
INDEX THEORY FOR IMPROPER ACTIONS:
LOCALIZATION AT UNITS

Denis PERROT

Institut Camille Jordan, CNRS UMR 5208
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Abstract

We pursue the study of local index theory for operators of Fourier-
integral type associated to non-proper and non-isometric actions of Lie
groupoids, initiated in a previous work. We introduce the notion of ge-
ometric cocycles for Lie groupoids, which allow to represent fairly gen-
eral cyclic cohomology classes of the convolution algebra of Lie groupoids
localized at isotropic submanifolds. Then we compute the image of ge-
ometric cocycles localized at units under the excision map of the funda-
mental pseudodifferential extension. As an illustrative example, we prove
an equivariant longitudinal index theorem for a codimension one foliation
endowed with a transverse action of the group of real numbers.
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1 Introduction

In a previous paper [12] we initiated a local index theory for Fourier-integral type
operators associated to non-proper and non-isometric actions of Lie groupoids
on smooth submersions. The difficulty in the non-isometric setting is that the
main tools of ordinary local index theory, such as the heat kernel expansion or
related methods, are no longer available. One thus has to invent entirely novel
techniques in order to handle such general situations.
The precise setting is the following. Let G⇒ B be a (Hausdorff) Lie groupoid
acting smoothly on a submersion of manifolds π : M → B. We denote by
C∞c (B,CLc(M)) the algebra of compactly-supported classical pseudodifferential
operators acting along the fibers of the submersion. This algebra naturally
carries an action of G, so we can form the crossed product C∞c (B,CLc(M))oG.
The latter contains many interesting operators, including of Fourier-integral
type, that are of interest from the point of view of non-commutative index
theory. We can form the short exact sequence of algebras

0→ C∞c (B,CL−1
c (M)) oG→ C∞c (B,CL0

c(M)) oG→ C∞c (S∗πM) oG→ 0

(see section 2). The quotient C∞c (S∗πM) o G is isomorphic to the convolution
algebra of the action groupoid S∗πM o G, and describes the non-commutative
leading symbols of the operators under consideration. The fundamental question
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is to compute the excision map E∗ induced by this extension on periodic cyclic
cohomology. We solve this problem in [12] in the case of cyclic cohomology
classes which are localized at appropriate isotropic submanifolds O ⊂ G. The
main result of [12], which we shall recall here in section 2 (see Theorem 2.1),
takes the form of a commutative diagram:

HP •(C∞c (B,CL−1
c (M)) oG)

E∗ // HP •+1(C∞c (S∗πM) oG)

HP •top(C∞c (B) oG)[O]

τ∗

OO

π!
G // HP •+1

top (C∞c (S∗πM) oG)[π∗O]

OO

(1)

The bottom map π!
G is given by a fixed-point formula, involving residues of

zeta-functions which generalize the well-known Wodzicki residue [16].

Although the residue formula is an explicit local expression in the complete
symbols of the operators, it is extremely hard to compute. The reason is that
when the dimension n of the fibers of the submersion π : M → B is “large”
(typically n ≥ 2 !) the residues involve an asymptotic expansion of symbols up
to order n, which produces a huge quantity of terms. However, in the case of
cyclic cohomology localized at units (O = B), using the techniques of [11] we
shall give here a close expression for the map π!

G in terms of the usual char-
acteristic classes entering the index theorem, namely the G-equivariant Todd
class of the vertical tangent bundle of M . To show this we focus on a class
of elements in HP •top(C∞c (B) o G)[O] represented by geometric cocycles: the
latter are quadruples (N,E,Φ, c) where N,E are smooth manifolds, Φ is a flat
connection on a certain groupoid, and c is a cocycle in a certain complex. See
section 3 for the precise definitions. This geometric construction of localized
cylic cohomology classes is of independent interest since it works for the cyclic
cohomology localized at any isotropic submanifold O ⊂ G. Moreover in the
case of the localization at units O = B, one recovers all the previously known
constructions of cyclic cohomology in special cases, including: the cohomology
of the classifying space for G and Gelfand-Fuchs cohomology (étale groupoids or
foliation groupoids [2, 3]), differentiable groupoid cohomology ([14]), etc. The
next result, Theorem 5.4 of this article, is a refinement of Theorem 2.1 in the
case of geometric cocycles localized at units.

Theorem 5.4 Let G⇒ B be a Lie groupoid acting on a surjective submersion
π : M → B. The excision map localized at units

π!
G : HP •top(C∞c (B) oG)[B] → HP •+1

top (C∞c (S∗πM oG))[S∗πM ]

sends the cyclic cohomology class of a proper geometric cocycle (N,E,Φ, c) to
the cyclic cohomology class

π!
G([N,E,Φ, c]) = [N ×B S∗πM , E ×B S∗πM , π−1

∗ (Φ) , Td(TπM ⊗ C) ∧ π∗(c)]

where Td(TπM⊗C) is the Todd class of the complexified vertical tangent bundle
in the invariant leafwise cohomology of E ×B S∗πM .

Once specialized to the case of a discrete group G acting by any diffeomorphisms
on a manifold M , this theorem completely solves the problem of evaluating the
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K-theoretical index of the Fourier integral operators considered in [15] on cyclic
cohomology classes localized at units, in terms of the non-commutative lead-
ing symbol of this operator in K1(C∞(S∗M) o G). Let us mention that an
adaptation of this result to the hypoelliptic calculus of Connes and Moscovici
(see [4]) gives a direct proof of their index theorem for transversally hypoellip-
tic operators on foliations, and moreover gives an explicit computation of the
characteristic class of the hypoelliptic signature operator. This is the topic of a
separate paper [13].
To end this article we also present an application of the residue formula of The-
orem 2.1 in a case not localized at units. We prove an equivariant longitudinal
index theorem for a codimension one foliation endowed with a transverse action
of the group R. Choosing a complete transversal for the foliation, this geomet-
ric situation can be reduced to the action of a Lie groupoid on a submersion.
The groupoid possesses a canonical trace, and we show that the pairing of the
corresponding cyclic cocycle with the index of any leafwise elliptic equivariant
pseudodifferential operator is given by a formula localized at the periodic orbits
of the transverse flow on the foliation. This gives an interesting interpretation
of the results of Alvarez-Lopez, Kordyukov [1] and Lazarov [8] in the context of
the K-theory/cyclic cohomology of Lie groupoids.

Here is a brief description of the article. Section 2 recalls the main result
of [12], namely the residue theorem computing the excision map in cyclic coho-
mology associated to the fundamental pseudodifferential extension. Section 3
describes a very general construction of cyclic cohomology classes from geomet-
ric cocycles. In the particular case of localization at units, this construction is
related to the computation of the excision map in section 4. Then Theorem 5.4
is proved in section 5, adapting the abstract Dirac construction of [11]. Finally
section 6 contains the example of a transverse flow on a codimension one folia-
tion.

2 The residue theorem

Let G ⇒ B be a (Hausdorff) Lie groupoid, with B its manifold of units. We
denote by r : G → B the range map and by s : G → B the source map. Both
are smooth submersions. We think of an element g ∈ G as a left-oriented arrow:

g : r(g)←− s(g)

The restriction of the vector bundle Ker s∗ ⊂ TG to the submanifold B ⊂ G is
the Lie algebroid AG over B. Denote by A∗G its dual vector bundle. Under the
range map, the line bundle |ΛmaxA∗G| over B can be pulled-back to a line bundle
r∗(|ΛmaxA∗G|) over G. The latter is canonically identified with the bundle of
1-densities along the fibers of the source map. By definition, the convolution
algebra of G is the space of smooth compactly supported sections of this line
bundle (complexified):

C∞c (B) oG := C∞c (G, r∗(|ΛmaxA∗G|)) . (2)
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The product of two sections a1 and a2 is given by convolution,

(a1a2)(g) =

∫
g1g2=g

a1(g1)a2(g2) (3)

where the integral is taken with respect to the 1-densities. More generally, if
R is a G-equivariant vector bundle over B, we denote by Ug : Rs(g) → Rr(g)

the vector space isomorphism induced by an element g ∈ G between the fibers
of R above the points s(g) and r(g). If moreover R is a G-equivariant algebra
bundle, we define as above the convolution algebra

C∞c (B,R) oG := C∞c (G, r∗(R⊗ |ΛmaxA∗G|)) , (4)

where the convolution product is now twisted by the action of G on R:

(a1a2)(g) =

∫
g1g2=g

a1(g1) · Ug1a2(g2) (5)

Let now the groupoid G ⇒ B act (from the right) on a smooth submersion
of manifolds π : M → B. In [12] we define the G-equivariant algebra bundle
CL0

c(M), whose fiber over a point b ∈ B is the algebra of compactly supported
classical (one-step polyhomogeneous) pseudodifferential operators of order ≤ 0
on the submanifold Mb = π−1(b). It contains the algebra subbundle CL−1

c (M)
of order ≤ −1 operators as a two-sided ideal, whence the fundamental extension
(E) of convolution algebras

0→ C∞c (B,CL−1
c (M)) oG→ C∞c (B,CL0

c(M)) oG→ C∞c (S∗πM) oG→ 0

where S∗πM is the vertical sphere bundle over M , and the epimorphism onto
the convolution algebra C∞c (S∗πM) oG is induced by the leading symbol. The
goal is to calculate the connecting map induced by this extension on periodic
cyclic cohomology

E∗ : HP •(C∞c (B,CL−1
c (M)) oG)→ HP •+1(C∞c (S∗πM) oG) . (6)

As it turns out, we can give explicit residue formulas for the map E∗ when cyclic
cohomology is localized. An isotropic submanifold O ⊂ G is a submanifold
with the property that any element g ∈ O verifies r(g) = s(g). It is Ad-
invariant if it is stable by conjugation by any element of G. In [12] we define
the (topological) cyclic cohomology of G localized at any Ad-invariant isotropic
submanifold O, which comes with a natural forgetful map to ordinary (algebraic)
cyclic cohomology

HP •top(C∞c (B) oG)[O] → HP •(C∞c (B) oG) .

Note that an element g ∈ O acts by diffeomorphism on the manifold Mr(g) =
π−1(r(g)). We say that the action of O on the submersion M is non degenerate
if

• For any g ∈ O, the set of fixed points Mg
r(g) is a union of isolated subman-

ifolds in Mr(g), depending smoothly on g;
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• At any point x ∈Mg
r(g) the tangent space TxMr(g) in the ambient manifold

Mr(g) splits as a direct sum

TxMr(g) = TxM
h
r(g) ⊕N

g
x (7)

of two subspaces globally invariant by the action of the tangent map g∗
associated to the diffeomorphism. We denote g′ the restriction of g∗ to
the normal subspace Ng

x ;

• The endomorphism 1− g′ of Ng
x is non-singular, that is det(1− g′) 6= 0 at

any point x ∈Mg
r(g).

We then have the following residue theorem:

Theorem 2.1 ([12]) Let G ⇒ B be a Lie groupoid and let O be an Ad-
invariant isotropic submanifold of G. Let π : M → B be a G-equivariant
surjective submersion and assume the action of O on M non-degenerate. Then
one has a commutative diagram

HP •(C∞c (B,CL−1
c (M)) oG)

E∗ // HP •+1(C∞c (S∗πM) oG)

HP •top(C∞c (B) oG)[O]

τ∗

OO

π!
G // HP •+1

top (C∞c (S∗πM) oG)[π∗O]

OO

(8)

where the isotropic submanifold π∗O ⊂ S∗πM o G is the pullback of O by the
submersion S∗πM → B. The map π!

G is expressed by an explicit residue formula.

The left vertical arrow comes from the canonical Morita equivalence between
the groupoid G and its pullback π∗G under the submersion π.

Let us now explain the way π!
G is constructed. For convenience we write

A = C∞c (S∗πM) o G, E = C∞c (B,CL0
c(M)) o G, B = C∞c (B,CL−1

c (M)) o G.
We use the Cuntz-Quillen formalism [6] and compute the cyclic homology of A
by means of the X-complex of its non-unital tensor algebra TA , completed in
the adic topology relative to the ideal JA = Ker(TA → A ):

T̂A = lim←−
n

TA /JA n , X(T̂A ) : T̂A � Ω1T̂A\ .

Then HP •(A ) is the cohomology of the Z2-graded complex Hom(X(T̂A ),C).
The extension 0→ B → E → A → 0 can be inserted in a commutative diagram
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where all rows and columns are exact:

0

��

0

��

0

��
0 // J //

��

JE //

��

JA //

��

0

0 // R //

��

TE //

��

TA //

��

0

0 // B //

��

E //

��

A //

��

0

0 0 0

(9)

The ideal R is the kernel of the homomorphism TE → TA , and J is the kernel
of JE → JB. The kernel of the homomorphism TE → A is the ideal JE + R.
We define the corresponding adic completion of TE and its X-complex:

T̃E = lim←−
n

TE /(JE + R)n , X(T̃E ) : T̃E � Ω1T̃E\ .

Choose a continuous linear splitting σ : A → E of the leading symbol homo-
morphism. As a vector space, E is a direct summand in TE , hence we can view
σ as a linear map to TE . By the universal property of the tensor algebra TA
we can lift σ to a homomorphism of algebras σ∗ : TA → TE :

0 // JA //

σ∗

��

TA //

σ∗

��

A //

σ
}}

0

0 // JE + R // TE // A // 0

One has σ∗(a1⊗ . . .⊗ an) = σ(a1)⊗ . . .⊗σ(an) in TE . Because σ∗ respects the

ideals, it extends to a homomorphism T̂A → T̃E and also induces a chain map

σ∗ : X(T̂A )→ X(T̃E ) .

Let C = C∞c (B) o G be the convolution algebra of G, and T̂C be the JC -
adic completion of its tensor algebra. Taking the locally convex topology of C
into account, we can replace algebraic tensor products everywhere by topological
ones and get the larger algebra T̂Ctop. One can think of an element in T̂Ctop as a
collection of smooth compactly supported functions over the product manifolds
Gn for all n. The localization X(T̂Ctop)[O] of its X-complex at an Ad-invariant
isotropic submanifoldO ∈ G is defined in [12] as a quotient, and its elements may
be viewed as collections of jets of smooth functions at localized submanifolds in
Gn. The localized cyclic cohomology HP •top(C∞c (B) oG)[O] is the cohomology

of the Z2-graded complex Hom(X(T̂Ctop),C) of cochains which satisfy certain
conditions of continuity and boundedness. There exists a residue morphism

Res : X(T̃E )→ X(T̂Ctop)[O] . (10)
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This requires to choose a smooth section Q ∈ C∞(B,CL1(M)) of elliptic, pos-
itive pseudodifferential operators acting along the fibers of the submersion π.
Thus at any point b ∈ B one has an elliptic positive invertible operator Qb acting
on the manifold Mb = π−1(b). We may furthermore assume that, modulo per-
turbation by regularizing operators, each Qb as well as its complex powers Q−zb ,
z ∈ C are properly supported. For Re(z) sufficiently large, Q−zb is used to regu-
larize operator traces and leads to meromorphic zeta-functions. In even degree
(10) is a linear map T̃E → (T̂Ctop)[O]. The image of a tensor e1⊗ . . .⊗en ∈ TE
is a jet of a function of n variables (g1, . . . , gn) in Gn:(

Res(e1 ⊗ . . .⊗ en)
)
(g1, . . . , gn) =

Res
z=0

Tr
(
e1(g1)Ug1 h(s(g1), r(g2)) . . . en(gn)Ugn h(s(gn), r(g1))Q−zr(g1)

)
where h is a generalized connection on the submersion π : M → B according to
Definition 4.3 of [12]. In odd degree (10) is a linear map Ω1T̃E\ → (Ω1T̂Ctop)[O].
It is defined in a similar way:(

Res(\(e1 ⊗ . . .⊗ en−1den))
)
(g1, . . . , gn−1|gn) =

Res
z=0

Tr
(
e1(g1)Ug1 h(s(g1), r(g2)) . . . Q−zr(gn) en(gn)Ugn h(s(gn), r(g1))

)
These residues select the poles of zeta-functions like Tr(PUgQ

−z
b ), where g ∈ O,

b = s(g) = r(g), and P is some classical pseudodifferential operator on the
manifold Mb = π−1(b). To see that they yield in fact local formulas, Proposition
5.3 of [12] computes these residues in terms of integrals of the complete symbol
σP of P over the cosphere bundle of the fixed-point set of g. Suppose for
simplicity that Mg

b ⊂ Mb is a unique submanifold of dimension r. Then there
exists a local coordinate system (x; y) on Mb which is adapted to Mg

b (see [12]
for precise definitions), and a canonical coordinate system (x, p; y, q) on the
cotangent bundle T ∗Mb, such that (x, p) is a canonical coordinate system of
T ∗Mg

b . Then one has

Res
z=0

Tr(PUgQ
−z
b ) =

∫
S∗Mg

b

[
ei〈 ∂∂q ,(1−g

′)−1 ∂
∂y 〉 · σP e

i〈p,x−g∗x〉

|det(1− g′)|

]
−r

η(dη)r−1

(2π)r

(11)
where S∗Mg

b is the cosphere bundle of the fixed submanifold, η = 〈p, dx〉 is
the contact one-form over the cotangent bundle T ∗Mg

b , the brackets [ ]−r select
the order −r component of a symbol with respect to the variables (x, p), and
g′ is the matrix of partial derivatives ∂(g∗y)/∂y. In the special case Ug = Id,
this expression simplifies drastically and one recovers the well-known Wodzicki
residue [16]. Also note that in the general case the residue does not depend
on the choice of Q. Now we enlarge CLc(M) to the algebra bundle CLc(M)log

of log-polyhomogeneous pseudodifferential operators and define as before the
crossed product algebra

Elog = C∞c (B,CL0
c(M)log) oG .

