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I. Introduction

The relationship between topological anomalies in Quantum Field Theory
and classical index theorems is an old subject. The mathematical understand-
ing was investigated by Atiyah and Singer in [2], and further related to Bismut’s
local index formula for families in [3, 10] (see e.g. [1] for a more physical pre-
sentation). In this paper, we shall describe quantum anomalies from the point
of view of non-commutative geometry [5]. The latter deals with a large class
of “spaces” (including pathological ones such as foliations, etc.) using the pow-
erful tools of functional analysis. The advantage we can take of this theory in
QFT is obvious. In our present work, it turns out that anomalies, and more
generaly BRS cohomology, are just the pairing of odd cyclic cohomology with
algebraic K1-groups [4, 5]. Although these tools are well-known and well-used
by mathematicians, it is still unclear whether the physics literature has assim-
ilated it. We will try to fill this gap below.

According to Connes [5], a non-commutative space is described by a spectral
triple (A, H,D), where A is an involutive algebra of operators on the Hilbert
space H, and D is a selfadjoint unbounded operator. D carries a nontrivial
homological information through its Chern character in the cyclic cohomology
of A [5]. In our field-theoretic interpretation, H is a space of matter fields (e.g.
fermions), and D is a Dirac operator. We also introduce a Lie group G ⊂ A,
which plays the role of gauge transformations. Now BRS cocycles are obtained
by transgression of the Chern character of an index bundle, constructed from a
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G-equivariant family of Dirac operators. The Chern character of this bundle is
directly related to that of D.
The natural receptacle for the above construction should be Kasparov’s bivari-
ant K-theory [14]. For some convenience, we give a direct proof of the needed
cohomological formula, using only the pairing of cyclic cohomology with K-
theory [4]. The final step is to use the local index formula of Connes-Moscovici
[8] in order to get explicit expressions of consistent anomalies.
We end the paper by mentioning two examples. The first one concerns the comp
utation of the Yang-Mills anomaly on a Riemannian spin manifold, which makes
only use of the underlying classical (commutative) geometry. The second exam-
ple is provided by the gravitational anomaly. It is much more involved because
of the natural non-commutative structure encoded in diffeomorphisms. This
constitutes a relevant illustration of non-commutative index theorems in QFT.

II. Conventions

We begin with some ingredients describing our non-commutative space. Let
A be a unital *-algebra represented in the algebra L(H) of bounded linear
operators on a separable Hilbert space H, and D a densely defined unbounded
self-adjoint operator in H. The spectral triple (A, H,D) is supposed to satisfy
the following properties [4]:
i) ∃ p ∈ [1,∞[ such that (1 +D2)−1 ∈ Lp/2(H),
ii) ∀ a ∈ A, [D, a] is densely defined and extends to a bounded operator in H,
iii) there is a self-adjoint involution γ ∈ L(H) such that γD = −Dγ, γa =
aγ ∀a ∈ A;
that is, (H,D) is an even p-summable unbounded Fredholm module over A.
We can choose the following matricial representation in the Z2-graded space
H = H+ ⊕H−:

D =

(
0 D−

D+ 0

)
γ =

(
1 0
0 −1

)
. (1)

Consider now a set of “gauge potentials”: it is an affine subspace V ⊂ L(H)
of odd self-adjoint bounded operators. For any A ∈ V, DA ≡ D + A is a
bounded perturbation of D, and (H,DA) is a p-summable Fredholm module
homotopic to (H,D) [7].
Let G ⊂ A be a Lie group of unitary elements of A. We assume that the natural
action of G,

DA → g−1DAg , g ∈ G ,

A → g−1Ag + g−1[D, g] , (2)

on V is free. This turns V into a principal G-bundle over the space V/G,
which we assume to be paracompact. These properties imply in particular that
V/G is a specific realization of the classifying space BG, and that V is bundle-
homotopic to the universal bundle EG over BG.
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We describe now the index bundle associated to the family (H,DA). Let
X be a compact subset of V/G. The equivariant family of finite-dimensional
spaces kerD+

A ⊂ H+ and kerD−A ⊂ H− defines a virtual bundle over X, the
so-called index bundle

Ind(H,D) = kerD+
A − kerD−A ∈ K

0(X) . (3)

Our goal is to compute its Chern character in rational cohomology. We shall
represent it in de Rham cohomology as follows. Let M be a compact smooth
manifold, and f : M → X a continuous map. The bundle V pulls-back on
a bundle M̃ over M . Choose a connection one-form θ on M̃ , and define the
Quillen superconnection [12]

∇ = d+ θ + itDA , (4)

where d is the differential on M̃ , and t > 0 a real number. Then a result of
Bismut [3] shows that the closed differential form Trs exp∇2 represents the
Chern character ch∗(Ind) ∈ H∗(M ; Q) of the index bundle1. Here Trs = Tr(γ.)
denotes the supertrace of operators on the Z2-graded Hilbert space H.

