C over M can be identified with the zero-degree part of the exterior bundle E =

Λ•(T∗M⊗C), the space of scalar symbols SH,c(M) is a direct summand in the space SH,c(M,E).
Hence composing the linear map C∞c (S∗HM) → SH,c(M,E) with the representation of symbols
L : SH,c(M,E) → Dc(M) given by left multiplication, leads to a linear map σ : A → U. By the
universal property of the tensor algebra, σ extends to an homomorphism of algebras

(7.5) σ∗ : T̂A→ V̂ .

Of course the latter depends on the choice of linear splitting, but two different splittings lead to
homotopic homomorphisms in the sense of Cuntz and Quillen [5].

We now discuss superconnections [11]. Remark that the DG algebra Ω(EG,D(M)) acts by left
and right multipliers on U, V and V̂. Let D0 ∈ D(M) be a generalized Dirac operator as defined
in section 5) and consider the function D ∈ Ω0(EG,D(M)) on the classifying space, with values
in Dirac operators, given by

D(g0, . . . ,gn)(s0, . . . , sn) =
n∑
i=0

siAd−1gi
(D0)

for all (g0, . . . ,gn) ∈ NGn and (s0, . . . , sn) ∈ ∆n. Since the action of an element g ∈ G on
EG carries (g0, . . . ,gn) to (g0g, . . . ,gng), the function D is G-invariant by construction. The
superconnection (ε is the formal parameter in S(M))

(7.6) D = iεd+D ,

acting on V̂ by graded commutators, is a graded derivation. Its curvature is the inhomogeneous
differential form

D2 = D2 + iεdD ∈ Ω0(EG,D(M))⊕Ω1(EG,D(M))

where dD(g0, . . . ,gn)(s0, . . . , sn) =
∑n
i=0 dsiAd

−1
gi

(D0). Choose a positive Heisenberg-elliptic
symbol q ∈ S1H(M) of order one on M. Extend it to a Heisenberg-elliptic symbol q̃ ∈ S1H(M,E),
requiring that the leading symbol of q̃ remains of scalar type. Using the left representation of
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symbols L : SH(M) → D(M), one gets a constant function q̃L ∈ Ω0(EG,D(M)) over EG. Let κ
be an “infinitesimal” odd parameter: κ2 = 0. The new superconnection

(7.7) ∇ = D+ κ ln q̃L ,

acting on the DG algebra V̂[κ] = V̂ ⊕ κV̂ by graded commutators, is a graded derivation. Its
curvature is the inhomogeneous differential form

∇2 = D2 + κ[ln q̃L,D] ∈ Ω0(EG,D(M)[κ])⊕Ω1(EG,D(M)[κ]) .

The homomorphism σ∗ and the superconnection ∇ are the main ingredients of a JLO-type for-
mula for a cocycle of odd degree in Hom(Ω̂T̂A,X(Ĥ,d)[EG]), where X(Ĥ,d)[EG] is the X-complex
localized at units defined in section 6. We introduce as intermediate step a cochain of even degree
χTrs(σ∗,∇) ∈ Hom(Ω̂T̂A,X(Ĥ[κ],d)) defined on any n-form â0dâ1 . . .dân ∈ ΩnT̂A by

χTrs(σ∗,∇)(â0dâ1 . . .dân) =(7.8)
n∑
i=0

(−)i(n−i)
∫
∆n+1

Trs
(
e−ti+1∇2

[∇,σi+1] . . . e−tn+1∇2

σ0 e
−t0∇2

[∇,σ1] . . . e−ti∇
2)
dt

+

n∑
i=1

∫
∆n

Trs
(
\σ0 e

−t0∇2

[∇,σ1] . . . e−ti−1∇2

dσi e−ti∇
2

. . . [∇,σn]e−tn∇
2)
dt

where σi = σ∗(âi) ∈ V̂ for all i and Trs : T(M) → C is the graded trace of section 4. This
expression is well-defined, because it involves a Duhamel-type expansion of the heat operator
exp(−∇2) which belongs to the domain of the trace. In fact χTrs(σ∗,∇) composed with the
projection onto the X-complex localized at units c : X(Ĥ[κ],d) → X(Ĥ[κ],d)[EG] is a cocycle in
the Hom-complex Hom(Ω̂T̂A,X(Ĥ[κ],d)[EG]). This crucially depends on the formal identities
dD = 0 and d ln q̃L = 0 which hold in the localized complex. Since κ2 = 0, this cocycle is actually
a polynomial of degree one with respect to κ. Define

(7.9) χTrs(σ∗,D, ln q̃L) =
∂

∂κ
χTrs(σ∗,D+ κ ln q̃L) .