Elog contains products of classical operators in E by logarithms of elliptic pseu-
dodifferential operators. For example the logarithm lnQ = − d

dzQ
−z|z=0 of Q

acts on Elog as a left multiplier: (lnQ · e)(g) = lnQr(g)e(g) for all e ∈ Elog

and g ∈ G. Replacing all preceding algebras of pseudodifferential operators
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by log-polyhomogeneous ones, we define T̃Elog as the adic completion of TElog

with respect to the ideal JElog + Rlog, and X(T̃E )1
log as the subcomplex of

X(T̃E )log having logarithmic degree at most 1. Then, the residue map (10) can
be extended to a chain map

X(T̃E )1
log ∩Dom(Res)→ X(T̂Ctop)[O]

with an appropriate domain Dom(Res). Typically, “commutators” with lnQ in
a tensor product belong to this domain, and will be written as

e1 ⊗ . . .⊗ [lnQ, ei]⊗ ei+1 ⊗ . . .⊗ en :=

e1 ⊗ . . .⊗ lnQ · ei ⊗ ei+1 ⊗ . . .⊗ en − e1 ⊗ . . .⊗ ei ⊗ lnQ · ei+1 ⊗ . . .⊗ en

for all ei ∈ E . Now everything is set to give the explicit formulas for the map
π!
G. The image of a localized cyclic cohomology class of even degree [ϕ] ∈
HP 0

top(C∞c (B)oG)[O] is represented by the following localized cyclic cocycle of

odd degree π!
G(ϕ) ∈ Hom(Ω1T̂A\,C):

π!
G(ϕ)(\(a1 ⊗ . . .⊗ an−1dan)) = ϕ ◦ Res

(
σ(a1)⊗ . . .⊗ σ(an−1)⊗ [lnQ, σ(an)]

)
for all \(a1⊗ . . .⊗an−1dan) ∈ Ω1TA\. In a similar way, the image of a localized
cyclic cohomology class of odd degree [ϕ] ∈ HP 1

top(C∞c (B)oG)[O] is represented

by the following localized cyclic cocycle of even degree π!
G(ϕ) ∈ Hom(T̂A ,C):

π!
G(ϕ)(a1⊗. . .⊗an) =

∑
1≤i<j≤n

ϕ◦Res
(
σ(a1)⊗. . . [lnQ, σ(ai)] . . .dσ(aj) . . .⊗σ(an)

)
for all a1 ⊗ . . .⊗ an ∈ TA .

By [12] Corollary 5.7, the residue theorem allows to evaluate the image of
the index map in algebraic K-theory associated to the extension E : 0→ B →
E → A → 0

IndE : K1(A )→ K0(B) (12)

on localized cyclic cohomology classes. Let [u] ∈ K1(A ) be an elliptic sym-
bol represented by an invertible matrix u ∈ M∞(A )+ in the unitalization
of the matrix algebra M∞(A ). It canonically lifts to an invertible element

û ∈ M∞(T̂A )+ under the linear embedding A ⊂ T̂A . We extend the lin-
ear splitting σ : A → E to the unitalized matrix algebras M∞(A )+ and
M∞(E )+ by setting σ(1) = 1, and lift it to a unitalized algebra homomorphism

σ∗ : M∞(T̂A )+ → M∞(T̃E )+. The latter maps û to an invertible element
σ∗(û), whose inverse is

σ∗(û
−1) =

∞∑
n=0

σ(u−1)⊗ (1− σ(u)⊗ σ(u−1))⊗n ∈M∞(T̃E )+ .

Under the hypotheses of Theorem 2.1, the evaluation of IndE([u]) on a cyclic
cohomology class [ϕ] ∈ HP 0

top(C∞c (B) o G)[O] localized at O is computed by
the residue formula

〈[τϕ], IndE([u])〉 = ϕ ◦ Res#tr
(
σ∗(û

−1)[lnQ, σ∗(û)]
)

(13)

where Q ∈ C∞(B,CL1(M)) is any elliptic operator as above.
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3 Geometric cocycles

For any Lie groupoid G⇒ B we shall construct in a geometric way cyclic coho-
mology classes [ϕ] ∈ HP •top(C∞c (B) o G)[O] localized at Ad-invariant isotropic
submanifolds O ⊂ G. Our approach is intended to combine all the already
known cohomologies giving rise to cyclic cocycles localized at the unit sub-
manifold O = B: the cohomology H•(BG) of the classifying space of an étale
groupoid [3], the differentiable cohomology H•d (G) of any Lie groupoid [14], the
Gelfand-Fuchs cohomology appearing in the transverse geometry of a foliation
[2], etc..., and generalize them in order to include cyclic cohomology classes lo-
calized at any isotropic submanifold O. We start with a definition extending the
notion of Cartan connection on a Lie groupoid; note that all the formalism de-
veloped here could certainly be reinterpreted into the language of multiplicative
forms of [5].

Definition 3.1 A connection on a Lie groupoid (r, s) : Γ ⇒ E is a Lie sub-
groupoid Φ ⇒ F of the tangent groupoid (r∗, s∗) : TΓ ⇒ TE such that

• Φ a vector subbundle of TΓ simultaneously transverse to Ker r∗ and Ker s∗,
in the sense that Φ ∩Ker r∗ = Φ ∩Ker s∗ is the zero section of TΓ,

• F is a vector subbundle of TE, of the same rank as Φ.

The connection is flat if (Φ, F ) are integrable as subbundles of the tangent bun-
dles (TΓ, TE).

By the transversality hypothesis, the tangent maps r∗ and s∗ send the fibers of
Φ isomorphically onto the fibers of F . If the connection is flat, (Φ, F ) define
regular foliations on the manifolds (Γ, E) respectively. The leaves of Γ are locally
diffeomorphic to the leaves of E under both maps r and s.
When Φ has maximal rank equal to the dimension of E, then Φ ⊕ Ker r∗ =
Φ⊕Ker s∗ = TΓ and F = TE. In that case, a flat connection defines a foliation
of the manifold Γ which is simultaneously transverse to the submersions r and
s and of maximal dimension. This foliation in turn determines a set of local
bisections of Γ. Since Φ is a subgroupoid of TΓ, one can check that these local
bisections form a Lie pseudogroup with respect to the composition product on
Γ. This pseudogroup acts on the manifold E by local diffeomorphisms: any
small enough local bisection provides a diffeomorphism from its source set in E
to its range set in E. Hence, any morphism γ ∈ Γ can be extended to a local
diffeomorphism from an open neighborhood of s(γ) to an open neighborhood of
r(γ), in a way compatible with the composition of morphisms in Γ.
When Φ has rank < dimE, the corresponding local bisections are only defined
above each leaf of the foliation F on E. This means that any morphism γ ∈ Γ
can be extended to a local diffeomorphism from a small open subset of the leaf
containing s(γ) to a small open subset of the leaf containing r(γ). In general
there are topological or geometric obstructions to the existence of a connection
(flat or not) on a Lie groupoid. Here are some basic examples:

Example 3.2 An étale groupoid Γ ⇒ B has a unique connection of maximal
rank TΓ which is always flat. The corresponding pseudogroup of local bisections
is thus the pseudogroup of all local bisections of Γ. Hence, any morphism γ ∈ Γ
in an étale groupoid determines a local diffeomorphism from a neighborhood of
the source s(γ) to a neighborhood of the range r(γ) in a unique way.
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Example 3.3 Let G be a Lie group acting on a manifold B by global diffeo-
morphisms. Then the action groupoid Γ = BoG is endowed with the canonical
flat connection Ker(pr∗) ⊂ TΓ, where pr : Γ→ G is the projection. In this case
the pseudogroup of local bisections determined by the connection is precisely
the group G.

A flat connection Φ ⇒ F on a Lie groupoid Γ ⇒ E leads to the Γ-
equivariant leafwise cohomology of E. Indeed at any point γ ∈ Γ, the fiber
Φγ is canonically isomorphic, as a vector space, to the fibers s∗(Φγ) = Fs(γ)

and r∗(Φγ) = Fr(γ). Hence any γ yields a linear isomorphism from the fiber
Fs(γ) to the fiber Fr(γ), in a way compatible with the composition law in Γ.
This means that the vector bundle F over E is a Γ-bundle. Here the flat-
ness of the connection is not used. In the same way, the dual bundle F ∗ is
also a Γ-bundle. In general the cotangent bundle T ∗E may not carry any ac-
tion of Γ, but the line bundle ΛmaxAΓ ⊗ ΛmaxT ∗E always does. As usual AΓ
is the Lie algebroid of Γ. If F⊥ = TE/F denotes the normal bundle to F ,
then one has a canonical isomorphism ΛmaxT ∗E ∼= ΛmaxF ∗⊥ ⊗ ΛtopF ∗. Since
Γ acts on the line bundle ΛmaxF through the connection Φ, one sees that the
tensor product ΛmaxAΓ ⊗ ΛmaxT ∗E ⊗ ΛmaxF ∼= ΛmaxAΓ ⊗ ΛmaxF ∗⊥ is a Γ-
bundle. We define the bicomplex of Γ-equivariant leafwise differential forms
C•(Γ,Λ•F ) = (Cn(Γ,ΛmF ))n≥0,m≥0 where

Cn(Γ,ΛmF ) = C∞(Γ(n), s∗(|ΛmaxAΓ| ⊗ |ΛmaxF ∗⊥| ⊗ ΛmF ∗)) (14)

is the space of smooth sections of the vector bundle |ΛmaxAΓ| ⊗ |ΛmaxF ∗⊥| ⊗
ΛmF ∗, pulled back on the manifold Γ(n) of composable n-tuples by the source
map s : Γ(n) → E, (γ1, . . . , γn) 7→ s(γn). In particular for n = 0, C0(Γ,ΛmF ) =
C∞(E, |ΛmaxAΓ| ⊗ |ΛmaxF ∗⊥| ⊗ ΛmF ∗) is the space of leafwise m-forms on E
twisted by the line bundle |ΛmaxAΓ| ⊗ |ΛmaxF ∗⊥|. Note that |ΛmaxF ∗⊥| is the
bundle of 1-densities transverse to the foliation F on E. The first differential
d1 : Cn(Γ,ΛmF ) → Cn+1(Γ,ΛmF ) on this bicomplex is the usual differential
computing the groupoid cohomology with coefficients in a Γ-bundle. It is given
on any cochain c ∈ Cn(Γ,ΛmF ) by

(d1c)(γ1, . . . , γn+1) = c(γ2, . . . , γn+1) +

n∑
i=1

(−1)ic(γ1, . . . , γiγi+1, . . . , γn+1)

+(−1)n+1 U−1
γn+1

· (c(γ1, . . . , γn))

for all (γ1, . . . , γn+1) ∈ Γ(n+1). The last term of the r.h.s. denotes the ac-
tion of the linear isomorphism U−1

γn+1
: (|ΛmaxAΓ| ⊗ |ΛmaxF ∗⊥| ⊗ ΛmF ∗)s(γn) →

(|ΛmaxAΓ| ⊗ |ΛmaxF ∗⊥| ⊗ ΛmF ∗)s(γn+1) on c(γ1, . . . , γn). The second differen-
tial d2 : Cn(Γ,ΛmF ) → Cn(Γ,Λm+1F ) comes from the leafwise de Rham dif-
ferential dF : C∞(E,ΛmF ) → C∞(E,Λm+1F ) on the foliated manifold E.
Indeed we first observe that the foliation F on E defines the sheaf of holonomy-
invariant sections of the line bundle of transverse 1-densities |ΛmaxF ∗⊥|, which
in turn induces a canonical foliated connexion dF⊥ : C∞(E, |ΛmaxF ∗⊥|) →
C∞(E, |ΛmaxF ∗⊥|⊗F ∗). This connexion is flat in the usual sense (dF⊥)2 = 0. In
the same way, viewing r∗AΓ as a subbundle of TΓ, the foliation Φ on Γ defines
the sheaf of holonomy-invariant sections of the line bundle r∗|ΛmaxAΓ| which
descends to the line bundle |ΛmaxAΓ| over E, and subsequently defines a flat

10



foliated connection dAΓ : C∞(E, |ΛmaxAΓ|) → C∞(E, |ΛmaxAΓ| ⊗ F ∗). The
sum dAΓ + dF⊥ + dF is a Γ-equivariant operator on the space of sections of the
vector bundle |ΛmaxAΓ| ⊗ |ΛmaxF ∗⊥| ⊗ Λ•F ∗ which squares to zero. Finally we
extend the foliation Φ on Γ to a foliation Φ(n) on Γ(n) in such a way that all pro-
jection maps pi : Γ(n) → Γ, (γ1, . . . , γn) 7→ γi induce vector space isomorphisms

(pi)∗ : Φ
(n)
(γ1,...,γn) → Φγi . Since Φ is a subgroupoid of Γ the foliation Φ(n) exists

and is unique. Moreover the source map s : Γ(n) → E is a local diffeomorphism
from the leaves of Φ(n) to the leaves of F . We use this local identification to lift
dAΓ + dF⊥ + dF to an operator s∗(dAΓ + dF⊥ + dF ) on the space of sections of
the vector bundle s∗(|ΛmaxAΓ| ⊗ |ΛmaxF ∗⊥| ⊗Λ•F ∗) over Γ(n). For any cochain
c ∈ Cn(Γ,ΛmF ) we set

(d2c) = (−1)ns∗(dAΓ + dF⊥ + dF )c .

Since dAΓ + dF⊥ + dF is Γ-equivariant, the two differentials on C•(Γ,Λ•F ∗)
anticommute: d1d2 + d2d1 = 0. The Γ-equivariant leafwise cohomology of E is
by definition the cohomology of the total complex obtained from this bicomplex.
If η : E → N is a submersion, we define C•η (Γ,Λ•F ∗) as the subcomplex of
cochains having proper support with respect to η.

Definition 3.4 Let G ⇒ B be a Lie groupoid and let O be an Ad-invariant
isotropic submanifold of G. A geometric cocycle localized at O is a quadruple
(N,E,Φ, c) where

• N ν−→ B is a surjective submersion. Hence the pullback groupoid ν∗G ⇒
N acts on the isotropic submanifold ν∗O ⊂ ν∗G by the adjoint action.

• E η−→ ν∗O is a ν∗G-equivariant submersion. Any element γ ∈ ν∗O,
viewed in ν∗G, is required to act by the identity on its own fiber Eγ .

• Φ ⇒ F is a flat connection on Γ = E o ν∗G, with F oriented. The
canonical section E → ν∗O → Γ, restricted to a leaf of F , is a leaf of Φ.

• c ∈ C•η (Γ,Λ•F ∗) is a total cocycle with proper support relative to the

submersion E
η−→ ν∗O, assumed normalized in the sense that

c(γ1, . . . , γn) = 0 whenever γ1 . . . γn = η(s(γn)) .