By a classical transgression à la Chern-Simons, one can use this Chern
character to construct closed differential forms on the Lie group G. Consider
the linear homotopy

∇u = d+ itD + u(θ + itA) , u ∈ [0, 1] . (5)

Then the Chern-Simons forms are obtained by the odd components in the dif-
ferential form

cs(H,D) =
∫ 1

0
duTrs((θ + itA)e∇

2
u) . (6)

When restricted to the fibres of M̃ , the former are closed. These elements
α2k+1 of de Rham cohomology H2k+1

dR (G; C) will be refered to as BRS cocyles.
In particular, the topological anomaly is the element α1 of the first cohomology
H1
dR(G; C).

At this point, one could be tempted to compute these classes by local for-
mulas. For instance, using Duhamel’s formula, and taking the finite part of
cs at the limit t → 0, the result should be expressed in terms of residues of
some zeta-functions, following the same lines as in [8]. Since it is an easy tran-
scription exercise, we shall not develop it further. Let us rather concentrate on
the links between the Chern character of the index bundle and the one of the
p-summable Fredholm module (H,D) in periodic cyclic cohomology.

Such a link was already exhibited in [6]. Assume for simplicity that D is
invertible (the general case can be treated as in [7]). The Chern character

1Here and in the following we omit several 2πi factors. It causes no confusion since all the
de Rham cohomology classes we are dealing with are understood to be rational.
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ch∗(D) is represented, for any even integer n > p − 1, by the following n-
dimensional cyclic cocycle

τD(a0, ..., an) =
1
2

(
n

2

)
!Trs(F [F, a0]...[F, an]) , F =

D

|D|
, ai ∈ A . (7)

Now for any A ∈ V such that DA is invertible, we define the (n+1)-dimensional
differential form

ΦτDA
= τDA

(θ, ..., θ) , (8)

where θ is a connection form on V. The restriction of ΦτDA
to the fibres of

V is closed and invariant under the right action of G. Next we obtain, by a
straightforward adaptation of [6], the following

Theorem 1 ([6]) Let A ∈ V be such that DA is invertible. Let n > p − 1 be
an even integer, τDA

the n-dimensional cyclic cocycle representing the Chern
character of (H,DA), and αn+1 the BRS cocycle of degree n + 1. Then the
restriction of ΦτDA

to the orbit of A under the action of G is2

ΦτDA
= (n+ 1)!αn+1 in Hn+1

dR (G; C) . (9)

Hint of proof: Consider the linear homotopy between the two superconnec-
tions d + θ + itDA and d + itDA, for t sufficiently large. The conclusion is a
consequence of the contractibility of V and [6] Thm. 9. 2

For n ≤ p− 1, the de Rham cohomology of G cannot be represented by in-
variant forms. Thus we need another relation between ch∗(Ind) and ch∗(H,D)
to cover this case as well. This is done in the next sections.

III. Cyclic cohomology and the index bundle

Let (A, H,D) be a p-summable spectral triple as before (we don’t have to
assume that D is invertible). In order to relate the Chern characters of both
Ind(H,D) and the Fredholm module (H,D), we need a more algebraic approach
to the topological construction presented in the preceding section.

In order to give some flavour on what ought to happen in the case of Lie
groups, we consider first the case where G is discrete. Let Ā be the norm closure
of A in L(H). Take a compact subset X ⊂ BG and form the C∗-algebra tensor
product C(X) ⊗ Ā, where C(X) is the algebra of continuous functions on X.
Now the G-principal bundle X̃ over X can be explicitely described by the
following idempotent e ∈Mn(C(X)⊗Ā) (“Misčenko line bundle”, see [5] chap.
II). Let (Ui)i=1,n be a finite open covering of X such that X̃ is trivial over
each Ui, and gij : Ui ∩ Uj → G be the transition functions defining X̃. Take a

2This formula appears in [6] with an erroneous n! coefficient.
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partition of unity (ρi)i=1,n relative to the covering (Ui),
∑
i ρ

2
i = 1. Then the

component eij of e in the n× n matrices over C(X)⊗ Ā is given by

eij = ρiρjgij ∈ C(X)⊗ Ā . (10)

The equivalence class of the idempotent e defines an element [e] of the Kasparov
group KK(C, C(X)⊗ Ā). Also (H,D) defines a class in KK(Ā,C), the set of
homotopy classes of Fredholm modules over Ā. Now the Kasparov product [14]

⊗Ā : KK(C, C(X)⊗ Ā)×KK(Ā,C)→ KK(C, C(X)) (11)

enables one to give the following

Definition 2 The index bundle Ind(H,D) ∈ KK(C, C(X)) over X is given by
the Kasparov product

Ind(H,D) = [e]⊗Ā (H,D) (12)

of the Misčenko line bunble by the Fredholm module (H,D).