The latter yields a cocycle of odd degree in Hom(Ω̂T̂A,X(Ĥ,d)[EG]). By a classical homotopy
argument, its cohomology class does not depend on any choice regarding the linear map σ : A→
U, the superconnection D, and the elliptic symbol q̃. The following proposition identifies the
composition of this canonical class with the class of the chain map λ ′1 ∈ Hom(X(Ĥ,d),C) of
Lemma 6.2, for ω = 1.

Proposition 7.1. Let D0 ∈ D(M) be a de Rham-Dirac operator, D ∈ Ω0(EG,D(M)) the
associated G-invariant function on the universal bundle, and D = d +D the corresponding
superconnection. Then λ ′1 ◦ χTrs(σ∗,D, ln q̃L) is the cocycle of Proposition 2.7.

Proof. We work in a local foliated chart. First, we must observe that D is still a de Rham -
Dirac type operator, essentially because dR = ipiψi is G-invariant. Thus, D is of the form

D = −iεdR +ψiR

∂pi
+
∑
|α|>2

(riα)L∂
α
p


The riα are scalar functions on EG×M. With d the exterior differential on EG, one has

dD =
∑
|α|>2

ψiR(dr
i
α)L∂

α
p
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Moreover, D2 reads

(7.10) −D2 = ∆+ ε(piL∂pi
+ (ψiψi)R)

+ ε

∑
|α|>2

((aiα)L∂xi + (aiαpi)L)∂
α
p +

∑
|α|>1

(biαj)L(ψ
jψi)R∂

α
p


where ∆ = iε∂xi∂pi

, and the coefficients in the sums over |α| > . . . are also scalar functions on
EG×M. Recall also that

D = d+D, D2 = dD+D2, ∇ = D+ κ ln q̃L, ∇2 = D2 + κ[ln q̃L,D]

We know that dD is proportional to ψR. The symbol q being constant in the direction EG,
one has d ln q̃L = 0. Moreover ln q̃L commutes with pR, hence the commutator [ln q̃L,D] is also
proportional to ψR. Finally the elements σ = σ∗(â) ∈ Ω0(EG,Dc(M))⊗ T̂CG are constant in the
direction EG, hence we have

[∇,σ] = [ψiR(∂pi
+ . . .),σ] + κ[ln q̃L,σ]

Now observe that the graded trace Trs selects the term proportional to (ψ1ψ1 . . .ψnψn)R. The
generalized Laplacian D2 already brings terms proportional to 1 or (ψψ)R in the right sector.
Thus the terms proportional to ψR in dD, [ln q̃L,D] and [∇,σ] break the balance between the ψR
and the ψR and must give a zero contribution to the cocycle. Hence we can consider that

∇2 ' D2 , [∇,σ] ' κ[ln q̃L,σ] .

A first consequence, taking into account κ2 = 0, is that the cocycle χTrs(σ∗,D, ln q̃L) should
contain exactly one commutator [∇,σ]. Thus the only non-zero contributions to this cocycle are :

χTrs(σ∗,D, ln q̃L)(â0dâ1) =
∫
∆2

Trs
(
e−t1D

2

[ln q̃L,σ1]e−t2D
2

σ0e
−t0D

2
)
dt

+

∫
∆2

Trs
(
e−t2D

2

σ0e
−t1D

2

[ln q̃L,σ1]e−t0D
2
)
dt

χTrs(σ∗,D, ln q̃L)(â0dâ1dâ2) =
∫
∆2

Trs
(
\σ0e

−t0D
2

[ln q̃L,σ1]e−t1D
2

dσ2e−t2D
2
)
dt

+

∫
∆2

Trs
(
\σ0e

−t0D
2

dσ1e−t1D
2

[ln q̃L,σ2]e−t2D
2
)
dt

A second consequence is that the images of these quantities under the projection c : X(Ĥ,d) →
X(Ĥ,d)[EG] belong to the subspace Ω0(EG)⊗ Ω̂CG[1] of the localized X-complex, in other words
they are scalar functions over EG. Thus, their evaluation on the cocycle λ1 drops all the com-
ponents in Ω0(EG) ⊗ΩkCG for k > 1, and the remaining components in Ω0(EG) ⊗Ω0CG are
simply localized at the unit. In particular

λ ′1 ◦ χTrs(σ∗,D, ln q̃L)(â0dâ1dâ2) = 0

and λ ′1 ◦ Trs behaves like a graded trace in the only remaining term :

λ ′1 ◦ χTrs(σ∗,D, ln q̃L)(â0dâ1) =
∫
∆2

Trs
(
e−t1D

2

[ln q̃L,σ1]e−t2D
2

σ0e
−t0D

2
)
[1]
dt

+

∫
∆2

Trs
(
e−t2D

2

σ0e
−t1D

2

[ln q̃L,σ1]e−t0D
2
)
[1]
dt

=

∫1
0

Trs
(
\σ0e

−tD2

[ln q̃L,σ1]e−(1−t)D2
)
[1]
dt
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The integrand Trs(\σ0e−tD
2