(N,E,Φ, c) is called proper if E is a proper ν∗G-manifold.

From now on let G ⇒ B be a fixed Lie groupoid. We shall associate to
any geometric cocycle (N,E,Φ, c) localized at an isotropic submanifold O ⊂ G,
a periodic cyclic cohomology class of C∞c (G) localized at O. This requires a
number of steps. On the action groupoid Γ = E o ν∗G we first define the
convolution algebra

G = C∞p (E,Λ•F ∗) o Γ (15)

which is the space C∞p (Γ, r∗(Λ•F ∗⊗|ΛmaxA∗Γ|)) of properly supported sections
of the vector bundle |ΛmaxA∗Γ|⊗Λ•F ∗ pulled back by the rank map r : Γ→ E.
By definition the groupoid Γ acts on the vector bundle Λ•F ∗, but there is no
such action on the density bundle |ΛmaxA∗Γ|. For any γ ∈ Γ we thus define
the linear isomorphism Uγ : Λ•F ∗s(γ) → Λ•F ∗r(γ) leaving the space |ΛmaxA∗Γ|s(γ)
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untouched. The convolution product of two elements α1, α2 ∈ G is then given
by

(α1α2)(γ) =

∫
γ1γ2=γ

α1(γ1) ∧ Uγ1α2(γ2) , ∀γ ∈ Γ , (16)

where α1(γ1) ∧ Uγ1α2(γ2) ∈ Λ•F ∗r(γ1) ⊗ |Λ
maxA∗Γ|r(γ1) ⊗ |ΛmaxA∗Γ|r(γ2) in-

volves the exterior product of leafwise differential forms, and the integral is
taken against the 1-density |ΛmaxA∗Γ|r(γ2) while r(γ1) = r(γ) remains fixed.
Hence (α1α2)(γ) really defines an element of the fiber Λ•F ∗r(γ)⊗ |Λ

maxA∗Γ|r(γ).
Note that the subalgebra of G consisting only in the zero-degree foliated dif-
ferential forms coincides with the usual convolution algebra C∞p (E) o Γ ∼=
C∞p (Γ, r∗|ΛmaxA∗Γ|) of (properly supported) scalar functions over the groupoid
Γ. Now let dA∗Γ : C∞(E, |ΛmaxA∗Γ|) → C∞(E,F ∗ ⊗ |ΛmaxA∗Γ|) be the
flat foliated connection dual to dAΓ, induced as before by the connection Φ.
Combining dA∗Γ with the leafwise de Rham differential dF : C∞(E,ΛmF ∗) →
C∞(E,Λm+1F ∗), we obtain a total differential dΦ on G ,

dΦα = r∗(dF + dA∗Γ)α , α ∈ G

where dF + dA∗Γ, acting leafwise on E, is lifted to a leafwise operator on Γ
through the local identification between the leaves of F and the leaves of Φ
provided by the rank map. Then dΦ satisfies the graded Leibniz rule dΦ(α1α2) =
(dΦα1)α2 + (−1)|α1|α1(dΦα2), where |α1| is the degree of the differential form
α1. Hence (G , dΦ) is a differential graded (DG) algebra.
The periodic cyclic cohomology of a DG algebra is defined in complete analogy
with the usual case, simply by adding the extra differential and taking care of
the degrees of the elements in the algebra. Hence the space of noncommutative
differential forms ΩG is the same as in the ungraded case, but the degree of an
n-form ω = α0dα1 . . . dαn is now |ω| = n+ |α0|+ . . .+ |αn|. The differential dΦ

is uniquely extended to a differential on the graded algebra ΩG , in such a way
that it anticomutes with d. Hence we have

dΦ(α0dα1 . . . dαn) = (dΦα0)dα1 . . . dαn − (−1)|α1|α0d(dΦα1) . . . dαn + . . .

The Hochschild boundary is as usual b(ωα) = (−1)|ω|[ω, α] for any ω ∈ ΩG
and α ∈ G , where the commutator is the graded one. Then dΦ anticommutes
with b, with the Karoubi operator κ = 1− (bd+ db), and with Connes’operator
B = (1+κ+. . .+κn)d on ΩnG . The periodic cyclic cohomology of G is therefore

defined as the cohomology of the complex Hom(Ω̂G ,C) with boundary map the
transposed of b+B + dΦ.
We now define a linear map λ : C•η (Γ,Λ•F ∗) → Hom(Ω̂G ,C) which, once re-
stricted to normalized cochains, will behave like a chain map. For any cochain
c ∈ Cnη (Γ,ΛmF ∗) set

λ(c)(α0dα1 . . . dαn) =∫
(γ1,...,γn)∈Γ(n)

α0(γ0) ∧ Uγ0α1(γ1) . . . ∧ Uγ0...γn−1αn(γn) ∧ c(γ1, . . . , γn)

where γ0 is defined as a function of the n-tuple (γ1 . . . γn) by the localiza-
tion condition γ0 . . . γn = η(s(γn)). We use the vector space isomorphism
|ΛmaxA∗Γ|r(γ0) ⊗ |ΛmaxAΓ|s(γn)

∼= C to view the wedge product under the
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integral as an element of the fiber |ΛmaxA∗Γ|r(γ1) ⊗ . . . ⊗ |ΛmaxA∗Γ|r(γn) ⊗
Λm+|α|F ∗s(γn), with |α| = |α0| + . . . + |αn|. Since F is oriented, the integrand

defines a 1-density which can be integrated over the manifold Γ(n) when the
leafwise degree m + |α| matches the rank of F ; otherwise the integral is set to
zero.

Lemma 3.5 Let c ∈ C•η (Γ,Λ•F ∗) be a normalized cochain in the sense that
c(γ1, . . . , γn) = 0 whenever γ1 . . . γn = η(s(γn)). Then the periodic cyclic

cochain λ(c) ∈ Hom(Ω̂G ,C) verifies the identities

λ(c) ◦ b = λ(d1c) , λ(c) ◦ d = 0 , λ(c) ◦ dΦ = λ(d2c) .

Hence if c is a normalized total cocycle, λ(c) is a κ-invariant periodic cyclic
cocycle over the DG algebra G .

Proof: The three identities are routine computations. Since λ(c) ◦ d = 0 for any
normalized c, one has λ(c) ◦ B = 0. As a consequence (d1 + d2)c = 0 implies
λ(c) ◦ (b+B + dΦ) = 0, thus λ(c) is a periodic cyclic cocycle of the DG algebra
G . Moreover for any normalized cocycle c,

λ(c) ◦ (1− κ) = λ(c) ◦ (db+ bd) = λ(d1c) ◦ d = −λ(d2c) ◦ d = −λ(c) ◦ dΦd = 0

since dΦ and d anticommute, which shows that the periodic cyclic cocycle λ(c)
is κ-invariant.

The κ-invariance of the cocycle λ(c) means that the latter can as well be in-
terpreted as an X-complex cocycle for certain DG algebra extensions of (G , dΦ).
The X-complex of any associative DG algebra (H , d) is defined in analogy with
the usual case by

X(H , d) : H � Ω1H\ ,

where Ω1H\ is the quotient of Ω1H by the subspace of graded commuta-
tors [H ,Ω1H ] = bΩ2H . Since d acts on ΩH and anticommutes with the
Hochschild operator b, it descends to a well-defined differential on X(H , d) and
anticommutes with the usual X-complex boundary maps \d : H → Ω1H\ and
b : Ω1H\ →H . We always endow the X-complex of a DG algebra with the total
boundary operator (\d⊕b)+d. Now take H as the direct sum H =

⊕
n≥1 Hn,

where

Hn = C∞p (Γ(n), r∗1Λ•F ∗ ⊗ r∗1 |ΛmaxA∗Γ| ⊗ . . .⊗ r∗n|ΛmaxA∗Γ|) (17)

and ri : Γ(n) → E is the rank map (γ1, . . . γn) 7→ r(γi). The component H1 is
isomorphic, as a vector space, to G . The product of two homogeneous elements
α1 ∈Hn1

and α2 ∈Hn2
is the element α1α2 ∈Hn1+n2

defined by

(α1α2)(γ1, . . . , γn1+n2
) = α1(γ1, . . . , γn1

) ∧ Uγ1...γn1
α2(γn1+1, . . . , γn1+n2

)

We equip H with a grading by saying that an element α ∈ C∞p (Γ(n), r∗1ΛmF ∗⊗
r∗1 |ΛmaxA∗Γ|⊗ . . .⊗r∗n|ΛmaxA∗Γ|) has degree |α| = m. A differential d of degree
+1 on H is then defined by combining the leafwise differential dF with the flat
connections on the density bundles Λmax|A∗Γ|:

dα = (r∗1(dF ) + r∗1(dA∗Γ) + . . .+ r∗n(dA∗Γ))α
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for any such α ∈ Hn. Obviously d satisfies the graded Leibniz rule. By con-
struction (H , d) is an extension of (G , dΦ). Indeed a surjective DG algebra
morphism m : H → G is defined as follows: the image of any α ∈ Hn is the
element m(α) ∈ G given by the (n− 1)-fold integral

(m(α))(γ) =

∫
γ1...γn=γ

α(γ1, . . . , γn) , ∀γ ∈ Γ

where the integral is taken against the density bundle r∗2 |ΛmaxA∗Γ| ⊗ . . . ⊗
r∗n|ΛmaxA∗Γ|. Let I be the kernel of the multilication map. In fact H is a
kind of localized version of the tensor algebra extension TG of G . The latter is a
graded algebra, the degree of a tensor α1⊗ . . .⊗αn being the sum of the degrees
of the factors. TG is endowed with a differential dΦ making the multiplication
map TG → G a morphism of DG algebras:

dΦ(α1 ⊗ . . .⊗ αn) = (dΦα1)⊗ . . .⊗ αn + (−1)|α1|α1 ⊗ (dΦα2)⊗ . . .⊗ αn + . . .

A straightforward adaptation of the Cuntz-Quillen theory to the DG case shows
that the X-complex X(T̂G , dΦ) is quasi-isomorphic to the (b+B+dΦ)-complex

of noncommutative differential forms Ω̂G , under the identification of pro-vector
spaces X(T̂G ) ∼= Ω̂G taking the rescaling factors (−1)[n/2][n/2]! into account.
Since the periodic cyclic cocycle λ(c) is κ-invariant, it can as well be viewed as
an X-complex cocycle:

λ′(c) ∈ Hom(X(T̂G , dΦ),C) .

In fact this cocycle descends to a cocycle over X(Ĥ , d), where Ĥ denotes the
I -adic completion of H . Indeed we note that the canonical linear inclusion
G ↪→H , which identifies G and the vector subspace H1, commutes with the dif-
ferential. The universal property of the tensor algebra then implies the existence
of a DG algebra homomorphism TG → H , mapping the DG ideal JG to I ,

whence a chain map X(T̂G , dΦ)→ X(Ĥ , d). Observe that the homomorphism
TG →H has dense range. The following lemma is obvious.

Lemma 3.6 Let c ∈ C•η (Γ,Λ•F ∗) be a normalized cocycle. Then λ′(c), viewed

as a cocycle in Hom(X(T̂G , dΦ),C), factors through a unique continuous cocycle

λ′(c) ∈ Hom(X(Ĥtop, d),C).

The last step is the construction of an homomorphism from the convolution
algebra of compactly supported functions C∞c (B)oG to the convolution algebra
of properly supported functions C∞p (E) o Γ. Indeed, the pullback groupoid
ν∗G ⇒ N is Morita equivalent to G ⇒ B, so using a cut-off function on N we
realize the equivalence by an homomorphism

C∞c (B) oG
∼−→ C∞c (N) o ν∗G .

Next, by definition the submersion E
η→ ν∗O

s→ N is ν∗G-equivariant. Hence
any γ ∈ Γ = E o ν∗G determines a unique g ∈ ν∗G, and the resulting map
Γ → ν∗G is a smooth morphism of Lie groupoids. The latter identifies the
preimage of the source map Γs(γ) in Γ with the preimage of the source map
ν∗Gs(g) in ν∗G, whence a canonical vector space isomorphism between the fibers
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AΓr(γ) and A(ν∗G)r(g) of the corresponding Lie algebroids. We conclude that
any smooth compactly supported section of |ΛmaxA∗(ν∗G)| over ν∗G can be
canonically pulled back to a smooth properly supported section of |ΛmaxA∗Γ|
over Γ, and this results in an homomorphism of convolution algebras C∞c (N)o
ν∗G → C∞p (E) o Γ. By composition with the Morita equivalence, we obtain
the desired homomorphism

ρ : C∞c (B) oG→ C∞p (E) o Γ . (18)

The latter depends on the choice of homomorphism realizing the Morita equiv-
alence. However this dependence will disappear in cohomology. Now put
C = C∞c (B) o G. Since C∞p (E) o Γ is the subalgebra of G consisting of zero-
degree foliated differential forms, we regard ρ as an algebra homomorphism
C → G . The latter lifts to a linear map ι : C → H after composition by the
canonical linear inclusion G = H1 ↪→H . The diagram of extensions

0 // JC //

ρ∗

��

TC //

ρ∗

��

C //

ι
}}

ρ

��

0

0 // I // H // G // 0

(19)

thus allows to extend ρ∗ to an homomorphism of pro-algebras T̂C → Ĥ .

Lemma 3.7 The linear map χ(ρ∗, d) ∈ Hom(Ω̂T̂C , X(Ĥtop, d)) defined on any
n-form ĉ0dĉ1 . . .dĉn by

χ(ρ∗, d)(ĉ0dĉ1 . . .dĉn) = (20)

1

(n+ 1)!

n∑
i=0

(−1)i(n−i)dρ∗(ĉi+1) . . . dρ∗(ĉn) ρ∗(ĉ0) dρ∗(ĉ1) . . . dρ∗(ĉi)

+
1

n!

n∑
i=1

\
(
ρ∗(ĉ0) dρ∗(ĉ1) . . .dρ∗(ĉi) . . . dρ∗(ĉn)

)
is a chain map from the (b+B)-complex of noncommutative differential forms
to the DG X-complex. Moreover the cohomology class of χ(ρ∗, d) in the Hom-

complex Hom(Ω̂T̂C , X(Ĥtop, d)) is independent of any choice concerning the
homomorphism ρ.

Proof: A routine computation shows that χ(ρ∗, d) is a chain map. The indepen-
dence of its cohomology class upon the choice of homomorphism ρ is a classical
homotopy argument using 2× 2 rotation matrices.