We now deal with Chern characters and a non-necessarily discrete Lie group
G. Let M be an even-dimensional oriented smooth manifold without boundary,
and M → X a continuous map. We represent the Chern character of Ind(H,D)
in the cohomology of the de Rham complex of differential forms Ω∗(C∞(M), d).
On the other hand, the Chern character of (H,D) is represented by a cyclic
cocycle over A, or equivalently [4], by a closed graded trace on the enveloping
differential algebra Ω∗(A, δ).
Finally, the (smooth) idempotent e ∈Mn(C∞(M)⊗A) has a Chern character
constructed from a curvature two-form as in Chern-Weil theory. Consider the
graded differential algebra Ω∗(C∞(M)⊗A, d+δ). Then e determines a canonical
curvature

Θ = e(d+ δ)e(d+ δ)e ∈ Ω2(Mn(C∞(M)⊗A), d+ δ) , (13)

and its Chern character in K0-theory reads

ch∗0(e) =
∑
k

1
k!

trnΘk ∈ Ωeven(C∞(M)⊗A, d+ δ) . (14)

Note that the natural map from Ω∗(C∞(M) ⊗ A, d + δ) to the graded tensor
product of differential algebras Ω∗(C∞(M), d)⊗̂Ω∗(A, δ) yields a cup product

∪ : Hn(M ; C)⊗HCm(A)→ HCn+m(C∞(M)⊗A) (15)

between the de Rham homology of M and the cyclic cohomology of A, exactly
as in [4].

We can thus state the main theorem, which is the cohomological version of
eq.(12):
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Theorem 3 Let ch∗(D) be the cyclic cohomology Chern character of the p-
summable Fredholm module (H,D). We view it as a closed graded trace on
Ω∗(A, δ). Then the Chern character of the index bundle is

ch∗(Ind) = 〈ch∗0(e), ch∗(D)〉 ∈ Heven
dR (M ; C) . (16)

Proof: Endow M with a Riemannian metric. Let (Hσ, Dσ) be the even
Fredholm module associated to the signature operator [σ] ∈ K∗(M) of M .
Consider the graded tensor product of (Hσ, Dσ) with (H,D): it is the even
module (Hσ⊗̂H,Dσ⊗̂1 + 1⊗̂D), whose Chern character is the cup product of
ch∗(Dσ) ∈ H∗(M ; Q) with ch∗(D) ∈ HC∗(A). Now the index of Pe = e(Dσ⊗̂1+
1⊗̂D)e is given by Connes’ pairing

indexPe = 〈ch∗0(e), ch∗(Dσ) ∪ ch∗(D)〉 . (17)

Moreover Pe describes also the signature operator twisted by the index bundle,
so that the classical Atiyah-Singer theorem gives

indexPe = 〈ch∗(Ind), ch∗(Dσ)〉 . (18)

Let E be an arbitrary vector bundle over M . If we twist Pe again with E, we
are left with

〈ch∗0(e), (ch∗(E) ∩ ch∗(Dσ)) ∪ ch∗(D)〉 = 〈ch∗(Ind), ch∗(E) ∩ ch∗(Dσ)〉 . (19)

The Chern isomorphism ch∗ : K∗(M)⊗ Q → Heven(M ; Q) allows one to “sim-
plify” both sides by ch∗(E)∩ch∗(Dσ) ∈ H∗(M ; Q) and the conclusion follows. 2

Eq.(16) can be transgressed to Hodd(G; C) as usual. We introduce the map
g as the inclusion g : G ↪→ A. It is an invertible element of C∞(G)⊗A, which
determines a canonical class [g] in the algebraic K-group K1(C∞(G) ⊗ A).
Its Chern character ch∗1(g) can be expressed in the differential graded algebra
Ω∗(C∞(G)⊗A, d+ δ) by means of the Maurer-Cartan form ω = g−1(d+ δ)g:

ch∗1(g) =
∑
k

(−)k
k!