[ln q̃L,σ1]e−(1−t)D2

)[1] does not depend on t ∈ [0, 1]. Indeed

d

dt
Trs

(
\σ0e

−tD2

[ln q̃L,σ1]e−(1−t)D2
)
[1]

= −Trs
(
\σ0e

−tD2

[D2, [ln q̃L,σ1]]e−(1−t)D2
)
[1]

= Trs
(
\[D,σ0]e−tD

2

[D, [ln q̃L,σ1]]e−(1−t)D2
)
[1]

The last equality comes from [D2,X] = D[D,X] + [D,X]D and the graded trace property. The
above quantity vanishes, because the commutators with D only bring terms proportional to ψR.
Therefore, the integrand may be replaced by its value at t = 0, and we are left with

λ ′1 ◦ χTrs(σ∗,D, ln q̃L)(â0dâ1) = Trs
(
σ0[ln q̃L,σ1]e−D

2
)
[1]

Seeing −D2 as a perturbation of the flat Laplacian ∆ + u, and using a Duhamel expansion, one
gets

Trs
(
σ0[ln q̃L,σ1]e−D

2
)
=
∑
k>0

∫
∆k

Trs
(
σ0[ln q̃L,σ1]σt0∆ (u) . . .σt0+...+tk−1

∆ (u) exp(∆)
)
dt

Then, we want to move the operators ∂x and ∂p to the right in each term of the sum above, and
look at when we have an exact balance in their powers. Otherwise, it will vanish under the graded
trace Trs by definition. A ∂p can be absorbed with a pL by commutation, and ∂x may appear in
σt∆(pL) = pL+ t[∆,pL]) = pL+ itε∂x. With this elements at hand, we conclude that the presence
of the sums over |α| in (7.10) prevent an exact balance between ∂x and ∂p. So, we can neglect
these parts in D2 and get

Trs
(
σ0[ln q̃L,σ1]e−D

2
)
[1]

= Trs
(
σ0[ln q̃L,σ1] exp(∆+ εpL · ∂p + ε(ψiψi)R)

)
[1]

= Trs
(
σ0[ln q̃L,σ1]εn(ψ1ψ1 . . .ψ

nψn)Rexp(∆+ εpL · ∂p)
)
[1]

=

∫
−(σ0[ln q̃L,σ1])[1]〈〈εn(ψ1ψ1 . . .ψnψn)Rexp(∆+ εpL · ∂p)〉〉[n]

=

∫
−(σ0[ln q̃L,σ1])[1]〈exp(∆+ εpL · ∂p)〉

where in the second equality, we split the exponential. Using the result of Example 4.4, applied
to the scalar matrix R = ε, we get

Trs
(
σ0[ln q̃L,σ1]e−D

2
)
[1]

=

∫
−(σ0[ln q̃L,σ1])[1]

which is the equivariant Radul cocycle of Proposition 2.7. �

Finally consider the diagonal action of G on the product EG × S∗HM, and its induced action on
the space of differential forms Ω(EG × S∗HM) with total de Rham differential d. As in section 6
we form the DG algebra

(7.11) X = Ωp(EG× S∗HM)oG ,

and its DG extension

(7.12) Y = Ωp(EG× S∗HM)⊗ TCG , Ŷ =
⊕
k>0

lim←−
n

(
Ωkp(EG× S∗HM)⊗ TCG/(JCG)n

)
.

Viewing the algebra C∞c (S∗HM) as constant functions over EG leads to an homomorphism ρ : A→
X which extends to

(7.13) ρ∗ : T̂A→ Ŷ .
25



Let χ(ρ∗,d) ∈ Hom(Ω̂T̂A,X(Ŷ,d)) be the cocycle of Lemma 6.1. The integration of differential
forms along the fibers of the projection EG× S∗HM→ EG yields a morphism of complexes

(7.14)
∫
S∗HM

: X(Ŷ,d)→ X(Ĥ,d) .

For the Proposition below we choose a positive Heisenberg-elliptic symbol q0 ∈ S1H(M) of order
one onM, and extend it to a Heisenberg-elliptic symbol q̃0 ∈ S1H(M,E), requiring that the leading
symbol of q̃0 remains of scalar type. Then the function q̃ ∈ Ω0(EG, S1H(M,E)) defined on the
universal G-bundle by

q̃(g0, . . . ,gn)(s0, . . . , sn) =
n∑
i=0

siAd−1gi
(q̃0)

is G-invariant. The corresponding function q̃L ∈ Ω0(EG,D(M)) is therefore also G-invariant.