Proposition 3.8 Let G ⇒ B be a Lie groupoid and let O ⊂ G be an Ad -
invariant isotropic submanifold. Any geometric cocycle (N,E,Φ, c) localized
at O defines a class [N,E,Φ, c] ∈ HP •top(C∞c (B) o G)[O], represented by the
composition of chain maps

X(T̂C )
γ // Ω̂T̂C

χ(ρ∗,d)// X(Ĥtop, d)
λ′(c) // C

where γ is the generalized Goodwillie equivalence, C = C∞c (B)oG is the convo-

lution algebra of G, and (Ĥtop, d) is the DG pro-algebra constructed above from
the geometric cocycle.
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4 Localization at units

Let G ⇒ B be a Lie groupoid and (N,E,Φ, c) a geometric cocycle localized
at units. Hence ν : N → B is a surjective submersion, η : E → N is a ν∗G-
equivariant submersion, Φ ⇒ F is a flat connection on the action groupoid
Γ = E o ν∗G, and c ∈ C•η (Γ,Λ•F ∗) is a normalized cocycle. Throughout this
section we assume that E is a proper ν∗G-manifold. Let π : M → B be a
G-equivariant submersion. We make no properness hypothesis about the action
of G on M . Then the algebra bundle of vertical symbols CSc(M) over B is a
G-bundle. Its pullback CSc(N ×B M) under the submersion ν is a bundle over
N , whose fibers are isomorphic to the same algebras of vertical symbols. The
pullback groupoid ν∗G ⇒ N acts naturally on CSc(N ×B M). By hypothesis
the action of ν∗G on N also lifts to E, hence the pullback of CSc(N ×B M)
under the submersion η yields a Γ-bundle CSc(E ×B M) over E. The vector
bundle F ⊂ TE being also a Γ-bundle, we can form the convolution algebra

O = C∞p (E,Λ•F ∗ ⊗ CSc(E ×B M)) o Γ , (21)

which is a symbol-valued generalization of the algebra G of section 3. The
product on O is formally identical to (16), involving the algebra structure
of the bundle Λ•F ∗ ⊗ CSc(E ×B M) together with the linear isomorphism
Uγ : (Λ•F ∗ ⊗ CSc(E ×B M))s(γ) → (Λ•F ∗ ⊗ CSc(E ×B M))r(γ) for all γ ∈ Γ.
The agebra O is naturally graded by the form degree in Λ•F ∗.
Let (id, π)∗ be the tangent map of the submersion (id, π) : E ×B M → E.
The preimage of the integrable subbundle F ⊂ TE is an integrable subbundle
(id, π)−1

∗ (F ) of T (E×BM) defining a foliation on E×BM . Choose an horizon-
tal distribution H in this subbundle, that is, a decomposition (id, π)−1

∗ (F ) =
H ⊕ Ker(id, π)∗. By construction the groupoid Γ acts on (id, π)−1

∗ (F ), and
by properness we can even assume that H is Γ-invariant if necessary. Let
C∞c (E×BM)→ E be the bundle over E whose fibers are smooth vertical func-
tions with compact support. We can identify this bundle with PS0

c(E×BM)→
E, the polynomial vertical symbols of order 0. Combining the distribution H
with the leafwise de Rham differential dF : C∞(E,ΛmF ∗) → C∞(E,Λm+1F ∗)
yields a “foliated” connection on this bundle, in the sense of a linear map

dH : C∞(E,ΛmF ∗ ⊗ C∞c (E ×B M))→ C∞(E,Λm+1F ∗ ⊗ C∞c (E ×B M))

which is a derivation of C∞(E)-modules. In general the subbundle H is not
integrable and dH does not square to zero. Its curvature

(dH)2 = θ ∈ C∞(E,Λ2F ∗ ⊗ CS1(E ×B M))

is a Γ-invariant leafwise 2-form over E with values in vertical vector fields. By
definition the bundle of vertical symbols CSc(E ×BM) acts by endomorphisms
on the bundle C∞c (E ×B M). Hence the graded commutator d̃H = [dH , ] is
a graded derivation on the algebra of sections C∞(E,Λ•F ∗ ⊗ CSc(E ×B M)),
with curvature (d̃H)2 = [θ, ]. Combining further d̃H with the flat connection

dA∗Γ : C∞(E, |ΛmaxA∗Γ|)→ C∞(E,F ∗ ⊗ |ΛmaxA∗Γ|)

as in section 3, we get a derivation (still denoted by d̃H) on the algebra O. Then
(d̃H)2 still acts by the commutator [θ, ], where θ is viewed as a multiplier of
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O. In order to deal with cyclic cohomology we construct an extension of this
algebra. Define the vector space P =

⊕
n≥1 Pn, where

Pn = C∞p (Γ(n), r∗1(Λ•F ∗⊗CSc(E×BM))⊗ r∗1 |ΛmaxA∗Γ| ⊗ . . .⊗ r∗n|ΛmaxA∗Γ|)

and ri : Γ(n) → E is the rank map (γ1, . . . γn) 7→ r(γi). The component P1 is
isomorphic, as a vector space, to O. The product of two elements α1 ∈ Pn1

and α2 ∈Pn2
is the element α1α2 ∈Pn1+n2

defined by

(α1α2)(γ1, . . . , γn1+n2
) = α1(γ1, . . . , γn1

) ∧ Uγ1...γn1
α2(γn1+1, . . . , γn1+n2

)

We equip P with the grading induced by Λ•F . Then P is a symbol-valued
generalization of the algebra H of section 3. One has a multiplication homo-
morphism m : P → O, and the derivation d̃H on O extends in a unique way
to a derivation on the algebra P. We let Q be the ideal Ker(m) and denote

as usual by P̂ the Q-adic completion of P. Hence P̂ is a graded pro-algebra,
endowed with a derivation d̃H of degree 1.
Let A = C∞c (S∗πM) o G. We want to construct an homomorphism from T̂A

to P̂. Using a cut-off function on the submersion ν : N → B, we know that
the Morita equivalence between the groupoids G and ν∗G is realized by an ho-
momorphism C∞c (B) o G → C∞c (N) o ν∗G of the corresponding convolution
algebras. Using the same cut-off function, we get an homomorphism

E = C∞c (B,CL0
c(M)) oG→ C∞c (N,CL0

c(N ×B M)) o ν∗G .

Then as done in section 3 the Γ-equivariant map η : E → N induces a pullback
homomorphim C∞c (N,CL0

c(N×BM))oν∗G→ C∞p (E,CL0
c(E×BM))oΓ. Tak-

ing further the projection of classical pseudodifferential operators onto formal
symbols one is left with an homomorphism

µ : E → C∞p (E,CS0
c(E ×B M)) o Γ ⊂ O ,

sending the ideal B = C∞c (B,CL−1
c (M)) o G to the convolution algebra of

symbols of negative order C∞p (E,CS−1
c (E ×B M)) o Γ. By the linear inclusion

O ↪→ P1 it extends to an homomorphism µ∗ : TE → P, sending the ideal
JE to Q. Moreover the image of the ideal R = T (B : E ) ⊂ TE contains only
symbols of order ≤ −1 in P. Therefore µ∗ first extends to an homomorphism

from lim←−n TE /Rn to P, and then from T̃E to P̂. Composing with the homo-

morphism σ∗ : T̂A → T̃E of section 2, one thus gets a new homomorphism

σ′∗ = µ∗ ◦ σ∗ : T̂A → T̃E → P̂ (22)

Now we twist the algebra P̂ by adding an odd parameter ε, with the property

ε2 = 0. Let P̂[ε] be the resulting Z2-graded algebra: it is linearly spanned by

elements of the form α0 + εα1 for α0, α1 ∈ P̂, with obvious multiplication rules.
Choose a section Q ∈ C∞(E,CL1(E ×B M)) of vertical elliptic operators of
order one over E, with symbol q ∈ C∞(E,CS1(E ×B M)). By properness we
can even assume that Q and q are Γ-invariant if necessary. The superconnection

∇ = dH + ε ln q , (23)
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acting by graded commutators, is an odd derivation on P̂[ε]. Indeed [∇, α] =

d̃Hα+ε[ln q, α] ∈ P̂[ε] for all α ∈ P̂[ε]. Moreover, any derivative of the logarith-
mic symbol ln q being a classical symbol, the curvature of the superconnection

∇2 = θ − εd̃H ln q ∈ C∞(E,Λ•F ∗ ⊗ CS(E ×B M)[ε])

is a multiplier of P̂[ε]. Let Ĥ be the algebra constructed in section 3. From
the homomorphism σ′∗ and the superconnection ∇ we construct a chain map

χRes(σ′∗,∇) ∈ Hom(Ω̂T̂A , X(Ĥtop[ε], d)[E]) by means of a JLO-type formula [7].

Since the complex X(Ĥtop[ε], d)[E] is localized at units, the Wodzicki residue of
vertical symbols gives a linear map

Res : X(P̂[ε])→ X(Ĥtop[ε], d)[E] . (24)

For any n-form â0dâ1 . . .dân ∈ ΩnT̂A we set

χRes(σ′∗,∇)(â0dâ1 . . .dân) = (25)
n∑
i=0

(−)i(n−i)
∫

∆n+1

Res
(
e−ti+1∇2

[∇, σ′i+1] . . . e−tn+1∇2

σ′0 e
−t0∇2

[∇, σ′1] . . . e−ti∇
2)
dt

+

n∑
i=1

∫
∆n

Res
(
\σ′0 e

−t0∇2

[∇, σ′1] . . . e−ti−1∇2

dσ′i e
−ti∇2

. . . [∇, σ′n]e−tn∇
2)
dt

where σ′i = σ′∗(âi) for all i, and ∆n = {(t0, . . . , tn) ∈ [0, 1]n | t0 + . . .+ tn = 1}
is the standard n-simplex. This formula makes sense because ∇2 = θ− εd̃H ln q
is nilpotent as a leafwise differential form of degree ≥ 1 over E. Hence the

products under the residue are well-defined elements of X(P̂[ε]), depending
polynomially on the simplex variable t. The nilpotency of the curvature also
implies that χRes(σ′∗,∇) vanishes on ΩnT̂A whenever n > dimF + 2. Basic
computations show that (25) are the components of a chain map from the (b+B)-

complex Ω̂T̂A to the X-complex of the DG algebra Htop[ε] localized at E. Now
χRes(σ′∗,∇) may be expanded as a sum of terms which do not contain ε, plus
terms exactly proportional to ε. We define the cocycle χRes(σ′∗, dH , ln q) ∈
Hom(Ω̂T̂A , X(Ĥtop, d)[E]) as the coefficient of ε in the latter expansion, or
equivalently as the formal derivative

χRes(σ′∗, dH , ln q) =
∂

∂ε
χRes(σ′∗, dH + ε ln q) . (26)

By classical Chern-Weil theory, higher transgression formulas show that the
cohomology class of the cocycle χRes(σ′∗, dH , ln q) does not depend on the choice
of connection dH and elliptic symbol q, and is a homotopy invariant of the
homomorphism σ′∗.

Proposition 4.1 Let A be the convolution algebra of the action groupoid S∗πMo
G. Then image of the cyclic cohomology class of a proper geometric cocycle lo-
calized at units (N,E,Φ, c) under the excision map

π!
G : HP •top(C∞c (B) oG)[B] → HP •+1

top (C∞c (S∗πM) oG)[S∗πM ]

is the cyclic cohomology class over A represented by the chain map

λ′(c) ◦ χRes(σ′∗, dH , ln q) ◦ γ : X(T̂A )→ Ω̂T̂A → X(Ĥtop, d)[E] → C (27)
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Proof: Since (dH)2 = θ 6= 0, (P̂, d̃H) is not a differential pro-algebra. We use

a trick of Connes ([3] p.229) and add a multiplier v of P̂ of degree 1, with the

constraints v2 = θ and α1vα2 = 0 for all α1, α2 ∈ Ĥ . Then the algebra P̂[v]

generated by P̂ and all products with v is endowed with a canonical differential
d as follows:

dα = d̃Hα+ vα+ (−1)|α|αv , dv = 0 ,

where |α| is the degree of α ∈ P̂. One easily checks that d2 = 0, i.e. (P̂[v], d)

is a DG pro-algebra. The homomorphism µ∗ : T̃E → P̂ and the differential d

on P̂[v] give rise to a cocycle χ(µ∗, d) ∈ Hom(Ω̂T̃E , X(P̂[v], d)) defined by the

same formulas as the cocycle χ(ρ∗, d) ∈ Hom(Ω̂T̂C , X(Ĥ , d)) of Lemma 3.7.
By remark 4.4 of [12], choose a generalized connection on π : M → B by fixing
some horizontal distribution H ′ ⊂ TM . Using this generalized connection the
residue morphism (10) extends in an obvious fashion to a morphism

Res : Ω̂T̃E → (Ω̂T̂Ctop)[B]

On the other hand, the pullback of H ′ on the submersion E ×B M → E
yields a compatible horizontal distribution H ′′ ⊂ T (E ×B M). Choose H =
H ′′ ∩ (id, π)−1

∗ (F ) as horizontal distribution defining the foliated connection dH
(remark that the latter is generally not Γ-invariant), and thus also the DG al-

gebra (P̂[v], d). The residue map (24) extends to a morphism of DG-algebra

X-complexes Res : X(P̂[v], d) → X(Ĥtop, d)[E] in an obvious fashion. Then a
tedious computation shows that one has a commutative diagram of chain maps

Ω̂T̃E

Res

��

χ(µ∗,d) // X(P̂[v], d)

Res

��
(Ω̂T̂Ctop)[B]

χ(ρ∗,d)// X(Ĥtop, d)[E]

Replacing the differential d by the superconnection ∇1 = d+ v acting by com-

mutators on P̂[v], a JLO-type formula as (25) gives a cocycle χ(µ∗,∇1) ∈
Hom(Ω̂T̃E , X(P̂[v], d)). By a classical transgression formula, the linear homo-
topy between d and ∇1 shows that the cocycles χ(µ∗, d) and χ(µ∗,∇1) are coho-

mologous. Now we proceed as in section 2 and enlarge the complexes Ω̂T̃E and

X(P̂[v], d) by allowing the presence of log-polyhomogeneous pseudodifferential

operators. Thus let Ω̂T̃E 1
log and X(P̂[v], d)1

log be the complexes containing at
most one power of the logarithm lnQ. The cocycles χ(µ∗, d) and χ(µ∗,∇1)

extend to cohomologus cocycles in Hom(Ω̂T̃E 1
log, X(P̂[v], d)1

log). Also the above
residue morphisms extend to morphisms

Res : Ω̂T̃E 1
log ∩Dom(Res)→ (Ω̂T̂Ctop)[B] ,

Res : X(P̂[v], d)1
log ∩Dom(Res)→ X(Ĥtop, d)[E] ,

where the domains Dom(Res) are linearly generated by differences of chains for
which only the place of lnQ changes. Let t ∈ [0, 1] be a parameter, and denote
by Ω[0, 1] the de Rham complex of differential forms over the interval, with
differential dt. Using the superconnection

∇2 = d+ dt + v + t ε lnQ
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we view the corresponding JLO cocycle χ(µ∗,∇2) in the complex Ω[0, 1] ⊗
Hom(Ω̂T̃E , X(P̂[v][ε], d)1

log). Define the eta-cochain

η(µ∗,∇2) = − ∂

∂ε

∫ 1

t=0

χ(µ∗,∇2)

in Hom(Ω̂T̃E , X(P̂[v], d)1
log). The property dtχ(µ∗,∇2) + [∂, χ(µ∗,∇2)] = 0

implies the equality of cocycles

χRes(σ′∗, dH , ln q) = Res ◦ [∂, η(µ∗,∇2)] ◦ σ∗

in Hom(Ω̂T̂A , X(Ĥtop, d)[E]). Now if ẽ = e1 ⊗ . . . ⊗ en ∈ TE is a tensor, we
define its product with the left multiplier lnQ as lnQ · ẽ = (lnQ · e1)⊗ . . .⊗ en.

Then define a linear map ψ ∈ Hom(Ω̂T̃E , Ω̂T̃E 1
log) as follows:

ψ(ẽ0dẽ1dẽ2 . . .dẽn) = ẽ0d(lnQ · ẽ1)dẽ2 . . .dẽn

on any n-form, n ≥ 1, and ψ(ẽ0) = lnQ · ẽ0. The commutator of ψ with the

Hochschild boundary map b on both Ω̂T̃E and Ω̂T̃E 1
log is the degree -1 map

[b, ψ](ẽ0dẽ1dẽ2 . . .dẽn) = ẽ0(lnQ · ẽ1)dẽ2 . . .dẽn − ẽ0ẽ1d(lnQ · ẽ2) . . .dẽn

for n ≥ 2, and [b, ψ](ẽ0dẽ1) = ẽ0(lnQ · ẽ1) − (lnQ · ẽ0)ẽ1. Similarly [B,ψ] is
a simple algebraic expression involving differences of pairs of terms where only
lnQ moves. Hence the range of [∂, ψ], with ∂ = b+B the total boundary of the
cyclic bicomplex, is actually contained in the domain of the residue morphism.
Therefore [∂, ψ] ∈ Hom(Ω̂T̃E , Ω̂T̃E 1

log ∩ Dom(Res)) is a (non-trivial) cocycle.
The diagram

Ω̂T̃E

ψ

��

η(µ∗,∇2)

&&MMMMMMMMMM

Ω̂T̃E 1
logχ(µ∗,∇1)

// X(P̂[v], d)1
log

is not commutative, but the only difference between η(µ∗,∇2) and χ(µ∗,∇1)◦ψ
is that lnQ does not appear at the same places. Hence the range of the difference

η(µ∗,∇2)−χ(µ∗,∇1) ◦ψ is contained in the domain X(P̂[v], d)1
log ∩Dom(Res)

of the residue morphism, and the cocycle [∂, η(µ∗,∇2)] is cohomologous to the

cocycle χ(µ∗,∇1)◦ [∂, ψ] in Hom(Ω̂T̃E , X(P̂[v], d)1
log∩Dom(Res)). Finally, the

equality Res ◦χ(µ∗, d) = χ(ρ∗, d) ◦Res extends to an equality in Hom(Ω̂T̃E 1
log ∩

Dom(Res), X(Ĥtop, d)[E]). Collecting everything, we get a diagram of chain
maps

X(T̂A )
σ∗◦γ // Ω̂T̃E

[∂,ψ]

��

[∂,η(µ∗,∇2)]

**TTTTTTTTTTTTTTTTTTT

Ω̂T̃E 1
log ∩Dom(Res)

Res

��

χ(µ∗,d)
//

vvmmmmmmmmmmmmm
X(P̂[v], d)1

log ∩Dom(Res)

Res

��
X(T̂Ctop)[B] (Ω̂T̂Ctop)[B]

pXoo χ(ρ∗,d) // X(Ĥtop, d)[E]

λ′(c) // C
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which is commutative up to homotopy. The bottom left arrow pX is a homo-
topy equivalence, with inverse given by the map γ : X(T̂Ctop)[B] → (Ω̂T̂Ctop)[B].