(2k + 1)!
ω2k+1 ∈ Ωodd(C∞(G)⊗A, d+ δ) . (20)

We deduce immediately

Theorem 4 The BRS cocycles are given by the pairing

α = 〈ch∗1(g), ch∗(D)〉 ∈ Hodd
dR (G; C) , (21)

where the Chern character ch∗(D) is viewed as a closed graded trace on the
enveloping differential algebra Ω∗(A, δ).

2
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Remark 5 Eq. (21) is nothing else but the pairing between odd cyclic coho-
mology and K1-groups [4]. Indeed, let Γ ∈ Hodd(G,Z) be an odd-dimensional
integral cycle on G considered as a smooth manifold. Then the evaluation of
α on Γ is the rational pairing of [g] ∈ K1(C∞(G) ⊗ A) with the odd cyclic
cohomology class Γ ∪ ch∗(D) ∈ HCodd(C∞(G)⊗A):

〈α,Γ〉 = 〈[g],Γ ∪ ch∗(D)〉 ∈ Q . (22)

Remark 6 The de Rham cohomology class of α does not depend on the di-
mension of the even cyclic cocycle representing ch∗(D), since K-theory pairs
with periodic cyclic cohomology.

Remark 7 The above pairing is also available when the Fredholm module
(H,D) is only Θ-summable, provided its Chern character is expressed in entire
cyclic cohomology [5].

IV. The local anomaly formula

In this section we compute the topological anomaly explicitely by using
the local formula of Connes and Moscovici for the Chern character of finitely
summable spectral triples [8].

Consider a smooth map g : S1 → G from the circle to the Lie group G. It
determines a canonical element [g] ∈ K1(C∞(S1)⊗A). Our goal is therefore to
evaluate the pull-back of the anomaly g∗(α1) ∈ H1

dR(S1; C) on the fundamental
class [S1] ∈ H1(S1; Z), by the formula∫

S1
g∗(α1) = 〈[g], [S1] ∪ ch∗(D)〉 ∈ Z (23)

This pairing is integral and can be expressed as the index of an operator. To see
this, we introduce the spectral triple of the circle parametrized by θ ∈ [0, 2π]:

(C∞(S1), L2(S1),−i∂θ) . (24)

Its Chern character in de Rham homology is just the fundamental class [S1].
Thus [S1] ∪ ch∗(D) is the Chern character of the tensor product (A′, H ′, D′) =
(C∞(S1), L2(S1),−i∂θ)⊗(A, H,D). The Dirac operator of this product is given
by

D′ = −i∂θ ⊗ γ + 1⊗D =

(
−i∂θ D−

D+ i∂θ

)
. (25)

(A′, H ′, D′) is thus an odd triple, and we shall use the formula of [8] to compute
(23). First, we have to make the following regularity hypothesis,

a and [D′, a] ∈ ∩Domδk , ∀a ∈ A′ (26)
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where δ is the derivation δ(P ) = [|D′|, P ] for any operator P . Furthermore, the
dimension of (A′, H ′, D′) is described by the discret set Σ ⊂ C of singularities
of the zeta-functions

ζb(z) = Tr(b|D′|−z) , z ∈ C , (27)

where b is any element of the algebra generated by δk(a), δk([D′, a]), a ∈ A′.
We suppose that ζb(z) extends holomorphically to C\Σ.
Second, the Chern character of (A′, H ′, D′) is expressed in the (b, B) bicomplex
of A′ [5]. Recall that the b + B cohomology of cochains with finite length is
isomorphic to periodic cyclic cohomology. The correspondence goes as follows.
If ψ is an n-dimensional cyclic cocycle, then the (b+B)-cochain

φn = (−)[n/2] 1
n!
ψ (28)

is a (b + B)-cocycle whose cohomology class corresponds to the class of ψ in
periodic cyclic cohomology.

Then Connes and Moscovici show [8] that the components φn, n odd (bounded
by the summability degree), of the Chern character of (A′, H ′, D′) in the bi-
complex are expressed by finite linear combinations of residues of the form

Res
z=0

zqTr(a0[D′, a1](k1)...[D′, an](kn)|D′|−(2|k|+n+2z)) , ai ∈ A′ , (29)

where P (k) is the kth iterated commutator of P with D′2, and q, ki are bounded
positive integers.