Proposition 7.2. Let D0 ∈ D(M) be a generalized Dirac operator affiliated to a Levi-
Civita connection on M, D ∈ Ω0(EG,D(M)) the associated G-invariant function on the
universal bundle, and D = d + D the corresponding superconnection. Then one has the
equality of cochains in Hom(Ω̂T̂A,X(Ĥ,d)):

(7.15) χTrs(σ∗,D, ln q̃L) =
∫
S∗HM

Td(iR/2π)∧ χ(ρ∗,d) ,

where R is the equivariant curvature two-form of the Levi-Civia connection, and Td(iR/2π)
is the G-invariant closed differential form on EG× S∗HM representing the equivariant Todd
class of TM⊗ C.

Proof. Firstly, note that D, as a function over EG, takes its values in the set of generalized
Dirac operators affiliated to affine connections. This comes from the fact that Christoffel symbols
behave in a suitable way under coordinates change. More precisely, in a foliated local chart, we
have

D = iεψiR(∂xi +
gΓkij(pk∂pj

+ (ψjψ
j)R) +ψiR∂pi

+ r

where gΓkij is the function on EG given by

gΓkij(s0, . . . , sm)(g0, . . . ,gm) =

m∑
l=0

slgl(Γ
k
ij)

and r is a remainder of the form

r = iεψiR

∑
|α|>2

(skαipk)L∂
α
p +

∑
|α|>1

(skαijψkψ
j + sαi)L∂

α
p

+ψiR
∑
|α|>2

(riα)L∂
α
p

the coefficients are scalar functions on EG×M.

Recall that ∇ is given by

∇ = D+ κ ln q̃L = d+D+ κ ln q̃L

and its square by

∇2 = dD+D2 + κ[ln q̃L,D] = D2 + κδD
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where δ denotes the commutator with ln q̃L. One important point is that −D2 can be seen as a
perturbation of the flat Laplacian ∆ = iε∂xi∂pi

−D2 = ∆+ (gΓkij)L(ψ
iψk)R∂pj

+ (−iεd(gΓ lil)Lψ
i
R +

ε2

2
(gΩklij)L(ψ

iψj)R)(pk∂pl
+ (ψkψ

l)L) + . . .

where the gΩklij are the components of the curvature tensor of the connection gΓ . Note that the
coefficient of the third term is the equivariant curvature

Rkl = −iεd(gΓ lil)Lψ
i
R +

ε2

2
(gΩklij)L(ψ

iψj)R)

Moreover, the dots are of the same type, but involve strictly higher powers of ∂p.

We also have

[∇,σ] = iεψiR(∂xiσ+ (gΓkijpk)L∂pj
σ+ . . .) +ψiR(∂pi

σ+ . . .) + κ[lnq̃L,σ]

where the term proportional to εψ is of order 0, with the dots of order −1, and the term propor-
tional to ψiR is of order -1 when 1 6 i 6 v, of order -2 when v + 1 6 i 6 n, the dots here are of
stricly smaller order.

We now study the first sum of the cochain χTrs(σ∗,∇).

Looking at −∇2 = ∆ + u as a perturbation of the flat Laplacian ∆, and performing a Duhamel
expansion of the exponentials appearing leads to a study of terms of the form

Trs
(
σ0σ

t0
∆ (X1) . . .σ

t0+...+tk−1

∆ (Xk) exp∆
)

where Xi = u or [∇,σj]. The action of σ∆ does not modify the fact that Xi is of order 0, because

[∆,Xi] = iε(∂xjXi · ∂pj
+ ∂pj

Xi · ∂xj + ∂xj∂pjXi)

Now, we observe that in the formulas above, εψR is always proportional to an operator of order
6 0, ψiR to an operator of order 6 −1 or − 2 depending on i. The graded trace Trs selects the
term proportional to (ψ1ψ1 . . .ψnψn)R which is therefore of order 6 −(v+ 2h). This means that
only the leading terms are involved in these quantities. In particular, the dots in the formulas
above give terms of order < −(v + 2h) and will vanish under Trs. For a similar reason, the
derivatives ∂xXi may be neglected in calculations. In other words, all functions of x can be
considered as constants. From the previous discussion, if we choose a coordinate system around
a point x0 such that gΓkij(x0) = 0, we have

D ' d+ iεψiR∂xi +ψ
i

R∂pi

−D2 ' ∆+ Rkl (pk∂pl
+ (ψkψ

l)L))

as we can ignore the x-derivatives of gΓ . Actually, the term

Rkl (ψkψ
l)L = (−iεd(gΓ lil)Lψ

i
R +

ε2

2
(gΩklij)L(ψ

iψj)R)(ψkψ
l)L

can also be neglected, because it will act by commutators on the σi. The latter involve the
projection operator Π = ψ1ψ