By construction the cocycle ϕ ∈ Hom(X(T̂Ctop),C) representing [N,E,Φ, c] is
the composition of the bottom arrows. By Theorem 2.1, the cocycle π!

G(ϕ) ∈
Hom(X(T̂A ),C) is the path surrounding the diagram via the bottom left cor-
ner, while (27) is the upper path.

5 Dirac superconnections

Let Λ•T ∗πM ⊗ C be the (complexified) exterior algebra over the vertical cotan-
gent bundle associated to the submersion π, and denote by V its pullback under
the projection E ×B M → E. Then V is a Z2-graded complex vector bundle
over E ×BM , and its algebra of smooth sections, which is a quotient of the al-
gebra of all differential forms over E×BM , may be called “vertical” differential
forms. The algebra bundle of (non-compactly supported) vertical scalar symbols
CS(E ×B M) can be enlarged to a Z2-graded algebra bundle CS(E ×B M,V )
over E, whose fiber is the algebra of vertical pseudodifferential symbols acting
on the smooth sections of V . Let PS(E ×B M,V ) be the subbundle of polyno-
mial symbols, i.e. the symbols of vertical differential operators acting on the
smooth sections of V . Since CS(E×BM,V ) is an algebra bundle, there is a left
representation L : CS(E ×B M,V )→ End(CS(E ×B M,V )) and a right repre-
sentation R : CS(E ×B M,V )op → End(CS(E ×B M,V )) as endomorphisms,
and the two actions commute in the graded sense. In particular the graded
tensor product CS(E ×BM,V )⊗PS(E ×BM,V )op is naturally represented in
the endomorphism bundle. We let

L (E×BM) = Im
(
CS(E×BM,V )⊗PS(E×BM,V )op → End(CS(E×BM,V ))

)
be the range of this representation. Hence L (E ×B M) is a Z2-graded algebra
bundle over E, whose fiber is a certain algebra of linear operators acting on verti-
cal symbols. To become familiar with these objects we introduce a local foliated
coordinate system (za, yµ) on an open subset U ⊂ E, such that (yµ)µ=1,2,... are
the coordinates along the leaves of the foliation F , and (za)a=1,2,... are trans-
verse coordinates. We complete this system with vertical coordinates (xi)i=1,2,...

on the fibers of M , so that (za, yµ, xi) is a local foliated coordinate system on
E ×B M . The vertical vectors are generated by the partial derivatives ∂/∂xi,
and the smooth sections of the vector bundle V (the vertical differential forms)
are generated by products of one-forms dxi modulo horizontal forms. Denote by
ipi, with i =

√
−1, the Lie derivative of vertical differential forms with respect to

the vector field ∂/∂xi. Viewing the coordinate xi as multiplication operator by
the function xi, these operators of even dgree fulfill the canonical commutation
relations

[xi, xj ] = 0 , [xi, pj ] = iδij , [pi, pj ] = 0 ,

and of course all commutators with the basic coordinates za, yµ vanish. Let ψi

denote the operator of exterior product from the left by dxi (modulo horizontal
forms) on vertical differential forms, and ψi the operator of interior product by
the vector field ∂/∂xi. Then ψ,ψ are operators of odd degree and fulfill the
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canonical anticommutation relations

[ψi, ψj ] = 0 , [ψi, ψj ] = δij , [ψi, ψj ] = 0

where the commutators are graded. Thus in local coordinates a polynomial
section a ∈ C∞(E,PS(E ×BM,V )) of the bundle of symbols is a smooth func-
tion of (z, y, x, p, ψ, ψ) depending polynomially on p. Since ψ and ψ are odd
coordinates any smooth function of them is also automatically polynomial. In
the same way, a section a ∈ C∞(E,CS(E ×B M,V )) of order m is locally an
asymptotic expansion a ∼

∑
j≥0 am−j where each am−j is a smooth function

of (z, y, x, p, ψ, ψ) homogeneous of degree m − j in p. One then shows ([11])
that the sections s ∈ C∞(E,L (E ×B M)), which act by linear operators on
C∞(E,CS(E ×B M,V )), are asymptotic expansions of the partial derivatives
∂/∂x and ∂/∂p of the form

s =

k∑
|α|=0

∞∑
|β|=0

∑
|γ|≥0

∑
|δ|≥0

(sα,β,γ,δ)L(ψ)γR(ψ)δR

( ∂
∂x

)α( ∂
∂p

)β
(28)

where α, β, γ, δ are multi-indices, and sα,β,γ,δ is a local section of CS(E×BM,V ).
Let ε be an indeterminate (of even parity, not to be confused with the previous
odd parameter ε) and consider the Z2-graded algebra bundle of formal power
series S (E ×B M) = L (E ×B M)[[ε]] in ε. One defines a filtered, Z2-graded
algebra sub-bundle

D(E ×B M) =
⋃
m∈R

Dm(E ×B M) ⊂ S (E ×B M) (29)

as follows: a formal series s =
∑
k≥0 skε

k is a section of Dm(E ×B M) if each
coefficient sk is locally an asymptotic expansion (28), where the symbol sα,β,γ,δ
has order ≤ m + (k + |β| − 3|α|)/2. According to this filtration, the partial
derivatives ∂/∂x have degree m = 3/2, the partial derivatives ∂/∂p and ε both
have degree m = −1/2, and a symbol a ∈ C∞(E,CSm(E ×B M,V )) in the
left representation aL has degree m. Following [11] Definition 5.1, a generalized
Dirac operator as an odd section D ∈ C∞(E,D(E ×B M)) which in local
coordinates reads

D = iε(ψi)R

( ∂

∂xi
+ . . .

)
+ (ψi)R

( ∂

∂pi
+ . . .

)
where the dots are operators of lower degree (according to the filtration of
D(E ×B M)) given by expansions in powers of the partial derivatives ∂/∂p.
Summation over the repeated indices i is understood. Using a partition of
unity one shows that such operators always exist globally on E ×B M . More
importantly, the general form of a Dirac operator above is preserved under any
change of local coordinates compatible with the submersion. This makes the
present formalism particularly well-adapted to groupoid actions. The square of
D is a generalized Laplacian taking locally the form

∆ = −D2 = iε
∂

∂xi
∂

∂pi
+ . . .
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Due to the presence of an overall factor ε in the Laplacian, the heat operator
exp(−D2) ∈ C∞(E,S (E ×B M)) is a well-defined formal power series. More-
over, a Duhamel-like expansion holds for the heat operator of perturbed Lapla-
cians [11]. Then let T (E×BM) be the vector subbundle of S (E×BM) whose
sections are of the form s exp(−D2), for all sections s ∈ C∞(E,Dc(E ×B M))
with compact vertical support. One shows as in [11] that T (E ×B M) is a Z2-
graded D(E ×B M)-bimodule, and that there exists a canonical graded trace

Trs : C∞(E,T (E ×B M))→ C∞(E) (30)

coming from the fiberwise Wodzicki residue. T (E×BM) is called the bimodule
of trace-class operators.
In local coordinates, the horizontal distribution H associated to a choice of
decomposition (id, π)−1

∗ (F ) = H ⊕Ker(id, π)∗ is the intersection of the kernels
of the collection of 1-forms dxi − ωiµdy

µ (summation over repeated indices),

where ωiµ are scalar functions over E ×B M . The associated connection dH on
the bundle of vertical scalar functions is locally expressed by

dH = dyµ
( ∂

∂yµ
+ iωiµpi

)
on C∞(E,Λ•F ∗ ⊗ C∞c (E ×B M)) .

The curvature of dH is the horizontal 2-form θ = 1
2dy

µ ∧ dyνθiµν ∂
∂xi with values

in vertical vector fields, whose components read

θiµν =
∂ωiν
∂yµ

+ ωjµ
∂ωiν
∂xj

.

Now we promote dH to a derivation on all vertical differential forms. The new
local expression has to be modified as follows:

dH = dyµ
∂

∂yµ
+ dyµ

(
iωiµpi +

∂ωiµ
∂xj

ψjψi

)
− 1

2
dyµ ∧ dyν(θiµνψi) .

Note that iωiµpi +
∂ωiµ
∂xj ψ

jψi is the Lie derivative of vertical differential forms

with respect to the vector field ωiµ
∂
∂xi , while θiµνψi is the interior product by

the vector field θiµν
∂
∂xi . Both are smooth sections of the bundle PS1(E×BM,V )

of vertical polynomial symbols (i.e. differential operators) locally defined over
U . The action by commutator d̃H = [dH , ] is an odd derivation on the space of
sections C∞(E,Λ•F ⊗ CS(E ×B M,V )), explicitly

d̃H = dyµ
∂

∂yµ
+ dyµ

(
iωiµpi +

∂ωiµ
∂xj

ψjψi

)
L
− dyµ

(
iωiµpi +

∂ωiµ
∂xj

ψjψi

)
R

−1

2
dyµ ∧ dyν(θiµνψi)L +

1

2
dyµ ∧ dyν(θiµνψi)R .

Except for the derivative term dyµ ∂
∂yµ , all other terms are local sections of

Λ•F ⊗D(E ×B M) over U . Hence using the formalism of superconnections we
can add genuine global sections of this algebra bundle to d̃H . We consider the
family of Dirac superconnections

D = iε(d̃H +A) +D , (31)
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where A ∈ C∞(E,Λ1F ⊗ D(E ×B M)), and D ∈ C∞(E,D(E ×B M)) is a
generalized Dirac operator. Since the complementary part of D has an hor-
izontal form degree ≥ 1, a Duhamel expansion shows that the heat operator
exp(−D2) ∈ C∞(E,Λ•F ⊗ T (E ×B M)) is a trace-class section. Now observe
that the bundles S (E ×B M), D(E ×B M), T (E ×B M), etc... over E are all
Γ-bundles. In particular we can form the convolution algebra

U = C∞p (E, r∗(Λ•F ∗ ⊗Dc(E ×B M))) o Γ . (32)

It naturally inherits Z2-graduation from Λ•F and Dc(E×BM). U is a bimodule
over the algebra of sections C∞(E,Λ•F ∗ ⊗Dc(E ×BM)), and if the horizontal
distribution H is Γ-invariant, the commutator [d̃H , ] defines an odd derivation
on U . Following the general recipe we construct an extension of the convolution
algebra. Define the vector space V =

⊕
n≥1 Vn, where

Vn = C∞p (Γ(n), r∗1(Λ•F ∗ ⊗Dc(E ×B M))⊗ r∗1 |ΛmaxA∗Γ| ⊗ . . .⊗ r∗n|ΛmaxA∗Γ|)

As a vector space V1 is isomorphic to U . A product Vn1
× Vn2

→ Vn1+n2
is

defined as usual, as well as the multiplication map V → U . Hence V is a
Z2-graded extension of U . The commutator [d̃H , ] lifts uniquely to an odd
derivation on V . More generally the commutator with any Dirac supercon-
nection yields an odd derivation, where C∞(E,Λ•F ∗ ⊗ Dc(E ×B M)) acts by
multipliers on V in the obvious way. Finally we denote by W = Ker(V → U )

the kernel of the multiplication map, which is stable by [d̃H , ], and by V̂ the
W -adic completion of V .
Since the space of vertical 0-forms on E×BM is a direct summand in the space
of all vertical forms, the algebra bundle of scalar symbols CS(E ×B M) sits
naturally as an algebra subbundle of CS(E ×B M,V ). The latter may further
be identified with a subbundle of D(E ×B M) through the left representation
L. Hence one gets a canonical inclucion CSc(E ×B M) ↪→ Dc(E ×B M), which

in turn induces an homomorphism of pro-algebras P̂ ↪→ V̂ . Composing with

the homomorphism σ′∗ : T̂A → P̂ constructed above one gets a representation

σ′′∗ = L ◦ σ′∗ : T̂A → P̂ ↪→ V̂ . (33)

Choose as above an elliptic section Q ∈ C∞(E,CL1(E ×B M)), with symbol
q ∈ C∞(E,CS1(E ×B M)). Extend q to an elliptic symbol acting on vertical
differential forms q̃ ∈ C∞(E,CS1(E×BM,V )), requiring that the leading sym-
bol of q̃ remains of scalar type. Let ε, ε2 = 0 be the odd parameter introduced
above. For any Dirac superconnection D, the new superconnection

∇ = D + ε ln q̃L

acting on the algebra V̂ [ε] by graded commutators is a graded derivation. We
use the homomorphism σ′′∗ and the superconnection ∇ to construct a cocycle

χTrs(σ′′∗ ,∇) ∈ Hom(Ω̂T̂A , X(Htop[ε], d)[E]) by a JLO-type formula. We first
extend the graded trace (30) to an X-complex map

Trs : X(V̂ [ε]) ∩Dom(Trs)→ X(Ĥtop[ε], d)[E] ,
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taking into account a rescaling factor of (iε)−1 for each leafwise form degree in
H . Then on any n-form â0dâ1 . . .dân set

χTrs(σ′′∗ ,∇)(â0dâ1 . . .dân) = (34)
n∑
i=0

(−)i(n−i)
∫

∆n+1

Trs
(
e−ti+1∇2

[∇, σ′′i+1] . . . e−tn+1∇2

σ′′0 e
−t0∇2

[∇, σ′′1 ] . . . e−ti∇
2)
dt

+

n∑
i=1

∫
∆n

Trs
(
\σ′′0 e

−t0∇2

[∇, σ′′1 ] . . . e−ti−1∇2

dσ′′i e
−ti∇2

. . . [∇, σ′′n]e−tn∇
2)
dt

where σ′′i = σ′′∗ (âi) ∈ V̂ for all i. As above the ε-component of χTrs(σ′′∗ ,∇)

χTrs(σ′′∗ ,D, ln q̃L) =
∂

∂ε
χTrs(σ′′∗ ,D + ε ln q̃L) (35)

is a cocycle in Hom(Ω̂T̂A , X(Htop, d)[E]), whose cohomology class does not
depend on the choice of Dirac superconnection D and elliptic symbol q̃. Choos-
ing genuine Dirac superconnections thus allows to build cohomologous cocycles.
We now exploit this fact. Let dV be the vertical part of the de Rham op-
erator on E ×B M , acting on the vertical differential forms. One thus has
dV ∈ C∞(E,PS(E ×M B, V )) and in local coordinates

dV = ipiψ
i .

Of course dV is completely canonical and d2
V = 0. The choice of horizontal

distribution H allows to identify V with a subbundle of Λ•T ∗(E ×B M), and
according to this identification the total de Rham differential on E ×B M is
exactly the sum dH + dV . Thus in particular (dH + dV )2 = d2

H + [dH , dV ] = 0.
This can be explicitly checked in local coordinates using the formulas above.
Next, taking the image of dV under the right representation R yields a global
section of D(E ×B M). In local coordinates one has

(ipiψ
i)R = −(ψi)R

( ∂

∂xi
− (ipi)L

)
using the commutation relations. A Dirac operator D is called of de Rham-Dirac
type [11] if it is exactly given by

D = iε(ψi)R

( ∂

∂xi
− (ipi)L

)
+ (ψi)R

( ∂

∂pi
+ . . .