Now the cocycle
∑
n φn pairs with the Chern character ch∗1(g) of [g] ∈

K1(A′), whose components in cyclic homology read [11]:

ch2k+1
1 (g) = (−)kk! g−1 ⊗ g ⊗ ...g−1 ⊗ g ∈ A′⊗2(k+1)

. (30)

We deduce finally

Corollary 8 (local anomaly formula) Let g : S1 → G be a smooth map.
Then the integration of the anomaly α1 ∈ H1

dR(G; C) on the circle is the integer∫
S1
g∗(α1) =

∑
k

(−)kk!φ2k+1(g−1, g, ..., g−1, g) , (31)

where φn, n odd, are the components of the Chern character ch∗(−i∂θ⊗γ+1⊗D)
in the (b, B) bicomplex of C∞(S1)⊗A.

2

Remark 9 The operator D′ = −i∂θ ⊗ γ + 1⊗D is in fact a Quillen supercon-
nexion acting on smooth sections of the family of Hilbert spaces H over S1. The
index theorem (31) computes the net number of eigenvalues of D′ which cross
zero in a homotopy between D′ and g−1D′g [8]. This remark really allows us to
assert that (31) characterizes the cohomology class of the topological anomaly
[1].
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V. Examples

1) Yang-Mills anomalies: this is a commutative example. Let M be a p-
dimensional compact Riemannian spin manifold, p even. A is the commutative
algebra C∞(M) of smooth complex functions on M , H is the Hilbert space
of L2-spinors on M , and D is the usual Dirac operator. In order to construct
non-trivial BRS cohomology classes, we must replace A by the matrix algebra
MN (C∞(M)) acting on H ⊗ CN , for N large enough. Now G is the Lie group
of unitary Yang-Mills transformations UN (C∞(M)).

Thus we are lead to compute the Chern character of the product of (A, H,D)
by the circle. The components φn, n ≤ p+1, of ch∗(−i∂θ⊗γ+1⊗D) are given
by (cf. [8])

φn(a0, ..., an) = λn

∫
M×S1

Â(M×S1)trN (a0da1...dan) , ai ∈MN (C∞(M×S1)) ,

(32)
where Â(M × S1) is the Â-genus of the Riemannian manifold M × S1, and λn
are some universal coefficients. Since Â(M × S1) = Â(M), the local anomaly
formula is a sum of terms of the form∫

M×S1
Â(M)trN (g−1dgdg−1...dg) , (33)

which is the expected result [2, 13].

2) Gravitational anomalies: this example is much more interesting, because it
is highly non-commutative in nature. The algebra A is the crossed product
C∞(M) >�Γ, where Γ is a pseudogroup of local diffeomorphisms of the mani-
fold M . This kind of product is already used by mathematicians in the study
of foliations (with Γ discrete) [5]. The construction of K-cycles for the above
algebra is rather involved. The difficulty is that Diff(M) does not preserve
any Riemannian structure on M , so that the usual elliptic operators (Dirac,
signature, etc.) cannot be defined in an invariant way. The problem is solved
by working on the bundle of Riemannian metrics over M , on which one can
construct a differential hypoelliptic operator Q, with invariant principal sym-
bol [8]. This gives rise to a spectral triple satisfying the hypothesis of the index
theorem of Connes-Moscovici. The cycle is then transferred down to M by
Thom isomorphism.
Next, the Chern character of Q is computed in terms of Gel’fand-Fuchs coho-
mology [9]. This step requires the study of cyclic cohomology for Hopf algebras.
Once transposed to our physical situation, the above construction shows that
the gravitational anomaly is described by Gel’fand-Fuchs cohomology, which
is more or less known to physicists. According to our presentation it can be
derived from beautiful non-commutative index theorems. Details will be given
elsewhere.

Acknowledgements: The author wishes to thank S. Lazzarini for numerous
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7. Connes A., Moscovici H.: Transgression and the Chern character of finite-
dimensional K-cycles, Comm. Math. Phys. 155 (1993) 103-122.

8. Connes A., Moscovici H.: The local index formula in non-commutative ge-
ometry, GAFA 5 (1995) 174-243.

9. Connes A., Moscovici H.: Hopf algebras, cyclic cohomology and the trans-
verse index theorem, Comm. Math. Phys. 198 (1998) 199-246.

10. Freed D. S.: Determinants, torsion, and strings, Comm. Math. Phys. 107
(1986) 483-513.

11. Loday J. L.: Cyclic homology, Grundlehren der mathematischen Wis-
senschaften 301, Springer-Verlag (1992).

12. Quillen D.: Superconnections and the Chern character, Topology 24 (1985)
89-95.

13. Singer I. M.: Families of Dirac operators with application to physics, Soc.
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