1 . . .ψnψn onto scalar symbols, and the Bianchi identities of the
Levi-Civita connection imply gΩklijψkψ

lΠ = gΩklijδ
k
l = gΩkkij = 0. Moreover, the relation

Πψl = 0 kills the other term, and we may consider that

−D2 ' ∆+ Rkl pk∂pl

Performing another Duhamel expansion on exp(−ti∇2), and using that κ2 = 0, the term∫
∆r+1

Trs
(
e−ti+1∇2

[∇,σi+1] . . . e−tr+1∇2

σ0 e
−t0∇2

[∇,σ1] . . . e−ti∇
2)
dt
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is the sum of the following terms :∫
∆r+1

Trs
(
e−ti+1D2

[∇,σi+1] . . . e−tr+1D2

σ0 e
−t0D2

[∇,σ1] . . . e−tiD
2)
dt∫

∆r+2

Trs
(
e−ti+1D2

κδDe−ti+2D2

[∇,σi+1] . . . e−tr+2D2

σ0 e
−t0∇2

[∇,σ1] . . . e−tiD
2)
dt∫

∆r+2

Trs
(
e−ti+1D2

[∇,σi+1]e−ti+2D2

κδDe−ti+3D2

. . . e−tr+2D2

σ0 e
−t0∇2

[∇,σ1] . . . e−tiD
2)
dt

...

i.e, in the quantities
∫
∆r+2

. . . one of the exp(−ti∇2) is replaced by e−tiD
2

κδDe−ti+1D2

, and the
others by exp(−tiD2). Note that the dimension of the simplex on which we integrate is risen by
one. This also can be rewritten with the action of σ−D2 :∫

∆r+1

Trs
(
σ
ti+1

−D2([∇,σi+1])σti+1+ti+2

−D2 ([∇,σi+2]) . . . exp(−D2))dt∫
∆r+2

Trs
(
σ
ti+1

−D2(κδD)σti+1+ti+2

−D2 ([∇,σi+1]) . . . exp(−D2)
)
dt

...

For X = κδD,σ0 or a commutator [∇,σ], we have

σt
−D2(X) = X+

∑
k>1

(−t)k

k!
adk

−D2(X)

an so on. Then, recalling that we may retain only the leading terms for the calculations, we
observe that :

−[D2,X] =
[
∆+ Rkl pkL∂pl

,X
]
' ∂pi

X(iε∂xi + Rki pkL)

[D2, [D2,X]] ' ∂pi
∂pj
X(iε∂xi + Rki pkL)(iε∂xj + R

l
jplL) + R

j
i∂pi

X(iε∂xj + RljplL)

and continuing the process by induction, we finally get

σt
−D2(X) ' X+

∑
k>1

tk

k!

k∑
|α|=1

Pα(X)(iε∂x + pL · R)α

where Pα(X) is a linear combination of the p-partial derivatives of X. The operators (iε∂x+pL ·R)α
may be moved to the right in front of exp(−D2) when |α| > 1, because functions of x behave like
constants. Then, using Example 4.4, we find that these quantities does not contribute for the
calculations, in other words,

σt
−D2(X) ' X

As a consequence, we may drop the action of σ−D2 in the above calculations and obtain∫
∆r+1

Trs
(
e−ti+1∇2

[∇,σi+1] . . . e−tr+1∇2

σ0 e
−t0∇2

[∇,σ1] . . . e−ti∇
2)
dt

=
1

(r+ 1)!
Trs
(
[∇,σi+1] . . . [∇,σr]σ0[∇,σ1] . . . [∇,σi] exp(−D2)

)
+

1

(r+ 2)!

[
Trs
(
κδD[∇,σi+1] . . . [∇,σr]σ0[∇,σ1] . . . [∇,σi] exp(−D2)

)
+ Trs

(
[∇,σi+1]κδD . . . [∇,σr]σ0[∇,σ1] . . . [∇,σi] exp(−D2)

)
+ . . .

+ Trs
(
[∇,σi+1] . . . [∇,σr]σ0[∇,σ1] . . . [∇,σi]κδD exp(−D2)

)]
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the factors 1
(r+1)! or 1

(r+2)! comes from the volume of the standard simplex. We will now retain
only the terms proportional to κ in the latter equality. Then, knowing that D2 may be replaced
by ∆+ pL · R · ∂p using Example 4.4, and having in mind that the symbols σi are constant in the
direction EG, we get

d

dκ

∫
∆r+1

Trs
(
e−ti+1∇2

[∇,σi+1] . . . e−tr+1∇2

σ0 e
−t0∇2

[∇,σ1] . . . e−ti∇
2)
dt

=
1

(r+ 1)!

∫
−
(
〈〈δσi+1[D,σi+2] . . . [D,σr]σ0[D,σ1] . . . [D,σi]Td(R)〉〉[n]

+ 〈〈[D,σi+1]δσi+2 . . . [D,σr]σ0[D,σ1] . . . [D,σi]Td(R)〉〉[n] + . . .