)
where the dots represent an expansion in higher powers of ∂

∂p ensuring that D is
globally defined. Since dV is completely canonical, the term proportional to ψR
is always Γ-invariant. Only the term proportional to ψR may not be Γ-invariant,
however using the properness of the action we can always find a Γ-invariant de
Rham-Dirac operator.

Proposition 5.1 Let D = iεd̃H + D be a Dirac superconnection constructed
from a Γ-invariant horizontal distribution H and a Γ-invariant de Rham-Dirac
operator D. Let q, q̃ be Γ-invariant elliptic symbols of scalar type. Then one
has the equality of cocycles in Hom(Ω̂T̂A , X(Htop, d)[E])

χTrs(σ′′∗ ,D, ln q̃L) = χRes(σ′∗, dH , ln q) . (36)
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Proof: Let Π ∈ C∞(E,PS(E×B , V )) be the natural projection operator of ver-
tical differential forms onto their 0-degree component (scalar functions). Write
D = −iε(dV )R +∇ where ∇ contains all the terms proportional to ψR. Since
left and right representations commute one has [d̃H , σ

′′
∗ (â)] = ([dH , σ

′
∗(â)Π])L

and [D,σ′′∗ (â)] = [∇, σ′′∗ (â)] for any â ∈ T̂A . Thus

[D, σ′′∗ (â)] = ([dH , σ
′
∗(â)Π])L + [∇, σ′′∗ (â)] .

On the other hand D2 = −ε2(d̃H)2 + iε[d̃H , D] +D2, with (d̃H)2 = θL− θR and
iε[d̃H , D] = ε2([dH , dV ])R+iε[d̃H ,∇] = −ε2θR+iε[d̃H ,∇]. Hence the Laplacian
reads

−D2 = ε2θL −D2 − iε[d̃H ,∇]

At this point we can apply verbatim the proof of [11] Proposition 6.4 (and 6.7),
showing that the terms [∇, σ′′∗ (â)] and [d̃H ,∇] do not contribute, and that the
effect of the graded trace Trs is to reduce the JLO cocycle χ(σ′′∗ ,D, ln q̃L) to the
JLO cocycle χ(σ′∗, dH , ln q).

Choose a torsion-free affine connection on the manifold E×BM and take its
restriction ∇T to the vertical tangent bundle E ×B TπM . In local coordinates
we can write ∇T = dza∇a + dyµ∇µ + dxi∇i, and because we are interested to
differentiate in the directions of the leaves (z fixed) we only retain the covari-
ant derivatives ∇Tµ and ∇Ti in the horizontal and vertial directions respectively.
Their effect on vertial vector fields is expressed in terms of the Christoffel sym-
bols Γkiµ = Γkµi and Γkij = Γkji of the affine connection:

∇Tµ
( ∂

∂xj

)
= Γkµj

∂

∂xk
, ∇Ti

( ∂

∂xj

)
= Γkij

∂

∂xk
.

In particular we denote ∇Ti ωk = ∂ωk

∂xi + Γkijω
j the covariant derivative of the

1-form ωk = ωkµdy
µ defining the horizontal distribution H. In local coordinates

the curvature of the affine connection acts on vertical vector fields by(
∇T
)2( ∂

∂xl

)
= Rkl

∂

∂xk
,

where the coefficients Rkl are leafwise 2-forms over E ×B M . We decompose
them into purely horizontal, mixed and purely vertical components

Rkl =
1

2
Rklµνdy

µ ∧ dyν +Rklµjdy
µ ∧ dxj +

1

2
Rklijdx

i ∧ dxj ,

where the components of the curvature tensor are expressed as usual via the
Christoffel symbols

Rklµν = [∇Tµ ,∇Tν ]kl =
∂Γkνl
∂yµ

− ∂Γkνl
∂yµ

+ ΓkµmΓmνl − ΓkνmΓmµl

Rklµj = [∇Tµ ,∇Tj ]kl =
∂Γkjl
∂yµ

−
∂Γkµl
∂xj

+ ΓkµmΓmjl − ΓkjmΓmµl

Rklij = [∇Ti ,∇Tj ]kl =
∂Γkjl
∂xi

− ∂Γkil
∂xj

+ ΓkimΓmjl − ΓkjmΓmil .
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Definition 5.2 A Dirac superconnection D = iε(d̃H + A) + D is called affili-
ated to the affine connection ∇T and the horizontal distribution H if in local
coordinates

A = (∇Tj ωk + Γkµjdy
µ)L

(
(pk)L

∂

∂pj
+ (ψkψ

j)L + . . .
)

+(ψi)R
(
ψk(∇Ti ωk + Γkiµdy

µ) + . . .
)
L

D = iε(ψi)R

( ∂

∂xi
+ (Γkijpk)L

∂

∂pj
+ (Γkijψkψ

j)L + . . .
)

+ (ψi)R

( ∂

∂pi
+ . . .

)
where the dots denote an expansion in higher powers of ∂

∂p .

The global existence of such operators A and D on E ×B M is proved as usual
by gluing together local operators by means of a partition of unity. From now
on let us abusively denote by π the submersion E ×B S∗πM → E, and by
π∗ its tangent map. The preimage π−1

∗ F of the subbundle F ⊂ TE under
the tangent map defines a foliation on E ×B S∗πM . Pulling back the vertical
tangent bundle and its affine connection from E ×B M to E ×B S∗πM , we can
view the above curvature R as a leafwise 2-form on E ×B S∗πM with values in
the endomorphisms of the vertical tangent bundle. By Chern-Weil theory, the
Todd class of the complexified vertical tangent bundle Td((E ×B TπM)⊗C) is
represented by the closed leafwise differential form

Td(iR/2π) = det

(
iR/2π

eiR/2π − 1

)
∈ C∞(E ×B S∗πM,Λ4•π−1

∗ F ) , (37)

which is a polynomial in the Pontryagin classes. Next, the submersion π :
E×B S∗πM → E being Γ-equivariant, it extends to a morphism of Lie groupoids
π : (E×BS∗πM)oΓ→ Γ. Its tangent map π∗ is a morphism of the corresponding
tangent groupoids. Hence the preimage of the flat connection Φ ⊂ Γ,

π−1
∗ (Φ) ⊂ T ((E ×B S∗πM) o Γ) , (38)

is a flat connection on the groupoid (E ×B S∗πM) o Γ, and the latter acts on
leafwise differential forms over E ×B S∗πM . If we start from a Γ-equivariant
affine connection ∇T , which is always possible by the properness of the action,
then the Todd form Td(iR/2π) ∈ C∞(E×B S∗πM,Λ4•π−1

∗ F ) is invariant, and a
classical homotopy argument shows that its class in the cohomology of invariant
leafwise differential forms is independent of the choice of connection. Also note
that one can further assume ∇T to be a Γ-equivariant metric connection, in
the sense that it preserves an invariant scalar product on the vertical tangent
bundle. Now define the convolution algebra

X = C∞p (E ×B S∗πM,Λ•π−1
∗ F ) o Γ . (39)

It comes equipped with the grading of leafwise differential forms, and the leaf-
wise de Rham operator d which squares to zero. Hence (X , d) is a DG algebra.
As usual we build an extension Y =

⊕
n≥1 Yn with

Yn = C∞p (((E×BS∗πM)oΓ)(n), r∗1Λ•π−1
∗ F ∗⊗r∗1 |ΛmaxA∗Γ|⊗. . .⊗r∗n|ΛmaxA∗Γ|)

where for notational simplicity we identify the fiber of the algebroid AΓ with
that of A((E ×B S∗πM) o Γ). Then Y1 = X as a vector space, there is a
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product Yn1
× Yn2

→ Yn1+n2
and a multiplication map Y → X . Moreover

the differential d on X extends uniquely to a differential on Y . We let Z =
Ker(Y → X ) be the kernel of the multiplication map which is a DG ideal in

Y , and denote by Ŷ the Z -adic completion of Y . The DG pro-algebra (Ŷ , d)
is the analogue, for the groupoid (E ×B S∗πM) o Γ with connection π−1

∗ (Φ),

of the DG pro-algebra (Ĥ , d) introduced in section 3 for the groupoid Γ with
connection Φ. In order to apply Lemma 3.7 in this context, we need to build an

homomorphism from T̂A to Ŷ . To this end, observe that the cut-off function
previously chosen on the submersion ν : N → B yields, by pullback to the
cosphere bundle, a cut-off function on the submersion N ×B S∗πM → S∗πM ,
whence an homomorphism of algebras

A = C∞c (S∗πM) oG→ C∞c (N ×B S∗πM) o ν∗G

realizing the Morita equivalence between the corresponding groupoids. Then
as before the Γ-equivariant map η : E → N induces a pullback homomorphim
C∞c (N ×B S∗πM)o ν∗G→ C∞p (E×B S∗πM)oΓ ⊂X . The resulting homomor-
phism ρ : A →X extends as usual to an homomorphism of pro-algebras

ρ∗ : T̂A → Ŷ (40)

Remark that ρ : A → X could as well be obtained by composition of the
linear map σ : A → E with the homomorphism µ : E → O0 (where the
range only contains formal symbols of order ≤ 0), followed by the projection
homomorphism O0 → X onto leading symbols (i.e. scalar functions over the
cosphere bundle). Hence (40) is the composition of the homomorphism σ′∗ :

T̂A → P̂0 with the projection P̂0 → Ŷ onto leading symbols. Lemma 3.7

yields a chain map χ(ρ∗, d) ∈ Hom(Ω̂T̂A , X(Ŷ , d)), defined on any n-form

â0dâ1 . . .dân ∈ ΩnT̂A by

χ(ρ∗, d)(â0dâ1 . . .dân) =

1

(n+ 1)!

n∑
i=0

(−1)i(n−i)dρ∗(âi+1) . . . dρ∗(ân) ρ∗(â0) dρ∗(â1) . . . dρ∗(âi)

+
1

n!

n∑
i=1

\
(
ρ∗(â0) dρ∗(â1) . . .dρ∗(âi) . . . dρ∗(ân)

)
.

Also note that the wedge product by a closed, invariant, leafwise differential
form on E×B S∗πM defines in an obvious way an endomorphism of the localized

complex X(Ŷtop, d)[E×BS∗πM ]. Moreover, integration of differential forms along
the fibers of the submersion E ×B S∗πM → E gives rise to a chain map of total
complexes ∫

S∗πM

: X(Ŷtop, d)[E×BS∗πM ] → X(Ĥtop, d)[E] .

Proposition 5.3 Let D = iε(d̃H +A)+D be a Dirac superconnection affiliated
to a Γ-equivariant metric connection ∇T on the vertical tangent bundle and a
Γ-invariant horizontal distribution H. Let q̃ be a Γ-invariant elliptic symbol of
scalar type. Then one has the equality of cocycles in Hom(Ω̂T̂A , X(Htop, d)[E])

χTrs(σ′′∗ ,D, ln q̃L) =

∫
S∗πM

Td(iR/2π) ∧ χ(ρ∗, d) , (41)
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where R is the curvature 2-form of ∇T .

Proof: This is a direct generalization of [11] Theorem 6.5, stating that for Dirac
operators affiliated to metric connections the JLO cocycle χTrs(σ′′∗ ,D, ln q̃L)
only involves the leading symbols of its arguments, so has a simple expression
as an integral of ordinary differential forms over the cosphere bundle. Indeed
one has

[D, σ′′∗ (â)] = iεdyµ
(∂σ′∗(â)

∂yµ
Π + Γkµjpk

∂σ′∗(â)

∂pj
Π−Πψk∇Tµωkσ′∗(â)

)
L

+ iε(ψi + ωi)R

(∂σ′∗(â)

∂xi
Π + Γkijpk

∂σ′∗(â)

∂pj
Π−Πψk(∇Ti ωk + Γkiµdy

µ)σ′∗(â)
)
L

+ (ψi)R

(∂σ′∗(â)

∂pi
Π
)
L

+ . . .

for any â ∈ T̂A , where the dots denote expansions in higher powers of ∂/∂p.
On the other hand the Laplacian reads

−D2 = iε
( ∂

∂xi
∂

∂pi
+ (Γkij)L((ψi + ωi)ψk)R

∂

∂pj
+ (Γkµj)Ldy

µ(ψk)R
∂

∂pj
+ . . .

)
+

ε2

2
dyµ ∧ dyν

(
(Rklµνpk)L

∂

∂pl
+ (Rklµνψk)L((ψl + ωl)L − (ψl + ωl)R)

)
+ ε2dyµ(ψj + ωj)R

(
(Rklµjpk)L

∂

∂pl
+ (Rklµjψk)L((ψl + ωl)L − (ψl + ωl)R)

)
+

ε2

2
(ψi + ωi)R(ψj + ωj)R

(
(Rklijpk)L

∂

∂pl
+ (Rklijψk(ψl + ωl))L

)
+ . . .

The identities ψkψ
lΠ = δkl Π = Πψkψ

l and ψkΠ = 0 = Πψl for all indices k, l, to-
gether with the fact that ∇T is a metric connection (Rkkµν = Rkkµj = Rkkij = 0),

allows to show as in [11] Theorem 6.5 that the terms involving ψL do not con-
tribute. The rest of the proof follows exactly the lines of [11] Theorems 6.5 and
6.8.

Now remark that the bicomplex of equivariant leafwise differential forms
C•((E ×B S∗πM) o Γ,Λ•π−1

∗ F ) is naturally a module (for the wedge product)
over the algebra of closed invariant leafwise differential forms. In particular, if
c ∈ C•(Γ,Λ•F ) is a normalized total cocycle, we can take its pullback π∗(c)
under the projection π : E ×B S∗πM → E, and the product

Td(iR/2π) ∧ π∗(c) ∈ C•((E ×B S∗πM) o Γ,Λ•π−1
∗ F ) (42)

is a normalized total cocycle. Clearly the latter descends to a cup-product on
the corresponding cohomologies. Collecting all the preceding results we obtain

Theorem 5.4 Let G⇒ B be a Lie groupoid acting on a surjective submersion
π : M → B. The excision map localized at units

π!
G : HP •top(C∞c (B) oG)[B] → HP •+1

top (C∞c (S∗πM oG))[S∗πM ]

sends the cyclic cohomology class of a proper geometric cocycle (N,E,Φ, c) to
the cyclic cohomology class

π!
G([N,E,Φ, c]) = [N ×B S∗πM , E ×B S∗πM , π−1

∗ (Φ) , Td(TπM ⊗ C) ∧ π∗(c)]
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where Td(TπM⊗C) is the Todd class of the complexified vertical tangent bundle
in the invariant leafwise cohomology of E ×B S∗πM .

Proof: By Proposition 4.1 the class π!
G([N,E,Φ, c]) is represented by the co-

cycle λ′(c) ◦ χRes(σ′∗, dH , ln q) ◦ γ in Hom(X(T̂A ,C). Then Proposition 5.1
implies that this cocycle is cohomologous to λ′(c)◦χTrs(σ′′∗ ,D, ln q̃L)◦γ for any
choice of Dirac superconnection D. By Proposition 5.3 it is also cohomolgous
to λ′(Td(TπM ⊗C)∧π∗(c)) ◦χ(ρ∗, d) ◦ γ, which is precisely the construction of
the class [N ×B S∗πM , E ×B S∗πM , π−1

∗ (Φ) , Td(TπM ⊗ C) ∧ π∗(c)].

Combining Theorems 2.1 and 5.4 yields a commutative diagram computing
explicitly the excision map of the fundamental pseudodifferential extension on
the range of proper geometric cocycles localized at units:

HP •(C∞c (B,CL−1
c (M)) oG)

E∗ // HP •+1(C∞c (S∗πM) oG)

HP •top(C∞c (B) oG)[B]

τ∗

OO

π!
G // HP •+1

top (C∞c (S∗πM) oG)[S∗πM ]

OO

(43)

This together with the adjointness theorem in K-theory [9, 10] gives the follow-
ing

Corollary 5.5 Let P ∈ M∞(CL0
c(M) o G)+ be an elliptic operator and let

(N,E,Φ, c) be a proper geometric cocycle localized at units for G. The K-
theoretical index Ind([P ]) ∈ K0(CL−1

c (M)oG) evaluated on the cyclic cohomol-
ogy class τ[N,E,Φ,c] is

〈τ[N,E,Φ,c] , Ind([P ])〉 =

〈[N ×B S∗πM , E ×B S∗πM , π−1
∗ (Φ) , Td(TπM ⊗ C) ∧ π∗(c)] , [P ]〉

where [P ] ∈ K1(C∞c (S∗πM) oG) is the leading symbol class of P .