+ 〈〈[D,σi+1] . . . [D,σr]σ0[D,σ1] . . . [D,σi−1]δσiTd(R)〉〉[n]
)

+
1

(r+ 2)!

∫
−
(
〈〈δD[D,σi+1] . . . [D,σr]σ0[D,σ1] . . . [D,σi]Td(R)〉〉[n]

− 〈〈[D,σi+1]δD . . . [D,σr]σ0[D,σ1] . . . [D,σi]Td(R)〉〉[n] + . . .

+ (−1)r+2〈〈[D,σi+1] . . . [D,σr]σ0[D,σ1] . . . [D,σi]δDTd(R)〉〉[n]
)

The bracket selects only the operators proportional to (ψ1 . . .ψn)R, which is of order 6 −(v+2h).
However, in the quantities proportional to 1

(r+1)! , these operators gain an extra factor δσ, which
is of order −1. So, the Wodzicki residue kills this part. We can now make the identifications
εψiR ↔ dxi and ψiR ↔ dpi−

g Γkijdx
j ' dpi, consistent with coordinate changes. Moreover, recall

that the symbol of ln q̃(x,p) is of the form

ln q̃(x,p) = ln |p| ′ + q0(x,p)

where q0 is a Heisenberg symbol of order 0. Then,

δD ' (−iεψiR(∂xiq0)L −ψiR(∂pi
q0)L) +ψiR

(
v∑
i=1

p3i
|p| ′4

+

n∑
i=v+1

pi

|p| ′4

)
+ d ln q̃L

↔ −dq0 + dpi

(
v∑
i=1

p3i
|p| ′4

+

n∑
i=v+1

pi

|p| ′4

)
+ d ln q̃L

using Theorem 2.6, and we have the following equality

d

dκ

∫
∆r+1

Trs
(
e−ti+1∇2

[∇,σi+1] . . . e−tr+1∇2

σ0 e
−t0∇2

[∇,σ1] . . . e−ti∇
2)
dt

=
1

(r+ 2)!

∫
S∗HM

ιL ·
[(
δDdσi+1 . . .dσrσ0dσ1 . . .dσi − dσi+1δDdσrσ0dσ1 . . .dσi + . . .

+ (−1)r+2dσi+1 . . .dσrσ0dσ1 . . .dσiδD
)
∧ Td(R)Π

]
vol

where L is the generator of the Heisenberg dilations given by the formula

L =

(
v∑
i=1

pi∂pi
+

n∑
i=v+1

2pi∂pi

)

Actually, the terms containing dp0 have order < −(v+2h), and does not contribute to the Wodzicki
residue. Indeed, these terms bring n partial derivatives with respect to the variables (p1, . . . ,pn),
and writing the leading symbol of the involved quantity in polar coordinates (|p| ′, θ1, . . . ,θn), the
latter is then proportional to |p|−(v+2h)+1 times a partial derivative ∂σ/∂|p| ′, which is of order
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−2. We finally get

d

dκ

∫
∆r+1

Trs
(
e−ti+1∇2

[∇,σi+1] . . . e−tr+1∇2

σ0 e
−t0∇2

[∇,σ1] . . . e−ti∇
2)
dt

=
1

(r+ 1)!

∫
S∗HM

dσi+1 . . .dσrσ0dσ1 . . .dσi

Analogous manipulations on the second sum of the cochain χTrs(σ∗,∇) give the final answer. �

Thus combining the previous results one gets

Theorem 7.3. Let M be a foliated manifold, G ⊂ Diff(M) a discrete group of diffeomor-
phisms mapping leaves to leaves, 0 → Ψ−1

H,c(M) o G → Ψ0H,c(M) o G → C∞c (S∗HM) o G → 0

the extension of equivariant Heisenberg pseudodifferential operators. Then the image of the
canonical trace localized at unit [τ] ∈ HP0(Ψ−1

H (M)oG) under the excision map is

(7.16) ∂([τ]) = Φ(Td(TM⊗ C))

where Φ : Hev(EG ×G S∗HM) → HP1(C∞c (S∗HM) o G) is Connes’ characteristic map from
equivariant cohomology to cyclic cohomology, and Td(TM⊗C) is the equivariant Todd class
of the complexified tangent bundle of M.

8. The transverse index theorem of Connes and Moscovici

Let A be an associative algebra and (H, F) a (trivially graded) p-summable Fredholm module.
Hence, A is represented by bounded operators on a separable Hilbert space H, and F is a bounded
self-adjoint operator on H such that the operators a(F2 − 1) and [F,a] are in some Schatten class
`p(H) for all a ∈ A. In addition, we suppose given an extension of “abstract pseudodifferential
operators”

(8.1) 0→ Ψ−1 → Ψ0 → Ψ0/Ψ−1 → 0

where

• Ψ0 is an algebra of bounded operators on H containing the representation of A,
• Ψ−1 is a two-sided ideal consisting of p-summable operators on H,
• F is a multiplier of Ψ0 and [F,Ψ0] ⊂ Ψ−1.

Let P = 1
2
(1+ F). Then [P,a] ∈ Ψ−1 and aP2 ≡ aP mod Ψ−1 for all a ∈ A. The linear map

(8.2) ρF : A→ Ψ0/Ψ−1 , ρF(a) ≡ aP mod Ψ−1 ,

is an algebra homomorphism since a1Pa2P ≡ a1a2P mod Ψ−1 for all a1,a2 ∈ A.

Lemma 8.1. The Chern-Connes character of the Fredholm module (H, F) is given by the
odd cyclic cohomology class over A

(8.3) ch(H, F) = ρ∗F ◦ ∂([Tr])

where [Tr] ∈ HP0(Ψ−1) is the class of the operator trace, ∂ : HP0(Ψ−1)→ HP1(Ψ0/Ψ−1) is the
excision map associated to extension (8.1), and ρ∗F : HP1(Ψ0/Ψ−1) → HP1(A) is induced by
the homomorphism ρF.

Proof. Consider the algebra E = {(Q,a) ∈ Ψ0⊕A | Q ≡ aP mod Ψ−1}. The homomorphism
E→ A, (Q,a) 7→ a yields an extension

0→ Ψ−1 → E→ A→ 0 .
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By definition ([2]), the Chern-Connes character ch(H, F) ∈ HP1(A) is the image of the operator
trace under the excision map associated to this extension. On the other hand, the homomorphism
E→ Ψ0, (Q,a) 7→ Q yields a commutative diagram of extensions

0 // Ψ−1 // E

��

// A

ρF

��

// 0

0 // Ψ−1 // Ψ0 // Ψ0/Ψ−1 // 0

The conclusion then follows from the naturality of excision. �

We apply this to the hypoelliptic operators constructed by Connes and Moscovici in [3]. Let
M be an oriented foliated manifold and G ⊂ Diff(M) a discrete group of orientation-preserving
diffeomorphisms mapping leaves to leaves. We make the hypothesis that G has no fixed points
onM. We denote by V ⊂ TM the subbundle tangent to the leaves and by N = TM/V the normal
bundle; both are equivariant G-bundles by construction. Assume that V and N are provided
with G-invariant euclidean structures, called G-invariant triangular structures in [3]. Then the
hermitean vector bundle

(8.4) E = Λ•(V∗ ⊗ C)⊗Λ•(N∗ ⊗ C)

is G-equivariant, and the euclidean structures on V,N determine a G-invariant volume form onM
via the canonical isomorphism of top-degree forms ΛmaxV⊗ΛmaxN ∼= ΛmaxM. Let H = L2(M,E)
be the Hilbert space of square-integrable sections of E with respect to the hermitean structure
and volume form. The crossed-product algebra

(8.5) A = C∞c (M)oG

is represented by bounded operators on H as follows: a function f ∈ C∞c (M) acts on the sections
of E by pointwise multiplication, while g ∈ G is represented by the unitary operator coming from
the action of G on the manifold M and the vector bundles V,N. Denote by dV : C∞(M,E) →
C∞(M,E) the leafwise de Rham differential. Choose an isomorphism of N with a vector subbundle
of TM transverse to V, and denote by dN the corresponding transverse de Rham differential. Then
Connes and Moscovici consider the hypoelliptic signature operator acting on C∞(M,E)

(8.6) Q = ±(dVd∗V − d∗VdV) + (dN + d∗N) ,

where the sign +1 is taken on ΛevN∗ and −1 on ΛoddN∗. This is a formally self-adjoint, hypoel-
liptic differential operator of order two. Q is not quite invariant under the action of G because the
isomorphism TM ∼= V ⊕N requires a choice. However, in the Heisenberg pseudodifferential calcu-
lus associated to the foliation on M, the operator Q is Heisenberg-elliptic and its leading symbol
is exactly G-invariant. From this one builds a properly supported Heisenberg pseudodifferential
operator

(8.7) F =
Q

|Q|

which is defined only up to addition of a smoothing operator. Again the Heisenberg leading
symbol of F is G-invariant. Now we turn to the geometric example of [3], where M is the bundle
of Riemannian metrics over a smooth G-manifold W. Here the foliation on M corresponds to the
fibrationM→W, and has a tautological triangular structure. The action of G by diffeomorphisms
on W canonically lifts to an action on M mapping fibers to fibers, and preserving the triangular
structure. In this situation, the results of [3] show that F is a bounded operator on H, a(F2 − 1)
is smoothing for all a ∈ A, and the pair (H, F) defines a p-summable Fredholm module over the
algebra A, for any p > dimV + 2dimN. Its Chern-Connes character may thus be computed by
means of the above lemma. We let ΨH,c(M,E) be the algebra of compactly supported Heisenberg
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pseudodifferential operators acting on the smooth sections of E. The representation of the crossed-
product ΨH,c(M,E)oG on the Hilbert space H leads to subalgebras of bounded operators

Ψ0 = Im(Ψ0H,c(M,E)oG) , Ψ−1 = Im(Ψ−1
H,c(M,E)oG) .