6 Foliated dynamical systems

Let (V,F ) be a compact foliated manifold without boundary. We recall [3] that
its holonomy groupoid H is a Lie groupoid with V as set of units, and the arrows
are equivalence classes of leafwise paths γ from a source point x = s(γ) to a
range point y = r(γ) belonging to the same leaf, with the following relation:
two leafwise paths γ and γ′ from x to y are equivalent if and only if they induce
the same diffeomorphism (holonomy) from a transverse neighborhood of x to a
transverse neighborhood of y. The composition of arrows is the concatenation
product of paths. It is well-known that the holonomy groupoid can be reduced
to a Morita equivalent étale groupoid upon a choice of complete transversal.
Indeed, let B → V be an immersion of a closed manifold everywhere transverse
to the leaves and intersecting each leaf at least once. The subgroupoid

HB = {γ ∈ H | s(γ) ∈ B and r(γ) ∈ B} (44)

is étale, i.e. the range and source maps from HB to B are local diffeomorphisms,
and is Morita equivalent to the holonomy groupoid. HB naturally acts on the
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submersion s : M → B, corresponding to the restriction of the source map
s : H → V to the submanifold

M = {x ∈ H | s(x) ∈ B} . (45)

The right action of HB on M is given by composition of arrows in H: for any
x ∈M and γ ∈ HB such that s(x) = r(γ) ∈ B, the composite x · γ is indeed in
M . The range map r : M → V , x 7→ r(x) is a covering, mapping the fibers of
the submersion M to the leaves of V .
Now suppose in addition the foliation (V,F ) endowed with a transverse flow
of R. Hence there is a one-parameter group of diffeomorphisms φt, t ∈ R on
V , such that φt maps leaves to leaves, and the vector field Φ generating the
flow is nowhere tangent to the leaves (thus in particular does not vanish). Since
M → V is a covering, the generator of the flow φ can be lifted in a unique way
to a vector field also denoted Φ on the submersion M . Since φ preserves the
leaves, Φ descends to a vector field Φ on the base B. By hypothesis B is a closed
manifold, hence Φ can be integrated to a flow φ on B, and consequently Φ also
generates a flow φ on M , mapping fibers to fibers. By construction the range
map r : M → V is R-equivariant:

r(φt(x)) = φt(r(x)) ∀ x ∈M , t ∈ R . (46)

The vector field Φ on B is obtained as follows: at each point b of the submanifold
B ⊂ V , the tangent space TbV decomposes canonically as the direct sum of TbB
and the tangent space to the leaf. Φ projects accordingly to a vector field on
B precisely corresponding to the generator Φ. The flow φ also lifts to a flow
on the groupoid HB because the range and source maps HB ⇒ B are étale.
This results in an action of R on the groupoid HB by homomorphisms, i.e.
φt(γδ) = φt(γ)φt(δ) for all γ, δ ∈ HB and t ∈ R. We form a new Lie groupoid
by taking the crossed product

G = HB oR . (47)

The arrows of G are pairs (γ, t) ∈ HB × R, with composition law (γ, t)(δ, u) =
(γ φ−t(δ), t+u). Combining the respective actions of HB and R on the submer-
sion s : M → B yields the following action of the crossed product: x · (γ, t) =
φt(x · γ) = φt(x) · φt(γ). To summarize we are left with two Morita equivalent
groupoids, namely V o R and M oG. This equivalence can be realized at the
level of convolution algebras via a homomorphism

ρ : C∞c (V oR)→ C∞c (M oG) (48)

constructed as follows. The range map r : M → V is a covering of a compact
manifold, hence choosing and partition of unity relative to a local trivialization
of the covering one can build a “cut-off” function c ∈ C∞c (M) with the property∑
x∈r−1(v) c(x)2 = 1 for all v ∈ V . Then ρ sends f ∈ C∞c (V oR) to the function

ρ(f) ∈ C∞c (M oG) defined by

ρ(f)(x, (γ, t)) = c(x) f(r(x), t) c(φt(x · γ)) (49)

for any x ∈M , γ ∈ HB and t ∈ R. Note that φt(x ·γ) is the action of (γ, t) ∈ G
on x. One checks that ρ is a homomorphism of algebras, and that the resulting
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map in K-theory ρ! : K0(C∞c (V o R)) → K0(C∞c (M o G)) is independent of
any choice of cut-off function.

Now let E = E+ ⊕E− be a Z2-graded, R-equivariant vector bundle over V .
We consider an R-invariant leafwise differential elliptic operator D of order one
and odd degree acting on the sections of E. Hence according to the Z2-grading
D splits as the sum of two differential operators of order one acting only in the
directions of the leaves D+ : C∞c (V,E+)→ C∞c (V,E−) and D− : C∞c (V,E−)→
C∞c (V,E+). This may be rewritten in the usual matrix form

D =

(
0 D−
D+ 0

)
. (50)

We make the further assumption that D is formally self-adjoint with respect to
some metric on V and hermitean structure on E. Note that the condition of
R-invariance for D imposes strong restrictions on the flow on V . The vector
bundle E defines a vector bundle (still denoted by E) on the manifold M by
pullback with respect to the range map r. Since D is an R-invariant leafwise
differential operator on V , it pullbacks accordingly to a G-invariant fiberwise
differential operator on the submersion s : M → B. Let S1 = R/Z be the circle,
endowed with the trivial action of G. We view the product M ′ = S1 ×M as a
submersion over the base manifold B, endowed with its G-action, and consider
the differential operator

Q =

(
∂x D−
D+ −∂x

)
(51)

where ∂x = ∂
∂x denotes partial differentiation with respect to the circle variable

x ∈ [0, 1]. Then Q is a G-invariant fiberwise differential operator on M ′, and is
elliptic because Q2 = D2 + (∂x)2. As pseudodifferential operators, the modulus
|Q| and its parametrix |Q|−1 are well-defined only modulo the ideal of smoothing
operators. Hence the “sign” of Q and the “spectral projection” onto the 1-
eigenspace

F = sign(Q) =
Q

|Q|
, P =

1 + F

2
(52)

are represented by fiberwise pseudodifferential operators of order zero on the
submersion M ′ → B, and modulo smoothing operators F and P are G-invariant
and fulfill the identities F 2 = 1 and P 2 = P . Let [e] ∈ K0(C∞c (V oR)) be a K-
theory class represented by an idempotent matrix e. For simplicity we assume
e ∈ C∞c (V o R). The suspension of the idempotent ρ(e) ∈ C∞c (M o G) is the
invertible element

u = 1 + ρ(e)(β − 1) ∈ C∞c (M ′ oG)+ , (53)

where the function β ∈ C∞(S1), β(x) = exp(2πi x) is the Bott generator of the
circle. The algebra C∞c (M ′) acting by pointwise multiplication on the space of
sections C∞c (M ′, E) is naturally represented in the algebra of sections of the
bundle of pseudodifferential operators of order zero CL0

c(M
′, E). This represen-

tation is G-equivariant, hence extends to a representation of C∞c (M ′)oG in the
convolution algebra E = C∞c (B,CL0

c(M
′, E))oG. Accordingly u is represented

by an invertible element U in the unitalization of E . The Toeplitz operator

T = PUP + (1− P ) ∈ E + (54)
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is uniquely defined modulo smoothing operators. One has T ≡ 1 + P (U − 1)
modulo the ideal B ⊂ E of order −1 pseudodifferential operators, and the
inverse of T modulo this ideal is represented by the Toeplitz operator PU−1P +
(1− P ) ≡ 1 + P (U−1 − 1). The quotient E /B is isomorphic to the convolution
algebra of leading symbols A = C∞c (B,LS0

c(M
′, E))oG. Note that the leading

symbol of T is uniquely defined and reads

σT = 1 + σP (u− 1) ∈ A + , (55)

where the leading symbol σP of P is a G-invariant idempotent in the algebra
of sections of LS0(M ′, E). Hence the equality σPu = uσP holds in A and the
inverse of σT is exactly 1 + σP (u−1 − 1). It is easy to see that the K-theory
class [σT ] ∈ K1(A ) only depends on the K-theory class [e] ∈ K0(C∞c (V o R))
of the idempotent e.

Definition 6.1 Let (V,F ) be a compact foliated manifold endowed with a trans-
verse flow of R, and D be an R-equivariant leafwise elliptic differential operator
of order one and odd degree acting on the sections of a Z2-graded equivariant
vector bundle over V . Then for any class [e] ∈ K0(C∞c (V o R)), we define the
index of D with coefficients in [e] as the K-theory class

Ind(D, [e]) = IndE([σT ]) ∈ K0(B) , (56)

where T is the Toeplitz operator constructed above and IndE is the index map
of the extension (E) : 0→ B → E → A → 0.

From now on we specialize to a codimension one foliation (V,F ) endowed
with a transverse flow φ. The connected components of the closed transversal
B are all diffeomorphic to the circle. Hence, the induced flow φ on a connected
component Bp acts by rotation with a given period p ∈ R. Choosing a base-
point we canonically get a parametrization of Bp by the variable b ∈ R/pZ,
and the flow is simply φt(b) ≡ b + t mod p. In the same way, we consider the
range r(γ) ∈ Bp and the source s(γ) ∈ Bq of any arrow γ ∈ HB as numbers
respectively in R/pZ and R/qZ, and denote by r∗db, s∗db the measures on HB

pulled back from the Lebesgue measure by the étale maps r, s respectively. Note
that db provides a canonical holonomy-invariant transverse measure on (V,F )
because the flow φ preserves the leaves of the foliation. In particular r∗db = s∗db
on HB . Remark also that because the transverse Lebesgue measure is holonomy-
invariant, the holonomy of a closed leafwise path is always the identity. As a
consequence, the holonomy groupoid H and its reduced groupoid HB have no
automorphisms except the units (that is, r(γ) = s(γ) implies γ is a unit).

Proposition 6.2 The convolution algebra C∞c (G) acts on the space of functions
C∞(B) by smoothing operators. In this representation, the operator trace of an
element f ∈ C∞c (G) reads

Tr(f) =
∑
Bp

∑
n∈Z

∫
HB

f(γ, np+ r(γ)− s(γ)) r∗db(γ) (57)

where the sum runs over all connected components Bp of the flow φ on the
transversal, p is the period of Bp and db is the pullback of the Lebesgue measure
on the groupoid HBp . In particular the distribution kernel of Tr is a measure
on G whose support is the manifold of automorphisms in the groupoid G.
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Proof: We define the action of f ∈ C∞c (G) on a test function ξ ∈ C∞(B) as
follows: at any point b ∈ B,

(f · ξ)(b) =
∑
γ∈HbB

∫ ∞
−∞

f(γ, t)ξ(φt(s(γ))) dt

where Hb
B is the set of arrows γ ∈ HB such that r(γ) = b. The sum is finite

and the integral converges because f is of compact support on G. One readily
verifies that this defines a representation of the convolution algebra C∞c (G) on
C∞(B), and that the distributional kernel of the operator f on the manifold
B ×B is

kf (b, b′) =
∑
γ∈HbB

∫ +∞

−∞
f(γ, t) δ(φt(s(γ))− b′) dt

where δ is the Dirac measure. If s(γ) is in a connected component of period p
for the flow φ, one has φt(s(γ)) ≡ s(γ) + t mod p and the integral selects all
values t = np+ b′ − s(γ), n ∈ Z. Therefore

kf (b, b′) =
∑
n∈Z

∑
γ∈HbB

f(γ, np+ b′ − s(γ))

(where p is the period of the connected component of s(γ)) is a smooth function.
Hence C∞c (G) acts by smoothing operators. The trace Tr(f) is given by the
integral, with respect to the measure db, of the kernel restricted to the diagonal
kf (b, b). In this case b = b′ = r(γ) and s(γ) belong to the same connected
component, say Bp. This leads to

Tr(f) =
∑
Bp

∑
n∈Z

∫ p

0

∑
γ∈HbBp

f(γ, np+ b− s(γ)) db

=
∑
Bp

∑
n∈Z

∫
HBp

f(γ, np+ r(γ)− s(γ)) r∗db(γ)

as claimed. If b = r(γ) ∈ Bp and t = np+ r(γ)− s(γ) for some n ∈ Z, one has
φt(s(γ)) ≡ r(γ) mod p which is equivalent to b · (γ, t) = b, that is (γ, t) ∈ G is
an automorphism.

The operator trace on C∞c (G) is therefore a cyclic zero-cocycle localized at
the isotropic set in G, and is of order k = 0 because its distribution kernel is
a measure. We may split it into several parts. Let us first consider the linear
functional Tr0 : C∞c (G) → C whose support is localized at the set of units
B ⊂ G. It amounts to sum only over the arrows γ = r(γ) = s(γ) ∈ B and the
integer n = 0 in the right-hand-side of (57):

Tr0(f) =

∫
B

f(b, 0) db . (58)

One easily checks that Tr0 is a trace. By construction it is localized at the sub-
manifold of units in G, and its distribution kernel corresponds to the (holonomy
invariant) transverse measure db. There is an associated cyclic cocycle τ0 over
the algebra B.
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Definition 6.3 Let Tr0 : C∞c (G) → C be the trace localized at units given by
the holonomy invariant transverse measure on (V,F ) induced by the flow φ,
and τ0 be the associated cyclic cocycle over B. We define the Connes-Euler
characteristics of the R-invariant operator D with coefficients in a K-theory
class [e] ∈ K0(C∞c (V oR)) as the complex number

χ(D, [e]) = 〈τ0, Ind(D, [e])〉 (59)

This number is the analogue, in the R-equivariant context, of the index
defined by Connes for longitudinal elliptic operators on a foliation endowed with
a holonomy invariant transverse measure [3]. Now let τ be the cyclic cocycle
over B corresponding to the full operator trace Tr. Our aim is to evaluate τ on
the K-theory class Ind(D, [e]) ∈ K0(B). As we shall see, the complementary
part 〈τ, Ind(D, [e])〉 − χ(D, [e]) is related to the periodic orbits of the flow φ on
(V,F ). If Π ⊂ V is a periodic orbit with period pΠ, a choice of base-point
canonically provides a parametrization of the orbit by a variable v ∈ [0, pΠ],
with φ(v) ≡ v + t mod pΠ. The flow at t = pΠ is called the return map. It
defines an endomorphism h′Π(v) on the tangent space to the leaf at any point
v ∈ Π, together with an even-degree endomorphism jΠ(v) on the fiber of the
Z2-graded vector bundle E over v. We shall suppose that h′Π is non-degenerate,
in the sense that det(1 − h′Π(v)) 6= 0 for all v ∈ Π. This implies in particular
that the periodic orbits of the flow are isolated.

Proposition 6.4 Let Π ⊂ V be a periodic orbit of the flow φ, and v ∈ Π. We
denote by h′Π(v) the action of the return map on the leafwise tangent space,
and by trs(jΠ(v)) the supertrace of the return map on the Z2-graded vector
bundle E at v. Suppose that h′Π is non-degenerate. Then the linear functional
ΘΠ : C∞c (V oR)→ C

ΘΠ(f) =
∑
n∈Z∗

∫
Π

trs(jΠ(v)n)

|det(1− h′Π(v)n)|
f(v, npΠ) dv (60)

with pΠ ∈ R the period of the orbit, is a trace. Actually the function v 7→
trs(jΠ(v)n)/|det(1− h′Π(v)n)| is constant along the orbit.