Note that these representations are not faithful. Let π : S∗HM → M be the projection from
the Heisenberg cosphere bundle. The pullback π∗E is naturally a G-equivariant vector bundle
over S∗HM. Since G has no fixed points by hypothesis, the leading symbol map Ψ0H,c(M,E) →
C∞c (S∗HM, End(π∗E)) yields a canonical isomorphism of algebras

Ψ0/Ψ−1 ∼= C∞c (S∗HM, End(π∗E))oG .

Under this identification the homomorphism ρF : A→ Ψ0/Ψ−1 is given by

ρF(fUg) = π
∗(f)eUEg ∀ f ∈ C∞c (M) , g ∈ G

where e ∈ C∞(S∗HM, End(π∗E)) is the leading symbol of the operator P = 1
2
(1 + F), and UEg is

the represntation of g as a linear operator on the space of sections of π∗E. Since P2 ≡ P and
PUEg ≡ UEgP modulo operators of order −1, one has e2 = e and eUEg = UEge for all g ∈ G. Hence
e is a G-invariant idempotent section of the bundle End(π∗E). Its range is the G-equivariant
subbundle E+ of π∗E consisting in the positive eigenvectors for the leading symbol of F. By usual
Chern-Weil theory, the equivariant Chern character ch(E+) is represented by a closed G-invariant
differential form on the homotopy quotient EG×G S∗HM. Taking its product with the equivariant
Todd class of the complexified tangent bundle yields a class

(8.8) L ′(M) = Td(TM⊗ C) ∪ ch(E+) ∈ Hev(EG×G S∗HM) .

Theorem 8.2. Let G be a discrete group of orientation-preseving diffeomorphisms on
a smooth oriented manifold W. Let M be the bundle of Riemannian metrics over W and
A = C∞c (M)oG. If G has no fixed points, then the Chern-Connes character of the Fredholm
module (H, F) associated to the hypoelliptic signature operator of Connes and Moscovici is

(8.9) ch(H, F) = π∗ ◦Φ(L ′(M)) ∈ HP1(A) ,

where Φ : Hev(EG ×G S∗HM) → HP1(C∞c (S∗HM) o G) is Connes’ characteristic map from
equivariant cohomology to cyclic cohomology, and π∗ : HP1(C∞c (S∗HM)oG)→ HP1(A) is the
map induced by the projection π : S∗HM→M.

Proof. One has to compare the two extensions

0 // Ψ−1
H,c(M,E)oG

��

// Ψ0H,c(M,E)oG

��

// C∞c (S∗HM, End(π∗E))oG // 0

0 // Ψ−1 // Ψ0 // Ψ0/Ψ−1 // 0

where the vertical arrows are the representations as bounded operators in the Hilbert space H.
We consider two different cyclic cohomology classes on the ideals. The first one is the operator
trace [Tr] ∈ HP0(Ψ−1), and the second is the trace localized at units [τ] ∈ HP0(Ψ−1

H,c(M,E) o
G). Of course [τ] is not the pullback of [Tr] under the representation. We use a zeta-function
renormalization in order to compute the image ∂([Tr]) ∈ HP1(Ψ0/Ψ−1) of the operator trace under
the excision map of the bottom extension, as in section 2. Then, since G has no fixed points,
only the part of the operator trace which is localized at units contributes to the residues. This
means that one has the equality

∂([Tr]) = ∂([τ])
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in HP1(C∞c (S∗HM, End(π∗E))o G). A choice of local trivializations of the vector bundle E and a
partition of unity allows to identify C∞c (S∗HM, End(π∗E))oG with a subalgebra of the algebra of
matrices M∞(C∞c (S∗HM)oG). Under this identification Theorem 7.3 implies the equality

∂([Tr]) = tr#Φ(π∗Td(TM⊗ C))

where tr denotes the trace onM∞ = (C) and # is the cup-product of cyclic cocycles ([2]). Finally
the homomorphism ρF is multiplication by theG-invariant idempotent e ∈ C∞(S∗HM, End(π∗E)) ⊂
M∞(C∞(S∗HM)), so the composition ρF ◦∂([Tr]) is the above class twisted by the Chern character
ch(E+). �
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