Proof: If v and v′ are two distinguished points in the orbit Π, the endo-
morphisms jΠ(v) and jΠ(v′) are conjugate, hence have the same supertrace.
Similarly det(1 − h′Π(v)) and det(1 − h′Π(v′)) are equal. The function v 7→
trs(jΠ(v)n)/|det(1− h′Π(v)n)| is therefore constant along the orbit, and can be
pushed out of the integration over v. In fact for any fixed n ∈ Z∗, the integral

Θn(f) =

∫
Π

f(v, npΠ) dv

defines a trace on C∞c (V oR). Indeed for two functions f, g on Π× R one has

Θn(fg) =

∫
Π

∫ ∞
−∞

f(v, npΠ − t)g(v − t, t)dt dv

=

∫
Π

∫ ∞
−∞

f(v, t)g(v + t, npΠ − t)dt dv

=

∫
Π

∫ ∞
−∞

f(v − t, t)g(v, npΠ − t)dt dv = Θn(gf)
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where we used repeatedly the fact that the functions f and g are pΠ-periodic in
the variable v.

Theorem 6.5 Let (V,F ) be a codimension one compact foliated manifold en-
dowed with a transverse flow, E a Z2-graded R-equivariant vector bundle over
V , and D an odd R-invariant leafwise elliptic differential operator of order one.
Assume that the periodic orbits of the flow are non-degenerate. Then for any
class [e] ∈ K0(C∞c (V o R)), the pairing of the index Ind(D, [e]) with the cyclic
cocycle τ induced by the operator trace is

〈[τ ], Ind(D, [e])〉 = χ(D, [e]) +
∑
Π

ΘΠ(e) , (61)

where χ(D, [e]) is the Connes-Euler characteristics, the sum runs over the pe-
riodic orbits Π of the flow, and ΘΠ is the canonical trace (60) on C∞c (V oR).

Proof: We use zeta-function renormalization by means of the complex powers
of the operator |Q|. Since Tr is a trace on C∞c (G) of order zero and localized at
the submanifold of automorphisms, Eq. (13) implies

〈[τ ], Ind(D, [e])〉 = C ◦ Res(T−1[ln |Q|, T ])

with T−1 the inverse of T modulo smoothing operators, and C the distribution
kernel of Tr which is a measure on G. Note that T−1[ln |Q|, T ] is a pseudod-
ifferential operator of order −1 because |Q| is G-invariant modulo smoothing
operators. We know that C splits as a sum of a part C0 whose support is local-
ized at units, and a complementary part Cp. By definition of the Connes-Euler
characteristics,

〈[τ ], Ind(D, [e])〉 − χ(D, [e]) = Cp ◦ Res(T−1[ln |Q|, T ]) .

The support of Cπ is the set of arrows (γ, t) ∈ G which are not units and such
that r(γ) = φt(s(γ)) in B. Such (γ, t) acts on the fiber Mr(γ) of the submersion
s : M → B by a diffeomorphism h : x 7→ φt(x · γ). Since (γ, t) is not a unit,
one sees that x ∈ Mr(γ) is a fixed point of h if and only if its image r(x) ∈ V
is contained in a periodic orbit of the flow. By hypothesis the periodic orbits
are isolated, so the fixed points for h is discrete subset of Mr(γ). Extending the
action of h on the fiber M ′r(γ) = S1 ×Mr(γ) in a trivial way, the fixed point

set becomes a discrete union of circles. In this simple situation, formula (11)
reduces to

Res
z=0

Tr(RUh|Q|−z) =
∑

S1⊂M ′r(γ)
fixed

∫
S∗S1

[σR]−1(x, ξ; 0, 0)

|det(1− h′)|
ξdx

2π

for any pseudodifferential operator R of order −1 on M ′r(γ). Here (x, ξ) are

the canonical coordinates on the cotangent bundle of S1, [σR]−1 is the leading
symbol of R, and h′ is the differential of the diffeomorphism h in the direction
normal to the circle, i.e. h′ is an endomorphism of the tangent space to Mr(γ) at
the fixed points. We apply this formula to the operator R = T−1[ln |Q|, T ](γ, t).
At the level of leading symbols, one has

σT−1[ln |Q|,T ](x, ξ; 0, 0) ∼ σ−1
T

∂σT
∂x

(x, ξ; 0, 0)
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where σT = 1 + σP (u − 1) is the leading symbol of T , u = 1 + ρ(e)(β − 1),
and σP is the leading symbol of the spectral projection P . In matrix notation
adapted to the Z2-grading of the vector bundle E,

σP (x, ξ; 0, 0) =

(
θ(ξ) 0

0 θ(−ξ)

)
,

where θ : R → {0, 1} is the Heavyside function. The dependency of σT upon
the parameter x comes only from the Bott element β ∈ C∞(S1). The cosphere
bundle S∗S1 being just a sum of two copies of the circle, the computation of
the residue is straightforward. It is a sum over the (isolated) fixed points of h
in Mr(γ):

Res
z=0

Tr(T−1[ln |Q|, T ](γ, t)Uh|Q|−z) =
∑

y∈Mr(γ)

fixed

trs(ρ(e)(y, (γ, t)))

|det(1− h′(y))|

Since y ∈ M is fixed by (γ, t) ∈ G, one has ρ(e)(y, (γ, t)) = c(y)2e(r(y), t)
where c ∈ C∞c (M) is the cut-off function used in the construction of the ho-
momorphism ρ, and r(y) ∈ V is the projection of y. Since the étale groupoid
HB acts without fixed points on B, integrating with respect to the measure Cp
on G amounts to integrate over all the periodic orbits Π ⊂ V of the flow. A
straightforward computation yields

Cp ◦ Res(T−1[ln |Q|, T ]) =
∑
Π

∑
n∈Z∗

∫
Π

trs(jΠ(v)n)

|det(1− h′Π(v)n)|
e(v, npΠ) dv

where h′Π(v) and jΠ(v) are the actions of the return map respectively on the
tangent space to the leaf and on the fiber of E at v ∈ Π.

Corollary 6.6 If the Connes-Euler characteristics χ(D, [e]) is not an integer,
then the flow φ has periodic orbits.

Proof: Indeed the cyclic cocycle τ over B comes from the operator trace on
C∞c (G), so the pairing 〈[τ ], Ind(D, [e])〉 is always an integer. The sum over pe-
riodic orbits cannot vanish if the Connes-Euler characteristic does not belong
to Z.

We end this section with a brief discussion of the more general situation of
a flow φ compatible with the foliation (V,F ), i.e. mapping leaves to leaves, but
also admitting fixed points. Remark that a leaf containing a fixed point is neces-
sarily preserved by φt for all t ∈ R: in this case the vector field Φ generating the
flow is tangent to the leaf. We shall suppose that the flow φ is non-degenerate
in the folIowing sense:

i) At any fixed point v ∈ V , the tangent map Tvφt on the tangent space TvV
has no singular value equal to 1 for t 6= 0;

ii) Each periodic orbit Π ⊂ V is transverse to the leaves, and the return map
induced by the flow on the tangent space to the leaf TvL at any v ∈ Π has no
singular value equal to 1.
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iii) If v ∈ V belongs to a leaf L preserved by the flow, the tangent map Tvφt
acting on the transverse space TvV/TvL has no singular value equal to 1 for
t 6= 0;

iv) The holonomy of a closed path contained in a leaf L preserved by the flow
is always the identity.

Conditions i) and ii) immediately imply that the fixed points and the periodic
orbits of the flow are isolated. In particular, a fixed point cannot belong to a
dense leaf. If B ⊂ V is a complete closed transversal, the induced flow φ on
B may also have fixed points, consisting in the intersection of B with all the
leaves preserved by φ. Conditions i) and ii) also imply that the fixed points of
φ are isolated in B. Moreover, by condition iii) the tangent map Tbφt acting
on the tangent space TbB at a fixed point b ∈ B is not the identity if t 6= 0;
thus Tbφt acts by the multiplication operator eκbt where κb 6= 0 is the exponent
of the flow at b. We add condition iv) because, unlike in the previous situation
of a transverse flow, the holonomy of a closed path is not automatically the
identity if the leaf is preserved by the flow. Now the closed manifold B can be
partitioned into the orbits of the flow φ, which are of three different types:

• The periodic orbits, denoted Bp, all diffeomorphic to a circle. Any such
orbit of period p is naturally parametrized by b ∈ R/pZ once a base-point
is chosen, and the flow is φt(b) ≡ b+ t mod p for all t. We denote db the
Lebesgue measure on Bp;

• The infinite orbits, denoted B∞, all diffeomorphic to R. They are also
naturally parametrized by b ∈ R once a base-point is chosen, with φt(b) =
b+ t for all t. We denote db the Lebesgue measure on B∞;

• The fixed points φt(b) = b for all t, each of them connecting two infinite
orbits.

The reduced holonomy groupoid HB still carries an action of R by homomor-
phisms, so we can form the crossed product HBoR as before. If Bp is a periodic
orbit, we denote HBp the subgroupoid of HB consisting in arrows γ with source
and range contained in Bp. Similarly with the infinite orbits. As before, the
measure db on periodic and infinite orbits is holonomy-invariant. However, com-
pared with the previous situation of a transverse flow, the main difficulty with
the presence of fixed points is that the convolution algebra C∞c (G) does no
longer act by smoothing operators on the space C∞(B). In order to define a
trace we are forced to restrict to the subalgebra

C∞c (G∗+) = {f ∈ C∞c (G) | supp (f) ⊂ HB × R∗+} (62)

where R∗+ ⊂ R is the abelian monoid (with addition) of real numbers > 0. One
easily checks that the convolution product on C∞c (G) preserves the subspace
C∞c (G∗+). The submanifold G∗+ = HB × R∗+ of G has a partially defined com-
position law coming from the composition of arrows in G; however G∗+ is not
a subgroupoid. We nevertheless regard C∞c (G∗+) as the convolution algebra of
the “crossed-product” G∗+ = HB oR∗+.

Proposition 6.7 The algebra C∞c (G∗+) acts on the space C∞(B) by distri-
butional kernels which may be singular on the diagonal. When the flow φ is
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non-degenerate, the operator trace on smoothing kernels canonically extends to
a trace on C∞c (G∗+) by

Tr(f) =
∑
Bp

∑
n∈Z

∫
HBp

f(γ, np+ r(γ)− s(γ)) r∗db(γ)

+
∑
B∞

∫
HB∞

f(γ, r(γ)− s(γ)) r∗db(γ) (63)

+
∑
b

∫ ∞
0

f(b, t)

|1− eκbt|
dt

where the sums run over all periodic orbits Bp, infinite orbits B∞ and fixed
points b of the flow φ on the transversal; p > 0 is the period of the orbit Bp and
κb 6= 0 is the exponent of φ at the fixed point b.

Proof: As in the proof of Proposition 6.2, the distributional kernel of an element
f ∈ C∞c (G∗+) acting on C∞(B) is

kf (b, b′) =
∑
γ∈HbB

∫ ∞
0

f(γ, t) δ(φt(s(γ))− b′) dt .

Its restriction to the diagonal is still a smooth function except at the fixed points
of the flow φ where it is proportional to a Dirac measure. Its integral over B thus
extends the operator trace of smoothing kernels. We split B into three parts
corresponding to the different types of connected components of the flow. The
first term of (63) associated to the periodic components is calculated exactly as
in 6.2, and similarly for the second term associated to the infinite components.
At a fixed point, the equality φt(s(γ)) = r(γ) implies s(γ) = r(γ), hence γ is
necessarily a unit by hypothesis iv). The kernel kf (b, b) for b in the vicinity of
a fixed point thus reads

kf (b, b) =

∫ ∞
0

f(b, t) δ(φt(b)− b) dt .

Taking the fixed point as the origin of a local coordinate system, the equality
φt(b) ∼ beκt holds at first order in the variable b, where κ is the exponent of φ
at the fixed point. Thus

kf (b, b) = δ(b)

∫ ∞
0

f(b, t)

|1− eκt|
dt ,

and integrating over b yields the contribution of the fixed point to the trace,
whence the third term of (63).

Let C∞c (V oR∗+) be the space of smooth compactly supported functions on
V ×R with support contained in the open subset V ×R∗+. It is a subalgebra of
the convolution algebra C∞c (V oR). Let D be an R-equivariant leafwise elliptic
differential operator D of order one and odd degree acting on the sections of
a Z2-graded equivariant vector bundle E over V , and e ∈ C∞c (V o R∗+) be an
idempotent. The index Ind(D, [e]) defined in 6.1 is then a K-theory class of the
subalgebra B∗+ = C∞c (B,CL−1

c (M ′, E)) oG∗+ of B. As before we denote τ the
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cyclic cocycle over B∗+ induced by the trace Tr : C∞c (G∗+) → C. The pairing
〈[τ ], Ind(D, [e])〉 is a well-defined complex number. Its explicit computation
involves, besides the periodic orbits of the flow, also the fixed points.

Proposition 6.8 Let v ∈ V be a fixed point of the non-degenerate flow φ. We
denote by κv the generator of the flow on the tangent space TvV , and by jv
the generator of the flow on the fiber Ev. Then the linear functional Wv :
C∞c (V oR∗+)→ C

Wv(f) =

∫ ∞
0

trs(e
jvt)

|det(1− eκvt)|
f(v, t) dt (64)

is a trace.

Proof: Since φt(v) = v, ∀t > 0, one has for any functions f, g ∈ C∞c (V oR∗+)

(fg)(v, t) =

∫ +∞

−∞
f(v, u)g(v, t− u) du = (gf)(v, t)

so that Wv is obviously a trace.

Since the support of the index Ind(D, [e]) ∈ K0(B∗+) does not meet the part
t ≤ 0 of the groupoid G, the Connes-Euler characteristics does not appear in
the computation of 〈[τ ], Ind(D, [e])〉. One is left with the periodic orbits and
the fixed points only. The method of proof of Theorem 6.5 leads at once to the
following result.

Theorem 6.9 Let (V,F ) be a codimension one compact foliated manifold en-
dowed with an F -compatible flow, E a Z2-graded R-equivariant vector bundle
over V , and D an odd R-invariant leafwise elliptic differential operator of order
one. Assume that the periodic orbits and the fixed points of the flow are non-
degenerate. Then for any class [e] ∈ K0(C∞c (V oR∗+)), the pairing of the index
Ind(D, [e]) with the cyclic cocycle τ induced by the operator trace is

〈[τ ], Ind(D, [e])〉 =
∑
Π

ΘΠ(e) +
∑
v fixed

Wv(e) , (65)

where the sums runs over the periodic orbits Π and the fixed points v of the flow,
ΘΠ and Wv are the canonical traces (60) and (64) on C∞c (V oR∗+).

Proof: As in the proof of 6.5 we let C be the measure on G∗+ correponding to
the trace Tr : C∞c (G∗+)→ C. Then

〈[τ ], Ind(D, [e])〉 = C ◦ Res(T−1[ln |Q|, T ])

According to (63), the trace can be decomposed into three parts respectively
associated to periodic orbits, infinite orbits and fixed points of the flow φ on
the transversal B. Hence C can be accordingly decomposed into three measures
Cp, C∞ and Cf over G∗+. The contributions of Cp and C∞ to the pairing
〈[τ ], Ind(D, [e])〉 are computed exactly as in 6.5 and yield the sum over the
periodic orbits Π of the flow φ on V . Concerning the measure Cf , whose support
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is localized at the arrows (b, t) ∈ G∗+ with b ∈ B a fixed point of φ and t ∈ R∗+,
we arrive at

Cf ◦ Res(T−1[ln |Q|, T ]) =
∑
b∈B
fixed

∑
y∈Mb
fixed

∫ ∞
0

trs(ρ(e)(y, (b, t)))

|(1− eκbt) det(1− h′t(y))|
dt

where h′t is the action of the flow φt on the tangent space to the fiber Mb at
the fixed point y, and κb is the exponent of the flow φ at the fixed point b.
One has (1 − eκbt) det(1 − h′t(y)) = det(1 − Tφt(y)) with Tφt(y) the flow on
the tangent space TyM . The latter is of the form Tφt(y) = eκyt with κy the
generator of the tangent flow at y. To end the computation, we remark that
ρ(e)(y, (b, t)) = c(y)2e(r(y), t) where c ∈ C∞c (M) is the cut-off function and
r(y) ∈ V . Since

∑
y∈r−1(v) c(y)2 = 1 for any fixed point v ∈ V of the flow φ,

one gets

Cf ◦ Res(T−1[ln |Q|, T ]) =
∑
v fixed

∫ ∞
0

trs(e
jvt)

|det(1− eκvt)|
e(v, t) dt

where jv is the generator of the flow on the fiber Ev and κv is the generator of
the flow on the tangent space TvV .
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